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Abstract. The wide variation in symptoms of neurological disorders
among patients necessitates uncovering individual pathologies for accu-
rate clinical diagnosis and treatment. Current methods attempt to gener-
alize specific biomarkers to explain individual pathology, but they often
lack analysis of the underlying pathogenic mechanisms, leading to bi-
ased biomarkers and unreliable diagnoses. To address this issue, we pro-
pose a motif-induced subgraph generative learning model (MSGL), which
provides multi-tiered biomarkers and facilitates explainable diagnoses of
neurological disorders. MSGL uncovers underlying pathogenic mecha-
nisms by exploring representative connectivity patterns within brain net-
works, offering motif-level biomarkers to tackle the challenge of clinical
heterogeneity. Furthermore, it utilizes motif-induced information to gen-
erate enhanced brain network subgraphs as personalized biomarkers for
identifying individual pathology. Experimental results demonstrate that
MSGL outperforms baseline models. The identified biomarkers align with
recent neuroscientific findings, enhancing their clinical applicability.

Keywords: Neurological disorders · Brain networks · Generative learn-
ing · Explainable diagnoses · Graph learning · Graph neural networks.

1 Introduction

Neurological disorders present a significant global health challenge, affecting mil-
lions of people worldwide [1]. The difficulty in diagnosing these disorders arises
from the reliance on clinical observations rather than a deep understanding of
the underlying biological mechanisms [8]. For instance, autism spectrum disorder
(ASD) is diagnosed based on a spectrum of symptoms that not only vary widely
among individuals but also evolve over time [2], resulting in high clinical hetero-
geneity. This variability underscores the need for discovering specific individual
pathologies to enable accurate diagnoses and personalized treatments.
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Recent advancements in functional magnetic resonance imaging (fMRI) data
analysis using explainable methods have facilitated the development of biomark-
ers that enhance clinical diagnosis [9]. Specifically, graph neural networks (GNNs)
have proven effective in extracting patterns and structures from brain activ-
ity, enabling the identification and analysis of specific subgraphs as potential
biomarkers [6, 18, 24]. Some approaches identify disease-related regions based
on information theory, providing biomarkers that are applicable at both group
and individual levels [27, 28, 30]. However, these biomarkers often capture only
superficial pathogenic differences among patients. To address this limitation,
some methodologies focus on biologically significant subtypes, aiming to produce
more targeted biomarkers that reflect essential pathogenic mechanisms [13, 29].
Although these methods occasionally demonstrate satisfactory performance, the
biomarkers provided can be biased. This bias arises from their reliance on feature
similarity analysis or clustering to generalize biomarkers across diverse symptoms
without a detailed examination of the underlying pathogenic mechanisms. Such
practices render these biomarkers vulnerable to imbalanced patient numbers or
inconsistent subtype definitions [3]. Therefore, current methods fail to explain
the clinical heterogeneity and cause biased and unreliable predictions.

To address this issue, we introduce the motif-induced subgraph generative
learning (MSGL) model, a novel GNN architecture for explainable detection
of neurological disorders. Recent research [7] indicates that analyzing higher-
order connectivity patterns, or motifs, can provide new insights into these disor-
ders. Inspired by this, MSGL extracts recurring connectivity patterns as motifs,
serving as motif-level biomarkers to explain distinct pathologies. These motifs
are integrated to guide an efficient block-wise graph generation process. By en-
hancing the probability distribution of connection patterns related to motifs,
the resulting subgraphs effectively represent key brain connectivity structures.
These subgraphs act as personalized biomarkers, facilitating more accurate and
interpretable diagnostic conclusions. The main contributions of this paper are
summarised as follows:

– We introduce a novel graph generative learning model, MSGL, for explain-
able neurological diagnoses. By delving into underlying pathogenic mecha-
nisms, MSGL extracts motif-level biomarkers to overcome clinical hetero-
geneity and enhance the representational and explainable capabilities of in-
dividual pathologies.

