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ABSTRACT  

Genome-wide association studies (GWAS) have established a key role of dysfunctional immune 

response in the etiology of Age-related Macular Degeneration (AMD). However, immune cells 

constitute a small proportion of the retina, and their role in AMD is not completely resolved. Here 

we develop an explainable machine learning pipeline using transcriptome data 453 donor retinas, 

identifying 81 genes distinguishing AMD from controls with an AUC-ROC of 0.80 (CI 0.70-0.92). 

These genes show enrichment for pathways involved in immune response, complement and 

extracellular matrix and connected to known AMD genes through co-expression networks and 

gene expression correlation. The majority of these genes were enriched in their expression within 

retinal glial cells, particularly microglia and astrocytes. Their role in AMD was further strengthened 

by cellular deconvolution, which identified distinct differences in microglia and astrocytes between 

normal and AMD. We corroborated these findings using independent single-cell data, where 

several of these candidate genes exhibited differential expression. Finally, the integration of AMD-

GWAS data identified a common regulatory variant, rs4133124 at PLCG2, as a novel AMD-

association. Collectively, our study provides molecular insights into the recurring theme of immune 

dysfunction in AMD and highlights the significance of glial cell differences as an important 

determinant of AMD progression.  

 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 27, 2024. ; https://doi.org/10.1101/2024.10.26.24316189doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.26.24316189


INTRODUCTION  

Variation in gene expression has emerged as a significant source of phenotypic diversity among 

individuals and populations1. Additionally, human genetic studies have highlighted the critical role 

of gene expression dysregulation in both rare2 and common3 diseases. Understanding the 

dysregulation of gene expression in different diseases is essential for deciphering the underlying 

molecular mechanisms and identifying potential targets for therapeutic intervention. The cellular 

context has a profound influence on gene expression and regulation, emphasizing the importance 

of comprehensively studying transcriptome regulation in disease-relevant cells and tissues. 

However, the availability of disease-relevant tissues in a large number of individuals presents a 

significant challenge. Additionally, gene expression in humans is influenced by genetic variants, 

epigenetic changes, environmental factors, or a combination of these factors4 making gene 

expression studies uniquely challenging to identify consistent disease-related patterns.  

Age-related Macular Degeneration (AMD) is the leading cause of irreversible vision loss 

in people over 50 years of age5. It is a neurodegenerative disease that afflicts almost 10 million 

individuals in the United States alone and this number is expected to double by 20506. AMD 

results from the deterioration of the photoreceptor support system, which includes the retinal 

pigment epithelium (RPE), Bruch’s membrane (BrM), and the choroidal vasculature, leading to 

the death of photoreceptors primarily in the central region of the retina called macula7. It is a 

complex, multifactorial disease that is caused by the cumulative impact of genetic predisposition, 

environmental stress and late aging8. Knowledge of genetic risk factors underlying AMD 

susceptibility has advanced rapidly with the advent of Genome-wide Association Studies (GWAS), 

which have successfully identified 52 independent genetic variants at 34 loci9 establishing a 

strong genetic component of AMD that is mostly driven by common variants10, 11. These findings 

have implicated immune, complement, cholesterol and lipid metabolism, extracellular/collagen 

matrix, and angiogenesis pathways in AMD pathogenesis9. Among them, variants identified in 

complement and immunoinflammatory genes such as CFH, CFI and C3 have become the 
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essential core for AMD genetics because of high effect size associated with these genes9, 10, 11. 

Additionally, substantial clinical evidence underscores the significant involvement of immunologic 

processes such as the production of inflammatory molecules, recruitment of macrophages, 

complement activation and microglial activation in AMD pathology12. The majority of AMD-

associated variants reside in the non-coding region of the genome mediate the disease risk 

through gene expression regulation in retina13, 14 and RPE15. However, the molecular mechanisms 

underlying AMD, especially the cellular vulnerability, are poorly understood.  

Recent advancements in genomics have transformed biomedical research into digitalized, 

data-intensive science that has broadened its application in biology and medicine. However, the 

scale, complexity and high information content are significant barriers in its application. These 

limitations have encouraged the application of machine learning (ML) methods to help make 

informed decisions to drive novel biological hypotheses and translate them into tangible 

therapeutics16, 17. In particular, ML-based approaches have been frequently used to obtain insights 

related to regulatory regions of the genome and how they impact gene expression and phenotypic 

changes18. Within ophthalmology, ML has occupied a niche based on studies of retinal fundus 

and optical coherence tomography (OCT) images and visual fields by achieving robust diagnosis 

performance in detecting various disease including diabetic retinopathy, retinopathy of 

prematurity, glaucoma, macular edema and AMD19.  

Comparative transcriptome studies in disease-relevant tissues and cell-types hold great 

potential for identifying new genes as well as investigating mechanisms underlying the disease. 

However, small sample sizes and the high heterogeneity of study samples impose significant 

challenges in its interpretation. ML-based feature selection offers a great tool to address these 

limitations. Here we present the development of explainable ML models to classify the AMD based 

on their expression profiles of 453 samples. To the best of our knowledge, this is the first study to 

rigorously test gene expression data for their ability to accurately distinguish AMD from normal. 

We further analyzed the features selected for ML models using pathways and co-expression 
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regulation networks. Finally, we integrate the data from AMD-GWAS and single-cell 

transcriptomics to identify the genes and cell types associated with AMD pathology. 

 

RESULTS  

Feature selection and machine learning model reveals a core set of 81 AMD genes 

Transcriptome data often suffers from the “curse of dimensionality” as tens of thousands of genes 

can be profiled in a single RNAseq experiment vs the limited number of subjects. Thus, we 

developed a pipeline (Fig. 1A) to reduce the dimension and improve the efficiency and 

interpretability of downstream analyses. We implemented three feature selection methods, 

ANOVA (analysis of variance) F-test, AUC (area under the curve), and Kruskal-Wallis test to 

identify the most relevant features. We divided the dataset into an 80% training set and a 20% 

testing set. We used the training set to identify the most influential features within the training data 

and evaluated the model's performance on the separate 20% testing data, employing appropriate 

evaluation metrics. Comparing the features of top the 100 features identified across 1000 

iterations selected by each method, we identified 81 genes (referred as ML-genes) that were 

common across three methods (Supplementary Fig. 1).  

