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Abstract 
 
Parkinson’s Disease (PD) is the second most common neurodegenerative disorder globally, and 
current screening methods often rely on subjective evaluations. We developed deep learning-based 
classification models using mouse trace data collected via a web application. 315 participants (73 
PD, 179 non-PD, 63 suspected PD) completed three hand movement tasks: tracing a straight line, 
spiral, and sinewave. We developed three types of models: (1) engineered features models, (2) 
computer vision models, and (3) multimodal models. Feature importance was evaluated using 
Gradient Shapley Additive Explanations (GradShap). The multimodal Visual transformer (ViT) 
model achieved the highest performance, with F1 scores of 0.8413 ± 0.0336 (PD vs. non-PD), 
0.8520 ± 0.0014 (suspected PD vs. non-PD), and 0.7034 ± 0.0017 (PD vs. suspected PD). Image 
data proved most influential in predicting PD outcomes. These findings suggested that models 
trained on confirmed PD diagnoses hold significant promise for early-stage PD screening at the 
population level. 
 
Introduction 

Parkinson’s Disease (PD) is a neurodegenerative disorder that significantly impacts the central 
nervous system. Major symptoms include tremors, bradykinesia (slowness of movement), muscle 
rigidity, and postural instability1,2, which progressively worsen over time, leading to difficulties in 
performing routine tasks such as typing and using a mouse. The progression of these symptoms 
significantly affects quality of life, making early and accurate diagnosis crucial to enable early 
intervention3. PD is the second most common neurodegenerative disease after Alzheimer’s, 
affecting approximately 10 million people globally. In the United States, around one million 
individuals are diagnosed with PD, with an annual increase of about 90,000 new cases. This 
number is projected to rise to 1.2 million by 20303,4. Currently, there is no definitive biomarker 
for PD, and diagnosis is primarily based on clinical symptoms and neuropsychological tests such 
as the Mini-Mental State Examination (MMSE) and the Unified PD Rating Scale (UPDRS)5,6,7. 
These tests involve questionnaires and subjective evaluations by clinicians, which can lead to 
significant biases and potential misdiagnoses6. This is particularly problematic, as PD symptoms 
often overlap with those of other age-related conditions and drug-induced Parkinsonism (DIP) 

8,9,10. Additionally, PD is primarily caused by the degeneration of dopamine-producing neurons in 
the brain, and by the time motor symptoms become apparent, approximately 60% of these neurons 
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have already deteriorated 8. Therefore, early and accurate detection of PD is essential for effective 
management and treatment. 

Previous digital health research on PD classification included the analysis of hand and finger 
movements, keystroke dynamics, speech, handwriting, drawing tests, and sensor data from 
accelerometers and gyroscopes11–25. The use of sensors such as accelerometers and gyroscopes 
placed on lower limbs, wearable sensors supported augmented by video recordings, and sensing 
coils or paper-based pads have proven effective in classifying PD and detecting tremors16-27. 
However, these methods often require controlled laboratory settings and specialized devices, 
limiting their broader applicability. Self-administered methods, such as keyboard interactions, 
keystroke dynamics, and smartphone screen interactions, have also been explored but may 
introduce biases, particularly against individuals with slower typing speeds13,14,20. Mobile 
applications for data collection, symptom monitoring, and treatment management have 
demonstrated utility in tracking activities like finger tapping speed, gait, and motor performance, 
though they pose challenges for older adults unfamiliar with smartphone technology26-29. 
Multimodal approaches combining data from speech, gait, and upper limb movements have 
demonstrated potential in classifying PD patients but often require controlled environments and 
specialized equipment, which limits their use in real-world contexts30,31. 

We aim to address these challenges and advance the field of digital PD screening by utilizing 
structured mouse trace data collected through a short 10-minute test delivered on a user-friendly 
web application. Participants recruited for the study provided demographic information and 
completed tasks involving the tracing of spiral, straight, and sine wave patterns using their mouse. 
We performed feature engineering on the collected mouse trace data and created images from the 
mouse movement patterns to develop computer vision models. We employed a variety of deep 
learning models, such as TabTransformer, DenseNet 201, ResNet 50, and MobileNet V2, for 
analyzing engineered features. For the mouse trace images, we utilized state-of-the-art computer 
vision models including Vision Transformer (ViT), Shifted Window Transformer (SwinT), 
DenseNet 201, ResNet 50, and MobileNetV2. To enhance classification performance, we 
developed multimodal models that combined the engineered features with the mouse trace images. 
We analyzed the performance of the models on three different sets of train-test splits: the first set 
included PD and non-PD in both train and test data, the second set included PD and non-PD for 
training while suspected PD and non-PD for testing, and the third set used suspected PD and non-
PD for training while PD and non-PD for testing. 
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Figure 1. The study workflow from data collection to models’ evaluation, interpretability exploration. (a) Participants 
completed the data collection process remotely on the website. (b) Engineered features and mouse trace images were 
fed into the three sets of models. Results are analyzed and plotted to find the best performing model. (c) The best 
model (multimodal VIT) was further interrogated for interpretability using GradShap feature importance scores. 
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Methods 
 
