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Abstract41

Sleep assessment is fundamental to understanding sleep architecture, identify-42

ing sleep disorders, and advancing personalized sleep medicine. However, current43

clinical sleep assessment methods rely on time-consuming and often costly44

procedures, limiting their accessibility and scalability. This study introduces45

SleepGPT, the first GPT-based language model for efficient sleep assessment46

encompassing both sleep staging and disorder identification. SleepGPT lever-47

ages the sequential structure of sleep hypnograms, recognizing strong correlations48

between successive sleep stages to extract relevant patterns and transitions. Fol-49

lowing self-supervised pretraining on manually annotated large-scale whole-night50

hypnograms, SleepGPT yielded consistent performance gains in sleep staging and51

disorder diagnosis across five publicly available datasets, with successful blinded52

replications on three independent datasets. Notably, experiments on established53

sleep staging benchmarks validate SleepGPT as a robust add-on module that54

reliably enhances the performance of existing methods. SleepGPT-powered mod-55

els furthermore achieved comparable sleep staging accuracy using wearable EEG56

and polysomnography (PSG) in a dataset recorded simultaneously with both57

modalities. Moreover, a SleepGPT-powered transformer model substantially sur-58

passed state-of-the-art performance in classifying abnormal sleep stage sequences59

and diagnosing Type-1 narcolepsy. These findings underscore the potential of60

SleepGPT-powered models as clinically translatable and scalable artificial intelli-61

gence (AI) tools for sleep assessment, opening new avenues to advancing precision62

medicine for sleep disorders.63

Keywords: Sleep language model, automated sleep staging, sleep disorder diagnosis,64

hypnogram, generative pre-trained transformers65

Introduction66

Sleep accounts for nearly one-third of the human lifespan and is central to overall67

health and well-being. Disrupted sleep patterns are linked to a range of prevalent68

disorders, including insomnia, sleep apnea, and narcolepsy, which collectively affect69

hundreds of millions worldwide and contribute to serious health issues including70
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hypertension, diabetes, cardiovascular disease, psychiatric disorders, and neurodegen-71

erative diseases [1, 2]. Comprehensive sleep assessment, which involves evaluating72

sleep stages, duration, and regularity, is foundational to understanding sleep architec-73

ture and diagnosing these disorders. The primary method for such assessment, sleep74

staging, segments a night’s sleep into specific stages. These stages encompass wakeful-75

ness (W), rapid eye movement (REM) sleep, and non-rapid eye movement (NREM)76

sleep, which are further segmented into N1, N2, and N3 according to the American77

Academy of Sleep Medicine (AASM) standard [3]. Typically, this procedure employs78

nocturnal polysomnography (PSG), a composite recording featuring multiple digital79

signals encompassing electroencephalography (EEG), electrooculography (EOG), elec-80

tromyography (EMG) of the chin and legs, and electrocardiography (ECG), as well81

as measures of breathing effort, oxygen saturation, and airflow. Manual sleep stage82

labeling from PSG signals may involve visually inspecting each 30-second segment83

(epoch) of an entire night’s recording. For an 8-hour sleep study, this translates to over84

900 epochs, each requiring meticulous examination of multiple signals in PSG. This85

frame-by-frame process is time-consuming and subjective, with inter-scorer reliability86

reaching only 82.6% [4–6]. Consequently, there is a strong demand for more efficient87

sleep staging.88

Recent advancements in machine learning (ML), particularly deep learning89

(DL), have driven substantial progress in automated sleep staging. Traditional ML90

approaches for sleep staging rely on manually engineered features to classify sleep91

stages [7, 8]. Capitalizing on the rapid advancements in DL and the increasing acces-92

sibility of large sleep datasets, deep neural networks, such as convolutional neural93

networks (CNNs)[9–12], recurrent neural networks (RNNs)[13–15], transformers[16,94

17], and hybrid networks[18–21], have been proposed for the automated extraction95

of features from raw PSG signals, subsequently facilitating sleep stage classification.96

These deep neural networks can process either the raw multimodal time series (EEG,97

EOG, ECG, EMG, etc.) or time-frequency representations derived from the PSG sig-98

nals [22, 23]. Moreover, sleep staging involves a classification of discrete time series,99

in which adjacent segments are highly correlated. Common intuition suggests that100

models that stage multiple consecutive epochs generally have better performance than101

those that stage a single epoch. Hence, RNN models equipped with memory, such102

as long short-term memory (LSTM) and gated recurrent unit (GRU) are commonly103

employed to exploit contextual information from adjacent epochs [13, 14, 24, 25].104

Beyond sleep staging, an effective sleep assessment framework must also support105

the detection and diagnosis of sleep disorders. Sleep patterns, including the regular-106

ity and transitions between stages, are linked to numerous chronic conditions such107

as obesity, hypertension, and mental health disorders [2]. Traditional diagnostic pro-108

cesses require highly trained sleep specialists to manually analyze and interpret results,109

leading to the problem of inter- and intra-operator variability and resource-intensive110

procedures. For instance, diagnosing narcolepsy often requires a multiple sleep latency111

test (MSLT), a 10-hour test where patients take 4-5 naps spaced 2 hours apart.112

During each nap, sleep latency and REM sleep onset are measured. Narcolepsy is113

diagnosed if the mean sleep latency is under 8 minutes and at least two naps show114
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REM onset (SOREMPs), or one SOREMP is detected with a short REM latency dur-115

ing overnight PSG [26, 27]. Despite these criteria, patients often face a delay of 7-10116

years from symptom onset to diagnosis due to symptom misinterpretation and lim-117

ited testing access [28]. Automated methods for detecting sleep disorders have been118

proposed to increase cost-effectiveness and mitigate inter- and intra-operator variabil-119

ity [29]. In particular, traditional ML approaches have been employed for automated120

sleep disorder detection using PSG data. However, challenges such as inter-subject121

variability, the high dimensionality of PSG data, and limited availability of labeled122

instances complicate the training of ML models with robust generalization capabilities.123