Next, we applied four ML-based models: neural network, logistic regression, eXtreme 

Gradient Boosting (XGB), and random forest for the classification model for AMD based on 81 

ML-genes. We randomly portioned the data into 64% training (to learn potential underlying 

patterns), 16% validation (to tune the model's performance across different hyperparameter 

choices) and 20% (to evaluate our model's prediction performance) external test sets. The optimal 

threshold for classification was determined by Youden’s J statistic20. We evaluated classifier 

training and discrimination performance in 100 iterations of repeated randomized data splitting to 

ensure the robustness of the model and obtain confidence intervals The AUC-ROC of other 

methods varied from 0.61 (CI 0.5-0.73) for Neural Network to 0.81 (CI 0.71-0.92) for random 

Forest (Fig. 1B) (Supplementary Fig. 2). XGB was found to perform the best with AUC-ROC 
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statistic (0.80, CI 0.70-0.92) (Fig. 1C) and highest sensitivity (0.78) (Fig. 1D). Thus, we applied 

XGB for all further analyses. 

To test the robustness of the 81 ML-genes identified in our study, we conducted 

comparisons of model performance using four additional gene lists: (1) Genes within 500KB of 

the 34 AMD-GWAS loci9 (2) High confidence AMD genes, comprising genes from the 34 loci with 

established connections to AMD through rare variant discovery or eQTL analysis (3) Genes 

deemed relevant to macular degeneration pathogenesis in the literature that emerged from 

extensive PubMed searched as previously described13 and (4) 48 genes identified through 1000 

iterations of label shuffling, with control and AMD labels randomized. The performance of 81 

features was superior compared to the genes within GWAS loci (AUC-ROC = 0.72, CI 0.58-0.84), 

high-confidence genes (AUC-ROC = 0.64, CI 0.50-0.77), literature (AUC-ROC = 0.69, CI 0.56-

0.84) and, shuffled, i.e., permutation testing (AUC-ROC = 0.60, CI 0.45-0.75) (Supplementary 

Fig. 3 A-D). The 48 genes identified in the permutation testing showed no overlap with the set of 

81 genes and performed poorly on both the true and shuffled labels (Supplementary Fig. 4). 

These results further emphasize the specificity of the 81 genes associated with AMD. 

We next used SHAP (Shapley Additive exPlanations)21 to explain our best transcriptome-

based AMD predictions by computing the contributions of each feature (gene) to that prediction 

(i.e., rank feature importance on classification). Shapley values indicate the contribution of every 

feature, i.e., gene expression value, towards the prediction for every individual sample, i.e., 

patient or control, vis-a-vis an average prediction. A positive Shapley value for a feature in each 

sample indicates that the feature value is favoring the prediction of the sample as the disease 

class with the magnitude of the Shapley value indicating the strength of how much it favors the 

prediction. A negative Shapley value for a feature in each sample can be considered vice versa. 

The results showed that high gene expression of MOXD1 in AMD (red, triangle) and low gene 

expression of MOXD1 in controls (blue, dots) contributed most to the model prediction. The trend 

was similar for the top 10 genes (Fig. 1E). 
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Gene expression variation within humans arises from a complex interplay of genetic, 

environmental, and epigenetic factors. Furthermore, AMD manifests with a wide array of clinical 

presentations, encompassing both dry and wet forms, each exhibiting varying rates of disease 

progression and degrees of visual impairment. Thus, we next set out to identify whether such 

heterogeneity existed at the molecular (transcriptome) level. To achieve this, we harnessed the 

predictive capacity of the XGB model, training it on our dataset through 100 iterations of repeated 

randomized data splits. We compared the predicted labels against the actual ground truth 

(disease vs. control status) to uncover patterns. We systematically identified samples for which 

the predicted labels consistently aligned or deviated with the true labels in over 70% of instances. 

We categorize these samples into two groups: the "70% right" group, comprising instances where 

predictions align with true labels, and the "70% wrong" group, encompassing instances where 

predictions deviate from true labels. Notably, our analysis revealed a distinct pattern: a higher 

proportion of control samples (74%) exhibited accurate labeling compared to AMD samples (60%) 

(Fig. 1F). This discrepancy was further highlighted by the observation that nearly twice as many 

AMD patients were subject to mislabeling (18%) compared to only 9% of control subjects (Fig. 

1F). Additionally, the performance of XGB was significantly improved (AUC-ROC = 0.94, CI 0.86-

0.91) when 70% wrong samples were excluded from the analysis (Supplementary Fig. 5). This 

suggests that while heterogeneity exists within both groups, its manifestation is notably more 

pronounced within the disease population. These differences could not be attributed to age as 

within the same age range, there were several normal and AMD patients that were predicted 

accurately (Supplementary Fig. 6A).  Next, we compared the top 2 risk alleles for AMD in CFH 

(Y402H; rs1061170) and ARMS2 (A69S;rs10490924) as well as the polygenic risk scores (PRS) 

(based on 52 known common risk factors across 34 loci9 (Supplementary Fig. 6C, D). We 

observed an expected, significant difference in CFH and ARMS2 risk alleles and PRS in all 

samples, and 70% right group. This difference was notably absent in the 70% wrong group 

(Supplementary Fig. 6E). These results suggest a potential involvement of genetic risk factors 
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in shaping the molecular landscape of the disease in AMD. It's important to note that the sample 

size remains small within the 70% wrong group (consisting of 10 controls and 11 AMD cases), 

underscoring the need for validation within larger cohorts. A heatmap of 81 ML-genes when 

plotted in these four groups (70% right AMD and controls, and 70% wrong AMD and controls) 

highlights the distinct gene expression patterns with the gene expression profiles within the 70% 

wrong group aligning closely with their predicted labels (Fig. 1G). 

 

Gene co-expression network-based analysis connect the ML-genes to AMD-relevant 

pathways  

To gain further insight into the biological significance and relationships among the 81 genes, we 

utilized Weighted Gene Co-expression Network Analysis (WGCNA), known for its ability to 

associate gene co-expression modules with specific biological functions and pathways22. WGCNA 

analysis was done using transcriptome data from 453 human retina and identified 44 modules 

and used GO analysis to identify the top biological pathways associated with these modules. We 

observed that majority of the (62/81) ML-genes were enriched within three modules associated 

with immune response (turquoise, p-value= 2.07 x10-6), extracellular matrix organization (ECM) 

(tan, p-value= 5.16 x10-19), and complement (magenta, p-value= 3.45 x10-19) pathways (Fig. 2A). 

