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Figures (legends below) 

Figure 1: Summary of the study  

A. Study workflow and data quality control 

This study included whole exome sequenced samples from ADES-ADSP described in Holstege et al. 

2022, restricted to individuals passing their quality control and being included in a CNV-calling-batch 

of 50+ individuals. 

B. Illustration of the dosage analysis 

C. Forest plot associated with the meta-analysis of results from both main analysis and replication 

Figure displays OR with 95%Confidence Intervals. 

QC: Quality Control; CNV: Copy Number Variation; EOAD: Early Onset Alzheimer Disease; LOAD: Late 

Onset Alzheimer Disease; OR: Odd-ratio 

Orange: discovery, green: replication, black: meta-analysis 

Figure 2. Focus on the 22q11.21 locus 

A. UCSC genome browser view of CNVs identified in the main analysis 

In red: deletions; In blue: duplications. Large areas represent coordinates of CNVs as detected by 

CANOES. Thinner areas show breakpoints uncertainties, i.e. regions between two targets of the 

sample-specific capture kit. Genes are indicated below, and the regions of segmental duplications 

appear at the bottom part. Low copy repeats (LCR) underlying recurrent rearrangements by non-

allelic homologous reparation (NAHR) are indicated below. A black line underlines the locus 

prioritized here. Note that not all duplications are taken into account in the statistical analysis, only 

those encompassing a whole transcript are included. 

B. Percentage of deletions and duplications carriers by status and gene 

In red: deletions; In blue: complete duplications. Data include both main analysis and replication 

datasets. 

C. Clinical information of carriers of the deletion in the main analysis 

Y: years; AD: Alzheimer Disease; EOAD: Early Onset AD; LOAD: Late Onset AD; MMSE: Mini Mental 

State Examination; CSF: Cerebrospinal Fluid 

 

Supplementary Tables 

Table S1. Pathogenic variants in stage 2 from the Holstege et al. study 

Table S2. Samples per contributing study 

Table S3. List of large CNVs 

Table S4. Results of all AD cases versus controls (dosage, deletions, duplications) 

Table S5. Carriers of CNVs encompassing the chr 22q11.21 locus 

Table S6. Deletion-only analysis (FDR ≤ 20%) 

Table S7. Duplication-only analysis (FDR ≤ 20%) 

Table S8. List of all CNVs in prioritized genes and validation status 

Table S9. APOE genotypes in locus ERCC2/KLC3 duplication carriers and non-carriers 
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Table S10. APOE4-adjusted dosage analysis 

Table S11. Dosage analysis adjusted for population structure 

Table S12. List of loss-of-function variants 

Table S13. Loss-of-function analysis (CNV and SNV/indels) 

Table S14. Cumulate CNV analysis 

Table S15. Replication analysis 

 

Supplementary Figures (legends are inserted as notes in the .ppt document) 

Fig S1. Example of a large CNV on chromosome 9 suggesting a blood-specific event (probable clonal 

hematopoiesis)  

Fig S2. Theoretical example of definition of CNV coordinates according to transcript and capture kit 

coordinates. 

Fig S3. ERCC2-KLC3 locus on chr19 with CNVs displayed on the UCSC genome browser 

Fig S4. MBL2 locus with CNVs displayed on the UCSC genome browser 

Fig S5. ADI1 locus with CNVs displayed on the UCSC genome browser  

Fig S6. FADS6 locus with CNVs displayed on the UCSC genome browser  

Fig S7. ABCA1 locus with CNVs displayed on the UCSC genome browser 

Fig S8. ABCA7 locus with CNVs displayed on the UCSC genome browser 

Fig S9. TYROBP locus with CNVs displayed on the UCSC genome browser 

Fig S10. CNVs affecting known AD-associated genes 

Fig S11. CTSB locus with CNVs displayed on the UCSC genome browser 

Fig S12. Time required for the calling step of our pipeline with two versions of CANOES 

Fig S13. QQ-plot for dosage analysis before and after adjustment for ancestry in EOAD versus 

Controls analysis. 

Fig S14. Projection of MBL2 CNV carriers on the first two ancestry components. 

Figure S15. 22q11.21 locus with CNVs from replication displayed on the UCSC genome browser 

Figure S16. ADI1 locus with CNVs from replication displayed on the UCSC genome browser 

Figure S17. FADS6 locus with CNVs from replication displayed on the UCSC genome browser 
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Abstract 

Rare coding single nucleotide variants (SNV) and short insertions or deletions (indels) contribute to 

Alzheimer disease (AD) genetic risk, from pathogenic variants in autosomal dominant genes to risk 

factors with diverse effects. In contrast, copy number variants (CNV) have been scarcely studied, with 

the exception of a few autosomal dominant examples, such as APP gene duplications.  

We took advantage from a large case-control dataset of 22,319 exomes (4,150 early-onset AD (EOAD, 

onset ≤65 years), 8,519 late onset AD (LOAD) and 9,650 controls) to detect CNVs. We first identified 

17 causative CNVs in autosomal dominant genes (9 novel: 7 APP and 2 MAPT duplications). After 

exclusion of carriers of these, we performed an original two-step analysis: (i) a protein-coding genome-

wide analysis at the transcript level using a gene dosage strategy (EOAD versus controls) and then (ii) 

an integrated loss-of-function (LOF) analysis gathering short truncating variants with CNV-deletions in 

genes prioritized in (i) and in a list of known AD risk genes.  

We identified AD association with dosage of 20 genes at 4 different loci with a false discovery rate 

(FDR) below 10%, including the chr22q11.21 central region (FDR=0.0386), a region in linkage 

disequilibrium with the APOE locus on chr19 (FDR=0.0271), and two single-gene loci, namely FADS6 

(FDR=0.0271), and ADI1 (FDR=0.0916). Replication in an independent dataset made of genotyping 

array data from 2,780 EOAD cases, 15,222 LOAD cases and 273,979 controls was consistent with the 

results obtained in the discovery dataset. The integrated LOF analysis helped narrowing the region of 

interest to the SCARF2-KLHL22-MED15 region at the 22q11.21 locus. In addition, the integrated LOF 

analysis highlighted rare deletions in the known AD-risk genes ABCA1 and ABCA7 that represented 10% 

(3/30) and 8.6% (10/115) of LOF alleles of these genes, respectively, as well as 4 TYROBP deletions. 

Finally, we identify CTSB LOF alleles as candidate rare AD risk factors (p=0.0089).  

In conclusion, our results show that carriers of a deletion of FADS6 or a 22q11.21 deletion 

encompassing the SCARF2-KLHL22-MED15 region, including some patients with DiGeorge syndrome, 

may have a higher risk of developing AD. CNVs represent a source of genomic variation that can 

contribute to AD etiology in new genes but also in GWAS defined-genes. 
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Introduction 

The etiology of Alzheimer disease (AD) is heterogeneous. Some families exhibit autosomal dominant 

early-onset AD (EOAD, onset ≤65 years), explained by rare variants in the PSEN1, PSEN2 or APP genes, 

but carriers of such highly penetrant variants represent less than 0.5% of all AD cases (Nicolas 2024). 

In non-Mendelian cases, AD is considered as a complex disorder with a high genetic component (Gatz 

et al. 2006).  