– We developed a new recurrent-based graph generation process incorporat-
ing motif-induced information. This approach enables generated subgraphs
to highlight pathology-related connectivity patterns and performs with low
computational complexity.

– We conduct extensive experiments on an ASD dataset to demonstrate the
effectiveness and superiority of MSGL. More importantly, visualizing the
identified biomarkers reveals disease-related brain regions and abnormal con-
nections that align with recent medical findings, showing that our method
provides biological explanations.
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Motif-induced Subgraph Generative Learning 3

2 Related Work

2.1 Explainable Neurological Disorder Detection

Explainable GNN-based methods are widely used to identify biomarkers and elu-
cidate pathogenesis. For instance, BrainGNN [10] uses regions of interest (ROI)-
aware graph learning to highlight important brain regions, while IBGNN [5]
employs global mask learning for group and individual-level biomarkers. Recent
studies suggest that edge-level explanations are more critical than node-level
ones. For instance, BrainIB [30] leverages the information bottleneck principle
to extract the most informative edges. Likewise, Graph-PRI [27] employs the
principle of relevant information to the sparse graph structure. Additionally, CI-
GNN [28] uses conditional mutual information to identify causal subgraphs that
offer instance-level explanations.

However, these advancements do not fully address clinical heterogeneity and
often overlook the varied pathogenesis among different symptoms. Unsupervised
methods like BrainTGL [13], which uses hierarchical clustering to group patients,
and BPI-GNN [29], which employs prototype learning, aim to infer diverse patho-
genesis. Nevertheless, they are limited by unequal distribution of patient data
across different categories or groups and inconsistent subtype definitions, lead-
ing to biased biomarkers [3]. MSGL aims to address these issues by uncovering
the underlying pathogenic mechanisms of neurological disorders and facilitating
explainable diagnosis.

2.2 Graph Generative Learning

Graph generative methods are divided into one-step and autoregressive genera-
tion methods. One-step generation models aim to create all edges between nodes
in a single step. For example, variational auto-encoder-based models [14,21] infer
the posterior distribution of edges to determine their probability, while genera-
tive adversarial network-based models like GraphGAN [22] use a min-max game
to learn sampling from real graphs. However, generated edge probabilities in
these models are independent of the latent embeddings, potentially degrading
graph quality.

On the other hand, autoregressive generation builds graphs incrementally
and predicts the output based on the previous step. Thus it better captures
complex structural patterns. For instance, GraphRNN [26] uses two recurrent
neural networks (RNNs) to generate graphs and Chu et al. [4] improved this with
a random walk encoder. However, these methods are sensitive to node ordering
during training. In contrast, GRAN [11] uses block sampling and an attention
mechanism encoder to generate graphs effectively. Inspired by GRAN, our MSGL
model incorporates motif-level biomarker information into the generation pro-
cess, providing personalized biomarkers.
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3 Methodology

The proposed framework of MSGL is shown in Figure 1. We begin with motif-
level biomarker discovery through sampling and identifying brain connectivity
patterns in Section 3.1. Then, in Section 3.2, we describe the motif-induced
graph generative model, covering encoding, generation process, and learning ob-
jectives to identify personalized biomarkers. Finally, in Section 3.3, we explain
the motif-induced subgraphs embedding method for disease diagnosis.

Fig. 1: The MSGL framework is comprised of three modules: motif extraction
to identify group-specific connection patterns, motif-induced graph genera-
tive learning to integrate motif information for guiding generation output, and
motif-induced subgraph embedding learning to obtain brain representa-
tions for disorder diagnosis.