These results are particularly interesting because of the putative role for these pathways in the 

pathogenesis of12, 23. Additionally, these modules also harbor three known AMD-GWAS genes, C3 

and COL8A1 (tan) and CFB (magenta)23. FBLN124 and MOXD113 were particularly interesting for 

their implicated role in AMD. Additionally, we find several ML-genes involved in complement 

pathway such as C7, C1S, C1R and C1RL that have not been associated with AMD. Next, we 

assessed the module trait correlation across normal and AMD patients to identify the gene 

networks associated with the disease (Supplementary Fig. 7). Notably, all three ML-enriched 

modules exhibited a positive correlation with AMD and the eigengene for these modules 

demonstrated increased expression levels between normal and AMD (Fig. 2B).  
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Expression correlations are often used to infer functionality and regulatory relationships 

within specific biological contexts. As we did not observe many known AMD-GWAS genes in 81 

ML-genes, we further explored the functional relationship between known AMD-GWAS genes with 

the ML-genes identified in this study between controls and AMD patients’ transcriptome data. We 

observed a strong correlation (r2 >0.7) in cases compared to controls with eight known AMD-

GWAS genes correlated with 70/81 ML-genes (Fig. 2C, Supplementary Fig. 8) in late AMD 

whereas in controls only 2 known AMD-GWAS genes were correlated with 7/81 ML-genes 

(Supplementary Fig. 9). Additionally, these correlations exhibited statistical differences between 

cases and controls for most ML-genes (Supplementary Fig. 8). In comparison, in random set of 

81 genes, a much smaller number of genes showed correlation and they were comparable in 

cases (20/81) and controls (25/81) (Supplementary Fig. 10). Furthermore, and even fewer of 

these correlations were statistically different between cases and controls (Supplementary Fig. 

11). Taken together, these findings demonstrate that there is a enhanced positive correlation and 

thus by extension functional relationship between the expression ML-genes with known AMD-

GWAS genes in AMD transcriptomes. 

Next, we analyzed the preservation of the three modules enriched for ML-genes in normal 

and AMD networks using the density and connectivity-based preservation statistics available 

within the modulePreservation in WGCNA. The overall measure of preservation was defined as 

Zsummary (Fig. 2D, E). The two modules that functionally annotate to immune response and ECM 

were well preserved between controls and AMD (Zsummary >10). However, the module enriched for 

complement pathway genes was found to be weakly preserved (Zsummary = 4.47)25. Next, we 

identified the top 20 most connected genes (hub genes) and their top 10 connections within the 

complement module from controls and AMD using WGCNA. We identified two ML-genes (C1R 

and C1RL) as hub genes in controls, whereas AMD network has six ML-genes (PSMB8, PSMB9, 

PSMB8-AS1, B2M, HPC5, HLA-B) as hub genes (Fig. 2F). These findings suggest these genes 
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within complement pathways are modulators of immune activity in the retina that play an important 

role in pathogenesis in AMD. 

AMD disease progression has shared and unique gene signatures 
 
AMD is a progressive disease with early, intermediate, and late stages of the disease. 

Early/intermediate AMD is the most common and asymptomatic form, characterized by 

pigmentary abnormalities in RPE of the macular region and accumulation of extracellular 

aggregates of proteins, lipids and cellular components (called drusen). Vision loss happens in the 

late stage, which is usually subdivided into dry (geographic atrophy, or GA) and wet (choroidal 

neovascularization, or CNV) forms26. The symptoms of AMD worsen over time, although the rate 

at which the disease progresses varies and not all patients with early/intermediate AMD develop 

late disease. In the United States alone, over 1.75 million people have late stages of AMD and 

7.3 million people are affected with intermediate stages which are at the risk of developing late 

AMD27. However, there is a paucity of studies on the early and intermediate stages of AMD, and 

as a result, there are no reliable biomarkers for predicting the disease progression. Thus, we next 

applied the ML pipeline developed for late AMD in early (n= 175) and intermediate (n=112) AMD 

to identify the molecular events that lead to AMD. We identified a set of 57 genes for early AMD 

that provided AUC-ROC statistic of 0.62 (CI 0.51-0.74) (Fig. 3A), whereas a set of 62 genes gave 

AUC-ROC statistic of 0.71 (CI 0.59-0.83) for intermediate AMD (Fig. 3B).  The relatively modest 

performance of these models can be attributed to subtle alternations in gene expression during 

these initial stages, where vision loss or cell death in early and intermediate stages is not yet 

prominent. Thus, we next tested the performance of the features identified in early and 

intermediate AMD in late AMD. This analysis showed notable enhancement in predictive power 

with the 57 early AMD-associated genes, leading to an AUC-ROC statistic of 0.74 (CI 0.58-0.86) 

(Fig. 3C). Conversely, the performance remained comparable for the intermediate stage (AUC-

ROC = 0.72, CI 0.58-0.89) (Fig. 3D). For both stages, the performance of the features selected 

based on shuffled label did not perform well (Supplementary Fig. 12). These findings are also 
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consistent with a lower sensitivity as well as a higher proportion of early (29%) (Fig. 3E) and 

intermediate AMD (27%) (Fig. 3F) deviating from their ground truth prediction. Thus, it is likely 

that intermediate AMD might have distinct molecular underpinning that does not represent a 

transitional stage between early and late AMD. This was also reflected in the expression 

correlation of the candidate genes with known AMD-GWAS genes. 81 ML-genes identified in the 

late AMD showed higher correlation in early AMD compared to the intermediate AMD 

(Supplementary Fig. 13). Similarly, early AMD 57 gene signatures also showed higher 

correlation with late AMD and not intermediate AMD (Supplementary Fig. 14). However, the gene 

identified in intermediate does not show correlation with known AMD genes in any stages 

(Supplementary Fig. 15). Importantly, genes identified across both early and intermediate stages 

were enriched within modules associated with immune response and ECM pathways (Fig. 3G, 

H). While there exists a limited overlap in genes identified among the three disease stages of 

AMD, they manifest enrichment within identical modules associated with AMD-relevant pathways. 

This underscores that majority of AMD-progression response includes signatures reflecting 

immune response dysregulation, indicating a shared biological basis. 

 

ML-genes are expressed within specific cell types in retina that are impacted in AMD 

Our RNA-seq data was performed at the tissue level and yielded an average of gene transcript 

abundance that reflects the average signal from mixtures of cell-type-specific gene expression 

levels. This is particularly relevant for tissues characterized by a highly heterogeneous cell type 

composition, such as the retina, which is made of six different cell types28. To understand the role 

of AMD-relevant cell type, we built a reference for the average expression of retinal cell types 

using cell-type specific markers29 from six human retinas across three different studies30, 31, 32 

(Supplementary Table 1). A heatmap of 81 ML-genes across retinal cell types showed that the 

majority of them were enriched in their expression in microglia, astrocytes, müller glia and retinal 

ganglion cell (Fig. 4A). next, we implemented three distinct methods- CIBERSORTx33, dTangle34, 
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and BayesPrism35—to deconvolute the cellular composition of both control and AMD samples. 

Subsequently, we applied a student t-test to identify the cell types exhibiting significant changes 

associated with the disease, revealing astrocyte, microglia, Müller glia, and rods proportion to be 

significantly different between normal and late AMD (Supplementary Fig. 16). Microglia, 

astrocyte, and müller glia proportion increase in the disease whereas the proportion of rods 

decreases (Fig. 4B). The decrease in the rods is observed only in the late stage, which could be 

the results of aging36, 37 as well as disease-related photoreceptor degeneration38. Notably, 

microglia were the only cell type that significantly changed in cell proportion across all stages of 

AMD, while alterations in astrocyte proportion were confined to early and late AMD stages. (Fig. 

