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17 Abstract
18 Background: Stroke-associated pneumonia (SAP) is a frequent complication of stroke, characterized 

19 by its high incidence rate, and it can have a severe impact on the prognosis of patients. The limitations 
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20 of current clinical treatment measures underscore the critical need to identify high-risk factors 

21 promptly to decrease the incidence of SAP.

22 Objective: To analyze the risk factors of SAP in stroke patients, construct a predictive model of SAP 

23 based on the SHAP interpretable machine learning method, and explain the important variables.

24 Methods: A total of 763 stroke patients admitted to the Second Affiliated Hospital of Anhui 

25 University of Traditional Chinese Medicine from July 1, 2023, to May 31, 2024, were selected and 

26 randomly divided into the model training set (n=457) and model validation set (n=306) according to 

27 the ratio of 6:4. Firstly, the included data were sorted out, and then Lasso regression was used to screen 

28 the included characteristic variables. Based on the tidymodels framework, Using decision tree (DT), 

29 logistic regression, extreme gradient boosting (XGBoost), support vector machine (SVM), The 

30 classification model was constructed by five machine learning methods, including SVM and 

31 LightGBM. The grid search and 5-fold cross validation were used to optimize the hyperparameter 

32 optimization strategy and the performance index of the model. The predictive performance of the 

33 model was evaluated by the area under the receiver operating curve (AUC), calibration curve, and 

34 decision curve analysis (DCA), and we used Shapley additive explanation (SHAP) to account for the 

35 model predictions and provide interpretable insights.

36 Results: The incidence of SAP in this study was 31.72% (242/763). Six variables were selected by 

37 Lasso regression, including nasogastric tube use, age, ADL score, Alb, Hs-CRP, and Hb. The model 
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38 with the best performance in the validation set was the XGBoost model, with an AUC of 0.926, an 

39 accuracy of 0.914, and an F1 score of 0.889. Its calibration curve and DCA showed good performance. 

40 SHAP algorithm showed that ADL score ranked first in importance.

41 Conclusion: The model constructed using XGBoost has good prediction performance and clinical 

42 applicability, which is expected to support clinical decision-making and improve the prognosis of 

43 patients.

44 Keywords: Machine learning; Stroke; Stroke-associated pneumonia; Prediction model; SHAP

45

46 1. Introduction
47 Stroke is a severe cardiovascular disease that significantly impacts the quality of life and survival 

48 rate of patients. According to the Global Burden of Disease Study, stroke caused approximately 6.55 

49 million deaths in 2019, ranking as the second leading cause of death worldwide, second only to 

50 cardiovascular diseases[1]. In the aftermath of a stroke, patients frequently contend with numerous 

51 complications, with stroke-associated pneumonia (SAP) being among the most prevalent[2]. Surveys 

52 have indicated that the incidence of SAP ranges from 7% to 38%[3–6], SAP not only prolongs 

53 hospitalization and increases economic burdens but can also severely affect patient mortality[4-5]. 

54 Currently, the primary treatment for SAP in clinical practice is anti-infective therapy [7]; however, 

55 studies have shown that prophylactic antibiotics do not effectively reduce the risk of SAP 
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56 occurrence[8]. Therefore, it is crucial for clinicians to promptly identify high-risk individuals for SAP 

57 and implement appropriate preventive measures, which are essential for improving the prognosis of 

58 stroke patients.

59 The establishment of risk prediction models can assist clinicians in identifying high-risk 

60 populations for diseases, allowing for early intervention measures to reduce disease incidence[9]. In 

61 recent years, scholars both domestically and internationally have developed multiple models to predict 

62 the risk of SAP occurrence, presented in the form of scoring systems and scorecards, such as the Kwon 

63 Score[10], A2DS2 Score[11], and AIS-APS Score[12]. These models provide relatively reliable 

64 assessment tools for the prevention and treatment of SAP. However, even well-validated models may 

65 experience performance degradation over time due to changes in disease risk factors, treatment 

66 measures, and treatment contexts. Therefore, models need continuous dynamic updates [13]. In 

67 addition, few studies are using interpretable machine learning to construct SAP risk prediction models. 