3.1 Motif Extraction

This module is designed to identify recurring connection patterns in brain graphs
of subjects with different symptoms, classifying these patterns as motif-level
biomarkers for diagnostic purposes. We consider a dataset containing brain
graphs from M subjects, comprising both healthy controls and individuals with
ASD, denoted as G = {G1, G2, . . . , GM}. Each brain graph is defined as G =
(V, E ,A,X), where V is the node set representing N ROIs in the brain, E is the
edge set, A ∈ RN×N is the adjacency matrix measuring the correlation strength
of edges, and X ∈ RN×N denotes the node feature matrix, which is populated
with correlation vectors. Our goal is to extract and define two distinct sets of
motifs, Shc and Sasd, representing the most distinctive connection patterns for
each group.

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 30, 2024. ; https://doi.org/10.1101/2024.10.27.24316244doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.27.24316244


Motif-induced Subgraph Generative Learning 5

To begin, we sample connectivity structures as St = (Vt, Et) with ROIs in
Vt and edges in Et, which aims to extract a set of minimally redundant connec-
tivity patterns covering the entire brain graph evenly: V = ∪tVt and E = ∪tEt.
Given the high complexity and vast scale of brain networks, direct sampling of
connection patterns from the entire graph is computationally expensive. To ad-
dress this challenge, we employ the farthest point sampling method [25]. This
technique involves selecting nodes that are maximally distant from each other
within the graph space, thus ensuring a diverse and representative sampling of
connection patterns across the brain graph. Next, we identify significant recur-
ring motifs within these graphs in the same group. To systematically evaluate
the relevance and frequency of these motifs, we adopt the term frequency-inverse
document frequency (TF-IDF) method [19] inspired by text mining. This tech-
nique achieves this by considering its frequency across the population relative
to its occurrence within individual subjects. Using the TF-IDF values, we con-
struct motif sets for each group as Shc = {Shc

1 , . . . , Shc
k } for the healthy control

group and Sasd = {Sasd
1 , . . . , Sasd

k } for ASD group, respectively. Ultimately, we
characterize the motifs found within Sasd as potential motif-level biomarkers,
offering a novel perspective on ASD detection.

3.2 Motif-induced Graph Generative Learning

This module is designed to generate deterministic subgraphs that serve as per-
sonalized biomarkers. Given an individual’s brain graph G and a node ordering
π, our objective is to learn the distribution probabilities p(·) of potential gener-
ated nodes V̂ and edges Ê for consisting its subgraph Ĝ. Formally, this subgraph
is generated by sequentially combining blocks Bt ∈ RL×|V̂ |, t = (1, . . . , T ), where
L is the size of blocks and |V̂ | is the number of generated nodes. Therefore, the
generation steps can be simplified to T = (|V̂ |/L) iterations. The probability of
generating the graph is formulated as follows:

p
(
B(1:t)

)
=

T∏
t=1

p(Bt|B1, . . . ,Bt−1). (1)

This conditional probability defines the probability of all possible edges between
the nodes in the current block and the generated nodes. Once all nodes have
been generated to obtain the final p

(
B(1:T )

)
, the potential connection strength

of edges can be formulated as Â = B(1:T ) +
(
B(1:T )

)⊺, since brain graphs are
symmetrical. Significantly, our approach generates subgraphs in a single block
of rows, thereby reducing the sequence of autoregressive generation decisions by
an order of magnitude O(|V̂ |), where |V̂ | < N . Notably, this generation process
is guided by incorporating the extracted motif-level biomarkers in Section 3.1.
By adjusting the generative node and edge distributions, our model ensures that
the generated subgraphs retain personalized symptoms, which will be discussed
in Section 3.2.

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 30, 2024. ; https://doi.org/10.1101/2024.10.27.24316244doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.27.24316244


6 M. Liu et al.

Graph Encoder with Attentive Messages. To accurately infer all connec-
tions of the current block in this sequential dependency generation strategy, we
utilize a method of learning node generation representations by establishing vir-
tual connections. These final node representations are then used to derive the
probabilities of potential subgraphs.

