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22 Abstract 

23 Objective: Sport-related concussion presents significant diagnostic and monitoring 

24 challenges, especially in youth populations. This study investigates the potential of EEG 

25 microstate analysis as a tool for assessing acute-phase brain activity changes in adolescent male 

26 athletes following a concussion. We analyzed resting-state EEG data from 32 participants in a 

27 between-subjects design, comparing participants with acute concussion (within two weeks of 

28 injury) to an age- and sex- matched sample with no reported history of concussion.

29 Methodology: We applied a modified k-means clustering algorithm to group resting-

30 state EEG topographical maps into seven clusters, with each cluster represented by one of the 

31 canonical microstate classes (A-G). Average duration, occurrence rate, and time coverage for 

32 each microstate were extracted. 

33 Results: Statistically significant differences in mean duration, occurrence rate, and time 

34 coverage of microstates B and E were observed. Specifically, the mean duration, occurrence and 

35 time coverage of microstate E showed a significant decrease in the concussed cohort in 

36 comparision to the controls (p < 0.001). In addition, the mean duration, occurrence rate and time 

37 coverage was higher in the concussed cohort in comparision with the healthy cohort (p = 0.003). 

38 A significant negative linear relationship was found between microstate E and symptom severity 

39 (p = 0.006, F = 15.72).

40 Discussion: These results suggest that mild traumatic brain injury may disrupt the 

41 dynamic interaction of large-scale brain networks, hinting at potential biomarkers of injury. This 

42 study may help to inform future work on objective, brain-based tools for diagnosis and recovery 

43 assessment in concussed adolescents. Further research in larger, more diverse populations is 

44 necessary to validate these potential biomarkers. 
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45 Introduction

46 The neurophysiological and neurobiological changes due to mild traumatic brain injury 

47 (mTBI; hereafter used synonymously with concussion) are not well understood. Concussion 

48 results from biomechanical forces exerted to the skull and the subsequent shearing and stretching 

49 of brain tissue; although this injury is particularly prevalent, concussion diagnosis remains a 

50 challenge due to its largely subjective nature and the absence of definitive clinical tests [1]. 

51 There is a need for objective, brain-based diagnostic methods that can reliably indicate the 

52 occurrence of a concussion [2,3]. The dynamic and complex nature of concussion injury is of 

53 particular concern in adolescents due to the complexity and heterogeneity of neurodevelopment. 

54 In Canada, concussion incidence is highest among adolescents aged 12 to 19 compared to 

55 other age brackets across the lifespan; this result is corroborated by a similar epidemiological 

56 investigation of the US population [4,5]. It should be noted that most concussion injuries in this 

57 age group are sustained during sport (hockey, rugby, and football in particular) and other 

58 physical activities [4]. 

59 Adolescents are particularly vulnerable to the neuropsychological consequences that stem 

60 from sustaining a concussion. A growing base of structural and functional brain imaging studies 

61 indicate that adolescence is an extremely dynamic period of brain development [6,7], and a 

62 mTBI superimposed on a rapidly developing brain and body undergoing puberty reportedly leads 

63 to more severe and persistent symptoms in comparison to younger children and adults [8,9].

64 The current methods used in concussion detection, monitoring, and return-to-play clearance 

65 for adolescent athletes are suboptimal; these tools tend to lack either objectivity, utility, or 

66 feasibility for this population [10,11]. Functional brain imaging studies on concussion to date 

67 have begun to provide some clues regarding potential biomarkers of concussion. Resting-state 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 27, 2024. ; https://doi.org/10.1101/2024.10.26.24316185doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.26.24316185
http://creativecommons.org/licenses/by/4.0/


4

68 fMRI studies have examined the disruptions to brain functional connectivity caused by 

69 concussion. This research has shown alterations in both dynamic (i.e., spending less time in a 

70 frontotemporal default mode/limbic brain state) and static measures of functional connectivity 

71 (i.e., altered interhemispheric connectivity, as well as hyperconnected frontal nodes and 

72 hypoconnected posterior nodes in the salience and fronto‑parietal networks) relative to healthy 

73 control subjects [12,13]. 

74      While these findings are informative, the feasibility of performing multiple MRI tests on 

75 young athletes as an objective diagnosis/recovery assessment is not ideal and often not available 

76 in remote regions. Portable and feasible neuroimaging techniques are required that are sensitive 

77 to changes in the brain post impact. Electroencephalography (EEG) has the potential to serve as 

78 an objective diagnostic tool and has been extensively studied in recent years for this purpose. 