In complex AD, a large diversity of risk factors have been reported. They are usually classified according 

to their respective frequencies and effect sizes.  Among common variants (frequency >1%), the ε4 

allele of the APOE gene is the main risk factor with odd ratios (OR) of 3-4 and 11-14 for heterozygous 

and homozygous carriers, respectively (Genin et al. 2011). A recent large genome-wide association 

study (GWAS) reported 75 loci, most of them being associated through common non-coding single 

nucleotide polymorphisms (SNPs) with a modest effect on AD risk (Bellenguez et al. 2022). On the other 

hand, a burden of rare (frequency <1%) to ultra-rare (up to singleton) variants in SORL1, TREM2, 

ABCA7, ABCA1 and ATP8B4 as well as a handful of  rare recurrent single variants demonstrated a wider 

diversity of effects, ranging from modest odds ratios for the least rare variants (OR=[1.5; 3], e.g., in 

ABI3, TREM2 (R62H), NCK2, SORT1) to strong effects for some ultra-rare variants (e.g., loss-of-function 

SORL1 variants) (Bellenguez et al. 2022; Holstege et al. 2022; Jonsson et al. 2013; Nicolas et al. 2016; 

Schramm et al. 2022; Sims et al. 2017; Steinberg et al. 2015). Importantly, except for a few rare 

recurrent variants showing nominal association of their own, evidence for rare variant association with 

AD risk is generally obtained using burden tests gathering truncating variants with missense, predicted 

deleterious variants, at the gene level (Nicolas 2024). Burden tests performed on the category of 

truncating variants alone showed an exome-wide level of association for SORL1 and ABCA7 but only 

suggestive signals for ABCA1 and TREM2 (Holstege et al. 2022). For the latter genes, truncating variants 

remain extremely rare, explaining the difficulty to detect their association with AD risk due to 

insufficient statistical power in the current datasets. Importantly, genetic results are in line with known 

mechanisms, suggesting a deleterious effect of haploinsufficiency or loss of function of SORL1, TREM2, 

ABCA7 and ABCA1 on Amyloid β (Aβ) peptides aggregation. Likewise, extremely rare loss-of-function 

variants in the TYROBP gene encoding the main partner of TREM2, have recently been associated with 

AD risk (Stefansson et al. 2024). 

While the most studied category of genetic variants in AD is represented by single nucleotide variants 

(SNV) or short insertions and deletions (indels), Copy Number Variants (CNV) have also been involved 

in AD. Duplications of the APP locus (Rovelet-Lecrux et al. 2006) and in-frame deletions of exon 9 or 

exon 9 and 10 of PSEN1 (Crook et al. 1998; Karlstrom et al. 2008) cause autosomal-dominant AD. Some 
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common CNVs were identified by SNP arrays and associated with a modest risk of AD (Brouwers et al. 

2012; Wang et al. 2022), but none of them was genome-wide significant. On the other hand, a handful 

of studies focusing on rare CNVs were performed using Comparative Genome Hybridization (CGH) 

arrays, on a limited number of EOAD patients (Hooli et al. 2014; Rovelet-Lecrux et al. 2012). Unique 

CNVs affecting genes of potential interest were prioritized, but segregation data in families were 

missing and such CNVs remained too rare to be assessed in case-control studies (Rovelet-Lecrux et al. 

2012). Larger datasets should thus help detecting rare CNVs associated with AD risk.  

Up to now, CNV studies in AD have mainly been performed using chip technologies, i.e. SNP arrays or 

CGH arrays, at a smaller scale. Such chips can detect CNVs with intermediate resolution, generally with 

a minimal size from 50 to 100 kb, depending on the array density. Thus, they classically miss smaller 

CNVs. Sequencing technologies can also be used for CNV detection and can detect CNVs of any size. 

Bioinformatics tools can detect CNVs from sequencing data based on four main approaches (Teo et al. 

2012; Zhao et al. 2013): relative distribution of reads along the sequence or read depth approach,  

relative positions of paired reads from each other, multiple and partial alignments of reads and de 

novo assembly. When working from sequencing data obtained following capture, as for exome 

sequencing, only the read depth approach can be applied with a high level of accuracy at the exome 

level for rare CNVs (Gabrielaite et al. 2021; Hehir-Kwa, Pfundt, and Veltman 2015), while data obtained 

from whole genome sequencing require combinations of tools, also including read depth approaches 

although with distinct procedures and tools. We previously assessed the performances of a CNV-calling 

workflow based on the CANOES tool (Backenroth et al. 2014), which showed good sensitivity (87.25 

%) and positive predictive value (85.2%) for rare CNVs from exome sequencing data (Quenez et al. 

2021). One of the largest sequencing datasets available worldwide to perform a case-control study in 

AD is probably the combination of the European and American consortia into the ADES-ADSP dataset 

(Alzheimer Disease European Sequencing – Alzheimer Disease Sequencing Project), which recently 

unveiled burdens of rare variants in ATP8B4 and ABCA1 in addition to the previously known genes. 

This dataset has the advantage of being enriched in EOAD cases (35.7 %), among which we can expect 

a higher contribution of rare CNVs, as already observed for rare SNVs and indels (Holstege et al. 2022). 

Moreover, this dataset is made of a majority of exomes (68.6% after QC) and bioinformatic methods 

for CNV detection adapted to exome sequencing are mainly reliable for rare CNVs. 

Here, we took advantage of the large number of exome sequencing data of EOAD cases and controls 

available in the ADES-ADSP dataset. We performed uniform CNV calling on 22,319 samples using a 

validated workflow and built up a QC pipeline to perform harmonized transcript-based analyses. We 

report CNVs in autosomal dominant genes, search for novel loci associated with AD, and study CNVs 

affecting genes known to harbor genetic factors. 
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METHODS 

Exome sequencing dataset 

We considered the exomes from ADES and ADSP datasets as described in ref. (Holstege et al. 2022) in 

a two-stage analysis. Only samples passing the quality control (QC) described in detail in ref. (Holstege 

et al. 2022) were selected for our analysis. Briefly, for the individual QC based on short sequence 

variants, all sequencing (Fastq) files were processed using the same BWA-GATK-based pipeline on the 

Cartesius supercomputer embedded in the Dutch national e-infrastructure. Samples with either a high 

level of variant missingness, a high suspicion of DNA contamination, a discordant genetic sex 

annotation, a non-European ancestry, a high number of novel variants (compared to dbSNP v150), a 

deviation from standard heterozygous/homozygous or transition/transversion ratios, and relatives up 

to the 3rd degree were excluded. As cases, we considered all individuals with a diagnosis of definite or 

probable AD (using the NIAA or NINCDS-ADRA criteria depending on the date of diagnosis (McKhann 

et al. 1984, 2011)), based on clinical examination and paraclinical information including cerebrospinal 

fluid (CSF) AD biomarkers, when available. Individuals with unclear diagnosis were excluded (e.g., 

Braak stage I-II in cases, or Braak stages of V-VI in controls). In addition, pathogenic SNV and indel 

variant carriers in a list of Mendelian dementia genes were also excluded from stage-1 data in the 

Holstege et al. dataset. We now applied the same analysis leading to the exclusion of 22 additional 

pathogenic variant carriers among cases and controls from stage-2 so that the megasample (stages 

1+2) fulfils the same criteria (Table S1). Detailed methods for individual QC are available as a 

supplementary information file in ref. (Holstege et al. 2022). 

Because the ADES-ADSP dataset is built from multiple studies, and to ensure a good accuracy of 

CANOES (Backenroth et al. 2014), the CNV caller used here, we focused on samples as homogeneous 

as possible in batches of at least 50 individuals (Table S2). When library preparation and sequencing 

batches information were not available, we grouped samples belonging to a same study, prepared 

with a same capture kit, and sequenced in a same sequencing center, into CNV-calling batches. Overall, 

our starting dataset contained 12,669 exomes from cases (including 4,150 EOAD) and 9,650 exomes 

from controls (Figure 1).  

All participants provided informed written consent as previously described (Holstege et al. 2022). This 

study, based on the retrospective analysis of existing data, was approved by the CERDE ethics 

committee from the Rouen University Hospital (CERNI/CERDE notifications 2017-015 and 2019-055). 