We created a website to collect structured mouse movement data by having participants complete 
a series of mouse tracing tests remotely. We trained a series of machine learning models using 
various features derived from the mouse traces. Figure 1 outlines the workflow from data 
collection to model evaluation and interpretability analysis. 
 
Ethics approval 
 
The study was approved by the University of Hawaii Institutional Review Board (IRB, protocol 
#2023-00948). 
 
Participant Recruitment & Data Collection 
 
We recruited participants for this study through both online methods (email, social media posts) 
and offline methods (community meetings and conventions in Hawaii). We collaborated with the 
Hawaii Parkinson Association and Beyond Rehab to post flyers and advertise the study to various 
PD listservs. Additionally, we established a recruitment booth at the 2023 and 2024 Hawaii 
Parkinson’s Association Symposiums, where we provided potential participants with flyers 
describing how to complete the study. 
 
We collected data via a web application that we developed (https://parkinsonsurvey.github.io/), 
illustrated in Figure 2. Participants provided demographic and disease-related information, 
including age, sex, and dominant hand. Due to the absence of official diagnostic documents and 
biomarkers for PD, self-reporting was used, with an option to select "suspected PD". 
 
Participants used a physical mouse on their desktop or laptop, or their trackpad, to trace a straight 
line, sine wave, and spiral wave on the website. We visualized their progress and alignment with 
the lines through highlighted portions and start/end markings. We developed the website using 
HTML and Bootstrap for the interface and visuals, and JavaScript to track cursor position every 
500 milliseconds. The data collected included mouse position (X, Y axis), time (milliseconds), and 
whether the mouse was inside the line (True or False). The web application also captured screen 
dimensions and operating system details for contextual information. Upon completing the test, all 
data were securely transmitted and stored in a Firebase collection. 
 
Feature Engineering & Mouse Trace Image Generation 
 
We collected mouse position, time, and line alignment data, along with screen dimensions. From 
these data, we calculated the following engineered features: the mean deviation from the line for 
the straight-line tracing, time taken to trace straight line, sine wave & spiral wave, percentage of 
points traced inside the straight line, sine wave & spiral wave, and the number of points traced 
inside the straight line, sine wave & spiral wave. 
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To generate mouse trace images, we created canvases matching the participants' screen sizes and 
visualized the trace using the recorded X and Y coordinates over time. We marked traces outside 
the line in red and those inside the line in green. 
 
 

 
Figure 2: Pages of the data collection website: (a) Introduction page of the website to inform the participants about 
the study. (b) The participants were asked to provide information about themselves and to sign an electronic consent 
form. (c) Participants were asked to confirm their information to prevent mistakes. (d) Participants were asked to trace 
a straight line. (e) Participants were asked to trace a sine wave. Participants were asked to trace a spiral wave. 
 
 
Model Development 
 
We developed three sets of models (Figure 3) using different data types. The first set of models 
processed engineered features through TabTransformer, DenseNet 201, ResNet 50, and MobileNet 
V2 models. For DenseNet 201, ResNet 50, and MobileNet, which are designed for image data, we 
added sequential layers to convert engineered features into acceptable shapes for these CNN 
models. The second set of models used image data with VIT, SwinT, DenseNet 201, ResNet 50, 
and MobileNet V2 models. We performed transfer learning by unfreezing the last 45 layers and 
replacing classification layers to align with our classes. The third set of models, the multimodal 
models, involved passing engineered features through a sequential layers and image data through 
ViT, SwinT, DenseNet 201, ResNet 50, and MobileNet V2 layers. The combined features from 
these networks were passed through hidden layers to obtain classification results, with the last 45 
layers of the models unfrozen. All models were hyperparameter-tuned using Optuna and trained 
for 50 epochs with early stopping set to a patience of 5. All the models were set up to be a binary 
classification model. Models with similar structures were selected for all three analyses to enable 
comparison across modalities. 
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Figure 3. Model Architectures. (a) Image data models.  (b) Engineered features models.  (c) Multimodal models. 
 