79 EEG microstate analysis describes the discrete functional cortex-wide states that occur in the 

80 resting-state brain. During the resting state, the brain does not exist in one such state, but shifts 

81 dynamically between 4-7 different EEG “microstate topographies” that are usually stable for 

82 approximately 30-120 milliseconds (ms) before shifting to another state [14–16].  These 

83 microstates show high reliability [17]. This resting-state analysis method provides a lens for 

84 understanding altered dynamics of large scale brain networks, rather than isolated features of the 

85 EEG signal [18]. Importantly, EEG microstates have been shown to have strong associations 

86 with large-scale fMRI resting state brain networks (RSNs) [19]. In addition, EEG microstates 

87 capture subtle temporal dynamics about these functional brain areas and networks that cannot be 

88 captured with resting-state fMRI alone, given the limited temporal resolution of the BOLD 

89 signal. To our knowledge, EEG microstate analysis has been applied by only one group to the 

90 study of concussion [20]. However, this group investigated adults (mean age of 40 yrs) who had 
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91 sustained a concussion several years prior (0.3 – 16 yrs) and there was no healthy control 

92 comparison group. In this chronic adult group with chronic neurophysiological impairement the 

93 duration of the four canonical microstates (A-D) were negatively correlated with a 

94 neuropsychological impairment index. Only four microstate classes were investigated and only 

95 average duration of each microstate was investigated. To our knowledge, this is the first study 

96 that has examined whether or not EEG microstate dynamics are altered in a adolecent sample in 

97 acute phase of mTBI injury.

98 In the present study, we investigate acute-phase changes in EEG microstate features in a 

99 cohort of adolescent males, with the primary aim to enhance our current understanding of neural 

100 dynamic changes associated with concussion. We hypothesized that mTBI will be associated 

101 with differences in microstate sequences as an indicator of acute changes in temporal dynamic 

102 interplay of large scale brain networks in comparison to healthy controls, and that these changes 

103 will be correlated with concussion symptoms. This pilot study is part of a larger project that aims 

104 to identify potential microstate markers of concussion to enhance the objectivity and reliability 

105 of concussion diagnoses and recovery assessments. 

106 Materials and methods

107 Participants 
108 Male athlete participants with normal or corrected to normal vision between the ages of 

109 10 and 18 years were recruited for this study. Concussed participants received a diagnosis of 

110 concussion from a physician or team doctor.  Any participants exhibiting focal neurologic 

111 deficits, pathology and/or those on prescription medications for neurological or psychiatric 

112 conditions were excluded from the study. All participants provided written assent and their 

113 parents gave written informed consent as per the guidelines of the Human Ethics Review Board 
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114 of the University of British Columbia. The study was approved by the University of British 

115 Columbia Clinical Research Ethics Board (Approval number: H17-02973). The recruitment 

116 period of the study started on March 15, 2019 and is ongoing.  The current ethics protocol was 

117 renewed and is valid until October 24, 2025.   Eight of the concussed participants had completed 

118 either the Sport Concussion Assessment Tool 3 (SCAT3) or the Child SCAT3 (for children aged 

119 12 and under), a standardized tool widely used for the evaluation of athletes suspected of having 

120 sustained a concussion [21]. 

121 EEG data collection and preprocessing
122 Five minutes of eyes closed, resting-state EEG data were collected from individuals using 

123 a 64-channel HydroCel Geodesic Sensor Net (EGI, Eugene, OR). After obtaining assent and 

124 informed consent, participants were seated in an experimental room with controlled lighting 

125 levels and fitted with the EEG cap. They were instructed to minimize movement and remain 

126 seated with their eyes closed. Before initiating the data collection, the electrode-scalp resistance 

127 was ensured to be below 50 kΩ. The signals were referenced to the vertex (Cz) and recorded at a 

128 sampling rate of 250 Hz. The collected EEG data were imported into Python for preprocessing. 

129 The initial step involved re-referencing the data from the current reference (Cz) to the average of 

130 all channels. This was followed by applying a 4th order Butterworth filter with zero phase shift 

131 for band-pass filtering, and a frequency range of 1 – 50 Hz was kept. This frequency range was 

132 chosen due to excessive noise at frequencies above 50 Hz, which interfered with subsequent 

133 preprocessing steps. Independent component analysis (ICA) was performed using the infomax 

134 algorithm and the MNE preprocessing package in Python [22]. To identify and remove noise-

135 contaminated components, we employed the ICLabel algorithm, an automated labeling tool for 

136 independent components [22]. We retained only those components that the algorithm labeled as 
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137 "Brain” (i.e. probability of the component presenting brain source was higher than artifactual 

138 source).