All the identifiers used in this document are known only to the laboratory members who addressed 

them. 
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CNV Calling  

CNV calling was processed following a workflow centered on CANOES (Backenroth et al. 2014), a tool 

based on the distribution of the depth of coverage information across samples. It includes a correction 

based on GC content of each target to reduce the background variability often observed in NGS data 

(Benjamini and Speed 2012).  

The workflow was applied from BAM files, as previously described (Quenez et al. 2021). BAM files were 

retrieved either from the pipeline described in Holstege et al. or directly downloaded from the dbGAP 

website (ADSP-stage 2, 1554 samples). All samples were processed on either the Cartesius 

supercomputer or the CEREBRO cluster from the sequencing facility of the University of Rouen 

Normandie (ASGARD platform). Of note, ADSP-stage 2 BAM files were aligned to the GRCh38 version 

of the human genome, whereas other BAM files were aligned on the GRCh37 version. As our analysis 

is based on transcripts affected by CNVs and because reference genome was not specific to cases or 

to controls, we expect that the different reference genomes do not affect our analysis. For each 

capture kit, targets covering the same exon and separated by less than 30 bp were merged. Then, for 

each sample, the number of reads covering each merged target was determined using BEDTools 

(Quinlan and Hall 2010). For each CNV-calling batch, we removed non-informative regions, namely 

regions where >90% of the samples showed less than 10 reads on the target. Finally, CANOES was run 

on each CNV-calling batch to generate CNV calls. 

 

CNV and samples quality check 

After CNV calling, we excluded all individuals with ≥50 calls, indicating an excess of variability in the 

sample’s read distribution compared to other samples from the same CNV-calling batch and following 

CANOES user instructions (Backenroth et al. 2014). Then, to account for potential biases due to clonal 

hematopoiesis associated with large mosaic, blood-specific age-related CNVs (Bouzid et al. 2023; 

Machiela et al. 2017), we excluded carriers of CNVs that are large enough to be unlikely germline. As 

calling is performed from capture-based exomes and because of the presence of low complexity 

regions decreasing the calling accuracy, such large CNVs can be detected as multiple, smaller CNVs on 

a same chromosome. Thus, we computed the cumulative size of detected CNVs of the same type 

(deletion/duplication) for each sample and each chromosome, as well as the total chromosomal region 

covered from the first to last CNV per chromosome. For each cumulative size per chromosome greater 

than 2.5 Mb and encompassing more than 10 Mb for a given chromosome, we proceeded to a manual 

visualization (Figure S1) on the UCSC genome browser. Carriers of candidate large likely somatic CNVs 

were excluded from the analysis (Table S3). 
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Annotation of CNVs 

For CNV annotation, we first compared the frequency of CNV calls to two public databases: the 

Database of Genomic Variants (DGV), gold Standard section (MacDonald et al. 2014) and the non-

neuro non-Finnish European section of the gnomAD database v2.1 (Chen et al. 2022; Karczewski et al. 

2019), considering a mutual overlap of 70%. In addition, we marked CNV overlapping > 50% with 

segmental duplication regions, as extracted from the UCSC Table Browser (https://genome-

euro.ucsc.edu/cgi-bin/hgTables). Second, in order to classify the potential effect of CNVs and to 

overcome the differences between capture kits that could impact the proper classification of some 

CNVs and thus the results of statistical analyses, we harmonized the dataset by working at the 

transcript level (see supplementary information, Figure S2). Indeed, classic CNV annotation tools may 

not be applied to heterogeneous datasets, as the definition of a complete versus partial gene 

duplication or deletion usually rely on the actual definition of a given gene, based on genome 

coordinates. As some capture kits vary on the regions actually targeted for a given gene (e.g. capture 

of untranslated regions or not, capture of all coding exons from all known transcripts or not), this may 

lead to heterogeneous definitions of partial or complete deletions/duplications (see for a theoretical 

example Figure S2). Thus, we built our own annotation pipeline that relied on each individual’s capture 

kit to define whether a given CNV partially or completely affects a given transcript. Thus, we redefined 

the transcripts positions according to the capture kit used (see supplementary information, Figure S2).  

Consequently, a transcript was considered as completely deleted or duplicated if all targets linked to 

this transcript were affected by the event. 

For all comparisons between capture kits, CNV calls and public databases, we used a combination of 

the BEDTools suite (Quinlan and Hall 2010) and homemade scripts. All scripts and formats used are 

available at: https://github.com/U1245/ExtremelyRareCNVContributingToADRisk (see also 

supplementary information). 

 

Identification of Mendelian pathogenic CNVs 

Based on current literature, we considered partial deletions of PSEN1 involving exclusively exon 9 

(NM_000021.4) or both exons 9 and 10 (Karlstrom et al. 2008; Le Guennec et al. 2017), complete 

duplications of APP (Rovelet-Lecrux et al. 2006), MAPT (Le Guennec et al. 2017), complete duplications 

or triplications of the SNCA gene (Miller et al. 2004; Singleton et al. 2003) as well as any coding deletion 

of the GRN gene (Rovelet-Lecrux et al. 2008) as pathogenic CNVs (causing either AD or a differential 

diagnosis). Individuals carrying such a pathogenic CNV were then excluded from case-control analyses. 
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For this analysis, we favored sensitivity over specificity and we kept and considered all calls from 

CANOES, contrary to the case-control analysis (see below). 

 

Case-control analyses 

CNV Filtering 

This study focused on rare (frequency <1%) CNVs for two main reasons. First, rare CNVs, similar to rare 

SNVs and indels, have higher chances to be associated with a moderate to high AD risk (Holstege et al. 

2022). Second, CNV-calling from exome sequencing data based on read-depth comparison has been 

essentially validated for rare CNVs (Quenez et al. 2021). Indeed, CANOES (and other read-depth 

comparison tools adapted to sequencing data obtained following capture) is based on the comparison 

of read depth on a specific target to a matrix computed from samples from a same batch. Thus, a very 

common variant (several dozens of percent in frequency) would likely be missed because of natural 

variability in each batch. Even if CANOES can detect some common variants, among those with a rather 

low frequency (e.g. 1-10%), its performances have not been assessed precisely on such variants.  

To focus on rare CNVs, we filtered out all CNVs showing at least a 70% overlap with a common CNV 

(frequency >1% in the above-mentioned public databases). Similarly, we filtered out CNVs with a ≥50% 

overlap with segmental duplication regions, as these regions are considered as highly variable across 

individuals and hardly callable. Because of the complexity of X-linked models in a case-control analysis, 

we focused here on autosomes. 

Finally, we removed CNVs overlapping only one target to decrease the risk of false positive CNV calls. 

Indeed, in our validation study (Quenez et al. 2021), the rate of false positive calls among CNVs 

overlapping one target reached 30% against 9.8% in CNVs called by ≥ 2 targets. 