Data Splitting 
 
We used three distinct evaluation approaches. The first approach focused exclusively on data 
labeled as PD and non-PD, excluding the participants with suspected PD. In this split, we used 5-
fold cross validation with 500 bootstrapped samples. This approach enabled us to quantify the 
utility of mouse trace data for remote PD prediction. 
 
In the second approach, we trained the models using all of the PD and 60% of non-PD data but 
tested them on data labeled as suspected PD and the rest of the non-PD data. This approach enabled 
us to evaluate the ability of models trained to detect confirmed PD to identify possibly more subtle 
and earlier signs of PD or other tremor-related conditions. We applied 500 bootstrapped resamples 
of the test set to generate standard deviation error bars.  
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In the third approach, we trained the models using all of the suspected PD data and 60% of the 
non-PD data but tested them on data labeled as PD and rest of the non-PD with 500 bootstrapped 
samples.  This approach enabled us to evaluate the ability of models trained to detect suspect PD 
cases to identify confirmed PD. 
 
Saliency Map & Feature Importance 
 
To identify important features for the best-performing model architecture, we created a Gradient 
SHAP-based (GradShap) saliency map and bar plots, as GradShap is optimized for identifying 
complex feature importances in deep learning models32. This analysis determined the predictive 
importance of images versus engineered features. For images, GradShap was applied to sine, 
straight, and spiral images, comparing model outputs with actual versus baseline (zero-filled) 
images. Attributions were summed to derive final importance values. The negative and positive 
signs of the attributions were preserved to understand the direction of prediction.  
 
Results 
 
Dataset 
 
315 participants completed the data collection process between February 27, 2024, and June 3, 
2024. Among the 315 participants, 73 self-reported themselves as having PD, 179 as non-PD, and 
the remaining 63 as suspecting a PD diagnosis. As shown in Figure 4 and Table 1, Most 
participants were aged 50-69 years, predominantly right-handed, and used Windows devices. 
 

Characteristics Participants PD Non-PD Suspected PD 
Age     
0 - 49 16 9 2 5 
50 - 59 137 15 121 1 
60 - 69 156 46 53 57 
70 + 5 3 2 0 
Dominant Hand     
Right 239 55 123 61 
Left 76 18 56 2 
Device type     
Windows 231 44 154 33 
Mac 60 28 17 15 
Linux 24 1 8 15 
Total 315 73 179 63 

Table 1. Participant distribution among the different classes (PD, non-PD, and suspected PD) for age, dominant hand, 
and device type. 
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Figure 4. Participant distribution among the different classes (PD, non-PD, and suspected PD) (a) stratified by age 
(b), dominant hand (c), and device type (d) Age. 
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Transfer Learning Performance Metrics 
 

 

Figure 5. Key performance metrics (F1-score, sensitivity, and specificity) for all models. (a) Trained and Tested on 
PD vs Non-PD data (on 5 fold cross validation), (b) Trained on PD vs Non-PD, tested on Suspected PD vs Non-PD 
data and, (c) Trained on Suspected PD vs Non-PD, tested on PD vs Non-PD data evaluated with 500 resampling 
bootstraps. The error bars represent standard error values. 
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5-Fold Cross Validation Predicting PD vs Non-PD 
 
In our first analysis, using PD and non-PD data for both training and testing via 5-fold cross-
validation, the multimodal VIT model showed the best performance, with accuracy (0.8706 ± 
0.0302), sensitivity (0.8396 ± 0.0311), specificity (0.8396 ± 0.0311), PPV (0.8558 ± 0.0514), NPV 
(0.8558 ± 0.0514), and F1 score (0.8413 ± 0.0336). All models improved when transitioning from 
engineered features to image data. However, no consistent pattern of improvement was observed 
from image to multimodal data, except for the VIT model, which showed substantial gains, 
highlighting its effectiveness in integrating multiple data sources for strong predictive outcomes. 
The results from this analysis are presented in Table 2.  The  F1-score, sensitivity, and specificity 
are illustrated in Figure 5(a), with the best-performing model highlighted. 
 