In this sequential dependency generation strategy, the probability of gener-
ating a block at the current step depends on the previous steps’ probabilities, as
shown in Equation (1). Thus, we denote the generated brain network subgraph
at step (t− 1) as Ĝt−1 = {B1, . . . ,Bt−1}, which encompass all nodes and edges
from the generated blocks up to that point. Given the newly generated block Bt

at t-th step, we assume that all nodes in Bt are connected to all other nodes,
defining these connections as virtual edges. This setup allows us to formulate the
potential node representations in the virtual subgraph Ĝt via a message-passing
mechanism as follows:

hr
i = GRU

hr−1
i ,

∑
j∈N (i)

Message(hr−1
i ,hr−1

j , ar−1
ij )

 , (2)

where hr
i is the hidden representation for node i after round r and ar−1

ij is
the attention weight value of the edge between node i and node j. Specifically,
the node representations in each round are aggregated using a message-passing
mechanism that computes an attention-weighted sum over the neighborhood
N (i) of each node i. These representations are then updated using a gated
recurrent unit (GRU). After R rounds, the final node representations HR are
obtained. Notably, we define the initial node representations as H0 = WÂt + b.
Here, Ât ∈ R|V̂t|×|V̂ | includes the connections within the virtual subgraph Ĝt,
where |V̂t| = t× L < |V̂ |, thus ungenerated parts are padded with zeros.

Motif-induced Graph Output Distribution. Leveraging graph encoding in-
formation, we can model the edges in the generated graph and infer blocks in the
subsequent generation step. To improve their output distributions, our method
integrates motif-induced information to prioritize the likelihood of generating
connection patterns that typically reflect individual pathologies.

Generated Node Distributions. Node ordering plays a crucial role in autoregres-
sive generative models. The number of possible random node orderings for a
graph is factorial in the size of the graph, which makes exploring all potential
orderings extremely complex. To mitigate this complexity and preserve the in-
tegrity of the key structural patterns within the graph, we employ a K-Core
decomposition-based method for determining node orderings [16]. Typically, K-
Core decomposition iteratively removes nodes with degrees less than the setting
value, assigning a core number to each node, reflecting its connectivity and im-
portance in the graph. Thus, the node ordering can be calculated within linear
time |E|.
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To emphasize important connection patterns, we introduce motif-induced
information to enhance the core number scoring of key nodes. Specifically, we
apply the same sampling strategy described in Section 3.1 to the input graph G,
matching the sampled substructures with the group-specific motifs in Shc and
Sasd. We increase the degree of nodes within similar substructures to increase
its K-Core ranking to obtain the final node ordering π. Then, the ordering will
be adopted to partition the node set into several blocks in generation steps as
{B1, . . . ,BT } for the further edge distribution calculation.

Generated Edge Distributions. The probability of generating edges within the
block and between the block and the already generated subgraph is determined
by node representations. Specifically, using the node representations obtained
after R rounds of message passing as described in Equation (2), we model the
probability of generating edges within the current block Bt as a mixture of
Bernoulli distributions:

p(Bt|B1, . . . ,Bt−1) =

C∑
c=1

θc
∏
i∈Bt

∏
j≤i

Sigmoid
(
MLPh(h

R
i − hR

j )
)

θc = Softmax

 ∑
i∈Bt,j≤i

MLPθ(h
R
i − hR

j )

 ,

(3)

where the MLPh(·) and MLPθ(·) are two multi-layer perceptrons (MLP) net-
works with the C dimensional outputs in a mixture of Bernoulli distributions.
Here, C is the number of mixture components that guarantee dependencies
among the edges within the mixture model.To prioritize the generation of per-
sonalized connections, we incorporate motif-induced information into these dis-
tributions.