 

Transcripts filtering 

To avoid the case-control analysis of rare CNVs affecting transcripts frequently deleted or duplicated, 

we built two sets of transcript, based on Refseq protein-coding transcripts (assessed, 26/10/2022): (i) 

a set of transcripts with a cumulative frequency of deletions (partial or complete) of less than 1% in 

public databases (set A, corresponding to non-frequently deleted transcripts) and (ii) a set of 

transcripts with a cumulative frequency of complete duplications of less than 1% in public databases 

(set B, corresponding to non-frequently duplicated transcripts), based on the DGV gold Standard 

section (MacDonald et al. 2014) and the non-neuro non-Finnish European section of the gnomAD 

database v2.1 (Chen et al. 2022; Karczewski et al. 2019). 
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Building a copy number matrix 

For the case-control analysis, we built a copy number matrix per autosomal protein-coding transcript, 

in order to harmonize heterogeneous data at the transcript level and to determine the missingness 

and hence which transcripts were eligible for case-control analysis. For each sample and each 

transcript remaining after filtration, five possible states were determined: (i) missing information, i.e. 

the corresponding capture kit does not target the transcript or the region was not covered enough 

(≤10 reads) for 90% of the samples and no CNV encompassing this transcript has been detected from 

targets on neighboring genes or (ii) no CNV overlaps the transcript [copy number = 2] or (iii) a complete 

or (iv) a partial duplication overlaps this transcript or (v) a complete or a partial deletion overlaps this 

transcript. In our five-state categorization, we worked under the assumption that complete and partial 

deletions likely result in haploinsufficiency. To explore the dosage effect, states (ii), (iii) and (v) were 

merged into a transcript copy number information (see supplementary methods for more details).  

 

Statistical analyses 

Given the previous knowledge obtained in gene-based rare variant analyses showing a larger effect 

among EOAD cases and given the expected extreme rarity of CNVs limiting power, we decided to set 

the EOAD cases versus controls as the primary analysis, to perform a gene dosage analysis, and we did 

so at the transcript level. For each transcript and each individual, the dosage information refers to the 

number of copies. Dosage equals 2 for individuals without any deletion nor full duplication affecting 

the transcript. Each duplication affecting the entire transcript increases the dosage by 1, whereas any 

deletion affecting partially or fully the transcript decreases the dosage by 1. To perform an EOAD cases 

vs controls transcript-based association study on protein-coding genes using a dosage strategy as the 

primary endpoint, we worked on the fusion of set A and set B and used rare partial and complete 

deletions and complete duplications. Dosage analyses were restricted to transcripts affected by a CNV 

in at least four carriers (including at least one deletion and one complete duplication) in our dataset 

and to the subset of individuals with available information relative to the transcript, i.e. individuals 

without missing information in the copy number matrix. Because of the rarity of CNVs, association was 

tested via firth logistic regression with status (EOAD vs controls) as dependent variable and dosage 

information (transcript copy number by individual) as independent variable. If the number of carriers 

of the different transcripts of a gene were similar, they were tested together. Otherwise, the 

transcripts were tested separately. We set a threshold at FDR=10% in this dosage EOAD analysis to 

consider signals as suggestive. 
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Complementary analyses consisted in comparing dosages between all AD and controls at the loci 

prioritized in the EOAD versus control analysis and performing the following: (i) transcript-based 

analyses in a deletions-only (complete and partial deletions, on set A) and complete duplications-only 

(on set B) and (ii) a gene-based analysis of loss-of-function variants (deletion-CNVs plus truncating 

SNVs/indels, see supplementary methods) in a list of AD-associated genes and in genes prioritized by 

the dosage analysis. The list of AD-associated genes consisted of genes significantly associated with AD 

in a GWAS study (Bellenguez et al. 2022) and in the latest large gene-based case-control study on rare 

variants (Holstege et al. 2022), to which we added the recently identified TYROBP gene (Stefansson et 

al. 2024). For analyses mentioned in (i) above, regression was performed for each transcript from set 

A or B overlapping at least four deletions or four complete duplications in our dataset. In a sensitivity 

analysis, we adjusted for APOE4 or population stratification as captured by 10 PCs. See supplementary 

methods for more details. 

Finally, we performed a cumulate CNV analysis of (i) all protein-coding genes, (ii) a list of AD associated 

genes in a GWAS (Bellenguez et al. 2022) and (iii) a list of genes having function in Aβ network (Campion 

et al. 2016). For that purpose, we compared EOAD versus controls in a Firth’s logistic regression model. 

To overcome the variability in sequencing techniques, we excluded all transcripts with a significant 

differential missingness between disease status (p<1E-5 in a χ2 test) from this analysis. (Supplemental 

methods) 

 

CNV confirmation 

The main analysis provided a list of prioritized transcripts/genes. Each transcript with an FDR below 

10% was carefully checked in the UCSC genome browser showing all filtered and unfiltered CNVs 

separately at each transcript of interest, in cases and controls, along with the study and the capture 

kit information (Figure S3 to S7). This allowed us to detect signals driven by genes overlapping with 

repeats or duplicated gene in the genome despite CNVs not overlapping the 50% threshold set for 

repeats in the filtration steps, or genes for which the signal dosage analysis was driven by deletions 

whereas the transcript was not in set A, thus not relevant. 

From each locus prioritized in the main analysis, we performed targeted validation of CNVs when DNA 

was available to us, using either ddPCR as previously described (Cassinari et al. 2019) or Quantitative 

Multiplex PCR of Short Fluorescent fragments (QMPSF) (Charbonnier et al. 2000). 

 

Replication 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 1, 2024. ; https://doi.org/10.1101/2024.10.28.24314051doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.28.24314051
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

   

 

Loci of interest from the dosage analysis were assessed in a replication analysis based on genotyping 

data from the European Alzheimer & Dementia Biobank (EADB) and the UK biobank (UKBB). 

The EADB study has previously been described in details (Bellenguez et al. 2022). From the EADB 

genotyping array data, we included 15,952 cases (2669 EOAD, 13,283 LOAD) and 20,335 controls not 

overlapping with ADES participants and after exclusion of relatives with a kinship >0.1 (supplementary 

information). CNV calling, QC and filtration procedures are described in supplementary information. 

The UKBB has previously been described (Halldorsson et al. 2022). We selected Caucasian unrelated 

participants with available AD status (supplementary information). From the UKBB, we included 2050 

cases (111 EOAD, 1939 LOAD) and 253,644 controls. CNV calling, QC and filtration procedures are 

described in supplementary information. 

CNVs from EADB and UKBB were annotated for frequency similarly to our primary analysis. CNV data 

from EADB and UKBB were analyzed jointly in Firth’s logistic regression models. Replication finally 

included the analysis of ADI1 duplications and FADS6 deletions as well as a dosage analysis for the 

22q11 locus (SCARF2-MED15-KLHL22). Then, results from discovery and replication analyses were 

meta-analyzed with a fixed effect and the inverse variance weighted method. 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 1, 2024. ; https://doi.org/10.1101/2024.10.28.24314051doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.28.24314051
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

   

 

RESULTS 

Detection of CNVs from exome sequencing data of 22,319 individuals 

Dataset, CNV calling and QC 

We initially included 22,319 exomes from a previously described dataset (Holstege et al. 2022) (4,150 

EOAD, 8,519 LOAD and 9,650 controls) (Figure 1). A description is available in supplementary 

information) 

Following QC, we excluded 148 samples with excessive calls (≥ 50), 55 carriers of large likely somatic 

CNVs (26 controls, 28 LOAD cases, 1 EOAD case, see supplementary information, Table S2, Table S3), 

and 6 samples with biased amplification due to a custom kit. There was no significant difference when 

comparing large likely somatic CNVs between all cases and controls and likely somatic CNVs were 

linked to age at last visit (used as a proxy for age at blood sampling) (logistic regression; Age: p-

value=6.78×10-6; AD status: p-value=0.12). This suggests that such events are likely linked to clonal 

hematopoiesis and should thus be excluded from our germline CNV analysis study. 

Among the 22,110 remaining individuals, we detected 261,190 CNVs (260,684 after exclusion of 

Mendelian pathogenic CNVs, see below). After excluding common CNVs (frequency>1%) and those 

overlapping with segmental duplication regions (see Supplementary information), a total of 61,053 

rare CNVs remained, including 24,262 duplications and 36,791 deletions (Table 1, Figure 1).  