4B). The three tools used differ in their underlying algorithms, input requirements, and output 

formats. However, all of them point to the involvement of microglia in AMD, suggesting microglial 

activation and increased immune activity begin in early AMD much before the onset of 

photoreceptor loss in late AMD.  

To validate the results of the deconvolution, we analyzed single-nuclei data from 13 

controls and 17 late AMD patients from two published studies15, 39 (Supplementary Fig. 17). We 

found several ML-genes (20/81) to be differentially expressed in microglia, astrocyte and Müller 

glia (Fig. 4D). Specifically, within the microglia population, we identified four subclusters. Notably, 

two of these subclusters, labeled as M1 and M2, displayed majority of the microglia cells and cell 

numbers between the AMD and control samples (Supplementary Fig. 18). Among these 

subclusters, a set of 8 genes were differentially expressed (6 upregulated, 2 downregulated (Fig. 

4D). Within astrocytes, five gene were differentially expressed (4 upregulated and 1 

downregulated) (Fig. 4E). In case of Müller glia, 4 genes were upregulated and 3 were 

downregulated (Fig. 4F). In addition, several known AMD genes including APOE and VEGFA 

were also found to be differentially expressed within glial population of normal and AMD patients 

(Supplementary Table 2). These findings collectively provide support for the consistency and 

validity of the genes identified using the ML approach and cell types identified using the 
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deconvolution method in an independent dataset, reinforcing the relevance of the identified gene 

expression alterations in the context of AMD. 

 

AMD signature genes are enriched for AMD associated variants 

Comparing transcript levels between healthy and diseased individuals cannot separate the cause 

vs consequences of the disease under scrutiny. Thus, we resorted to the published AMD-GWAS 

data on late AMD, comprising 16,144 patients and 17,832 controls9 as well as early AMD data 

consisting of 14,034 cases and 91,214 controls40 to access the potential association of genetic 

variants within ML-genes with AMD. The Quantile-Quantile (Q-Q) plot in late AMD-GWAS data 

(Fig. 5A) showed the largest deviation from the null p-value of the ML-genes identified in late 

AMD (red line) followed by early AMD (green line) suggesting that a subset of the ML-genes had 

genetic variants associated with AMD. In Early AMD data, the gene identified in early AMD 

showed the largest deviation (green line) succeeded by late AMD (Fig. 5B). Interestingly, neither 

dataset exhibited apparent deviation for intermediate AMD (indicated by the blue line) (Fig. 5 A, 

B). Furthermore, the ML-genes within the WGCNA modules enriched for complement and ECM 

organization individually also showed enrichment within late AMD-GWAS (Fig. 5C). By applying 

a suggestive association threshold (p-value <5 x10-5), we identified two candidates, PLCG2; 

rs4133124, p-value= 2.59 x10-6 (Fig. 5D) and IGFBP7; rs1718877, p- value= 2.83 x10-6 

(Supplementary Fig. 19A) for late AMD and USP7; rs1471435, p- value= 7.27 x10-6 

(Supplementary Fig. 19B) and NEIL1; rs11634109, p-value= 4.27 x10-5 (Supplementary Fig. 

19C) for early AMD.  

Next, we accessed the functional relevance of the suggestive associated SNPs, we 

selected four genomic regions spanning six SNPs around PLCG2 and six genomics regions 

spanning seven SNPs around IGFBP7 (Supplementary Table 3). We cloned these elements 

upstream of a minimal promoter-driven firefly luciferase gene in pGL4.23 (Fig. 5E) and tested for 

enhancer activity of the elements in the human microglia cell line, HMC3 and human RPE cell 
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line, ARPE19. We identified that one element spanning rs4133124 within PLCG2 showed 3.5- 

and 2.2-fold higher luciferase activity compared to the empty vector in HMC3 and ARPE19, 

respectively (Figure 5F).  We also tested the effect of reference T allele with the alternative G 

allele but found no change in enhancer activity in the rs4133124 region (data not shown). 

Additionally, this variant has been identified as an eQTL for PLCG2 in hippocampus in the GTEx 

data(Figure 5G)4. We did not find this eQTL in the retina (data not shown), which could be 

attributed to small proportion of glial cell in the bulk retina data13. The variant, rs4133124 reside 

in the intronic region, which is highly conserved in primates, but not in mice (Figure 5H). It is 

noteworthy that macular degeneration is also caused by the degeneration of photoreceptors and 

underlying RPE in the central region called macula, which is a primate specific structure41. 

Additionally, this variant resides within the open chromatin region in retina, ARPE19 and Astrocyte 

shown as custom track, suggesting a regulatory role (Figure 5H). These results suggest that 

including the biological context of the genes can reveal additional genetic association within 

current GWAS datasets. 

 
DISCUSSION 
 
For most complex diseases, including AMD, we have not exhausted the search for the disease 

genes as a significant proportion of heritability remains unexplained9, 23. Identification of additional 

loci warrants large case-control cohorts, which can be cost-prohibitive and limited by sample 

availability. Most AMD-GWAS variants reside in the non-coding region and mediate their effects 

through gene expression regulation13, 15, 42. Consequently, gene expression profiling in normal and 

disease samples provides valuable resource for studying disease mechanisms and discovering 

additional causal genes. Gene expression data exhibits high heterogeneity, with significant natural 

variation present within and among human populations1, a phenomenon exacerbated in diseases. 

Moreover, non-linear behavior is common in human systems due to their complex dynamics. 

Consequently, relying solely on a simple linear model, as often employed in the most common 
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methods of differential gene expression analysis43, harbors inherent limitations and pitfalls. 

Additionally, arbitrary cutoffs of fold-change and statistical thresholds does not necessarily reflect 

biological relevance44. In contrast, our approach can detect and learn from non-linear data 

patterns to identify a robust molecular classifier through a series of rigorous feature recognition 

and dimensionality reduction.  

Integration of prior knowledge from AMD biology with molecular networks be leveraged to 

understand the functional relevance of novel genes. The interconnected nature of gene regulatory 

networks implies that the expression of all genes in disease-relevant cells has the potential to 

influence the functions of core disease-related genes45. Co-expression networks are particularly 

useful for this purpose because when constructed using disease-relevant expression profiles, 

they can capture the tissue and cell-type-specific nature of the disease46, 47. It was notable that 

76% (62/81) of ML-genes were involved in AMD-relevant immune response, complement and 

ECM pathways. Additionally, these genes had a much stronger pair-wise correlation with known 

AMD genes in cases compared to controls suggesting that during the disease process, they work 

closely with known AMD genes. Network preservation analysis further identified the modules 

involved in complement pathways to be not well preserved in the disease network affirming the 

well-established role of complement dysfunction in AMD48. The central regulatory hub genes of 

the complement modules were different in disease and controls. Among several ML-genes that 

were identified as hubs in the late AMD network, genes related to proteasome complex (PSMB8, 

PSMB9) are particularly interesting because of their role in immune system regulation49.  It is 

therefore conceivable that dysregulation of proteasome activity-led immune response may 

contribute to the pathogenesis of AMD50. These results highlight the benefits of integrative 

analytical approaches to regain the holistic view of the AMD that is lost in experimentally tested 

reductionist approaches or hard statistical cut-offs.  