To address these challenges, various features, such as time and frequency representa-124

tions of single-lead or multichannel EEG or ECG signals [30], disorder-specific events125

or waveforms [31], and sleep macrostructure statistics [26], have been used to train126

classifiers for sleep disorder diagnosis tasks, though with limited success. The lack of127

generalization capabilities and the need for extensive feature engineering have hin-128

dered the development of robust and accurate sleep disorder diagnostic models. To129

date, no study has employed raw sleep stage annotation sequences to diagnose sleep130

disorders in an end-to-end manner.131

A whole-night sleep stage sequence, or hypnogram, obtained through manual anno-132

tation or automated models, is crucial for quantifying sleep macrostructure, including133

cycles, stage-specific durations, transitions, latency, and efficiency. A typical sleep cycle134

progresses from wakefulness through light and deep sleep, culminating in REM, and135

repeats approximately 4 to 6 times per night, each lasting around 90 minutes. These136

cycles reflect fundamental neurophysiological mechanisms, suggesting strong corre-137

lations between consecutive stages and revealing inherent sequential and transition138

patterns that can improve the accuracy of sleep staging and disorder diagnosis [32, 33].139

For instance, sleep stage transitions have been leveraged for automated sleep staging140

using rule-based corrections or data-driven methods like Markov models [8, 32, 34, 35].141

Clinically, disorders such as obstructive sleep apnea (OSA) show disruptions in REM-142

to-NREM transitions [36], while insomnia patients exhibit increased light sleep and143

reduced deep and REM stages. Narcolepsy, in contrast, is marked by short-latency144

REM and rapid transitions between wakefulness and REM sleep [26, 37]. These pat-145

terns highlight the importance of capturing sequential attributes within sleep stage146

sequences for accurate diagnosis.147

Although sequential attributes have been used to enhance sleep staging, current148

methods often depend heavily on specific dataset characteristics and may struggle to149

capture long-term dependencies. Notably, the contextual dependencies in sleep stages150

resemble those in natural language. Recent advances in language models for biologi-151

cal data analysis underscore their potential. For example, scBERT aids in single-cell152

RNA-seq cell type annotation [38], Born’s regression transformer supports molecular153

modeling [39], and protein language models predict viral evolution, protein structures,154

and secondary features [40–42].155

Inspired by these applications, we introduce SleepGPT, a sleep language model156

designed for efficient sleep assessment (Fig. 1). SleepGPT undergoes self-supervised157

training on millions of sleep stage annotations, learning to predict the next stage from158

preceding ones, similar to GPT models[43, 44]. To our knowledge, this is the first study159
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using a language model to capture the sequential dynamics and transition patterns160

within sleep stage sequences. The pretrained SleepGPT model enhances both sleep161

staging and disorder diagnosis. Specifically, we approach PSG-based sleep staging as162

a speech recognition task, with SleepGPT acting as a language model to refine sleep163

stage predictions. Likewise, we frame sleep disorder diagnosis as a text classification164

task, using sleep stage sequences as the input. Extensive experiments demonstrate that165

SleepGPT serves as an effective plug-and-play module, consistently improving sleep166

staging performance and supporting sleep disorder diagnosis. These results suggest167

SleepGPT’s potential for sleep monitoring and biomarker discovery in sleep disorders168

and other CNS-related diseases.169
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Fig. 1:Overview of the proposed SleepGPT model and applications to sleep
staging enhancement and sleep disorder diagnosis. (a) The SleepGPT model is
pretrained on a large sleep stage annotation dataset SHHS [45] and is used to correct
the sleep stage predictions of existing sleep staging models. Moreover, a hierarchical
transformer network (HTN) is employed for sleep disorder diagnosis, with SleepGPT
acting as a local feature extractor. (b) Datasets for evaluating the proposed artificial
intelligence (AI) models. For sleep staging, cross-validation of the AI models is per-
formed on the SleepEDF [46] and MASS [47] datasets. The models trained from the
MASS datasets are then externally validated on the Physio2018 [48] dataset for gen-
eralizability assessment. Furthermore, the translatability of the SleepGPT model on
wearable EEG data is validated on the BOAS [49] dataset with simultaneously col-
lected PSG and headband EEG data. For sleep disorder diagnosis, cross-validation of
the AI models is performed on the CAP [50] and MNC [26] datasets. For generaliz-
ability assessment, models trained on the CAP dataset for distinguishing normal from
abnormal sleep stage sequences are validated externally using the ISRUC [51], MNC,
and HANG7 [52] datasets, while those trained on the MNC dataset for distinguishing
Type-1 narcolepsy from other hypersomnia and healthy controls are externally vali-
dated on the HANG7 dataset.
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Results170

Development of SleepGPT171

The SleepGPT model, built on the GPT-2 architecture [44], is trained using the172

SHHS-1 [45] dataset (N = 5793) with a next-stage prediction objective (Fig. S4).173

Specifically, each subject’s sleep stage annotations from SHHS-1 are organized into174

30-second sequences ranging from 360 to 1199 stages in length, with an average of175

1,012 stages. In total, the dataset comprises 5,863,207 sleep stage annotations.176

The pretrained SleepGPT model is then evaluated on the sleep staging task177

(Fig. S5) using the SleepEDF [46] (N = 153) and MASS [47] (N = 200) datasets.178

Concretely, several state-of-the-art sleep staging models are employed to predict sleep179

stages from PSG signals, and the predictions with and without SleepGPT corrections180

are compared to demonstrate the enhancement enabled by SleepGPT. Both intra-181

cohort cross-validation and inter-cohort validation are conducted on the SleepEDF and182

MASS datasets to assess the capability of the SleepGPT model in enhancing the per-183

formance of existing sleep staging models. Additionally, the Physio2018 [48] dataset184

(N = 994), along with the YASA toolbox [53] containing pretrained sleep staging185

models, are included to blindly (i.e., after the models are finalized and locked) assess186

the out-of-sample prediction performance of the models. To assess the translational187

utility of SleepGPT, the BOAS [49] dataset (N = 128), which includes simultaneous188

PSG and wearable EEG recordings, is employed to compare sleep staging performance189

between these two modalities.190

The SleepGPT model is further utilized as a local feature extractor within a hier-191

archical transformer network (HTN) for the diagnosis of sleep disorders (Fig. S6).192