Model Data Type Accuracy Mean 
± Std 

Sensitivity 
Mean ± Std 

Specificity 
Mean ± Std 

PPV Mean ± 
Std 

NPV 
Mean ± 
Std 

F1 Mean ± 
Std 

VIT Multimodal 0.8706 ± 0.0302 0.8396 ± 0.0311 0.8396 ± 0.0311 0.8558 ± 0.0514 0.8558 ± 
0.0514 

0.8413 ± 
0.0336 

SwinT Multimodal 0.8055 ± 0.0391 0.7222 ± 0.0531 0.7222 ± 0.0531 0.7849 ± 0.0536 0.7849 ± 
0.0536 

0.7351 ± 
0.0547 

DenseNet 201 Multimodal 0.8376 ± 0.0338 0.7527 ± 0.0606 0.7527 ± 0.0606 0.8509 ± 0.0440 0.8509 ± 
0.0440 

0.7699 ± 
0.0516 

ResNet 50 Multimodal 0.8096 ± 0.0644 0.7257 ± 0.0967 0.7257 ± 0.0967 0.7745 ± 0.1130 0.7745 ± 
0.1130 

0.7330 ± 
0.1093 

MobileNet V2 Multimodal 0.8212 ± 0.0351 0.7239 ± 0.0687 0.7239 ± 0.0687 0.8457 ± 0.0460 0.8457 ± 
0.0460 

0.7350 ± 
0.0733 

VIT Images 0.8574 ± 0.0164 0.7784 ± 0.0432 0.7784 ± 0.0432 0.8785 ± 0.0171 0.8785 ± 
0.0171 

0.7990 ± 
0.0354 

SwinT Images 0.7795 ± 0.0953 0.7625 ± 0.0550 0.7625 ± 0.0550 0.7870 ± 0.0431 0.7870 ± 
0.0431 

0.7405 ± 
0.0843 

DenseNet 201 Images 0.8659 ± 0.0503 0.8188 ± 0.0811 0.8188 ± 0.0811 0.8682 ± 0.0596 0.8682 ± 
0.0596 

0.8228 ± 
0.0740 

ResNet 50 Images 0.8137 ± 0.0470 0.7463 ± 0.0921 0.7463 ± 0.0921 0.7920 ± 0.0527 0.7920 ± 
0.0527 

0.7464 ± 
0.0768 

MobileNet V2 Images 0.8329 ± 0.0274 0.7572 ± 0.0319 0.7572 ± 0.0319 0.8417 ± 0.0591 0.8417 ± 
0.0591 

0.7732 ± 
0.0312 

TabTransformer Engineered 
features 

0.8018 ± 0.0034 0.6686 ± 0.0054 0.6686 ± 0.0054 0.8209 ± 0.0070 0.8209 ± 
0.0070 

0.6873 ± 
0.0066 

DenseNet 201 Engineered 
features 

0.8164 ± 0.0035 0.6940 ± 0.0055 0.6940 ± 0.0055 0.8363 ± 0.0066 0.8363 ± 
0.0066 

0.7173 ± 
0.0064 
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Model Data Type Accuracy Mean 
± Std 

Sensitivity 
Mean ± Std 

Specificity 
Mean ± Std 

PPV Mean ± 
Std 

NPV 
Mean ± 
Std 

F1 Mean ± 
Std 

ResNet 50 Engineered 
features 

0.8060 ± 0.0427 0.7148 ± 0.0673 0.7148 ± 0.0673 0.7862 ± 0.0519 0.7862 ± 
0.0519 

0.7278 ± 
0.0695 

MobileNet V2 Engineered 
features 

0.5934 ± 0.2092 0.5338 ± 0.1548 0.5338 ± 0.1548 0.4912 ± 0.1925 0.4912 ± 
0.1925 

0.4827 ± 
0.1811 

Table 2. The performance metrics for models trained and tested on PD and Non-PD data; evaluated using 5-fold cross 
validation with 500 resampling bootstraps and standard error.  
 

Training on PD vs Non-PD, testing on Suspected PD vs Non-PD 

We trained models on PD and non-PD data, testing them on suspected PD and non-PD data. 
Performance improved when transitioning from engineered features to image data, and further to 
a multimodal approach. The VIT model achieved the highest metrics across all models, with 
accuracy, sensitivity, specificity, PPV, NPV, and F1 score all around 0.852. MobileNet V2 showed 
the largest gains, with a 40% improvement from engineered features to image data and a 20% 
increase from image to multimodal. Most models followed this trend, except for the SwinT model, 
which decreased in performance from image to multimodal data. Also, models using engineered 
features in this evaluation approach mostly performed worse than random guessing (less than 
50%). The results from this analysis are presented in Table 3.  The results for F1, sensitivity and 
specificity are illustrated in Figure 5(b), with the best-performing model highlighted. 
 