Progression of early and intermediate to late AMD is observed frequently are attributed to 

multiple risk factors51, 52. However, the role of known genetic risk factors doesn’t seem to 
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contribute significantly to the progression of intermediate to late AMD53. Additionally, in a sample 

of 6,657 cases of intermediate AMD, 10 out of 34 late AMD loci did not show association, despite 

having adequate statistical power9. This is further strengthened by our findings of intermediate 

AMD that showed modest improvement in model performance in late AMD. Similarly, digital 

deconvolution analyses revealed the changes in the astrocyte in the early and late AMD stage 

but not in the intermediate stage. However, the changes in the microglia proportion were observed 

across all three stages. Finally, integration of the AMD-GWAS data from early and late AMD does 

not show deviation for the genes associated with intermediate AMD. Taken together, our results 

suggest that AMD progression may not be linear and involve both shared and stage-specific 

genes, pathways, and cellular perturbations. 

The dysregulated immune response is a hallmark of normal aging54 and a prominent 

feature in many neurodegenerative diseases55 including AMD56. However, molecular, and cellular 

mechanisms underlying immune dysregulation-mediated neurodegeneration are multifaceted and 

have not been completely resolved in AMD. In the human retina, immune responses are 

orchestrated by three distinct glial cell types: Müller cells, astrocytes, and microglia57. Microglia, 

akin to macrophages, serve as the resident immune cells and clear cellular debris through 

complement pathay58. They then maintain immune surveillance in the retina, supporting 

neuroprotection and homeostasis58 and can have different function based on anatomical 

location59. However, in disease conditions, they can get activated, migrate to the site of 

degeneration, and undergo morphological transformation leading to excessive release of 

inflammatory mediators and exacerbation of neurodegeneration60. Ocular sections from AMD 

samples shows the presence of activated microglia near the disease site that promotes 

degeneration61, and activated glial populations are enriched in AMD and related 

neurodegenerative diseases39. In contrast, a neuroprotective role of microglia has also been 

described in neurodegeneration62, 63. Our data further emphasizes the role of microglia at a 

molecular and cellular level in a large cohort (105 controls and 348 AMD). We show that genes 
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associated with AMD have abundant expression in microglia and astrocytes. Secondly, we 

detected distinct differences in the cellular composition of microglia between normal and diseased 

individuals based on digital deconvolution of transcriptome profiles. These results suggest that 

gene relevant to AMD pathology modulate the retinal glial function that are driving force in disease 

progression and photoreceptor degeneration in AMD. 

Reaching significant association signals (p<5×10-8) in traditional GWAS requires 

increasingly larger sample sizes to overcome statistical correction for multiple testing. Our 

approach of integrating the biological context, specifically genes exhibiting altered expression in 

disease-relevant cell type, with the GWAS data revealed novel genes within suggestive 

association signals (p<5×10-5). PLCG2 encodes for an enzyme that catalyzes the hydrolysis of 

phospholipids and releases critical signaling messengers involved in diverse cellular functions64. 

Genetic variants in PLCG2 have been associated with autoinflammation, antibody deficiency, and 

immune dysregulation syndrome65. Recently, the identification of PLCG2 rare variants in 

Alzheimer's patients has brought the focus on its role in neurodegenerative disease66, that is likely 

to cause the disease through microglia-mediated innate immune response67. A pathway-based 

analysis implicated the role of PLCG2 in AMD68, however, our study presents the first convincing 

genetic and molecular evidence including the identification of rs4133124 as a single variant that 

is associated in both GWAS and eQTL analyses. The lack of observed differences in enhancer 

activity between the two alleles of rs4133124 could be due to the limitations of the luciferase 

construct used in the assay, potentially lacking crucial genomic elements necessary for detecting 

allele-specific effects. IGFBP7 represents another such example which was identified as an AMD 

locus in the Japanese population69, but was not replicated in Caucasian-dominant AMD-GWAS23. 

Taken together, our study shows that the integration of gene expression data from normal and 

disease individuals with existing GWAS data provides a powerful approach for gaining systems-

level insights into AMD pathogenesis.  
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Materials and methods  

Cohort and data processing 

We used RNA-seq data from 453 post-mortem donor retina that were evaluated to determine the 

level of AMD based on the Minnesota Grading System (MGS)70, with criteria similar to the Age-

related Eye Disease Study (AREDS)26. MGS1 donor retina had no AMD features and served as 

controls, whereas MGS2-4 represented early, intermediate and late stages of AMD, respectively. 

Transcriptome analysis of donor retina was performed using RNA-Seq after enriching for poly-

adenylated RNA. Raw RNA-Seq reads were processed as described earlier13. Briefly, trimmed 

reads were aligned to the Ensembl release 85 (GRCh38.p7) human genome using STAR version 

2.5.2a71 RSEM72 was used to obtain estimated gene expression levels. Gene expression matrix 

was normalized using Trimmed Mean of M-values (TMM) in Counts per Million (CPM) using 

edgeR73 and genes were filtered by setting a threshold of 1 CPM in 10% of all samples. After 

initial quality control, 105 normal, 175 early, 112 intermediate and 61 late AMD samples were used 

in subsequent analyses. 

Feature selection 

Normalized RNA-seq data was used to select the best features to be used in machine learning 

models. We applied three different feature selection methods ANOVA, AUC and Kruskal using 

mlr3filters (version 0.7.1) in R. All three methods are filter-based on scoring all the available 

features and then selecting features with the highest scores. ANOVA calculates the F-score to 

test the significance of each gene based on the analysis of variance. AUC computes a score 

called Area Under the Curve, also known as classification accuracy. The Kruskal method 

estimates the score for each gene utilizing the Kruskal-Wallis rank sum test, which is non-

parametric compared to ANOVA.  
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We applied the feature selection 1000 times. For each iteration, we randomly sampled 

80% of the data, used the three methods to obtain a score for each gene, and then filtered for the 

top five hundred genes. At the end of one thousand iterations, we obtained the list of genes and 

calculated how many times they were in the top five hundred in each iteration for each method. 

Finally, we took the top one hundred genes from each method and proceeded with the genes that 

appeared in all three methods.  