139 Microstate analysis 
140 For the microstate analysis, we utilized the Pycrostates package in Python [23]. Global 

141 Field Potential (GFP) peaks were extracted from individual data sets using the functions 

142 available in the Pycrostates package. This process includes calculating the standard deviation of 

143 all channel values at each time point, generating a time series of GFP values. Subsequently, 

144 peaks in this time series were identified using the Scipy integrated function, with the minimum 

145 distance between peaks set to the default value of 2 samples. We identified the minimum number 

146 of GFP peaks across all subjects. We then resampled the GFP series for each subject to match 

147 this minimum number. This step was performed to prevent the clustering results from being 

148 biased by variations in the number of peaks across individual data sets and to ensure uniformity. 

149 The GFP peaks were clustered using a modified k-means algorithm, aligning with established 

150 microstate literature. 

151 The number of microstates used in previous studies typically ranges from 4 to 7 

152 microstates; at present, there is no consensus on how to determine the optimal number of classes 

153 to use for EEG microstate analysis [19]. Although 4 canonical microstate templates (A to D) 

154 were initially prevalent in the EEG microstate literature, it has been argued that 7 distinct 

155 microstate templates (A to G) best capture the scope of spontaneous electrophysiological activity 

156 topographies that are observed in resting-state EEG studies [24]. We decided that 7 clusters 

157 optimally fit our cohort’s data, given that the 7-class solution maximized Global Explained 

158 Variance (GEV), and the alignment of the 7 identified microstates’ topographical shapes with 

159 extant literature [25].
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160 We aligned the 7 microstates with the established microstate labels (A to G) in the 

161 literature, based on the topographical shapes of the states. We then assigned each time point of 

162 the original dataset to one of the 7 microstates, using a "winner takes all" strategy, a smoothing 

163 parameter of 6 samples (24 ms), and correlation between topographical maps as the similarity 

164 measure. This involved correlating each time point with each microstate and assigning the time 

165 point to the state with the highest correlation, taking smoothing parameter into account but not 

166 taking polarity into account. The smoothing was applied to reduce the influence of rapid 

167 fluctuations, potentially caused by artifacts, and to prevent false identification of microstate 

168 changes.

169 Three measures were extracted from each individual's microstate sequence: average 

170 duration, occurrence rate, and time coverage. First, the average duration of each microstate was 

171 calculated by determining how long the microstate remained unchanged in each sequence. These 

172 individual durations were averaged for each subject, and group-level means, and standard 

173 deviations were extracted. The same method was applied to calculate the occurrence rate of each 

174 microstate (i.e., the number of occurrences per second) and the time coverage (i.e., the 

175 proportion of time each microstate occupied relative to the total recording time). Lastly, we also 

176 extracted the average transition rate per second between microstates for each individual, as the 

177 stability of staying in one state or frequently transitioning between states may be a characteristic 

178 of mTBI. Fig. 1 presents the pipeline. 

179

180 Fig 1. Study pipeline for microstate extraction from resting-state EEG to differentiate between 

181 groups. The Global Field Power (GFP) time series is computed, and microstate maps are 

182 identified by clustering maps from the local peaks of the GFP. Seven distinct microstates are 

183 identified. The maps are labeled based on their shape and the labeling method introduced in [25]. 
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184 The original EEG time series is backfitted to these microstates using a "winner-takes-all" 

185 algorithm. Key metrics such as microstate duration, occurrence rate, and time coverage are then 

186 extracted for group comparison.

187 Statistical analysis of microstate features 
188 We used permutation statistics for all comparisons. For each feature, we conducted seven 

189 tests (one corresponding to each microstate). We applied a significance level of 0.05
7  according to 

190 the Bonferroni method to adjust for multiple comparisons. During each test, we randomized the 

191 subjects from both groups and generated new groups of the same size as the original ones. We 

192 then conducted a t-test on these newly formed random groups. If the t-value from the random 

193 groups exceeded that of the original groups, we added the error rate by one. This procedure was 

194 repeated 10,000 times. The total error rate was then calculated and divided by the number of 

195 permutations. Features and microstates falling below the adjusted significance threshold are 

196 reported.