Specifically, we leverage edge centrality in the virtual graph Ĝt as mentioned
in Section 3.2 to enhance the probability of generating edges Êt within motifs Sk

at the t-th generation step. The edge centrality is calculated as the average of the
connected nodes’ centrality ϕ(·), formalized as ωij = (ϕ(vi)+ϕ(vj))/2, (vi, vj) ∈
V̂t. Next, we traverse the nodes in the virtual graph and match virtual sub-
structures with group-specific motifs in Shc and Sasd. We increase the centrality
of corresponding nodes to enhance their connection’s edge centrality within a
similar substructure, denoted as ω̂ij . To mitigate the impact of highly densely
connected nodes, we set it as log(ω̂ij). After normalizing, motif-induced edge
probabilities can be formulated as:

p̂ij =
log(ω̂max)− log(ω̂ij)

log(ω̂max)− log(µ̂)
× pe, (4)

where ω̂max and µ̂ are the maximum and average of ω̂ij and pe is a hyperparam-
eter to control the overall probability of generating edges in the virtual graph.
Finally, we multiply the calculated motif-induced edge probabilities by the prob-
abilities calculated by the mixture of Bernoulli distributions to obtain the final
graph output distribution p̂(Bt|B1, . . . ,Bt−1).
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Generative Learning Objective. Due to the absence of definitive criteria
for our brain network subgraphs, we have designated the task of generating the
entire graph as the training goal for our model. Thus, the objective function is
defined as the negative log-likelihood of the variational evidence lower bound
(ELBO), formulated as:

Lgen = −Eq(π|G)[log(p(G;π))], (5)

where q(π|G) is a variational posterior over motif-induced node ordering π given
the graph G, and p(G;π)) is the probability distribution of the generated graph
based on the given ordering.

By optimizing this formulation, our model aims to maximize the fidelity
of reconstructing the input brain network graph, ensuring that the subgraphs
generated during this process are biologically authentic. Finally, by controlling
the step of the generation process the objective subgraph Ĝ = (V̂ , Ê), where V̂ ∈
V and Ê ∈ E are the subset of node and edge in the original graph, is generated
to represent the personalized biomarker. Overall, the detailed algorithm for our
proposed methods is outlined in Algorithm 1.

Algorithm 1 The training algorithm.
1: Input: A batch of brain graphs {G1, . . . , GB}, motif sets S for each group
2: Output: A graph generation model fθ, generated subgraphs {Ĝ1, . . . , ĜB}
3: Initialize: The model parameters θ
4: while not converged do
5: for G in {G1, . . . , GB} do
6: Compute the node ordering π
7: Sample a block Bt according to π
8: for t = 1, . . . , T do
9: for Sk in S do

10: if virtual Ĝt match Sk then
11: Compute the motif-induced edge probabilities p̂(Bt)
12: else
13: Compute the edge probabilities p(Bt)
14: end if
15: end for
16: end for
17: Compute the generated graph p(G;π)
18: Compute loss function using Equation 5
19: Update model parameters θ
20: end for
21: end while
22: for G in {G1, . . . , GB} do
23: Compute the generated subgraph Ĝ← fθ(G;S)
24: end for
25: return fθ and {Ĝ1, . . . , ĜB}
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Computation Complexity Analysis. We thoroughly analyze the time com-
plexity associated with the generation process of the MSGL model. We omit
the batch size dimension and focus directly on the process of generating sub-
graphs from brain graphs. The computational complexity for the node ordering
is O(|E|). Subsequently, the subgraph generation process based on this node
ordering has a O(T ) complexity, where T = |V̂ /L|. For each generation step,
the computational complexity of the graph output distribution calculation is
O(|V̂t| × |S| × |V̂ |2 × |θ|), where |V̂t| = L × t represents the number of nodes
in the generated subgraph at step t ∈ (0, T ), |S| denotes the number of motifs,
and |V̂ |2 × |θ| refers to the parameters of the generative network. Overall, the
computational complexity can be simplified as O((T !)× |V̂ |2).