As a supplement (extended dataset), we provide a catalog of genes with partial/complete deletions 

and duplications and frequencies among EOAD cases, LOAD cases, and controls. 

 

Detection of Mendelian pathogenic CNVs 

We observed 10 carriers of a complete duplication of APP, all with EOAD (mean age at onset (AAO) = 

49.6 years, SD = 5.4, range: 43 to 58, three of them were previously reported (Lanoiselée et al. 2017; 

Rovelet-Lecrux et al. 2015). One patient carried a partial in-frame deletion in PSEN1 (AAO=56 years 

old) (already reported (Le Guennec et al. 2017)). Six patients carried a complete duplication of MAPT 

(four of have been described previously (Le Guennec et al. 2017; Wallon et al. 2021), thus leading to a 

diagnosis a primary tauopathy (mean AAO = 58.2 years, SD = 14.9, range: 45 to 87). Of note, no carrier 

of a deletion of the GRN or any other AD differential diagnosis gene was detected, with the exception 

of the above-mentioned MAPT duplication carriers. All pathogenic CNV carriers are reported in Table 

2.  
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Case-control analyses 

CNV analysis on the discovery exome sequencing dataset 

After QC and exclusion of Mendelian CNV carriers, we kept 22,093 samples for case-control analyses, 

including 12,534 cases (4077 EOAD, 8457 LOAD) and 9559 controls and a total of 45,964 rare CNVs 

overlapping ≥2 targets of exome capture, outside of segmental duplication regions and affecting at 

least 1 coding transcript as described in RefSeq (23,134 deletions and 22,830 duplications).  

To perform analyses based on transcript information, we focused on two sets of transcripts. Of 61,238 

Refseq autosomal transcripts of 18,426 genes, set A contains 58,602 non-frequently deleted 

transcripts (related to 17,302 genes), of which 3299 (1040 genes) are affected by at least four 

deletions. Set B contains 60,220 non-frequently duplicated transcripts (17,921 genes), of which 3392 

(1252 genes) are affected by at least four complete duplications. The fusion of sets A and B contains 

60,633 transcripts (18,141 genes), including 4989 transcripts (1716 genes) affected by at least four 

CNVs (including at least one deletion and one complete duplication). 

 

CNV-dosage EOAD-control analysis 

Dosage analysis prioritized 56 transcripts from 21 genes with FDR ≤10% (Table 3, displaying one 

transcript per gene when several transcripts exhibit the same p-values). Three genes were then 

excluded because they either overlapped with repeats or duplicated regions in the genome, or the 

signal was driven by deletions while the deleted transcript was not in set A (corresponding to non-

frequently deleted transcripts). Of the 44 remaining transcripts from 18 genes, five independent loci 

were identified, as 13 genes mapped to the 22q11.21 region (FDR from 0.0271 to 0.0386), and 2 other 

contiguous genes mapped to chromosome 19q13.32 (FDR from 0.0271 to 0.0412). All loci identified in 

the EOAD-control analysis were examined in an all AD versus control analysis, as depicted in Table S4. 

The 22q11.21 region is known as a locus with rare recurrent deletions and duplications driven by non-

allelic homologous recombination (NAHR) through low copy repeats (LCR) labelled LCR 22A, 22B, 22C, 

22D and 22E (Figure 2). All carriers of a CNV encompassing this region are reported in table S5. The 

region where all transcripts with FDR≤10% clustered is located between LCR 22B and 22D. This region 

does not encompass the critical region for DiGeorge (velo-cardio-facial) 22q11.21 microdeletion 

syndrome (22A-22B including TBX1). Similar LCR 22B-22D deletions are often labelled central deletions 

and considered as a risk factor for developmental disorders, with incomplete penetrance and variable 

expression (Rump et al. 2014; Woodward et al. 2019). We observed deletions in this region in 4 EOAD 

cases, and this region was also prioritized in the deletion-only analysis (Table S6 displaying the top 

transcripts in the deletion-only analysis with FDR ≤20%). Of note, while 3/4 EOAD cases exhibited a 
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central deletion only, the fourth EOAD case actually carried a larger LCR 22A-22D deletion, typical of 

DiGeorge syndrome. This case has no specific history of learning disabilities or neurodevelopmental 

disorders, but he was born with congenital heart disease, without any other known features of this 

syndrome (Figure 2C). He presented first signs of cognitive impairment before the age of 45  and the 

diagnosis of AD was confirmed with CSF biomarkers (Aβ42, Tau, and 181-P-Tau levels all in abnormal 

ranges). DNA analysis using dPCR in this patient (EFA-429-001) confirmed the presence of the deletion. 

DNA from both unaffected parents was available and the deletion was absent, which, after parenthood 

confirmation using informative polymorphisms, allowed us to identify that the deletion occurred de 

novo in the proband (Figure 2). DNA of one of the other three EOAD cases (ROU-0165-001), carrying a 

central deletion, was also available and we confirmed the presence of the deletion by ddPCR (Table 

S8).  

Interestingly, a smaller deletion was found in an LOAD case (LCR 22C-22D) and, strikingly, duplications 

mirroring the LCR 22A-22D or the 22B-22D deletions, or affecting the 22C-22D or 22C to 22E regions, 

were observed in 8 to 10 controls (depending on the CNV coordinates) and in 4 to 5 LOAD cases (Figure 

2), although the duplication signal was not significant enough to reach the 20% FDR threshold in the 

duplication-only analysis (Table S7). Overall, this suggests a dosage effect with deletions possibly 

increasing AD risk and duplications possibly decreasing the risk or delaying ages at onset.  

Overall, the region with highest level of association based on deletions in EOAD cases was the LCR 22B-

22D region, as was the case for the dosage analysis, including the mirror duplications. If considering all 

rare CNVs from this locus, a smaller minimal region could be defined between LCR 22C and 22D but 

this would be based on a single LOAD case and a single control. Thus, we conservatively consider that 

the region of interest, to be refined, remains the LCR 22B-22D region.  

Another locus was identified with two contiguous genes involved, namely ERCC2 (p-value=1.09×10-4, 

FDR=0.0271) and KLC3 (p-value=4.28×10-4, FDR=0.0412). Despite showing FDR ≤10% in the dosage 

analysis, the signal was clearly driven by an enrichment of complete duplications in cases with an 

EOAD>LOAD>controls pattern. Most of the duplications at this locus shared similar coordinates, also 

encompassing the PPP1R13L gene but transcripts of this gene were not considered in the analysis 

because they were not predicted to be entirely duplicated (Figure S3). This locus is located on 

chromosome 19q13.32, ~440-kb away from the APOE gene. We observed that the duplications were 

significantly more frequently carried by APOE4+ individuals, independently of the disease status (Table 

S9), suggesting that rare duplications may have occurred on an APOE4-linked haplotype (Fisher’s exact 

test p-value=4.26×10-13). Consistent with this hypothesis, the association signal did not remain 

significant after adjusting for APOE-ε4 dosage (OR=1.58 [0.85; 2.99], p=0.148) while such adjustment 
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did not change the results on the other transcripts (Table S10). Of note, DNA from 12 carriers was 

available and duplications were confirmed in all of them (Table S8). 

In addition to these two multi-gene loci, three single-gene loci showed an FDR≤10%, namely MBL2 

(FDR=0.0271), FADS6 (FDR=0.0271) and ADI1 (FDR=0.0916). For MBL2 and FADS6, the dosage signal 

was mainly driven by deletions. MBL2 deletions appeared to be enriched in controls whereas FADS6 

deletions appeared to be enriched in EOAD cases (Supplemental information, Figures S4, S6). However, 

enrichment observed for MBL2 did not remain after adjusting for population structure (Supplemental 

results, Figure S14 Table S11). For ADI1, complete duplications appeared to be enriched in cases 

(Supplemental information, Figure S5). DNA from 13 carriers (1 MBL2 carrier, 3 ADI1 and 9 FADS6) was 

available and CNVs were confirmed in 12 of them (one FADS6 false positive) (Table S8). After removing 

the latter one, EOAD versus controls dosage analysis remained similar (OR=0.20 [0.07; 0.49], p-

value=4×10-4).    