197 We conducted a multiple regression analysis to understand the relationship between 

198 symptom severity and quantity (as assessed by the SCAT) and microstate feature measures. 

199 Specifically, we used the mean duration and occurrence rate of each microstate as independent 

200 variables, while the reported quantity and severity of symptoms were used as the dependent 

201 variables. To account for multiple comparisons, the significance threshold was adjusted to 0.007. 

202 We did not include time coverage in this analysis, as it can be derived from the average duration 

203 and occurrence rate. If these two features show a significant relationship with symptoms, time 

204 coverage information is unnecessary.
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205 Results

206 Demographics 
207 34 male athletes were recruited: n = 14 with concussion and n = 20 with no history of 

208 concucssion. Data from two acutely concussed males were removed due to excessive noise 

209 remaining on EEG after preprocessing, leaving a final sample of 32 male adolescent athletes 

210 between the ages of 13 and 18 (Table 1). The  total number of symptoms and symptom severity 

211 from the SCAT 3 were reported for 8 participants.

212

213 Table 1. Demographic and Clinical Characteristics of Study Participants.

214

Mean age (min:max) SCAT total symptoms 

(mean ± SD)

SCAT symptom 

severity (mean ± SD)

Healthy Controls (N = 

20)

16.0 (14:18) N/A N/A 

Acutely Concussed (N 

= 12)

15.1 (13:18) 9.1 ± 6.8 (n = 8) 21.0 ± 20.4 (n = 8)

215

216 Microstate duration, occurrence rate and time coverage
217 Seven microstates with topographies similar to those identified in the meta-analysis by 

218 Koenig et al. (2024) were extracted from each subject (Fig. 1). The variance explained by each 

219 microstate series was calculated for individual datasets following the backfitting process (Fig. 

220 2B). The total global explained variance (GEV) was 58 ± 12%. The analysis revealed several 

221 significant differences. First, microstate E was significant shorter in the concussed cohort 

222 compared to controls (p < 0.001) as shown by significantly lower duration, occurrence rate and 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 27, 2024. ; https://doi.org/10.1101/2024.10.26.24316185doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.26.24316185
http://creativecommons.org/licenses/by/4.0/


11

223 time coverage of this microstate in the concussed group (𝐶𝑜ℎ𝑒𝑛’𝑠 𝐷 = 1.26, 1.08, 1.24 

224 respectively). Additionally, microstate B exhibited a significantly higher mean duration, 

225 occurrence rate, and time coverage (𝑝 = 0.003, 0.003, < 0.001; 𝐶𝑜ℎ𝑒𝑛’𝑠 𝐷 = 1.06, 1.07, 1.14 

226 respectively) in the concussed group, i.e. there were fewer time points where the topographical 

227 map of the concussed data resembled microstate E, and more time points where it resembled 

228 microstate B (Fig.2B, C and D). We visualized these findings in two ways. In Fig. 2B, the 

229 average duration of microstates B and E is shown for each participant as individual data points, 

230 and by a bar plot comparing the group averages. In Fig. 3, we present the distribution of the 

231 duration for microstates B (Fig. 3 left) and E (Fig. 3 right). Specifically, each time one of these 

232 microstates occurred, its duration was recorded across data from all subjects. We then tested 

233 whether the distributions of these duration values significantly differed between the two cohorts 

234 using the Kolmogorov-Smirnov test and observed significant differences (p < 0.001).

235

236 Fig. 2. Microstate global variance, and comparative metrics in healthy vs. concussed participants: 

237 (A) Total global explained variance (GEV) of each microstate sequence, with each dot representing 

238 individual datasets. (B), (C) and (D) Bar plots representing the three key microstate measures: average 

239 duration, average occurrence rate, and time coverage, respectively. Healthy (blue, n = 20) and concussed 

240 (orange, n = 12) groups are compared, with dots representing individual data points. Significant 

241 differences in mean duration, occurrence rate, and time coverage of microstates B and E are observed. 

242 Overall, microstate E had a significantly lower duration, occurrence rate and time coverage in the 

243 concussed group compared to controls (p < 0.001). Additionally, microstate B exhibited a significantly 

244 higher mean duration, occurrence rate, and time coverage in the concussed group (p = 0.003). AC = Acute 

245 concussed; HC = Healthy Controls.