3.3 Motif-induced Subgraph Representation Learning

Inspired by RH-BrainFS [25], we treat motif structures as receptive fields for
disease-related ROIs. This enhances the representation learning of disease-relevant
features, by aggregating the information of the central brain region, demonstrat-
ing greater brain disorder detection performance [23]. Thus, the motif-induced
representation learning task can be viewed as a multi-set problem, where an MLP
learns an injective function to effectively aggregate regional features within the
given motifs. This process can be formalized as:

z
(l)
i = MLP(l)

z

W
(l)
1 h̃

(l)
i +

∑
vj∈Sk\vi

W
(l)
2 h̃

(l)
j

 , (6)

where h̃
(l)
i is the hidden representation of central node i, h̃(l)

j denotes the hidden
representation of the other node in the motif Sk, and W

(l)
1 ,W

(l)
2 ∈ Rd(l)×d(l+1)

are two learnable weight matrics. Notably, the initial representation h̃
(0)
i is de-

noted as the feature vector xi. Finally, the obtained representation Z ∈ R|V̂ |×|V̂ |

for the subgraph Ĝ is fed into a classifier to detect the neurological disorder.

4 Experiments

4.1 Experimental Setup

Datasets. This study was conducted on a real-world psychiatric dataset known as
the autism brain imaging data exchange (ABIDE)1. ABIDE comprises resting-
state fMRI data from 1,099 samples collected across 17 international sites, in-
cluding individuals with ASD and healthy controls. Specifically, it consists of
528 ASD patients aged 7-64 years and 571 health control individuals aged 8.1-
56.2 years, ensuring a relatively balanced class distribution. We utilize the 116
ROIs defined by the automated anatomical labeling (AAL) template and adopt
Pearson correlation to construct the brain network graphs.

1 https://fcon_1000.projects.nitrc.org/indi/abide/.
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Baselines. To demonstrate the effectiveness and superiority of our MSGL model,
we compared its results on the ABIDE dataset with two categories of methods.
For the first category, we consider two machine learning methods, MLP and
support vector machine (SVM). For the first category, four state-of-the-art ex-
plainable graph learning models specifically designed for diagnosing neurological
disorders are included a benchmark method BrainGNN, and other information-
theoretic methods, IBGNN, BrainIB, and CI-GNN.

Implementation Details. MSGL is implemented in PyTorch and experiments are
conducted on an NVIDIA Tesla P100 GPU with 16GB memory. Parameters are
optimized using the AdamW optimizer [15] with a learning rate of 1e−5. To
explore pathogenic mechanisms under clinical heterogeneity, we set the number
of motifs in Shc and Sasd to 50. Balancing computational complexity and per-
formance, we set the block size L of Bt to 5 and the number of ROIs in the
generated subgraph to 45. The hyperparameter pe in Equation (4) is set to 0.5.

4.2 Results

Comparison Results and Analysis. Table 1 shows the classification perfor-
mance of MSGL compared to baselines on the ABIDE dataset evaluated in terms
of accuracy, area under the curve (AUC), recall, and F1-score. We conducted a
5-fold cross-validation and reported the mean and standard deviation for these
metrics. Extensive experiments demonstrate that MSGL outperforms all baseline
models across all evaluation metrics. Specifically, MSGL achieved improvements
of 2.3% in accuracy, 1.2% in AUC, 2.0% in recall, and 1.2% in F1-score compared
to the best-performing baseline. The performance enhancement of MSGL can be
attributed to three factors: 1) Uncovering the underlying pathogenic mechanisms
of neurological disorders; 2) Motif-induced subgraph generation for a better un-
derstanding of individual pathologies; 3) A motif-induced representation learning
strategy that enhances the graph’s expressiveness.

Table 1: The comparison results (%) on ABIDE.