Model Data Type Accuracy 
Mean ± Std 

Sensitivity Mean 
± Std 

Specificity 
Mean ± Std 

PPV Mean ± 
Std 

NPV Mean ± 
Std 

F1 Mean ± 
Std 

VIT Multimodal 0.8524 ± 0.0014 0.8552 ± 0.0014 0.8552 ± 0.0014 0.8577 ± 
0.0013 

0.8577 ± 
0.0013 

0.8520 ± 
0.0014 

SwinT Multimodal 0.5031 ± 0.0018 0.4806 ± 0.0018 0.4806 ± 0.0018 0.4531 ± 
0.0046 

0.4531 ± 
0.0046 

0.4008 ± 
0.0022 

DenseNet 201 Multimodal 0.8230 ± 0.0014 0.8189 ± 0.0015 0.8189 ± 0.0015 0.8308 ± 
0.0014 

0.8308 ± 
0.0014 

0.8200 ± 
0.0015 

ResNet 50 Multimodal 0.6785 ± 0.0017 0.6723 ± 0.0017 0.6723 ± 0.0017 0.6838 ± 
0.0018 

0.6838 ± 
0.0018 

0.6703 ± 
0.0017 

MobileNet V2 Multimodal 0.8254 ± 0.0014 0.8333 ± 0.0013 0.8333 ± 0.0013 0.8531 ± 
0.0011 

0.8531 ± 
0.0011 

0.8234 ± 
0.0014 

VIT Images 0.8273 ± 0.0019 0.8352 ± 0.0019 0.8352 ± 0.0019 0.8549 ± 
0.0015 

0.8549 ± 
0.0015 

0.8254 ± 
0.0020 

SwinT Images 0.6310 ± 0.0022 0.6148 ± 0.0023 0.6148 ± 0.0023 0.6705 ± 
0.0032 

0.6705 ± 
0.0032 

0.5889 ± 
0.0027 

DenseNet 201 Images 0.7253 ± 0.0024 0.7251 ± 0.0024 0.7251 ± 0.0024 0.7273 ± 
0.0024 

0.7273 ± 
0.0024 

0.7239 ± 
0.0024 

ResNet 50 Images 0.5584 ± 0.0023 0.5449 ± 0.0023 0.5449 ± 0.0023 0.5582 ± 
0.0030 

0.5582 ± 
0.0030 

0.5242 ± 
0.0025 
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Model Data Type Accuracy 
Mean ± Std 

Sensitivity Mean 
± Std 

Specificity 
Mean ± Std 

PPV Mean ± 
Std 

NPV Mean ± 
Std 

F1 Mean ± 
Std 

MobileNet V2 Images 0.6881 ± 0.0023 0.6773 ± 0.0023 0.6773 ± 0.0023 0.7107 ± 
0.0026 

0.7107 ± 
0.0026 

0.6703 ± 
0.0025 

TabTransformer Engineered 
features 

0.5294 ± 0.0000 0.3462 ± 0.0000 0.5000 ± 0.0000 0.5000 ± 
0.0000 

0.2647 ± 
0.0000 

0.2647 ± 
0.0000 

DenseNet 201 Engineered 
features 

0.4230 ± 0.0021 0.3467 ± 0.0021 0.4045 ± 0.0021 0.4045 ± 
0.0021 

0.3447 ± 
0.0031 

0.3447 ± 
0.0031 

ResNet 50 Engineered 
features 

0.4690 ± 0.0012 0.3190 ± 0.0006 0.4430 ± 0.0012 0.4430 ± 
0.0012 

0.2494 ± 
0.0003 

0.2494 ± 
0.0003 

MobileNet V2 Engineered 
features 

0.4861 ± 0.0018 0.3878 ± 0.0021 0.4643 ± 0.0018 0.4643 ± 
0.0018 

0.4210 ± 
0.0041 

0.4210 ± 0. 
0041 

 
Table 3. The performance metrics for models trained on PD and Non-PD data, Tested on Suspected PD and Non-PD 
data with 500 bootstrap resampling and standard error. 