246
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247 Fig 3. Distribution of microstate B and E durations across all occurrences. The distributions for 

248 microstate B and E durations are shown for both the HC (healthy control) and AC (acutely concussed) 

249 groups. Significant differences were observed between the duration distributions, with p < 0.001 (D = 

250 0.01 for microstate B, D = 0.06 for microstate E).

251 Microstate transition rate 
252 Transitions were recorded for each second of the data. The total number of transitions per 

253 second was averaged over the entire data length for each individual. Interestingly, we observed 

254 higher variability in the number of transitions among the control group, though their average and 

255 median values were lower compared to the concussed group. However, this difference was not 

256 statistically significant (Fig. 4).

257

258 Fig 4. Rate of transitions in microstate sequences. (A) Shows a spike for each transition from one 

259 microstate to another within a 4-second time window for example subgroups. (B) Shows a box plot 

260 comparing the transition rates per second between the healthy control (HC) and acutely concussed (AC) 

261 groups, with individual data points representing the average number of transitions per second for each 

262 participant in the cohort. The difference between the two groups was not statistically significant.

263

264 Concussion symptoms related to microstate features
265 Among the eight concussed athletes who completed the SCAT, microstate E had a 

266 significant negative linear relationship with the SCAT symptom severity measure (p = 0.006, F 

267 = 15.72). This model indicates that increased symptom severity is associated with shorter 

268 duration and lower occurrence rates of microstate E.

269
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270 Fig 5. Multiple regression model. The average duration and occurrence rate of microstate E are used as 

271 independent variables, and symptom severity is used as the dependent variable. Data from eight 

272 concussed participants were included in this model due to the absence of SCAT information from other 

273 concussed individuals. The model demonstrates a statistically significant linear relationship between the 

274 duration and occurrence rate of microstate E and the reported symptom severity (p = 0.006, F = 15.72).

275 Discussion
276 In the present study, we applied EEG microstate analysis to study the changes associated 

277 with acute sport-related concussion in a small cohort of adolescent male athletes. 

278 As hypothesized, we observed disturbed functional dynamics in the resting-state brain microstate 

279 of concussed adolescent participants relative to healthy control adolescent participants. Our 

280 findings show specific changes in microstates E and B: there was a significant decrease in the 

281 presence of microstate E and a significant increase in the presence of microstate B in our 

282 concussed sample across three microstate measures examined. Specifically, microstate B occured 

283 more frequently, lasted longer, and as a result covered a higher proportion of the total time; in 

284 contrast, this pattern was the opposite for microstate E.  Interestingly, we also observed that the 

285 decreased occurrence rate and average duration of microstate E was associated with increased 

286 symptom severity within the concussed group. We did not find any significant differences in 

287 microstates transition rate between the groups. 

288 EEG microstate analysis offers insights into temporal changes in the spatial organization 

289 of brain activity during rest. Specifically, this type of analysis relies on dynamic patterns of brain 

290 connectivity as opposed to a static measure of brain activity. Essentially, resting-state EEG scalp 

291 topographies tend to aggregate into a limited number of prototypical spatial distributions. These 

292 distributions are replicable both within and across individuals and have been extensively studied 

293 in the literature [17,25]. Typically, these topographical distributions are labeled A to G based on 
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294 their maps. While labeling systems may vary across studies, we compared our results with those 

295 from studies that utilized similar topographical maps, though these studies report different labels. 

296 Our labeling system is based on the unifying work of Tarailis et al. [26] which facilitates cross-

297 study comparisons. 

298 Our findings indicate that the concussed group exhibits a reduced duration, occurrence rate 

299 and time coverage of microstate E. Microstate E is characterized by a topography with a centro-

300 parietal maximum [26] and has been associated with activity in the default mode network (DMN) 

301 and the salience network (SN) [24,26]. Additionally, the scores of symptom severity showed a 

302 significant negative correlation with the duration and occurrence of this microstate. Given the 

303 critical role of the networks associated with microstate E in modulating both external and internal 

304 attention, we also observed a similar relationship in the concussed group where symptom severity 

305 which was linked to acute cognitive and somatic impairments were associated with characteristics 

306 of microstate E. Previous research has shown that sleep deprivation [27] and acute drug 

307 intoxication [28] are similarly associated with higher transition probability from microstate E to 

308 other microstates and reduced duration and coverage of microstate E respectively. Self-reported 

309 comfort at rest, on the other hand, has been associated with an increased duration of microstate E, 

310 which may be due to increased self-referential processing associated with the DMN [29]. These 

311 findings align well with what we observe in duration, occurrence and time coverage of microstate 

312 E. Although not statistically significant, we also observed  a decrease in the duration, occurrence 

313 rate and time coverage of microstate D in the concussed group relative to the healthy control group. 