Machine learning models 

We employed four machine learning models: neural network, logistic regression, eXtreme 

Gradient Boosting (XGB), and random forest. All machine learning models are available in Python 

as separate libraries. To train the model, we first randomly split the data into an 80% train and 

validation set and a 20% test set. Then we further split the train-validate set into eighty percent 

training set and twenty percent validation set. In other words, we randomly divided into 64% 

training set, 16% validation set, and 20% testing set. Subsequently, we fed the data into the 

models to train and generate predictions for each sample, validating the results. Once the models 

were trained, we evaluated their performance on the test set using metrics such as sensitivity, 

specificity, recall, precision, F-1 score, and AUROC. To handle the class imbalance between 

cases and controls, we applied the Youden J20 method to adjust the threshold for each iteration. 

The p-value cutoff was set to 0.05, and the best threshold was calculated using Youden’s J 

statistic20, 74. The maximum distance to the diagonal line was considered as the optimal cutoff 

point value. We then used the binary predictions to determine the frequency of correct predictions 

for each sample. Subsequently, we categorized the samples into two groups: those predicted 

correctly at least 70% of the time and those predicted incorrectly at least 70% of the time. 

The following gene lists were used to compare the performance of chosen feature 

selection methods: (1) genes within 500KB of the 34 AMD-GWAS loci9 (2) High confidence AMD 

genes, including genes from the 34 loci for which the connection with AMD has been establish 

either through rare variant discovery, QTL analyses or functional validation (3) Genes deemed 
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relevant to macular degeneration pathogenesis in the literature that emerged from extensive 

PubMed searched described before13 and (4) Features obtained by randomly swapping the labels 

of our dataset and rerun feature selection to obtain another set of genes.  

We then tested both the original set of 81 genes and the later set of 48 genes obtained 

using shuffled labels by running the model using both sets. In one iteration, we ran the model with 

each set of genes using the true label. In another iteration, we shuffled all the labels in the training, 

validating, and testing set, and then ran the model. Finally, we ran the model with the training and 

validation set having shuffled labels, while keeping the labels of the testing set true. 

 SHAP (SHapley Additive exPlanations) was used for interpreting the output of the models 

by attributing the contribution of each feature to the final prediction. We used the model 

parameters built using the training data and the original gene expression as inputs for the SHAP 

library in Python to compute SHAP values for each instance75. The analysis shows a view of how 

each gene, or variable, will affect the model and alter the prediction. 

Weighted Gene-correlation Network Analysis: 

Weighted co-expression networks were constructed using the WGCNA22 using the Bioconductor 

R package. Briefly, a similarity matrix between each gene was obtained and the adjacency was 

calculated using Spearman correlation. We then used hypergeometric testing at a significance 

threshold of 0.05 alpha-level after Bonferroni correction accessing enrichment of genes for 

enrichment across identified modules. Pathway analysis was performed on each module using 

Gene Ontology biological process terms. 

For module preservation, we first built the co-expression networks separately on controls 

and AMD samples. Next, we used the preservation statistics available within the 

modulePreservation function in the WGCNA22 in R. We then employed a permutation test (number 

of permutations = 500), which randomly permutes the module assignment in the control and AMD 

networks to assess if the observed value of preservation statistic is higher than what is expected 

by chance and assigns a permutation test p-value. The observed preservation values were then 
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standardized with regard to the mean and variance and a significance Z score was defined for 

each preservation statistic. In order to compare the degree of preservation of modules between 

the normal and AMD networks, differential module preservation”—ΔZsummary, which is the 

arithmetic difference between the two preservation scores was calculated. 

Hub genes were identified using the signedKME function, which calculated the KME 

values between a gene and all the modules in the network. With the corOptions parameter: “use 

= ‘p’, method = ‘spearman’”. This calculates the correlation between the expression patterns of 

each gene and the module eigengene. Genes with the largest kME are considered ‘hub’ genes 

within the modules. We selected the genes from their respective modules and sorted in 

descending order the KME value for that module. Genes with the largest kME we assigned ‘hub’ 

genes within the modules. 

 

Polygenic Risk Score: 

We obtained the beta coefficient of common, independently associated AMD-risk variants at 34 

loci from published AMD-GWAS data9. 42 common, independently associated risk variants out of 

52 were found in our data as the remaining were rare variants. To compute the polygenic risk 

score for each individual, we multiplied the genotype (coded as 0, 1, or 2) by its corresponding 

beta coefficient and sum up the weighted beta coefficient values across all variants. To test the 

difference between the PRS of Control and AMD, we used the Mann-Whitney U Test through the 

wilcox.test() function in R. 

 

Heat map 

We created the gene expression heatmaps using pheatmap() function in R. First, we extracted 

the genes of interest’s expressions from the normalized bulk data and performed log 2-based 

transformation. The function pheatmap takes in a matrix. We defined the columns as the samples 
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and the rows as the genes. Samples from control and AMD groups are separated to investigate 

the difference in gene expression between the two groups.  

 

Correlation with known AMD genes 

We utilized the CPM normalized counts matrix to generate two distinct matrices: one comprising 

the 81 genes and the other containing the known AMD genes, separately for cases and controls. 

Subsequently, we employed the "cor" function in R to establish the correlation matrix between 

these two matrices. A threshold of 0.7 was applied, indicating that correlation coefficients greater 

than 0.7 or smaller than -0.7 would be considered significant. The "pheatmap" function in R was 

utilized to generate a correlation heat map between 81 ML-genes and known AMD genes between 

the control and AMD group. We used the “cocor” package in R to test the difference between the 

correlation of each gene pair in Control vs AMD. The “cocor” analysis was performed using a 

formula in the form "Gene1 + Gene2 | Gene1 + Gene2", where two independent datasets, the 

controls group, and the cases group were specified. cocor automatically selected Fisher's test to 

determine the significance of differences between correlation coefficients. The resulting p-values 

were used to determine whether the correlation coefficients between the two groups were 

significantly different. 

 

Integration of GWAS data and Q-Q plot 

We first removed of variants in the major histocompatibility complex region, and within +/- 1 Mb 

of the known GWAS signals9, 40. The data used for generating the Q-Q plot consists of a matrix 

derived from SNPs located within the gene bodies of the genes identified through feature selection 

(57 for early AMD, 62 for intermediate AMD and 81 genes for late AMD). Each entry in the matrix 

represents the negative base-10 logarithm of the quantiles for the corresponding SNP's p-value. 