Methods Accuracy AUC Recall F1-score
MLP 60.4 ± 7.2 60.4 ± 7.5 60.4 ± 7.2 55.1 ± 13.9

SVM 61.4 ± 6.5 65.6 ± 5.6 61.3 ± 6.5 61.3 ± 6.5

BrainGNN 61.1 ± 5.8 67.5 ± 5.1 58.6 ± 2.7 66.6 ± 4.5

IBGNN 61.8 ± 1.6 60.7 ± 3.4 69.1 ± 1.9 68.5 ± 2.4

CI-GNN 67.6 ± 1.8 67.2 ± 2.7 67.6 ± 3.9 72.4 ± 2.3

BrainIB 69.1 ± 3.8 69.5 ± 1.8 69.1 ± 3.2 69.0 ± 2.1

MSGL (ours) 71.4 ± 2.3 70.7 ± 1.6 71.1 ± 2.1 73.6 ± 1.2

Explainable Analysis for Neurological Disorders. We validated the MSGL
model using the ABIDE dataset to determine its ability to identify personalized,
motif-level biomarkers for neurological disorders. We analyzed the generated sub-
graphs for personalized biomarkers compared with other explainable methods.
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(a) BrainIB (b) IBGNN

(c) CI-GNN (d) MSGL(ours)

Fig. 2: Explaination comparisons in the ASD group. The colors of brain networks
are described as visual network (VN), somatomotor network (SMN), dorsal
attention network (DAN), ventral attention network (VAN), limbic network
(LIN), frontoparietal network (FPN), default mode network (DMN), cerebel-
lum (CBL) and subcortical network (SBN), respectively.

As shown in Figure 2, the nodes are mapped onto nine brain networks with
different colors, while the size of each edge reflects its weight. Our method ef-
fectively reveals enhanced connectivity between the SMN and both the LIN and
FPN, aligning with previous medical research [12]. We also uncovered interac-
tions within the LIN and SBN that might indicate unique neural patterns.

Additionally, we identified four significant motif-level biomarkers, visualized
in Figure 3. This visualization highlights affected regions and key connections,
including the temporo-occipital areas (such as the temporal pole, middle occip-
ital gyrus, precuneus, and right parahippocampal gyrus) and regions like the
middle frontal gyrus, inferior frontal gyrus, and posterior cingulate cortex, all
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of which are strongly associated with ASD. These findings are consistent with
previous clinical observations [17,20].

(a) Brain heat map (b) Brain motifs layout

Fig. 3: Visualization of motifs in the ASD group: Panel (a) shows shaded brain
regions with darker colors indicating higher relevance. In panel (b), the color of
each node denotes its motif, and the size indicates the node’s degree.

4.3 Ablation Study

We conducted an ablation study to assess the effects of motif-induced learning
strategies on our model. We created two variants: MSGL-NoMGL, which elim-
inates the motif-induced graph generation strategy, relying only on traditional
graph output distributions and MSGL-NoMEmb, which substitutes the motif-
induced graph embedding learning with a standard neural network approach
for graph learning. By comparing the classification performance of the original
model with its variants, we can assess the significance of the motif-induced learn-
ing strategy. Table 2 shows that MSGL’s performance drops significantly in its
variants, especially in MSGL-NoMGL, highlighting the benefit of motif-induced
graph generation for identifying personalized biomarkers.

Table 2: The ablation study results (%) of MSGL.

Methods Accuracy AUC Recall F1-score
MSGL-NoMGL 63.4 ± 2.1 62.7 ± 1.8 63.4 ± 2.6 65.2 ± 1.8

MSGL-NoMEmb 67.5 ± 3.1 64.8 ± 2.6 66.2 ± 3.4 67.6 ± 2.4

MSGL (ours) 71.4 ± 2.3 70.7 ± 1.6 71.1 ± 2.1 73.6 ± 1.2

5 Conclusion

In this study, we present MSGL, a novel graph generative model for explainable
diagnosis of neurological disorders. MSGL identifies key motif-level biomarkers
that reveal pathogenic mechanisms and enhance the explainability of individual
pathologies. Our results demonstrate that MSGL surpasses other state-of-the-art
methods on a real medical dataset, confirming the effectiveness of its biomarkers.
Additionally, visualizations of the model results align with neurological research,
providing valuable insights for future clinical diagnosis and personalized treat-
ments.
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