68 Based on this, this study considered combining new predictors with known predictors to construct a 

69 model using the machine learning method and using the SHAP algorithm to explain the model, to 

70 improve the accuracy and interpretability of SAP risk prediction.

71 2. Materials and Methods

72 2.1Study Design and Subjects

73 This study is a single-center, retrospective cohort study. We selected stroke patients who were 
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74 treated at The Second Affiliated Hospital of Anhui University of Chinese Medicine from July 1, 2023, 

75 to May 31, 2024, as the study subjects. Inclusion criteria were: (1) patients diagnosed with stroke; (2) 

76 age ≥18 years; (3) no mechanical ventilation within 7 days post-stroke. Exclusion criteria were: (1) 

77 discharge, transfer, or death within 24 hours of admission; (2) pre-existing pulmonary infection prior 

78 to admission; (3) abandonment of treatment or voluntary discharge. (4) the missing rate of collected 

79 data exceeded 30%.This study was approved by the Ethics Committee of the Second Affiliated 

80 Hospital of Anhui University of Traditional Chinese Medicine (2023-SXXM43). In addition, informed 

81 consent was omitted for all participants as the study was retrospective in nature, and the research 

82 process was in accordance with the Declaration of Helsinki.

83 2.2Identification of Candidate Predictive Factors

84 Candidate predictive factors for this study were identified through literature review and expert 

85 consultation, totaling 27 factors, including: (1) General demographic data: gender, age; (2) Disease-

86 related factors: activity of daily living (ADL) scale[14] score at admission, type of stroke, location of 

87 stroke, dysphagia, impaired consciousness, hypertension, diabetes mellitus; (3) History of 

88 comorbidities/Personal history: history of stroke, history of underlying pulmonary disease, smoking, 

89 drinking; (4) Disease treatment factors: nasogastric tube, acid suppressants, urinary catheters; (5) 

90 Laboratory test indicators: albumin (Alb), triglyceride (TG), hypersensitive C-reactive protein (Hs-

91 CRP), white blood cell count (WBC), neutrophil-to-lymphocyte ratio (NLR), monocyte-to-
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92 lymphocyte ratio (MLR), hemoglobin (Hb).

93 2.3Definition and Diagnosis of SAP

94 According to the consensus published by the SAP Consensus Group composed of 

95 multidisciplinary experts in the UK[2], the outcome indicator SAP is defined as pneumonia that newly 

96 occurs within 7 days in non-mechanically ventilated stroke patients. The diagnosis of SAP follows the 

97 modified standards of the Centers for Disease Control and Prevention (CDC) [15].

98 2.4Sample Size Estimation

99 This study utilized the sample size estimation method specifically designed for developing risk 

100 prediction models, as proposed by Riley et al. in 2020[16]. This method takes into account the effects 

101 of multiple categories, interactions, and non-linear relationships, minimizing the risk of model 

102 overfitting while precisely estimating key parameters to determine the appropriate sample size 

103 required to construct the predictive model. The specific calculations were performed using the 

104 "pmsampsize" package in R software. Based on the literature, the average C-statistic of existing 

105 prediction models is approximately 0.827[17], and the incidence of SAP is around 7%-38%[3–6]. This 

106 study anticipated the inclusion of 27 predictive factors, with the calculated required sample size 

107 ranging from 701 to 1272 cases, and an expected number of outcome events ranging from 179 to 253.