314 Microstate D has been shown to primarily be associated with the frontoparietal executive 

315 control network (ECN) (e.g., activity in the right inferior parietal lobe and the right middle and 

316 superior frontal gyri) [24,30]. Given that the salience network is thought to modulate the dynamic 
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317 interaction between the ECN and DMN [32], it is interesting that we observed a reduced presence 

318 of both microstates E and D in the concussed cohort, indicating potential impairment in key resting 

319 state networks related to attention regulation and cognitive control. Finally, a reduced duration of 

320 microstate E is consistent with the results of resting-state fMRI studies that have studied 

321 disruptions to dynamic functional connectivity in the brain as a result of concussion. Concussed 

322 pediatric participants have been observed to spend less time in a frontotemporal default 

323 mode/limbic brain state relative to their healthy control peers [13].

324 In contrast, microstate B characterized by a topography with a left frontal to right 

325 posterior configuration has been shown to be associated with the visual processing regions of the 

326 brain and particularly of activity in the left and right occipital cortices, including primary visual 

327 cortex [24,26].  It is possible that an altered balance of sensory processing activity in the brain 

328 (i.e., more activity in the visual imagery RSN), as a result of concussion, relates to acute 

329 cognitive impairments associated with concussion. Future research should explore, how 

330 concussion intervention alters the processing of various sensory inputs in the brain, and whether 

331 or not an imbalance in brain activity related to the processing of different sensory inputs (e.g., 

332 compensatory hyperactivity in one sensory modality) is a cause or effect of common concussion 

333 symptoms such as mental fatigue, attentional deficits, and memory impairment. It is also worth 

334 noting that in the aforementioned sleep deprivation study [27] and acute drug intoxication study 

335 [28], not only was there a decreased presence of microstate E, but also a higher transition 

336 probability from microstate E to microstate B.  Perhaps concussion creates a state of impairment 

337 that prompts a similar neurobiological compensatory response to sleep deprivation and alcohol 

338 intoxication, where the brain is forced to prioritize bottom-up sensory processing (i.e., microstate 
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339 B) over internally-oriented networks or higher-order top-down cognitive networks (i.e., 

340 microstates E and D) [28].

341 We also analyzed the number of transitions between microstates for each participant. 

342 This measure reflects the brain’s ability to switch between different functional states, which is 

343 crucial for maintaining efficient cognitive functioning. In a previous fMRI study, we observed 

344 reduced transitions between functional states in individuals with a concussion, suggesting 

345 cognitive rigidity [33]. However, we did not replicate this finding in the current study. A higher 

346 transition rate could potentially indicate neural instability or increased metabolic cost, which 

347 may also be linked to concussion pathology. Nevertheless, this observation did not reach 

348 statistical significance. To draw more definitive conclusions, future studies should explore this 

349 further with larger sample sizes and greater statistical power.

350 Limitations and methodological considerations
351 Our study results have limited generalizability as we were only able to include a small 

352 cohort of male adolescent participants. Future studies will build upon the results of the present 

353 study by performing microstate analysis on a larger and more diverse sample and in a 

354 longitudinal design to address normal within-subject variabilities. An additional limitation is that 

355 only 8 of the 12 concussed subjects had completed the SCAT3, reducing the power of the 

356 correlation analysis performed between SCAT symptom quantity/severity scores and microstate 

357 features. 

358 Conclusion
359 In conclusion, using resting-state EEG in conjunction with microstate analysis, we 

360 observed significant disruptions in the dynamic interplay of large-scale brain networks in acutely 

361 concussed adolescent male athletes compared to their healthy control peers. EEG microstates 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 27, 2024. ; https://doi.org/10.1101/2024.10.26.24316185doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.26.24316185
http://creativecommons.org/licenses/by/4.0/


17

362 provide a readily accessible and replicable method to study the effects of concussion on whole-

363 brain network dynamics with high temporal resolution.  This study aids in the effort to identify 

364 an objective biomarker for concussion, which is direly needed for the most accurate diagnosis 

365 and monitoring of this subtle and multifaceted injury.  

366
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