 

Joint CNV and loss-of-function indels and SNVs analyses 

Then, we hypothesized that the signal driven by deletions could be reinforced by LOF SNVs and indels 

or that such small variants could help refine genes of interest at the 22q11.21 locus. We thus 

performed a joint analysis of CNVs (deletions only, complete and partial) with LOF SNVs and indels 

among (i) the genes belonging to the prioritized loci in the dosage analysis and (ii) a list of AD-

associated genes (Table S12 and S13). 

Among the candidate loci identified in the dosage analysis, the dosage signal seemed to be driven by 

duplications regarding ADI1 and the ERCC2-KLC3 genes. For all three genes, there was no LOF 

association overall in the joint analysis, which is consistent with the ERCC2-KLC3 duplications found as 

enriched in APOE4+ individuals, thus not directly linked to these genes. No LOF SNV/indel was 

identified in the FADS6 gene. 

In the 22q11.21 central deletion locus with 13 genes involved, the joint LOF analysis trended to narrow 

the locus of interest to SCARF2, MED15 and KLHL22. Although the added LOF SNV/indels did not 

significantly reinforce these genes, with a single splice site short delins in SCARF2 in an EOAD case 

(NM_153334.4:c.1424+1_1424+2delinsTC) and 2 MED15 LOF SNV/indel variants in 2 LOAD cases (one 

nonsense, one frameshift 1-bp deletion), and no control carrying LOF SNV/indels (as for deletions), but 

all the other genes appeared as less significant now with a few LOF variant carriers in controls and not 

significantly more in cases. 

We then focused on known AD-associated genes. Among them, we identified a significant enrichment 

of LOF variants of ABCA1 (uncorrected p=0.0002) and confirmed the association of ABCA7 LOF variants 

(p=0.0006), now adding deletion-CNVs to the known association of ABCA7 LOF variants with AD 
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(Steinberg et al. 2015), while the CTSB gene, mapping to a GWAS locus, also appeared as a candidate 

(p=0.0089). In ABCA1, we observed 3 carriers of 3 distinct deletions in ABCA1, impacting respectively 

exons 16 to 18, 32 to 34 and 47 to 50 (Figure S7, all confirmed by ddPCR). All were EOAD patients (AAO: 

49, 51 and 55). The joint OR of ABCA1 LOF variants was 5.77 [2.25; 17.06], suggesting that LOF of ABCA1 

is a moderate EOAD risk factor, while burden tests gathering LOF SNV/indels with missense variants 

showed more modest odds ratios (Holstege et al. 2022). Overall, LOF variants in ABCA1 remained 

extremely rare with only 13 EOAD cases (0.32%), 12 LOAD (0.14%) and 5 controls (0.05%) carrying such 

a variant. Deletions represented 10% (3/30) of the ABCA1-LOF alleles. Deletions in ABCA7 were 

observed in 4 EOAD cases (0.09%), 3 LOAD (0.04%) and 3 controls (0.03%). They represented 8.6% 

(10/115) of the LOF alleles of this gene, whereas a complete duplication of ABCA7 was observed in one 

control (0.01%) and 2 LOAD cases (0.02%) (Figure S8). Deletions did not affect the order of magnitude 

of known AD or EOAD association of ABCA7 with LOF variants in terms of OR, given the higher 

frequency of ABCA7 LOF variants overall. DNA was available for all 3 ABCA1 and 2 ABCA7 deletion 

carriers and confirmed the existence of each deletion. In addition, the recently identified TYROBP gene 

showed 4 deletions in 4 LOAD cases and none in controls, although no EOAD was a carrier and no LOF 

SNV/indel was identified (Figure S9). 

Interestingly, LOF variants of MAF, PLEKHA1 and EPDR1 genes (incl. one deletion for each gene) were 

only detected in controls, leading to the hypothesis of a protective effect of LOF of these genes, which 

cannot be confirmed here as such events are extremely rare (Table S13, Figure S10). CNVs covering 

CTSB and APH1B genes suggested a dosage effect with deletions of these genes observed in EOAD 

patients only whereas duplications were observed in controls only; although these genes did not 

appear in the top 10% FDR in the main dosage exome-wide analysis. Extending the analysis of these 

genes to LOAD, we observed 4 LOAD patients carrying a deletion of CTSB as well as 1 LOAD patient 

(AAO=90) carrying a duplication (Figure S11). Of note, there were no carriers of CNVs encompassing 

the APH1B gene among LOAD, and three controls carried a LOF SNV/indel.  

 

Cumulate CNV analysis of all transcripts 

Considering CNVs overall in all transcripts from sets A and B, EOAD patients were more likely to carry 

at least one deleted or one duplicated gene than controls (burden of total and partial deletions: 

OR=1.15 [1.06; 1.23], p-value=3×10-4; burden of complete duplications: OR=1.10 [1.02; 1.19], p-

value=0.0125). Restricting the analysis to the GWAS list of genes (Bellenguez et al. 2022), difference 

between EOAD and controls was increased for deletions (OR=2.67 [1.51; 4.74], p-value=8×10-4) 

whereas the difference trended to be reversed for duplications (OR=0.58 [0.30; 1.04], p-value=6.9×10-

3) suggesting that a deletion in the GWAS list of genes might be a risk factor for EOAD, that complete 
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duplications of some of these genes could be protective (Table S14), and that duplications in other 

genes remain to be identified. Finally, analysis of the Aβ network list of genes (Campion et al. 2016) 

suggested that having a deletion encompassing genes from this list might increase the risk for EOAD 

(OR=1.44 [1.09; 1.90], p=0.0114), and more particularly genes involved in the processing and trafficking 

of APP and genes involved in calcium homeostasis (OR=1.64 [1.04; 2.57], p=0.0336 and OR=16.42 

[1.59; 2208.35], p=0.0161, respectively). 

 

Replication 

Joint analysis of EADB and UKBB datasets included DNA chip data from 2,780 EOAD patients, 15,222 

LOAD patients and 273,979 controls. Replication of three signals was sought: dosage at the chr22q11 

locus (SCARF2, KLHL22 and MED15 genes), enrichment of duplications in ADI1 in cases, and enrichment 

of deletions of FADS6 in cases. Overall, replication results were consistent with the discovery analysis, 

but the rarity of CNVs and the relatively small sample size of EOAD cases in the replication analysis 

prevented us to replicate our findings in an EOAD versus controls analysis (Supplementary table S15). 

In the all AD versus controls analysis, dosage at the 22q11.21 showed that the risk of AD decreases 

when copy number increases (p-values ranging from 3.44×10-3 and 2.15×10-2 depending on the genes 

in the replication analysis, meta-analysis p-values ranging from 8.11×10-4 to 2.67×10-3 Figure 1, 

Supplementary table S15). Of note, 9/273,979 controls carried a deletion encompassing SCARF2, 

KLHL22 and MED15 genes, all coming from the UKBB cohort.  

FADS6 deletions, which were enriched in cases in the discovery analysis, were extremely rare in the 

replication analysis. However, the meta-analysis still showed an OR of 6.92 [2.72; 17.61] (p=4.99×10-5) 

among EOAD patients and 4.86 [2.15; 10.98] (p= 1.47×10-4) among all AD patients. Importantly, the 

signal in the discovery analysis was driven by a rather small recurrent deletion (<10kb), which is too 

small to be accurately detected in DNA chip data.  