The HTN model is cross-validated on the CAP [50] (N = 108) dataset to distinguish193

normal from abnormal sleep stage sequences and blindly validated on the ISRUC [51]194

dataset (N = 86), the MNC [26] dataset (N = 407) and the HANG7 [52] dataset195

(N = 84). To demonstrate its performance on a potentially more challenging task, the196

diagnosis of Type-1 narcolepsy (vs. other hypersomnia and healthy controls) is also197

performed on the MNC dataset (N = 407) via cross-validation and blindly validated198

on the HANG7 dataset (N = 84). Finally, a visualization example of the learned199

global attention weights of HTN is provided to offer insights into the salient patterns200

captured by the model.201

Enhancing sleep staging with SleepGPT202

The performance of the proposed SleepGPT model is assessed in terms of accuracy,203

macro-averaging F1-score (MF1), and Cohen’s kappa coefficient (κ) for the sleep stag-204

ing task on the SleepEDF [46] and MASS [47] datasets. Among these performance205

metrics, accuracy indicates the proportion of correctly classified sleep stages, while206

MF1 ensures that performance is balanced across all classes, addressing the impact207

of class imbalance [54]. Cohen’s Kappa (κ) adjusts for chance agreement, providing208

a more robust assessment of model performance, especially in multi-class classifica-209

tion [55]. Table 1 presents the results of the proposed methods alongside those of210

contemporary state-of-the-art methodologies, with the referenced ones directly sourced211
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from the original publications. Despite its simple design (Fig. S7), TinySleepNet [12]212

attains competitive performance across both datasets. Moreover, by integrating infor-213

mation from preceding EEG epochs, TinySleepNet outperforms its non-sequential214

version (i.e., without an LSTM module), TinySleepNet-nonseq. This improvement215

stems from the ability of the LSTM layer to capture the sequential attributes of216

EEG data, a feature leveraged by most advanced sleep staging models. Improvement217

is also observed between the multi-view architecture-based XSleepNet models with218

and without an LSTM sequential module [23], highlighting the importance of cap-219

turing sleep stage sequences to enhance sleep staging performance. The integration220

of SleepGPT improves the accuracy of TinySleepNet-nonseq by 2.1% and 1.5%, and221

that of XSleepNet-nonseq (non-sequential version of XSleepNet) by 2.5% and 1.3%,222

on the SleepEDF and MASS datasets, respectively. Notably, the performance of the223

non-sequential models on the SleepEDF dataset approaches that of their sequential224

counterparts, i.e., TinySleepNet and XSleepNet. This demonstrates the ability of the225

SleepGPT model to capture the sequential characteristics of sleep stages, compen-226

sating for the limitations of the non-sequential models in encoding the contextual227

information of EEG signals. Importantly, the staging accuracy of TinySleepNet with228

SleepGPT exhibits improvements of 0.5% and 0.6% on the SleepEDF and MASS229

datasets, respectively. The incorporation of SleepGPT further enhances the accuracy230

of XSleepNet by 0.6% and 0.4% on the SleepEDF and MASS datasets, respectively.231

These results underscore the effectiveness of the SleepGPT model in enhancing the232

performance of state-of-the-art sleep staging models, even those already equipped with233

sequential modules.234

A visualization of the enhancement in sleep staging performance by SleepGPT is235

provided in Fig. S2, which illustrates the hypnograms of a representative subject from236

the SleepEDF and MASS datasets. It demonstrates that the context-aware nature237

of SleepGPT corrects the predicted sleep stages produced by sleep staging models,238

particularly for non-sequential models, resulting in a hypnogram more consistent with239

the ground truth.240

The improvements in MF1 and κ scores further validate the robustness of the241

SleepGPT model in enhancing the performance of existing sleep staging models. Sleep-242

GPT significantly enhances the XSleepNet model and achieves the highest MF1 score243

of 78.7% and 81.5%, and κ score of 0.781 and 0.797 on the SleepEDF and MASS244

datasets, respectively. Additionally, the sleep stage-specific results demonstrate that245

the SleepGPT-powered models perform favorably on the hard-to-classify sleep stages,246

such as N1 and REM, which existing models are more prone to misclassifying.247

Testing generalization of the sleep staging models248

To evaluate the out-of-sample generalizability of SleepGPT for sleep staging, we249

applied the sleep staging models trained on the MASS dataset to the Physio2018250

dataset [48], which contains 994 PSG recordings. We aimed to assess whether Sleep-251

GPT could similarly enhance sleep staging performance in an independent dataset,252

as observed in the cross-validation experiments. The MASS dataset was chosen for253

training due to its identical EEG channel configurations (C3-A2/C4-A1) to those in254

the Physio2018 dataset, ensuring consistent input features in the PSG recordings.255
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Table 1: Performance of state-of-the-art sleep staging methods and the proposed SleepGPT-powered
models on the SleepEDF and MASS datasets. The best results are highlighted in bold, and the results
with the SleepGPT-powered models are gray-shaded. SleepGPT: with (w) or without (w/o) SleepGPT,
ACC: accuracy (%), MF1: macro-averaging F1-score (%), kappa: Cohen’s kappa coefficient. W, N1,
N2, N3 and REM: sleep stage-specific accuracies (%). TinySleepNet-Nonseq: TinySleepNet without
an LSTM module. XSleepNet-Nonseq: XSleepNet without an LSTM module.

Dataset Method SleepGPT ACC MF1 kappa W N1 N2 N3 REM

SleepEDF

DeepSleepNet [9] w/o 77.8 71.8 0.700 90.8 44.8 78.5 67.9 71.3
SleepEEGNet [11] w/o 80.0 73.6 0.730 91.7 44.1 82.5 73.5 76.1
AttnSleepNet [20] w/o 81.3 75.1 0.740 92.0 42.0 85.0 82.1 74.2
SeqSleepNet [14] w/o 82.6 76.4 0.760 - - - - -

TinySleepNet-Nonseq
w/o 80.5 71.9 0.727 93.7 29.1 87.6 70.1 74.1
w 82.6 74.3 0.755 94.7 30.2 91.4 73.0 74.8

TinySleepNet [12]
w/o 83.1 76.9 0.764 93.3 41.6 87.9 76.8 80.5
w 83.6 77.6 0.772 93.6 44.2 88.1 77.1 81.1