Training on Suspected PD vs Non-PD, testing on PD vs Non-PD 

We trained models on suspected PD and non-PD data, testing them on confirmed PD and non-PD 
data. The VIT model using multimodal data showed the best performance, with accuracy, 
sensitivity, specificity, PPV, NPV, and F1 score all around 0.71. All models improved as the data 
type shifted from engineered features to image and then to multimodal. Most models performed 
significantly better than random guessing (above 50%), except for the TabTransformer, which 
underperformed likely due to its attention mechanism failing to capture key feature interactions 
and data distribution shifts. Overall, these results suggest that most models can accurately predict 
confirmed PD when trained on suspected PD cases. The results from this analysis are presented in 
Table 4.  The results for F1, sensitivity and specificity are illustrated in Figure 5(c), with the best-
performing model highlighted. 
 
 

Model Data Type Accuracy 
Mean ± Std 

Sensitivity 
Mean ± Std 

Specificity 
Mean ± Std 

PPV Mean ± 
Std 

NPV Mean ± 
Std 

F1 Mean ± 
Std 

VIT Multimodal 0.7128 ± 
0.0016 

0.7152 ± 0.0016 0.7152 ± 0.0016 0.7468 ± 
0.0016 

0.7468 ± 0.0016 0.7034 ± 
0.0017 

SwinT Multimodal 0.6151 ± 
0.0014 

0.6192 ± 0.0014 0.6192 ± 0.0014 0.6839 ± 
0.0019 

0.6839 ± 0.0019 0.5782 ± 
0.0018 

DenseNet 201 Multimodal 0.6430 ± 
0.0014 

0.6471 ± 0.0014 0.6471 ± 0.0014 0.7284 ± 
0.0017 

0.7284 ± 0.0017 0.6084 ± 
0.0018 

ResNet 50 Multimodal 0.5905 ± 
0.0013 

0.5953 ± 0.0013 0.5953 ± 0.0013 0.6875 ± 
0.0022 

0.6875 ± 0.0022 0.5341 ± 
0.0018 

MobileNet V2 Multimodal 0.6312 ± 
0.0014 

0.6354 ± 0.0013 0.6354 ± 0.0013 0.7203 ± 
0.0017 

0.7203 ± 0.0017 0.5923 ± 
0.0018 

VIT Images 0.6592 ± 
0.0017 

0.6638 ± 0.0017 0.6638 ± 0.0017 0.7963 ± 
0.0006 

0.7963 ± 0.0006 0.6162 ± 
0.0024 
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Model Data Type Accuracy 
Mean ± Std 

Sensitivity 
Mean ± Std 

Specificity 
Mean ± Std 

PPV Mean ± 
Std 

NPV Mean ± 
Std 

F1 Mean ± 
Std 

SwinT Images 0.5738 ± 
0.0013 

0.5796 ± 0.0013 0.5796 ± 0.0013 0.7685 ± 
0.0004 

0.7685 ± 0.0004 0.4845 ± 
0.0022 

DenseNet 201 Images 0.6418 ± 
0.0018 

0.6463 ± 0.0018 0.6463 ± 0.0018 0.7562 ± 
0.0019 

0.7562 ± 0.0019 0.5991 ± 
0.0024 

ResNet 50 Images 0.6157 ± 
0.0018 

0.6201 ± 0.0018 0.6201 ± 0.0018 0.7066 ± 
0.0025 

0.7066 ± 0.0025 0.5242 ± 
0.0025 

MobileNet V2 Images 0.6881 ± 
0.0023 

0.6773 ± 0.0023 0.6773 ± 0.0023 0.7107 ± 
0.0026 

0.7107 ± 0.0026 0.5713 ± 
0.0024 

TabTransformer Engineered 
features 

0.4932 ± 
0.0000 

0.5000 ± 0.0000 0.5000 ± 0.0000 0.2466 ± 
0.0000 

0.2466 ± 0.0000 0.3303 ± 
0.0000 

DenseNet 201 Engineered 
features 

0.6288 ± 
0.0018 

0.6335 ± 0.0018 0.6335 ± 0.0018 0.7451 ± 
0.0021 

0.7451 ± 0.0021 0.5815 ± 
0.0025 

ResNet 50 Engineered 
features 

0.6433 ± 
0.0022 

0.6458 ± 0.0022 0.6458 ± 0.0022 0.6718 ± 
0.0025 

0.6718 ± 0.0025 0.6299 ± 
0.0024 

MobileNet V2 Engineered 
features 

0.5347 ± 
0.0022 

0.5383 ± 0.0022 0.5383 ± 0.0022 0.5534 ± 
0.0032 

0.5534 ± 0.0032 0.4989 ± 
0.0026 

 
Table 4. The performance metrics for all models trained on Suspected PD and Non-PD data, evaluated on a test dataset 
consisting of PD and Non-PD data with 500 resampling bootstraps and standard error. 
 