G-G Plot was used to plot the quantile on the x-axis and the minus log 10 p-value on the y-axis. 
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Single Cell RNA-seq analysis 

FASTQ files were downloaded from the GEO databases from three published studies: 2 samples 

from GSE20274731, 1 sample from GSE13063632 and 3 samples from the UK BioStudies 

database 30. Subsequently, sequencing reads were mapped to the available hg38 genome using 

CellRanger (version 6.1.2). The gene expression matrices generated by Cell Ranger were filtered 

to remove cells with unique molecular identifier (UMIs) less than 200 or more than 6000 or with 

more than twenty percent mitochondrial reads. Data was normalized and transformed using 

SCTransform from Seurat. To annotate the data with a UMAP visualization, we initially conducted 

dimensionality reduction using RunPCA and corrected batch effects with Harmony, followed by 

identifying nearest neighbors and clusters with FindNeighbors and FindClusters, and ultimately 

applying UMAP for visualization. Cells were annotated using a list of cell-type specific marker 

genes for 11 retinal cell types29. The DoHeatmap function within Seurat and used on SCT-

normalized, scaled gene expression data to generate the heat map of the ML-genes within each 

cell type. 

 

Deconvolution 

The bulk RNA-seq data containing 453 samples consisting of 105 control, 175 early AMD, 112 

intermediate AMD, and 61 late AMD were used as mixture dataset13. We used Seurat-generated 

reference to implement three deconvolution methods: CIBERSORTx33, dTangle34, and 

BayesPrism35. For CIBERSORTx, the normalized count matrix of 3,956 differentially expressed 

genes across cell types was uploaded to the CIBERSORTx web application to generate the 

custom signature matrix of 2002. Normalized RNA-seq CPM counts data of the bulk data was 

used to perform the deconvolution. For dTangle on R, we used the CPM normalized counts RNA-

seq counts data that was log2 normalized. The average expression of genes in the Seurat object 

was log2 normalized and used for dTangle. 14,705 genes that were present in both the bulk and 

single cell data were used in the deconvolution. BayesPrism analysis employed raw counts from 
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our bulk RNA-seq dataset and SCT-normalized cell type-specific data from single-cell analysis. 

Genes on sex chromosomes and ribosomal genes were excluded, resulting in 13,716 genes used 

in the analysis. All three methods output cell fractions for each sample. Afterward, we performed 

a t-test on the cell fractions between the AMD samples and the control samples, specifically, 

samples from each stage of AMD against the samples from the control. From the cell fraction 

output of the deconvolution, we plotted the violin plots using “vioplot” package in R to visualize 

the difference in cell fractions across disease levels. We removed outliers in each disease stage 

level by setting a quantile range of 0.05 to 0.95.  

 

Single Nuclei Analysis: 

We used single nuclei data from human retina of 13 control and 17 AMD from two published 

datasets for this analysis15, 39. Counts data from 7 controls and 6 AMD patients were downloaded 

as raw FASTQ files were not provided15. FASTQ files from additional 6 controls and 11 AMD were 

downloaded from the GEO database (GSE221042)39 were processed using CellRanger (version 

6.1.2). Data was analyzed within SEURAT as described above. Briefly, QC for each dataset was 

performed separately. We then performed SCTransform V2 on the merged Seurat object and then 

ran Harmony grouping by dataset and sample IDs. Next, we used FindNeighbor, FindClusters, 

and RunUMAP to cluster the cells and annotated the clusters using the list of cell-type specific 

marker genes. We then extracted the microglia, astrocyte, and müller glia clusters out of the 

Seurat object and redid the clustering to identify subclusters within each cell type. From there, we 

performed Differential Expression using FindMarkers (logfc_threshold = 0.1, min.pct = 0.1, 

test.used = ‘wilcox’) to identify differentially expressed genes between controls and AMD. Volcano 

plots were generated using “EnhancedVolcano” R package.  

 
Luciferase assay: 
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We cloned 10 genomic regions spanning 13 SNPs (6 in PLCG2, and 7 in IGFBP7) upstream of a 

minimal promoter-driven firefly luciferase gene in pGL4.23 (Promega). HMC3, and ARPE19 cells 

were plated in 24-well plates (28K cells/well) and were transiently transfected after 24 hours with 

test luciferase constructs (500 ng) and Renilla luciferase vector (10 ng for transfection 

normalization) in triplicate using 2 μL of FuGENE HD transfection reagent (Roche Diagnostic) in 

100 μL of Opti-MEM medium (Invitrogen). Cells were grown for 48 h and luminescence was 

measured using a dual luciferase reporter assay system on a Texan Spark Multimode Microplate 

Reader per the manufacturer’s instructions. 

 

Data Availability 

The transcriptome data from 453 human donor retina used in this study are available in GEO 

(accession code GSE115828). Summary Statistics of advanced AMD is available at 

http://amdgenetics.org/ and  early AMD is available for the download from www.genepi-

regensburg.de/earlyamd. Single-cell retina data are available from GSE202747 and GSE130636 

and single nuclei data was available under the accession code GSE221042.  

 

Code availability 

All code used in this study was previously published and no customized code was used in this 

manuscript. 
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Figure legends 
 
Figure 1: A flow-chart of ML-pipeline, models performance and results of late AMD 
classification 
A. Schematic representation of Machine Learning pipeline, consisting of three main parts: 

normalization and batch correction, feature selection, and model building. 

B. Bar plot comparing each model’s statistics when used to classify between AMD cases and 

controls. Different colors represent the models built using logistic regression, random 

forest, neural networks, and XGBoost separately. 

C. An ROC plot showing the performance of the XGBoost model using default parameters. 

The closer the curve is to the top left corner, the more accurate the model will be at 

classifying cases and controls. The numbers presented at the bottom right represent the 

averages of 100 iterations of XGBoost models. 

D. Boxplot showing the distribution of statistics (AUC, Sensitivity, Specificity, F-1 score 

Precision and Recall) generated across the 100 iterations. 

E. Feature importance plot using SHAP analysis swarm plot showing the underlying weights 

of the top 10 genes for each sample. For each gene, the top swarm line shows the 

distribution of weights for AMD samples, while the bottom lines show the same information 

for Controls. The x-axis represents the SHAP value score each observation has within a 

gene. Observations are assigned colors corresponding to the range of gene expression, 

with dots (controls) and triangles (cases) closer to blue indicating lower gene expression 

values and those closer to red signifying higher gene expression values. 

F. Bar plot showing the distribution of samples being classified correctly 70% or more of the 

time, or samples being classified wrongly 70% or more of the time. The sections are 

identified as blue and pink respectively. Grey sections are for samples not making the right 

and wrong predictions cutoff. 

G. Heatmap showing the gene expression of 81 ML-genes (as rows) and 166 samples (as 

columns) divided into 4 groups: Controls, Controls being predicted wrong 70% or more of 

the time, Cases, Cases being predicted wrong 70% or more of the time.   