Finally, although the odds ratio of ADI1 duplications remained greater than 1, as in the discovery, the 

difference was not significant in the replication analysis (EOAD vs Controls meta-analysis: OR=6.33 

[1.53; 26.27], p=1.10×10-2; all AD vs controls meta-analysis OR= 2.23 [0.88; 5.64], p=8.98×10-2). 
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DISCUSSION  

Rare CNVs have been recognized as a disease mechanism for Mendelian disorder for decades, in the 

context of multiple diverse human disorders (e.g. (Hehir-Kwa et al. 2015; Lupski et al. 1991; Shen et al. 

2010)) and this includes neurodegenerative disorders. Duplications or triplications of the SNCA gene 

are responsible for autosomal dominant Parkinson disease or Dementia with Lewy Bodies (Singleton 

et al. 2003), and APP duplications or triplications, EOAD with or without cerebral amyloid angiopathy 

(Grangeon et al. 2021; Rovelet-Lecrux et al. 2006), for example. However, in most Mendelian 

neurodegenerative disorders, CNVs represent an extremely rare mechanism. For example, only one 

APP triplication has been reported so far (Grangeon et al. 2021) while APP duplications represent 9% 

of all solved autosomal dominant EOAD families in the national French series (update data from 

(Lanoiselée et al. 2017)) and MAPT duplications represent a very rare cause of primary tauopathy that 

can mimic AD (Wallon et al. 2021), as found in a few patients here.  

In line with Mendelian dementia genes, we show that rare CNVs can also contribute to AD risk in non-

monogenic forms. They also represent a rare mechanism, as in the know AD risk genes ABCA1 and 

ABCA7, where deletions represented a small proportion of loss-of-function (LOF) alleles. In ABCA7, the 

burden of LOF SNV/indels was already known to be associated with AD. Joint analysis of CNVs and LOF 

SNV/indels did not modify the odds ratios much, remaining in the order of magnitude of 2 to 3 

(Holstege et al. 2022; Le Guennec et al. 2016), because (i) LOF alleles are not so rare (0.37% in controls; 

0.86% in EOAD cases) and (ii) CNVs represented only 8.6% of all LOF alleles in the joint analysis. In 

ABCA1, where LOF variants are much rarer, we identified three distinct deletions, adding up to 27 LOF 

SNVs/indels. Deletions thus represent 10% of all LOF alleles. This analysis on ABCA1 now allows us to 

consider LOF of ABCA1 as a stronger risk factor for EOAD, compared to the known average odds ratios 

obtained by gathering LOF variants with missense, predicted damaging variants (OR=2.2 [1.6; 2.9] for 

LOF SNV/indels and missense variants with REVEL score >0.75 in ref. (Holstege et al. 2022) and that 

also include missense variants with a demonstrated effect on AD risk, Tangier disease and HDL 

cholesterol deficiency (Frikke-Schmidt et al. 2008; Nordestgaard et al. 2015), and OR=5.77 [2.25; 17.06] 

here in the joint LOF SNV/indels/CNV analysis. These results suggest that (i) some CNVs represent an 

extremely rare mechanism increasing the risk of AD but also that (ii) at the individual level, given the 

effect on AD risk of such LOF alleles, CNVs should not be ignored. Although risk variants are not used 

for genetic counseling, they may be used for the future of AD prevention in the context of precision 

medicine, along with other factors (Nicolas et al. 2024). In addition, we assessed the presence of LOF 

alleles in the recently AD-associated gene TYROBP (Stefansson et al. 2024). Four deletions were 

identified in LOAD cases, none in EOAD cases and none in controls. Three of the deletions likely shared 

similar breakpoints as a recurrent deletion described in Finland and also enriched in AD cases 
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(Martiskainen et al. 2024; Stefansson et al. 2024). Interestingly, we also detected a suggestive 

association of CSTB deletions with AD risk. CTSB is a known GWAS locus and this gene encodes the 

Cathepsin B protein, which is known as an antiamyloidogenic enzyme through proteolytic cleavage of 

Aβ peptides(Mueller-Steiner et al. 2006). 

Beyond known AD risk genes, we identified several novel candidate loci here. Of note, in the protein-

coding genome-wide analysis, one of the suggestive associations pointed to the APOE locus, which was 

not expected from a rare CNV analysis. However, this unexpected result, suggesting that rare 

duplications occurred on an APOE4-associated haplotype, further strengthen the validity of our global 

analysis. It is also a rare example of a rare recurrent CNV in linkage disequilibrium with a common 

GWAS locus, highlighting that this type of event can actually happen and should be considered in 

genome-wide analyses. 

In the dosage analysis at the protein-coding genome level, the 22q11.21 locus showed a dosage effect 

with an enrichment of deletions in EOAD cases and duplications in controls, while LOAD cases 

remained in between (Figure 2B). Although this region is not known to be associated with AD risk, a 

family-based analysis showed a suggestive signal (Lee et al. 2008). Our results suggest that dosage of 

some of the encompassed genes may influence AD risk or age at onset. Two main hypotheses can be 

made to explain such an association. First, the association could be nonspecific to AD mechanisms but 

rather a modifier of ages of onset in individuals prone to develop AD. Indeed, carriers of the so-called 

central 22q11.21 deletion have a higher risk of neurodevelopmental disorders (Rump et al. 2014; 

Woodward et al. 2019), as do the carriers of the full 22q11.21 deletion with higher penetrance 

(DiGeorge syndrome) and lower average cognitive performances (Huguet et al. 2018). Thus, one could 

hypothesize that carriers may have a lower cognitive reserve, even if not reaching the threshold for a 

formal diagnosis of a neurodevelopmental disorder, but still sufficient to decrease the age at onset of 

AD in the carriers (Nelson et al. 2021; Soldan et al. 2017; Stern 2012). However, this hypothesis would 

require that duplication carriers have better average cognitive performances than non-carriers, which 

is not known up to now, B-D duplications being currently considered as variants of uncertain 

significance. Second, dosage of genes in this interval could be directly influencing the pathophysiology 

of AD. There is no gene obviously linked to AD mechanisms here, but we can still hypothesize that 

genes like MED15 or SCARF2 may be related somehow to AD pathophysiology. SCARF2 encodes a 

scavenger receptor (class F scavenger receptor family) expressed in the brain and in macrophages, 

although a scavenger receptor role for SCARF2 is yet to be demonstrated, contrary to other members 

of this family including SCARF1. Interestingly, another member of this family, MEGF10, has been shown 

to be a receptor for Aβ in the brain (Singh et al. 2010; Wilkinson and El Khoury 2012). MED15 is also 

expressed in the brain and belongs to a family of proteins related to other genes’ expression, including 
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inflammation and TGFβ and SMAD2/3 signal transduction, both involved in AD pathophysiology (von 

Bernhardi et al. 2015).  

Importantly, our results on the 22q11.2 locus may be of interest for patients carrying larger 22q11.2 

deletions (DiGeorge syndrome, the critical region of which is A-B), among those with large deletions 

encompassing the SCARF2-KLHL22-MED15 region (A-C deletions or larger). Patients with DiGeorge 

syndrome present a variety of symptoms with incomplete penetrance, including neurodevelopmental 

disorders ranging from mild intellectual disability, psychosis, and autism spectrum disorder to normal 

intelligence, associated or not with congenital heart defects, palatal malformations, velopharyngeal 

incompetence, phosphocalcic metabolism disorders, immune deficiency and some morphological 

features. In addition, increased risk for early-onset Parkinson disease has been reported in DiGeorge 

syndrome patients (Butcher et al. 2013; Mok et al. 2016). However, not much is known about the aging 

of patients with DiGeorge syndrome, as most reports in adults involve individuals in their mid-30s on 

average and probability of survival to age 45 is 95% and 72% respectively for patients with or without 

major congenital heart disease (Boot et al. 2023). AD-related changes have already been reported in 

the neuropathological examination of at least one DiGeorge syndrome patient at the age of 56 years 

(Butcher et al. 2013), but neuropathological examinations of adults remain scarce. Overall, our results 

suggest that, as care of DiGeorge syndrome is improving, enabling patients to age, a cognitive follow-

up should be proposed, especially to those with a large deletion (with distal breakpoint being C at 

least). 