XSleepNet-Nonseq
w/o 80.3 72.7 0.725 90.4 31.8 88.5 70.9 76.6
w 82.8 76.3 0.761 93.3 40.7 88.5 72.0 80.4

XSleepNet [23]
w/o 83.7 77.9 0.774 93.6 45.0 87.7 78.6 81.4
w 84.3 78.7 0.781 93.7 47.2 88.3 79.3 81.5

MASS

DeepSleepNet [9] w/o 83.9 78.9 0.769 86.3 53.9 88.2 79.6 86.8
IITNet* [24] w/o 86.3 80.5 0.790 85.4 54.1 91.3 86.8 84.8

TinySleepNet-Nonseq
w/o 81.7 74.3 0.736 86.5 29.4 89.4 79.1 84.5
w 83.2 76.0 0.756 87.0 30.2 91.8 78.7 86.2

TinySleepNet [12]
w/o 84.2 79.7 0.774 87.5 51.5 89.2 82.4 85.2
w 84.8 80.2 0.784 87.9 53.1 89.5 84.5 85.6

XSleepNet-Nonseq
w/o 82.1 75.1 0.742 86.7 32.3 89.7 79.5 83.7
w 83.4 77.0 0.761 88.3 36.6 90.6 80.9 84.5

XSleepNet [23]
w/o 85.3 80.8 0.791 88.9 53.8 90.1 83.3 86.5
w 85.7 81.5 0.797 88.7 56.1 90.2 83.7 87.3

* the results are not directly comparable since they were evaluated on the SS3 subset with 62 healthy subjects in the MASS
dataset.

To confirm the performance improvements were bidirectional after the generalization256

assessment of the MASS models was completed, we also reversed the process by apply-257

ing the sleep staging models trained on the Physio2018 dataset to the MASS dataset.258

As an additional part of out-of-sample validation, YASA (Yet Another Spindle Algo-259

rithm) [53], an open-source sleep analysis toolbox with pretrained sleep staging models,260

was also applied to stage the sleep EEG data from the SleepEDF and MASS datasets.261

SleepGPT was assessed to determine whether it could improve the performance of this262

established sleep staging tool.263

The results, shown in Table 2 and Fig. S1, indicate that SleepGPT consistently264

enhances the performance of YASA, TinySleepNet, and XSleepNet across all three265

datasets. Specifically, it improves YASA’s accuracy on the SleepEDF and MASS266

datasets by 4.2% and 1.6%, respectively. Furthermore, integrating SleepGPT enhances267

the accuracy of TinySleepNet by 2.9% and 1.6%, and that of XSleepNet by 2.3% and268

1.9%, during cross-dataset validation between the Physio2018 and MASS datasets.269

Consistent improvements in MF1, κ, and stage-specific accuracies are also observed.270

Notably, models trained on the larger Physio2018 dataset (N = 994) and tested on the271
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Table 2: Results of three state-of-the-art staging methods with and without SleepGPT when performing
cross-dataset sleep staging on the SleepEDF, MASS, and Physio2018 datasets. Dataset: Source →
Target indicate that the staging model is trained from the Source dataset and evaluated on the Target
dataset. SleepGPT: with or without SleepGPT, ACC: accuracy (%), MF1: macro-averaging F1-score
(%), kappa: Cohen’s kappa coefficient. W, N1, N2, N3 and REM: sleep stage-specific accuracies (%).

Method Dataset SleepGPT ACC MF1 kappa W N1 N2 N3 REM

YASA

YASA → SleepEDF
w/o 72.7 63.3 0.611 92.6 13.2 73.9 73.2 64.9
w 76.9 68.2 0.677 89.1 20.2 81.3 81.4 76.8

YASA → MASS
w/o 78.6 71.2 0.700 92.8 21.7 82.0 91.6 84.3
w 80.2 73.6 0.724 95.4 26.1 82.3 94.0 86.5

YASA → Physio2018
w/o 71.4 66.2 0.613 92.5 20.5 77.3 78.1 77.4
w 73.5 68.6 0.640 93.6 22.8 80.7 79.3 77.7

TinySleepNet
Physio2018 → MASS

w/o 74.1 67.1 0.617 66.1 27.4 89.2 74.1 69.6
w 77.0 71.3 0.665 66.2 39.1 90.1 82.9 71.8

MASS → Physio2018
w/o 70.5 66.3 0.600 94.7 35.0 75.9 48.6 81.6
w 72.1 68.0 0.621 95.1 36.4 78.2 51.3 81.8

XSleepNet
Physio2018 → MASS

w/o 74.4 68.5 0.626 64.3 39.1 88.6 83.0 61.4
w 76.7 71.3 0.661 68.8 43.0 90.0 86.5 62.0

MASS → Physio2018
w/o 70.3 65.8 0.594 94.2 41.8 77.1 38.8 77.0
w 72.2 67.4 0.617 95.0 42.9 80.6 39.0 77.8

smaller MASS dataset (N = 200) demonstrated superior staging performance than the272

reverse, suggesting that the size and composition of the training dataset, particularly273

the distribution of sleep stages, have a considerable impact on model generalizability. A274

visualization example of the correction made by SleepGPT during cross-dataset valida-275

tion is provided in Fig. S3. These findings validate the generalizability and robustness276

of SleepGPT, as it reliably improves the out-of-sample prediction performance of277

existing sleep staging models across diverse datasets.278

Assessing translatability of the SleepGPT-powered models on279

wearable EEG data280

Advances in wearable devices offer new possibilities for at-home sleep assessment,281

including sleep staging. To assess the translational potential of the SleepGPT-powered282

models, we evaluated their sleep staging performance using the BOAS dataset [49],283

which includes simultaneously recorded PSG and headband EEG data of 128 sub-284

jects. The TinySleepNet and XSleepNet models, with and without SleepGPT, were285

cross-validated on the PSG and the headband EEG data, respectively. As detailed in286

Table 3, the results show that both the TinySleepNet and XSleepNet models exhibit287

comparable performance across the PSG and headband EEG data. Importantly, the288

SleepGPT-powered models consistently enhanced the performance of both models,289

leading to improvements in accuracy, MF1, κ scores, and stage-specific accuracies290

across both datasets. Notably, the sleepGPT-powered XSleepNet model achieved the291

highest accuracy of 84.3% and 83.9% for the PSG and headband EEG data, respec-292

tively. The results underscore the robustness of the SleepGPT models in enhancing293
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sleep staging performance across different EEG modalities and support their potential294

for integration into wearable sleep monitoring applications, enabling adoption of low-295

burden, low-cost, longitudinal sleep monitoring without significantly compromising296

accuracy.297

Table 3: Performance of state-of-the-art sleep staging methods and the proposed SleepGPT-
powered models on the BOAS wearable dataset. The best results are highlighted in bold, while
the results with the SleepGPT-powered model are gray-shaded. SleepGPT: with (w) or without
(w/o) SleepGPT, ACC: accuracy (%), MF1: macro-averaging F1-score (%), kappa: Cohen’s
kappa coefficient. W, N1, N2, N3 and REM: sleep stage-specific accuracies (%).