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 27, 2024. ; https://doi.org/10.1101/2024.10.26.24316189doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.26.24316189


Figure 2: Gene co-expression network analysis to connect ML-genes to disease 
pathways 
A. Table representing the number of ML genes included in the modules, the p-value of the 

enrichment, the correlation value between the module’s eigengene expression profile and 

the AMD status of the samples, and the correlation p-value. The color in each correlation 

cell corresponds to the correlation value on the scale provided at the top of the table. 

Notable, immune Response ranks highest in correlation to a patient being diagnosed with 

AMD.  

B. Boxplot showing the eigengene value of each module between cases and controls. Next 

to the boxplots are the subset of 81 ML-genes that were identified as part of the top 10 

hub genes within those modules.  

C. Heat maps illustrating the correlation values between 81 ML-genes and known AMD-

GWAS genes, categorized into control and AMD groups. ML-genes with a correlation 

value ≥0.7 with any known AMD genes in the AMD sample group are included. That list of 

genes was used to generate the heatmap for the Control group. 

D. Module Preservation plot showing the preservation of gene composition in immune 

response and ECM modules from the control network in the late AMD network. The 

module enriched for complement pathways was weakly preserved in the AMD network. 

E. Hierarchical cluster dendrogram of control and AMD co-expression networks. Each black 

branch (vertical line) corresponds to one gene. The color rows below the dendrogram 

indicate module membership showing the labels of genes in the Immune Response 

(Black), ECM (pink), and Complement (lightgreen) from the AMD network when matching 

with their labels in control network. 

F. A Cytoscape visualization of the top 20 hub genes and their top 10 connections to other 

genes. Round nodes are the top 20 hub genes while rectangular nodes depict connected 

genes. ML-genes are highlighted in pink, and known AMD-GWAS genes are highlighted 

in green. Connections between genes are color-coded, with purple indicating stronger 

connections, while blue represents weaker connections. 
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Figure 3: Performance ML methods in classifying early and intermediate-stage AMD  
A. ROC and box plots illustrating the outcomes of classifying control and early AMD samples 

across 100 iterations using a set of 57 genes generated by the XGBoost model. 

B. ROC and box plots display the outcomes of classifying control and Intermediate AMD 

samples across 100 iterations using a set of 62 genes generated by the XGBoost model.   

C. ROC and box plots illustrate the notable enhancement in predicting late AMD outcomes 

by employing the XGBoost model across 100 iterations with 57 genes selected for Early 

AMD and control samples but applied to distinguish late AMD samples from the controls. 

D. ROC and box plots demonstrate that utilizing the XGBoost model across 100 iterations 

with 62 genes associated with intermediate AMD did not improve performance in 

predicting late AMD outcomes. 

E. A bar plot displays the distribution of early AMD and controls classified correctly 70% or 

more of the time (blue), or samples classified wrongly 70% or more of the time (pink). 

Grey sections represent samples that do not meet the criteria for either correct or wrong 

predictions.  

F. Bar plots distribution for the intermediate AMD. Only 40% of the intermediate AMD 

samples are predicted right compared to the ~70% of the controls. 

G. Table demonstrating the enrichment of 57 early AMD genes within co-expression network 

modules associated with immune response and extracellular matrix (ECM) pathways, as 

determined by userListEnrichment within WGCNA. 

H. A table depicting the enrichment of the same pathways for the 62 intermediate AMD 

genes.  
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Figure 4: Expression of ML-genes across various retinal cell types and their alterations 
in AMD. 
A. A heatmap illustrating the average gene expression of 81 ML-genes (as rows) across 11 

retinal cell types (as columns). The color gradient indicates whether genes are 

predominantly expressed (positive value, yellow) or minimally expressed (negative value, 

purple) in a particular cell type. Most ML-genes are expressed in astrocytes, microglia and 

Müller glia. 

B. Violin plots illustrating the cell fraction of various cell types in deconvolution results from 

453 bulk RNA samples, utilizing a single-cell RNA dataset as a reference. P-values are 

annotated to indicate significant differences in cell fraction ranges between Control and 

different AMD stages. P-values are omitted when they exceed 0.05, indicating a lack of 

statistical significance. 

C. Box plots showing the differences in ML-gene expression between 13 normal and 16 AMD 

single nuclei data across astrocytes, microglia, and Müller glia. The selected genes are 

those that have successfully passed Differential Expression analysis utilizing DESeq2 with 

a false discovery rate (FDR) threshold of 5%. 

D. Volcano plot showing differentially expressed ML-genes within microglia, with 8 genes (6 

upregulated, 2 downregulated) passing the DE threshold of fold change 1.5 or higher and 

FDR 5%. 

E. Volcano plot showing differentially expressed genes within astrocytes. 4 upregulated and 

1 downregulated passing the DE threshold of fold change 1.5 or higher and FDR 5%.  

F. Volcano plot displaying significant ML-genes within Müller Glia (4 upregulated and 3 

downregulated) using the same threshold as mentioned above.  
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Figure 5: ML-genes are enriched for AMD-associated variants 
A. Quantile-quantile (Q-Q) plot using summary statistics data from late AMD demonstrates a 

greater deviation from the null distribution (solid black line) for ML-genes identified in early 

(green dots) and late AMD (red dots) compared to intermediate AMD (blue dots). 

B. Q-Q plot using the early AMD data reveals similar but less pronounced trends across early, 

intermediate, and late AMD. 

C. Q-Q plot for the 81 ML-genes, further segregated into 3 groups based on the modules 

identified in the WGCNA network, also demonstrates deviation for the complement (purple 

dots) and ECM pathways (tan dots), but not for the immune response (turquoise dots). 

D.  Regional association plot generated using LocusZoom plots displays the most strongly 

associated SNP, rs4133124 (purple diamond), along with other suggestively associated 

SNPs (p-value <5 x10-5) within the intron of PLCG2. 

E. A schematic representation of the luciferase assay, and the relative locations of the six 

SNPs around PLCG2 that were tested in the assays. 

F. eQTL violin plots sourced from GTEx to illustrate the correlation between the SNP 

rs4133124 and PLCG2 gene expression specifically within the hippocampus region of the 

brain. 

G. The luciferase assay results for four constructs (E30-E33) indicate that construct E31, 

which contains rs4133124, exhibits a 3.5-fold increase in luciferase activity compared to 

the empty vector in HMC3 and a 2.2-fold increase in ARPE19. Error bars represent the 

standard error of the mean (SEM) calculated from triplicate experiments. 

H. The UCSC Genome Browser graph displaying custom tracks from human retina, 

astrocytes, and ARPE19 cells shows the overlap of rs4133124 with open chromatin 

regions of AMD-relevant tissues and cell types. Additionally, the genomic region spanning 

rs4133124 shows conservation in primates as highlighted through multi-species 

alignment. 
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Figure 1 
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Figure 3
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Figure 4
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Figure 5
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