108 The detailed calculation process and results are shown in the supplementary material.

109 2.5Data Collection and Preprocessing
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110 Data sources were determined by reviewing electronic medical records, including admission 

111 records, discharge summaries, nursing records, and laboratory results, with laboratory parameters 

112 primarily collected from the first admission data. During data collection, we ensured blinding between 

113 the predictive factors and outcome indicators to avoid information bias. To address missing data issues, 

114 the random forest method was used for data imputation to maintain data integrity and the accuracy of 

115 the predictive model (imputation of missing values was performed using the "mice" package in R 

116 software, with five imputations). To prevent information loss, all continuous variables were inputted 

117 using their original values; for categorical variables, categories with low proportions were considered 

118 for merging. After data processing, the dataset was divided into training and validation sets in a 6:4 

119 ratio. The training set data were used to fit the predictive model, while the validation set data were 

120 used to evaluate the model.

121 2.6Model construction and evaluation

122 Taking the occurrence of SAP in stroke patients as the dependent variable and alternative 

123 predictors as the independent variable, least absolute shrinkage, and selection operator (Lasso) 

124 regression was used to screen the variables, and then a model was constructed based on the tidymodels 

125 framework. We selected the following five machine learning algorithms to build the model: decision 

126 tree (DT), logistic regression (LR), extreme gradient boosting (XGBoost), support vector machine 

127 (SVM), and light gradient boosting machine (LightGBM). A 5-fold cross-test was performed on the 
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128 training set as a resampling method, and the hyperparameters were optimized by grid search. We used 

129 the area under the receiver operating characteristic (ROC) curve (AUC) to evaluate the discrimination 

130 of the model and drew calibration curves to evaluate the fit of the model. Decision curve analysis 

131 (DCA) was used to evaluate the clinical practicability of the model. Finally, the accuracy, sensitivity, 

132 specificity, and other indicators of the model were calculated to evaluate the performance of the model.

133 2.7Interpretability of the model

134 Shapley additive explanation (SHAP) is a popular method of model explanation, which is based 

135 on the Shapley value in game theory and is used to explain the predictions of any model. The core idea 

136 of SHAP is to decompose the contribution of each feature to the prediction, so that the model 

137 prediction can be expressed as a weighted sum of feature contributions, thereby improving the 

138 transparency and trust of the model and supporting more reasonable decision making. By applying the 

139 SHAP algorithm to the optimal model, we can obtain the importance ranking of features and have an 

140 intuitive understanding of the contribution of these features to the prediction model.

141 2.8Statistical Methods

142 Statistical analysis was performed using R 4.3.0 software.Normally distributed continuous data 

143 were expressed as mean ± standard deviation (Mean ± SD), and between-group comparisons were 

144 performed using the independent sample t-test. Non-normally distributed continuous data were 

145 expressed as median and interquartile range [M (Q1, Q3)], and between-group comparisons were 
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146 conducted using the Mann-Whitney U test. Categorical data were expressed as counts and percentages 

147 [n (%)], and comparisons of unordered categorical data between groups were performed using the 

148 Pearson x2 test or Fisher’s exact test. All statistical tests were two-sided, with P<0.05 considered 

149 statistically significant.

150 3. Results

151 3.1Missing Data

152 There were 7 variables with missing values in this study, including Alb, TG, LDL, HDL, Stroke 

153 location, Hs-CRP, and D-Dimer. The missing values were all imputed by the random forest method 

154 (Fig 1).

155 Fig 1. Missing data

156 3.2Patient Characteristics

157 Based on the occurrence of SAP, the 763 patients were divided into the non-SAP group (n=521) 

158 and the SAP group (n=242). Among the 763 included patients, there were 504 males (66.06%) and 

159 259 females (33.94%), with an average age of 67.35±13.00 years. The incidence of SAP was 31.72%. 

160 There were statistically significant differences in age, ADL score, type of stroke, dysphagia, 

161 disturbance of consciousness, diabetes, history of lung disease, nasogastric tube therapy, urinary 

162 catheter, Alb, Hs-CRP, WBC, NLR, MLR, Hb, D-Dimer and HDL between the two groups (P < 0.05). 