Multimodal VIT Results & Analysis 
 
We utilized PCA and GradShap feature importance analysis, as depicted in Figure 6. 
 
In Figure 6(a), where the model was tested on PD vs non-PD after being trained on similar 
distribution of data, image features such as sine, straight, and spiral patterns emerged as highly 
influential for both positive and negative predictions. Among engineered features, the time taken 
to trace the patterns showed moderate importance, particularly in predicting PD, while other 
engineered features contributed minimally. 
Figure 6(b), which shows the model tested on suspected PD vs non-PD (trained on PD and non-
PD), reveals a similar trend with image features being the most significant contributors to the 
model's predictions. The time taken to trace the patterns was critical for predicting PD, with screen 
height and width also playing a role, albeit to a lesser extent. 
In Figure 6(c), where the model was tested on PD vs non-PD after being trained on suspected PD 
and non-PD, the influence of image features decreased compared to the previous cases. However, 
the time taken to trace the patterns remained a key factor in predicting PD, with screen height and 
width becoming more important than the image features in this scenario. 
 
These analyses illustrate the ViT model's performance significantly depends on the image features 
for the cases of testing on PD and non-PD as well as suspected PD and non-PD data. However, for 
identifying PD after training on suspected PD the engineered features do play an important role in 
the model’s prediction. 
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Figure 6. Interpretability analysis of the VIT Models. (a) GradShap saliency map showing the feature importance of 
the images (sine, straight & spiral wave) as well as the engineered features for the testing on PD vs non-PD (trained 
on PD and non-PD). (b) GradShap saliency map showing the feature importance of the images (sine, straight & spiral 
wave) as well as the engineered features for the suspected PD and non-PD (trained on PD and non-PD). (c) GradShap 
saliency map showing the feature importance of the images (sine, straight & spiral wave) as well as the engineered 
features for the PD and non-PD (trained on suspected PD and non-PD). (Outlier GradShap values removed for better 
visualization). 

(b)

(c)

(a)

Feature Importance For VIT model testing on PD vs non-PD (trained on PD and non-PD). 

Feature Importance For VIT model testing on PD vs non-PD (trained on Suspected PD and non-PD). 

Feature Importance For VIT model testing on Suspected PD vs non-PD (trained on PD and non-PD). 
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Discussion 
 
Principal Results 
 
This study demonstrates that a multimodal ML approach using mouse trace data can contribute 
predictive power towards remote PD assessments. We employed three distinct evaluation 
approaches in our study. The first approach consisted of data labeled as PD and non-PD, excluding 
participants with suspected PD. This approach enabled us to quantify the contribution of mouse 
trace data towards PD diagnostics. The second approach trained models on PD and non-PD data 
while testing them on suspected PD and non-PD data. This enabled us to evaluate the ability of 
models trained on individuals with verified PD diagnoses to potentially serve as an early screening 
tool for motor conditions more broadly, as individuals who suspect they have PD are likely to be 
early in the progression of the disease and may have a wide range of possible motor conditions. 
The third approach trained models on suspected PD and non-PD data and tested them on PD and 
non-PD data. This enabled us to evaluate the ability of self-reported and suspected PD to predict 
actual PD diagnoses. 
 
We explored three different model types and combinations of engineered features and images for 
multimodal PD detection. Across all three evaluation approaches, our models demonstrated 
improved performance as the data type transitioned from engineered to image to multimodal. 
However, the SwinT model showed decreased performance when transitioning from image to 
multimodal in the second approach, where models were trained on PD and non-PD data and tested 
on suspected PD and non-PD data. This decline is likely due to SwinT's hierarchical structure, 
which, while effective for single-modality image processing, may struggle to integrate and balance 
the diverse features from different data types in a multimodal context, especially when identifying 
nuanced data labeled as suspected PD. Also, most of the models using engineered features failed 
to perform better than random guessing while detecting suspected PD due to this nuanced labeling 
of data. Moreover, when trained on suspected PD cases and tested on confirmed PD cases, 
TabTransformer performed worse than random guessing. This is likely due to its simplistic 
attention mechanism failing to adequately capture the data distribution and the interaction between 
images and engineered features from suspected PD cases. In contrast, the multimodal ViT model 
consistently outperformed other models across most metrics, likely due to its complex attention 
mechanisms, which are particularly well-suited for capturing complicated patterns and interactions 
across multiple data modalities. 
 