Dataset Method SleepGPT ACC MF1 kappa W N1 N2 N3 REM

PSG
TinySleepNet

w/o 80.9 64.1 0.660 78.0 20.8 90.8 48.0 69.4
w 81.6 65.6 0.673 78.4 23.1 91.2 51.1 70.5

XSleepNet
w/o 83.4 68.8 0.715 88.7 27.0 88.2 53.9 81.1
w 84.3 70.4 0.728 89.0 27.9 89.2 56.3 81.7

Headband
TinySleepNet

w/o 80.7 62.5 0.652 78.5 18.3 91.1 39.5 68.8
w 81.3 64.5 0.667 79.5 20.8 91.0 48.0 69.4

XSleepNet
w/o 83.0 65.7 0.694 84.7 23.9 91.8 36.8 73.4
w 83.9 67.8 0.712 87.0 26.9 91.9 43.8 74.5

Sleep disorder diagnosis with SleepGPT298

We next assessed the capability of SleepGPT as a feature extractor for sleep disorder299

diagnosis compared to existing state-of-the-art methods. Performance was evaluated300

using balanced classification accuracy (BACC), sensitivity, and specificity across the301

modified CAP [50] and MNC [26] datasets. Table 4 presents the results for two empir-302

ical feature-based XGBoost classifiers—Hypnogram [53] and Hypnodensity [26]—as303

well as a baseline end-to-end neural network (BaseNet; Fig. S8), the proposed hier-304

archical transformer network (HTN) trained from scratch, and the HTN model305

incorporating pretrained SleepGPT parameters. The receiver operating characteristic306

(ROC) curves of each method across the CAP and MNC datasets are also shown in307

Fig. 2 to provide a detailed breakdown of the results (Also see Fig. S9 for the confusion308

matrix of each method).309

On the CAP dataset, in which the task was to distinguish between normal sleep310

and abnormal sleep (including sleep disorders such as insomnia, disordered breathing,311

narcolepsy, etc.), the XGBoost classifier trained with hypnogram features achieved a312

balanced accuracy of 90.91%, with a sensitivity of 95.65% and a specificity of 86.17%313

1. While end-to-end models like BaseNet can learn useful features from hypnograms,314

they may struggle to capture the sequential attributes of sleep stages if the model315

architecture is not carefully designed, as evidenced by a balanced accuracy of 84.97%,316

with a sensitivity of 86.96% and a specificity of 82.98%. The SleepGPT-based HTN317

1Hypnodensity-based XGBoost results were unavailable due to the absence of hypnodensity data for the
CAP dataset.
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model, however, significantly improved performance in an end-to-end fashion. This318

highlights the HTN’s capacity to grasp both localized sequential sleep transitions and319

broader contextual patterns in sleep hypnograms, enhancing diagnostic performance.320

Notably, initializing the HTN with pretrained SleepGPT parameters yielded the high-321

est performance, achieving a balanced accuracy of 96.27%, with a sensitivity of 98.91%322

and a specificity of 93.62%. This pretrained HTN demonstrated a marked improve-323

ment in sensitivity over its non-pretrained counterpart, with an increase of over 10%324

on the CAP dataset.325

Similar trends were observed in the MNC dataset, which involved distinguish-326

ing Type-1 narcolepsy (T1N) patients from non-T1N individuals (including other327

hypersomnia patients and healthy controls), an arguably more challenging task than328

distinguishing general sleep-disorder patients from health controls. The XGBoost clas-329

sifier trained on hypnogram and hypnodensity features achieved balanced accuracies of330

84.39% and 85.16%, respectively. Although the BaseNet model performed reasonably331

well in diagnosing T1N patients, achieving a balanced accuracy of 79.69%, it struggled332

with sensitivity, identifying only 67.07% of T1N subjects. The HTN model trained333

from scratch produced a balanced accuracy of 85.49%, a sensitivity of 78.05%, and a334

specificity of 92.92%, matching the performance of the XGBoost classifier trained on335

hypnodensity features. When fine-tuned with pretrained SleepGPT parameters, the336

HTN model further boosted performance, achieving a balanced accuracy of 92.81%, a337

sensitivity of 91.46%, and a specificity of 94.15%. This improvement underscores the338

benefits of the SleepGPT model’s self-supervised pretraining on large-scale sleep stage339

datasets. Importantly, the pretrained SleepGPT model demonstrated the potential for340

fine-tuning on smaller datasets, which is crucial in sleep medicine, where data scarcity341

often presents a challenge.342

Table 4: Performance of the proposed SleepGPT model on the sleep
disorder diagnosis task. All results are reported in terms of bal-
anced accuracy (BACC) (%), sensitivity (SENS) (%), and specificity
(SPEC) (%). Hypnogram and Hypnodensity: two empirical feature-
based XGBoost classifiers; BaseNet: a baseline neural network; From
scratch: the proposed hierarchical transformer network (HTN) trained
from scratch; Pretrained: the HTN model incorporating pretrained
SleepGPT parameters.