163 The detailed results are presented in Table 1.
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164 Table 1 Comparison between non-SAP and SAP groups

Variable All (n=763) SAP (n=242) non-SAP (n=521) P-value

Sex, n (%) 0.761

  Male 504 (66.06) 158 (65.29) 346 (66.41)

  Female 259 (33.94) 84 (34.71) 175 (33.59)

Age, Mean±SD 67.35±13.00 72.08±11.84 65.15±12.94 <0.001

ADL, M (Q1, Q3) 55.00 (29.00, 79.50) 20.00 (10.00, 40.00) 65.00 (50.00, 85.00) <0.001

Type of stroke, n (%) <0.001

  Ischemic stroke 595 (77.98) 159 (65.70) 436 (83.69)

  Hemorrhagic stroke 124 (16.25) 60 (24.79) 64 (12.28)

  Both 44 (5.77) 23 (9.50) 21 (4.03)

Stroke location, n (%) 0.635

  Left 223 (29.23) 74 (30.58) 149 (28.60)

  Right 184 (24.12) 48 (19.83) 136 (26.10)

  Multiple 356 (46.66) 120 (49.59) 236 (45.30)

Dysphagia, n (%) <0.001

  No 525 (68.81) 106 (43.80) 419 (80.42)

  Yes 238 (31.19) 136 (56.20) 102 (19.58)

Disorders of 

consciousness, n (%)

<0.001

  No 708 (92.79) 192 (79.34) 516 (99.04)

  Yes 55 (7.21) 50 (20.66) 5 (0.96)
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Hypertension, n (%) 0.955

  No 141 (18.48) 45 (18.60) 96 (18.43)

  Yes 622 (81.52) 197 (81.40) 425 (81.57)

Diabetes mellitus, n (%) 0.037

  No 460 (60.29) 159 (65.70) 301 (57.77)

  Yes 303 (39.71) 83 (34.30) 220 (42.23)

History of stroke, n (%) 0.061

  No 413 (54.13) 119 (49.17) 294 (56.43)

  Yes 350 (45.87) 123 (50.83) 227 (43.57)

Smoking, n (%) 0.244

  No 703 (92.14) 227 (93.80) 476 (91.36)

  Yes 60 (7.86) 15 (6.20) 45 (8.64)

Drinking, n (%) 0.462

  No 708 (92.79) 227 (93.80) 481 (92.32)

  Yes 55 (7.21) 15 (6.20) 40 (7.68)

History of lung disease, 

n (%)

<0.001

  No 733 (96.07) 223 (92.15) 510 (97.89)

  Yes 30 (3.93) 19 (7.85) 11 (2.11)

Nasogastric tube 

therapy, n (%)

<0.001

  No 602 (78.90) 96 (39.67) 506 (97.12)

  Yes 161 (21.10) 146 (60.33) 15 (2.88)
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Urinary catheter, n (%) <0.001

  No 664 (87.02) 162 (66.94) 502 (96.35)

  Yes 99 (12.98) 80 (33.06) 19 (3.65)

Acid suppressant, n (%) 0.115

  No 561 (73.53) 169 (69.83) 392 (75.24)

  Yes 202 (26.47) 73 (30.17) 129 (24.76)