This finding of 22q11.2 association with AD is somehow reminiscent of the Down syndrome patients 

with three copies of the APP gene on chromosome 21 and risk of EOAD, similar to patients with 

microduplications at the APP locus not encompassing the critical Down syndrome region (Grangeon et 

al. 2021; Rovelet-Lecrux et al. 2006). However, the impact of APP duplications may be much stronger, 

with almost full penetrance by the age of 65 for APP duplication carriers and Down syndrome patients 

(Fortea et al. 2020; Grangeon et al. 2023; Iulita et al. 2022). This can probably be explained by the 

obvious and direct link between the overexpression of the APP gene encoding the precursor of the Aβ 

peptide and AD pathophysiology, while it remains to be determined what explains AD 

association/protection at the 22q11.2 locus. 

Notably, some controls carrying at least central 22q11.2 deletions (B-C or B-D) were identified in the 

UK biobank. Among those having available information for parents, 28.57% (2/7) of them had a parent 

with AD or related dementia, compared to 15.65% (35,569/227,256) in non carriers of CNV in this 

region. However, rarity of deletion carriers prevented us to perform a powerful comparison (Fisher 

exact test p-value=0.3017). It should be noted that 10.36% of participants have an unknown status of 

family history in this database, and that such a deletion/duplication being driven by NAHR, they are 

recurrently found as de novo events, hence with no meaning of family history. Beyond the fact that 
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the penetrance of AD may not be full by the age of 65 in deletion carriers, most of those from the UK 

biobank are still rather young, so that some might still develop AD.  

In our analysis, FADS6 deletions were associated with AD risk. Although the signal was driven by a 

recurrent deletion that was too small to be replicated in the DNA chip dataset, the results remained 

significant in the meta-analysis thanks to larger deletions identified in the replication dataset. FADS6 

encodes the fatty acid desaturase 6, which is expressed in the brain. Its pathophysiological roles remain 

unclear, but it has been shown that FADS6 expression is necessary for neuronal survival and 

neuroprotection against Tau phosphorylation after BACE1 silencing in cortical primary cultures 

(Villamil-Ortiz and Cardona-Gómez 2018). 

Regarding ADI1 duplications, which were enriched in cases, the rarity and the relatively low number of 

EOAD cases in the replication dataset precluded the replication, although frequencies of duplications 

in cases and controls remained consistent with the discovery. 

These results suggests that these loci should be replicated in even larger EOAD datasets with available 

sequencing data. 

In the analysis at the protein-coding genome level, we identified an enrichment of deletions and of 

duplications in cases. After focusing on the GWAS list of genes, the signal based on duplications 

trended to be reversed. This suggests that additional genes, not identified here, may play a role in AD 

determinism, and this highlights a limitation of analyzing CNVs as a whole, at the protein-coding 

genome or at gene-list levels, as increasing expression or decreasing expression of genes may show 

opposite effects on AD pathophysiology. For example, APP, ABCA7 and ABCA1 are all AD GWAS hits, 

but gathering their effect into a same analysis (if APP duplications would not be excluded prior to case-

control studies), would lead to non-interpretable results, as duplications of APP are expected to be 

enriched in cases but, conversely, deletions of ABCA1 or ABCA7 are expected to be enriched in cases. 

Similarly, we investigated genes related to the Aβ network. Although deletions suggestively contribute 

to AD, signal is probably confused by opposite effects of a decreased expression of these genes on AD. 

Overall, our analysis suggest that additional genes remain to be identified despite power limitations 

when working with rare CNVs. 

 

In this study, we managed to detect and analyze jointly CNVs from a heterogeneous exome dataset of 

22,319 individuals. We propose a quality control and analysis strategy based first on an extensive 

individual and sample QC from previous work (Holstege et al. 2022) and, second, on CNV-specific 

features. Our QC allowed us to obtain a dataset harmonized at the transcript level that allowed (i) the 

identification of high-quality CNV calls in known AD genes (Mendelian and risk factor genes) and (ii) 

identification of candidate loci, despite the extreme rarity of the individual CNVs under study. Despite 
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this design was set to identify effects at the transcript/gene level with a diversity of CNVs putatively 

affecting a same gene, the most significant finding was a multiple-gene recurrent CNV mediated by 

NAHR. This is probably related to a power issue in finding a burden of ultra-rare CNVs in a given gene, 

but this study design may be successful in finding such signals in future larger studies. 

Here, we used a large existing dataset of exome sequencing data. Whole genome sequencing (WGS) 

with short reads may also be used to replicate such findings, although at a high computational cost. 

Such an analysis has been recently run on WGS of 6,646 AD cases (average age at onset: 74.6 years) 

and 6,938 controls from the ADSP consortium (Lee et al. 2021; Wang et al. 2023). A moderate but 

significant burden of (coding and non-coding) CNVs was associated with AD status overall and 

appeared higher for rarest events (singletons). In addition, an aggregated analysis of structural variants 

affecting a list of known AD genes also unveiled an association with AD status. Interestingly, these 

structural variants included one coding partial deletion of SORL1 and 5 coding partial deletions of 

ABCA7 (all in cases), among a few other genes of interest. None of the CNVs was significantly associated 

with AD due to power limitations, and possibly because this cohort is not enriched in EOAD cases. 

Interestingly, non-coding structural variants, which are not detectable by exome sequencing, were also 

analyzed, prioritizing for example an intronic deletion in the ADD3 gene (11 cases and no control) and 

another intronic deletion in the ITPR2 gene (33 cases, 7 controls), suggesting that increasing sample 

sizes with WGS data should unveil novel associations. Novel long read sequencing technologies may 

also offer new opportunities. In addition to CNVs, such novel technologies will enable the analysis of 

mobile element insertions, repeat variations, and balanced structural variants with an unprecedented 

accuracy (Logsdon, Vollger, and Eichler 2020; Miller et al. 2021). However, sequencing costs remain 

high, limiting the expectations that we can have from such a promising technology given the rarity of 

the events with a putatively strong effect.  

 

In conclusion, we conducted an exome-wide CNV screen from sequencing data and identified ultra-

rare CNVs that contribute to AD risk. Beyond autosomal dominant known CNVs, we highlight rare 

deletions in ABCA1 and ABCA7 as participating to AD risk in carriers, we identified loss-of-function of 

CTSB as a candidate mechanism increasing AD risk and, more importantly, a small region at the 

22q11.21 locus, of which deletions increase EOAD risk and duplications decrease the risk of AD. This is 

a rare example of a dosage effect with opposite associated phenotypic features, which may also be 

important for the follow up of some patients with DiGeorge syndrome. While additional CNVs may 

contribute to AD risk, as suggested by the gene-list and protein-coding genome-wide analyses, such 

CNVs remain extremely rare events. We used a transcript point of view to reduce the recurrence issue 

at the CNV level and to reduce the heterogeneity among datasets, but the rarity of such events remains 

an issue even in datasets as large as the one used here. Finally, we are providing a catalog of genes 
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with rare CNVs in EOAD, LOAD and controls, which can be reused for meta-analyses and combination 

with other datasets. 
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