Method
CAP (normal vs. abnormal) MNC (T1N vs. others)

BACC SENS SPEC BACC SENS SPEC

Hypnogram [53] 90.91 95.65 86.17 84.39 82.93 85.85
Hypnodensity [26] - - - 85.16 81.71 88.62
BaseNet 84.97 86.96 82.98 79.69 67.07 92.31
From scratch 89.77 88.04 91.49 85.49 78.05 92.92
Pretrained 96.27 98.91 93.62 92.81 91.46 94.15
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Fig. 2: Receiver operating characteristic (ROC) curves for the proposed SleepGPT-
powered models and baseline methods in sleep disorder diagnosis on the CAP, ISRUC,
MNC, and HANG7 datasets are presented. The area under the ROC curve (AUC) for
each method is provided in the legend. The curves depict the performance of distin-
guishing between abnormal and normal sleep: (a) cross-validated (CV) on the CAP
dataset, (b) blindly validated on the ISRUC dataset, (c) blindly validated on the MNC
dataset, and (d) blindly validated on the HANG7 dataset. Additionally, they include
distinguishing Type-1 narcolepsy (T1N) from others: (e) cross-validated (CV) on the
MNC dataset, and (f) blindly validated on the HANG7 dataset. Hypnogram and
Hypnodensity: two empirical feature-based XGBoost classifiers; BaseNet: a base-
line neural network; From scratch: the proposed hierarchical transformer network
(HTN) trained from scratch; Pretrained: the HTN model incorporating pretrained
SleepGPT parameters.

Testing generalization of the sleep disorder diagnosis models343

We assessed the out-of-sample generalizability of SleepGPT in diagnosing abnor-344

mal sleep by evaluating the prediction performance of the models trained from the345

CAP dataset on the ISRUC [51], MNC [26], and HANG7 [52] dataset. The ISRUC346

sleep dataset contains whole-night PSG recordings of obstructive sleep apnea (OSA)347

patients (N = 76) and healthy controls (N = 10). As shown in Table 5, on this unseen348

dataset, the pretrained HTN model achieved a balanced accuracy of 90.00%, with349

a sensitivity of 100% and a specificity of 80.00% when distinguishing OSA patients350

from healthy controls. The model also demonstrated strong performance on the MNC351

dataset, achieving a balanced accuracy of 83.72%, with a sensitivity of 88.00% and a352

specificity of 79.43% in discriminating healthy controls (N = 282) from patients with353
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T1N or other hypersomnia (N = 125). On the HANG7 dataset, which contains 51354

patients with narcolepsy and 33 healthy controls, the HTN model achieved a balanced355

accuracy of 84.05%, with a sensitivity of 86.27% and a specificity of 81.82%.356

For the more challenging task of differentiating T1N patients from other hyper-357

somnia patients and healthy controls, the HTN model trained on the MNC dataset358

was externally validated using the HANG7 dataset. As shown in Table 6, the HTN359

model fine-tuned with SleepGPT parameters achieved a balanced accuracy of 84.18%,360

with a sensitivity of 92.31% and a specificity of 76.06%, outperforming the compared361

methods.362

The ROC curves of each method across the generalization datasets are shown in363

Fig. 2. These results significantly outperform the compared methods, demonstrat-364

ing the robustness and generalizability of the SleepGPT model in diagnosing sleep365

disorders.366

Table 5: Generalization performance on the ISRUC [51], MNC [26], and HANG7 dataset [52] with
model trained from the CAP [50] dataset when classifying abnormal vs normal sleep. All results
are reported in terms of balanced accuracy (BACC) (%), sensitivity (SENSI) (%), and specificity
(SPECI) (%). Hypnogram and Hypnodensity: two empirical feature-based XGBoost classifiers;
BaseNet: a baseline neural network; From scratch: the proposed hierarchical transformer net-
work (HTN) trained from scratch; Pretrained: the HTN model incorporating pretrained SleepGPT
parameters.

Method
CAP → ISRUC CAP → MNC CAP → HANG7

BACC SENSI SPECI BACC SENSI SPECI BACC SENSI SPECI

Hypnogram [53] 80.39 90.79 70.00 77.72 82.40 73.05 79.59 80.39 78.79
BaseNet 67.11 84.21 50.00 74.92 67.07 82.77 72.99 82.35 63.64
From scratch 76.71 93.42 60.00 79.94 84.00 75.89 76.65 74.51 78.79
Pretrained 90.00 100.00 80.00 83.72 88.00 79.43 84.05 86.27 81.82

Visualization of the SleepGPT-powered sleep disorder367

diagnosis model368

To provide insights into the global feature extractor of the HTN model, a visualiza-369

tion of the attention weights from the global feature extractor on the CAP dataset370

is presented in Fig. 3 for one healthy subject and five subjects with distinct sleep371

disorders—insomnia, narcolepsy, nocturnal frontal lobe epilepsy (NFLE), periodic leg372

movements (PLMs), and REM behavior disorder (RBD). By focusing on the attention373

weights assigned to the CLS token (a special token that outputs a global repre-374

sentation of the entire sequence, detailed in the Methods section) within the final375

transformer layer, we can observe how each model identifies and prioritizes salient376

features in the data. The results clearly demonstrate the effectiveness of the global377

feature extractor in capturing atypical sleep patterns associated with sleep disorders.378

For instance, in the case of the insomnia subject, characterized by small N3 and REM379
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Table 6: Generalization performance on the
HANG7 dataset [52] with model trained from
the MNC [26] dataset when classifying Type-
1 narcolepsy (T1N) vs others. All results
are reported in terms of balanced accuracy
(BACC) (%), sensitivity (SENSI) (%), and
specificity (SPECI) (%). Hypnogram and
Hypnodensity: two empirical feature-based
XGBoost classifiers; BaseNet: a baseline neu-
ral network; From scratch: the proposed hier-
archical transformer network (HTN) trained
from scratch; Pretrained: the HTN model
incorporating pretrained SleepGPT parame-
ters.