Alb, Mean±SD 38.69±4.05 36.39±4.24 39.76±3.47 <0.001

TG, M (Q1, Q3) 1.28 (0.95, 1.69) 1.27 (0.90, 1.64) 1.28 (0.97, 1.73) 0.103

Hs-CRP, M (Q1, Q3) 2.86 (1.04, 10.07) 9.45 (3.38, 19.40) 1.72 (0.83, 4.08) <0.001

WBC, M (Q1, Q3) 6.38 (5.16, 7.78) 6.75 (5.28, 9.39) 6.24 (5.10, 7.38) <0.001

NLR, M (Q1, Q3) 2.38 (1.69, 3.38) 2.87 (1.95, 4.71) 2.20 (1.60, 2.98) <0.001

MLR, M (Q1, Q3) 0.32 (0.24, 0.45) 0.42 (0.27, 0.59) 0.30 (0.23, 0.40) <0.001

Hb, Mean±SD 124.74±17.70 116.09±18.88 128.76±15.59 <0.001

PLT, M (Q1, Q3) 208.00 (171.50, 255.00) 214.50 (171.50, 278.75) 204.00 (172.00, 247.00) 0.086

D-Dimer, M (Q1, Q3) 0.57 (0.28, 1.39) 1.14 (0.67, 2.33) 0.38 (0.23, 0.82) <0.001

HDL, M (Q1, Q3) 0.93 (0.78, 1.11) 0.89 (0.75, 1.07) 0.94 (0.79, 1.13) 0.006

LDL, M (Q1, Q3) 2.14 (1.72, 2.71) 2.22 (1.75, 2.81) 2.12 (1.71, 2.63) 0.109

165 3.3Correlation Analysis of Variables and Variable Selection

166 To explore the relationship between variables, Spearman's rank correlation coefficient was used 

167 to assess the linear relationship between variables (Fig 2).We performed the Lasso regression method 

168 to screen the 27 included variables. The optimal λ value corresponding to one standard error of the 
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169 minimum mean square error was determined through 10-fold cross-validation. The results indicated 

170 that when log(λ) reached one standard error of the minimum mean square error, the number of model 

171 variables was reduced to 6, with the optimal λ value determined to be 0.039 through cross-validation. 

172 The final variables included Nasogastric tube therapy, Age, ADL, Alb, Hs-CRP, Hb. The procedure 

173 for selecting variables by Lasso regression is shown in Fig 3A and Fig 3B.

174 Fig 2. Correlation between variables

175 Fig 3. Lasso regression procedure for screening variables. (A) Deviation at different values of 

176 lambda. (B) Plot of lambda versus partial regression coefficients.

177 3.4Model construction and evaluation

178 Five machine learning models were constructed using the six identified variables. In the training 

179 set, 5-fold cross-validation was employed as a method for data resampling to ensure the model’s 

180 performance on unseen data. Additionally, grid search was utilized to optimize the key 

181 hyperparameters, which included the number of features, the number of trees, the minimum number 

182 of samples, the maximum depth of trees, and the learning rate. The validation set was utilized to assess 

183 the model’s performance. The ROC curves for the five machine learning models in the validation set 

184 revealed that the XGBoost model achieved the highest AUC value of 0.926 (Fig. 4). The calibration 

185 curves for each model indicated that the average predicted probability aligned with the actual 

186 occurrence probability for all models except for the decision tree (DT) and support vector machine 
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187 (SVM) models (Fig. 5). Decision curve analysis (DCA) demonstrated that all models maintained good 

188 net benefits within a certain threshold probability, indicating high clinical utility value (Fig. 6). The 

189 XGBoost model also demonstrated superior predictive performance and practical utility in both the 

190 calibration curve and DCA. A comparison of the performance indicators for the five machine learning 

191 models in the validation set showed that the XGBoost model continued to excel, with an AUC of 

192 0.926, an accuracy of 0.914, and an F1 score of 0.889. Additional model indicators are presented in 

193 Table 2.

194 Fig 4. ROC curves of the five machine learning models

195 Fig 5. Calibration curves of five machine learning models

196 Fig 6. DCA for five machine learning models

197 Table 2 Comparison of predictive performance metrics for various models in the validation set

DT LR XGBoost SVM LightGBM

Accuracy 0.817 0.833 0.853 0.781 0.840

Kappa 0.584 0.614 0.670 0.529 0.635

Sensitivity 0.852 0.880 0.866 0.775 0.871

Specificity 0.742 0.732 0.825 0.794 0.773

PPV 0.877 0.876 0.914 0.890 0.892

NPV 0.699 0.740 0.741 0.621 0.735

MCC 0.585 0.614 0.673 0.539 0.636

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 29, 2024. ; https://doi.org/10.1101/2024.10.27.24316222doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.27.24316222
http://creativecommons.org/licenses/by/4.0/