GradShap analysis provided insights into feature importance for the ViT models, highlighting that 
mouse trace images were critical for model predictions. The times taken to trace the patterns were 
less influential in the first two approaches but had a significant influence in the third approach, 
where suspected PD data were used for training and PD data for testing. Additionally, screen 
dimensions contributed to the model's predictive capability, with lesser significance in the first 
two approaches but higher significance in the third approach. 
 
These findings suggest that ViT and similar multimodal models could be valuable in developing 
non-invasive, accurate diagnostic tools for PD, facilitating early detection and improved patient 
management. The interpretability provided by the analyses highlighted that while image data were 
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most important when the test data consisted of identified PD cases, engineered features played an 
important role in predicting suspected PD cases. This difference in the importance of image data 
and engineered features across training and evaluation procedures likely stems from the nature of 
the data and the specific challenges in each case. For identified PD cases, mouse trace images show 
clearer patterns with respect to non-PD cases, making image features more useful for prediction. 
In suspected PD cases, the distinctions are more subtle, due to the earlier stage of PD in individuals 
without an official diagnosis. In this case, the model relied more on engineered features, like 
tracing time, to capture less obvious differences. This suggests that suspected PD cases require a 
broader use of data to make accurate predictions. 
 
Comparison to previous works 
    
Our study enhances previous research by introducing a novel approach to PD detection through 
the use of multimodal deep learning models, relying exclusively on mouse trace data and images 
captured during a brief 10-minute online test. Unlike prior methods that have explored hand and 
finger movements, keyboard typing patterns, keystroke dynamics, speech analysis, handwriting, 
drawing tests, and sensor data from accelerometers, gyroscopes, and smartphone interactions, our 
study focuses specifically on the remote collection of mouse tracing data, demonstrating the 
potential of mouse trace data alone to provide significant predictive power in predicting PD despite 
differences in mouse types and devices across participants. 
 
Previous studies by Gil-Martin et al.33 and Pereira et al.34 focused on hand movement dynamics 
from spiral, meander, and other drawing shapes for PD analysis. However, their data collection 
was not remote, and they did not consider handedness, unlike our study. Their best models 
achieved accuracies of 97.7% and 83.77%, respectively. Goel et al.35 used pen-and-paper methods 
to collect spiral pattern data but also lacked remote testing and consideration of handedness, 
achieving an accuracy of 84.73%. Memedi et al.36 used a remote data collection method involving 
a touchscreen tablet and web interface, but their study spanned three years and involved only 65 
participants, resulting in an accuracy of around 84.73%. 
 
While our study differs significantly from these prior works in terms of data collection methods, 
the duration of data collection, remote accessibility, and the inclusion of handedness, these studies 
serve as important foundational works.  
 
Our pilot study37, which explored the feasibility of an earlier version of our web application, 
achieved an accuracy of 74.29% and an F1 score of 73.11%. Our current model shows marked 
improvements in performance, reflecting the advancements and refinements made in our approach. 
 
Limitations & Future work 
 
This study has several limitations that should be considered in future work. First, the sample size 
of 315 participants split between 3 diagnostic categories may not be sufficient to generalize the 
findings across a diverse population. Additionally, our focus on mouse tracing data collected 
through a website does not fully capture all aspects of PD symptoms. Importantly, the study did 
not count medication usage, specifically accounting for the on phase versus the off phase, which 
can significantly influence the presence and severity of symptoms like tremors38,39,40. Stress, which 
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is known to exacerbate tremors, was also not accounted for, potentially affecting the results41,42. 
The type of mouse used by participants, such as whether they used an ergonomic mouse or a 
computer trackpad, could have influenced the prominence of tremor symptoms, introducing 
variability in the data. Furthermore, the impact of device type and handedness on the results 
remains unclear, as PD often affects one side of the body more than the other, and it is not certain 
that participants' dominant hands were the ones most affected by the disease. While the ViT model 
demonstrated relatively strong performance, its computational complexity and resource 
requirements may limit its practical application in real-world settings. Future research should focus 
on optimizing these models for use on standard hardware without compromising performance and 
should incorporate additional data modalities, such as voice recordings and gait analysis, to 
provide a more comprehensive diagnostic approach. 
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