Method
MNC → HANG7

BACC SENSI SPECI

Hypnogram [53] 72.32 61.54 83.10
Hypnodensity [26] 75.46 69.23 81.69
BaseNet 69.12 69.23 69.01
From scratch 75.08 76.92 73.24
Pretrained 84.18 92.31 76.06

sleep ratios and direct transitions from REM sleep to wakefulness, the global fea-380

ture extractor allocates more attention to the segments marked by these transitions381

(Fig. 3b). Likewise, the global transformer encoder of HTN highlights segments with382

short wake-to-REM sleep latency or abrupt transitions from wakefulness to REM sleep383

for the narcolepsy subject (Fig. 3c). Furthermore, the self-attention module identifies384

segments featuring abnormal stage transitions, short N3 and REM sleep durations,385

direct shifts from REM sleep to wakefulness, and frequent toggling between deep (N3)386

or REM sleep and wakefulness (Fig. 3d-f). Conversely, for subjects without patholo-387

gies, the attention weights are more evenly dispersed across the hypnogram segments388

(Fig. 3a). The above abnormal patterns in sleep stage sequences are indicative of sleep389

disorders and may serve as potential biomarkers for sleep disorder diagnosis.390

We also show the attention weights obtained by the global feature extractor of391

the HTN model on the MNC dataset in Fig. 4 for a healthy control, a hypersomnia392

patient, and a T1N patient. The attention weights are more evenly distributed across393

the hypnogram segments for the healthy control, while for the narcolepsy patient, there394

is heightened attention to segments featuring short wake-to-REM latency or direct395

transitions from wakefulness to REM sleep. Since we are classifying T1N patients396

from other hypersomnia patients and healthy controls, the attention weights are397

more focused on segments similar to those of the narcolepsy patient. These segments398

include short wake-to-REM latency, direct transitions from wakefulness to REM sleep,399

and dissociated REM sleep. The self-attention module of the HTN model effectively400

identifies the most discriminative sleep patterns, thereby enhancing the classification401

performance for T1N.402
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Fig. 3: Visualization of the learned attention weights of the global transformer encoder
on the CAP dataset for sleep disorder diagnosis (abnormal vs. normal). (a) The atten-
tion weights are more evenly distributed among the segments of the sleep hypnogram
for a healthy subject. (b) There is a small N3 and REM sleep ratio and direct tran-
sitions from REM sleep to wakefulness for the insomnia subject. (c) Segments with
short REM sleep latency or direct transitions into REM sleep from wakefulness are
highlighted by the global transformer encoder of the HTN for the narcolepsy subject.
(d-f) Segments with abnormal stage transitions, such as short N3 and REM sleep
duration, a direct transition from REM sleep to wakefulness, and frequent switches
between deep sleep, i.e., N3 and REM sleep, and wakefulness, are identified by the
self-attention module for the subjects with NFLE, PLMs, and RBD, respectively. The
gray-shaded areas highlight the segments with abnormal sleep patterns.

Discussion403

This study introduces SleepGPT, a novel sleep language model adapted from the GPT404

architecture and trained in a self-supervised manner on a comprehensive sleep stage405

dataset. This effort parallels recent advances in biological sequence modeling, as seen406

in studies using transformer-based models for protein folding [40–42] and cell type407

annotation [38], and expands these applications into the domain of sleep medicine.408

SleepGPT offers several advantages for efficient sleep assessment: it consistently409

enhances existing sleep staging methods, effectively captures sleep stage transition410

dynamics, and integrates as a feature extractor within hierarchical transformer net-411

works to improve sleep disorder diagnosis. Additionally, it identifies interpretable412

abnormal sleep patterns, potentially providing mechanistic insights into sleep dis-413

orders. Taken together, these findings highlight SleepGPT’s potential as a scalable,414

clinically translatable artificial intelligence (AI)-powered solution for automated sleep415

assessment.416

The integration of SleepGPT consistently enhances sleep staging performance,417

although the degree of improvement varies across models and datasets. Notably, mod-418

els lacking memory mechanisms, which fail to utilize contextual information from419
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Fig. 4: Visualization of the learned attention weights of the global transformer encoder
on the MNC dataset for sleep disorder diagnosis (Type-1 narcolepsy vs. (other hyper-
somnia + healthy control)). (a) The attention weights are more evenly distributed
among the segments of the sleep hypnogram for a healthy subject. (b) The atten-
tion weights for a hypersomnia subject focus on deep sleep stages (N3) in the late
half of sleep. (c) Segments with abnormal stage transitions, such as short REM sleep
latency, and dissociated REM sleep, are identified by the self-attention module for the
narcolepsy subject. The gray-shaded areas highlight the segments with the most dis-
criminative sleep patterns.

physiological signals and sleep stages, exhibit more substantial improvement. In com-420

parison, models with sequential components like LSTMs show more moderate, likely421

due to their inherent ability to capture temporal dependencies in sleep-related data,422

but still consistent gains. SleepGPT contributes to the sleep staging task by leverag-423

ing its understanding of natural sequential dependencies between sleep stages, learned424

through pretraining on large hypnogram datasets. This contextual correction layer425

enables SleepGPT to refine predictions from existing staging models, adjusting mis-426

classifications based on surrounding stages. For example, if a model misclassifies a427

REM stage as wakefulness, SleepGPT can reclassify it by recognizing that the sequence428

context supports a REM classification. Additionally, SleepGPT’s attention mecha-429

nisms focus on critical stage transitions, identifying inconsistent patterns, such as430

abrupt shifts from deep sleep (N3) directly to wakefulness, that may signal staging431

errors. The benefits of SleepGPT are particularly pronounced in blinded evaluations432

on independent datasets, where data heterogeneity often hinders the generalizability433

of sleep staging models. By effectively capturing the intrinsic sequential patterns of434

sleep stages, SleepGPT enhances model generalizability across diverse datasets.435