15

J-index 0.594 0.612 0.691 0.569 0.644

Balanced Accuracy 0.797 0.806 0.845 0.784 0.822

Detection Prevalence 0.663 0.686 0.647 0.595 0.667

Precision 0.877 0.876 0.914 0.890 0.892

Recall 0.852 0.880 0.866 0.775 0.871

F-measure 0.864 0.878 0.889 0.829 0.881

AUC 0.834 0.911 0.926 0.898 0.913

198 PPV, positive predictive value; NPV, negative predictive value; MCC, matthews correlation 

199 coefficient

200 3.5Interpreting the XGBoost model using SHAP

201 The importance ranking plot of the variables showed that ADL had the highest mean SHAP value 

202 and the strongest predictive performance (Fig 7). To analyze the positive and negative correlation 

203 between the variable and the target outcome, we drew a beeswarm in which the color depth reflected 

204 the value of the variable. Taking the first behavior as an example, the low ADL level had a negative 

205 effect on the outcome prediction. High ADL level was a positive predictor of outcome (Fig 8). Finally, 

206 the SHAP value is used to show the influence of different variables in a sample on the prediction result 

207 of SAP occurrence risk. The value in the Fig represents the contribution degree of each feature to the 

208 output result of the model. A positive number indicates that when the feature increases, the predictive 

209 value of the model will also increase. The opposite is true for negative numbers (Fig 9).
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210 Fig 7. The importance ranking of variables was analyzed based on SHAP algorithm

211 Fig 8. The beeswarm of the XGBoost model was analyzed based on SHAP algorithm

212 Fig 9. The risk of SAP in a single sample was analyzed based on SHAP algorithm

213 4. Discussion
214 In this study, five machine learning methods were used to construct a risk prediction model for 

215 SAP in stroke patients based on six predictors, including Nasogastric tube therapy, Age, ADL, Alb, 

216 Hs-CRP, Hb. Among them, the XGBoost model validation set showed good discrimination and 

217 calibration. The prediction performance of the models was better than those of previous studies [10–

218 12]. Additionally, the model was visualized using a nomogram, making the risk scoring more intuitive 

219 and quantifiable.

220 SHAP algorithm results showed that the lower the ADL score, the higher the risk of SAP. It was 

221 found that patients with SAP tended to have longer hospital stays and lower ADL scores compared 

222 with non-SAP patients[18]. A low ADL score typically indicates a limited ability to perform self-care, 

223 potentially leading to prolonged bed rest, which indirectly increases the risk of pulmonary 

224 infections[19]. Furthermore, low ADL scores may correlate with poor nutritional status, 

225 compromising the immune system and making patients more prone to infections. Early rehabilitation 

226 exercises can enhance the self-care abilities of stroke patients, reducing the risk of lung infections, and 

227 clinical practitioners should promptly intervene in patients with limited mobility.
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228 In this study, indwelling nasogastric tube was a risk factor for SAP in stroke patients. This result 

229 is consistent with reports in the existing study[20].Brogan found that nasogastric tubes were a stronger 

230 predictor of SAP than dysphagia[21]. Research indicates that during nasogastric tube feeding, the 

231 gastric volume significantly expands, potentially causing gastric muscle spasms and food 

232 accumulation. In the mean time, patients with nasogastric tubes face increased risks of elevated 

233 intracranial pressure, vomiting, and food reflux, collectively heightening the probability of SAP[22]. 

234 However, a study on acute stroke patients found that placing a nasogastric tube within 48 hours of 

235 onset did not increase the incidence of SAP, mortality, or adverse functional outcomes[23], 

236 contradicting our findings. Thus, the relationship between the duration of nasogastric tube indwelling 

237 and SAP remains to be studied.

238 This finding suggests that older stroke patients are more susceptible to SAP, consistent with 

239 previous studies[11,12]. As individuals age, their physiological functions and immune system 

240 capabilities deteriorate, weakening respiratory defenses. Additionally, older stroke patients often 

241 exhibit diminished swallowing and coughing reflexes, making them more vulnerable to pulmonary 

242 infections post-stroke[24].

243 Among the laboratory examination indicators, high Hs-CRP level was a factor affecting the 

244 occurrence of SAP, which was consistent with the results of previous studies[25]. Hs-CRP represents 

245 an acute phase reactive protein produced by the liver, falling under the category of C-reactive protein 
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246 (CRP). Hs-CRP demonstrates superior sensitivity and early discriminative capabilities, making it 

247 detectable with high efficiency during the initial phases of inflammation or at minimal 

248 concentrations[26]. Research indicates that alterations in serum Hs-CRP levels among patients 

249 following cerebral infarction are strongly correlated with the occurrence of secondary pulmonary 

250 infections. As Hs-CRP levels rise, the inflammatory response becomes more pronounced[27]. Another 

251 effective predictor of SAP is Hb, and the decrease in Hb level usually means the patient is at risk of 

252 anemia, which can significantly increase the mortality and the risk of pneumonia[28]. Anemia is 

253 associated with compromised immune system function, thereby compromising the patient’s immune 

254 response and rendering stroke patients more vulnerable to bacterial or viral pathogens[29]. Several 

255 prior studies have established that stroke patients with reduced serum Alb levels are at an elevated risk 

256 of contracting infections or pneumonia while hospitalized[30–32], one possible reason is that Alb has 

257 anti-inflammatory, anti-oxidative, anticoagulant effects as well as regulation of microvascular 

258 permeability; therefore, low Alb level is a marker of systemic inflammatory response[32]. 

259 Furthermore, reduced levels of Alb can precipitate malnutrition in patients, which in turn diminishes 

260 the patient’s overall health and impairs their resistance to infection, consequently elevating the risk of 

261 pneumonia[33].

262 Machine learning algorithms demonstrate substantial superiority over traditional regression 

263 techniques in handling high-dimensional data, intricate relationships, and feature selection, while also 
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264 enhancing prediction accuracy. In this study, XGBoost exhibited robust predictive capabilities, 

265 currently standing as one of the most widely used machine learning algorithms. It offers high accuracy, 

266 incorporates regularization, and boasts both high prediction performance and interpretability, hence 

267 holding great promise for application in risk prediction and various other domains[34–36]. In order to 

268 achieve the best accuracy on large modern datasets, it is often necessary to rely on complex models. 

269 However, complex models are often difficult to balance the contradiction between model accuracy 

270 and interpretability. Based on this, the SHAP framework provides a powerful tool for model 

271 interpretation that can help us balance model accuracy and interpretability and make better use of 

272 complex models in practical applications[37].

273 5. Limitations
274 Despite the robust performance of our model in various aspects, there are limitations. First, this 

275 study is a single-center, retrospective study, with data collection primarily relying on nursing and 

276 physician records, which may result in limited data and potential information bias. Secondly, our 

277 model has not yet undergone external validation in other populations, so its generalizability remains 

278 to be further examined. Additionally, the model depends on accurate data input, and data integrity in 

279 practical applications could affect the predictive performance. Future research should aim to optimize 

280 the model further, incorporating more potential predictive factors and exploring advanced machine 

281 learning algorithms.
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282 6. Conclusion
283 The models developed in this study demonstrate strong predictive capabilities and clinical utility 

284 in assessing the risk of stroke-associated pneumonia in stroke patients, with the XGBoost model 

285 achieving the highest performance. Furthermore, the SHAP framework has been instrumental in 

286 elucidating the models, identifying the critical factors influencing the onset of stroke-associated 

287 pneumonia, and has furnished crucial insights for clinical decision-making. Our findings provide a 

288 new tool for SAP prediction, which may support clinical decision-making and improve patient 

289 outcomes.
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