The relatively low staging accuracy for N1 sleep observed across all models is con-436

sistent with findings in the literature [53]. N1 sleep, being a transitional and highly437

variable stage, is notably challenging to classify accurately due to its subtle features438

and overlap with both wakefulness and N2 stages. Studies have reported that human439
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scorers also struggle with N1 consistency, often showing significant inter-rater vari-440

ability [56]. This inherent ambiguity makes N1 classification particularly difficult for441

automated models, which rely on training data labeled by human experts. Despite442

these challenges, the SleepGPT models achieves consistent improvements across sleep443

stages. We anticipate even greater performance improvements as the volume of training444

data for SleepGPT increases.445

In contrast to traditional sleep disorder diagnosis approaches that rely on hand-446

crafted features derived from hypnogram analysis (e.g., stage latencies, durations,447

and transitions), our proposed hierarchical transformer network (HTN) directly mod-448

els and categorizes sleep stage sequences in an end-to-end fashion. This hierarchical449

architecture allows the model to capture both local and global contextual informa-450

tion within sleep hypnograms, enabling more accurate classification of sleep stage451

sequences, especially those with varying lengths, compared to the baseline model. By452

initializing the HTN’s local feature extractor with pretrained SleepGPT parameters453

and subsequently fine-tuning it, we can extract highly informative features for sleep454

disorder diagnosis. Notably, the HTN effectively addresses the challenge of subject-455

level sleep disorder diagnosis in weakly supervised learning scenarios, where only456

session-level labels are available and sleep disorder symptoms may not be consis-457

tently present throughout the entire sleep session [37]. Leveraging the self-attention458

mechanism in its global transformer module, the HTN achieves accurate subject-level459

classification and identifies potential biomarkers indicative of specific sleep disorders.460

These include, but are not limited to: (1) reduced REM sleep ratio and frequent REM461

sleep-to-wake transitions, suggesting insomnia; (2) shortened REM sleep latency and462

direct transitions from wakefulness to REM sleep, characteristic of narcolepsy; and (3)463

brief REM sleep duration and frequent shifts between deep sleep (N3 and REM) and464

wakefulness, signaling other sleep abnormalities. These insights hold promise for devel-465

oping novel diagnostic methodologies. Moreover, the HTN’s adaptability allows for its466

potential application to other sleep-related brain disorders, such as depression, anxiety,467

dementia, and Parkinson’s disease [1, 2], e.g., by replacing sleep disorder labels with468

corresponding condition labels. This flexibility is particularly valuable given the fre-469

quent comorbidity of sleep disorders with other neurological or psychiatric conditions.470

Additionally, information in sleep stage sequences or hypnograms is much simpler471

than that in PSG data, which is often noisy and complex. Diagnosis from sleep stage472

sequences has the advantage of alleviating inter-subject or inter-cohort heterogeneity.473

However, PSG data may also be fused with the sequential features of sleep stages to474

further improve the performance of sleep disorder diagnosis.475

On the CAP dataset, the pretrained HTN model effectively identifies nearly all476

abnormal subjects, with only 1.09% of abnormal subjects being erroneously classi-477

fied as normal. This high sensitivity is particularly crucial in sleep disorder diagnosis,478

where false positives (misclassifying normal as abnormal) are generally preferable to479

false negatives, as they lead to further medical investigation, while undetected abnor-480

malities could have serious consequences. Moreover, previous literature indicates that481

sensitivity and specificity for T1N are 75-90% and 90-98%, respectively [26, 57–59].482

The performance achieved by the pretrained HTN model on the MNC dataset is com-483

parable to or exceeds these reported values. These results suggest that analyzing a484
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single-night PSG can be as effective as the PSG-MSLT gold standard, which involves485

a 24-hour procedure and is expensive. Consequently, our model offers a promising and486

cost-effective alternative as a screening tool for T1N, potentially reducing the need487

for MSLT by reliably identifying individuals likely to have T1N. This approach could488

streamline the pathway for patients requiring further diagnostic evaluation. Further-489

more, Stephansen et al. [26] reported a sensitivity of 91% and specificity of 96% for490

diagnosing T1N on the test data from the full MNC dataset, with replication set sen-491

sitivity and specificity at 93% and 91%. However, while their study utilized the entire492

MNC dataset from nine cohorts, our study analyzed only a subset of the MNC dataset493

(SSC, DHC, and CNC) due to missing sleep staging labels in the other six cohorts.494

The strong performance of SleepGPT-based models in sleep staging with wearable495

EEG and in disorder identification opens exciting possibilities for real-time, at-home496

sleep monitoring. Wearable devices powered by SleepGPT could provide immediate497

feedback on sleep quality, identify potential sleep disturbances as they occur, and offer498

personalized advice for improving sleep. Such real-time monitoring could be invalu-499

able for individuals with chronic sleep disorders, allowing for timely interventions and500

adjustments to treatment plans. Furthermore, continuous sleep monitoring could facil-501

itate early detection of sleep problems, potentially preventing them from escalating502

into more serious health issues.503

While our experiments demonstrate the effectiveness of SleepGPT, it is important504

to acknowledge certain limitations. The SHHS dataset used for pretraining SleepGPT505

is relatively small compared to the massive text corpora used to train traditional506

GPT models. Expanding the pretraining dataset could further enhance model perfor-507

mance. Future research should also explore fine-grained sleep disorder classification by508

leveraging larger and more diverse datasets to gain deeper insights into specific sleep509

stage patterns and transitions associated with particular disorders. Furthermore, while510

hypnograms provide valuable information on sleep macrostructure, they have limited511

ability to capture microstructural events like sleep spindles and K-complexes [28]. Inte-512

grating additional data modalities, such as high-resolution EEG or other physiological513

signals, may enhance the accuracy and granularity of sleep disorder diagnosis. Finally,514

further validation of SleepGPT across a broader range of sleep datasets is essential to515

corroborate its generalizability and robustness before it could be translated for use in516

clinical practice.517

In summary, this study presents SleepGPT, a novel sleep language model based on518

the GPT architecture, for efficient sleep assessment. Extensive evaluation across multi-519

ple publicly available sleep datasets as well as fully blinded replications on independent520

datasets demonstrate that SleepGPT significantly improves sleep staging accuracy and521

exhibits promising efficacy in classifying abnormal sleep patterns. This novel approach522

for modeling sleep architecture opens new avenues for sleep data analysis, providing523

a path towards automated diagnosis and personalized treatment of sleep disorders.524
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Methods525

Datasets526

This study utilizes three distinct types of datasets: sleep datasets for SleepGPT pre-527

training, sleep staging, and sleep disorder diagnosis. A total of six publicly accessible528

sleep datasets are employed in the experiments. Table 7 provides a comprehensive529

summary of these datasets, and further details are provided below.530

Table 7: Overview of the involved sleep datasets. BMI = body mass index, AHI = apnea-hypopnea index.

Dataset
Subjects
/ Sessions

Recording
Duration

Age
(AVG±STD)

Sex
(% Male)

BMI
(AVG±STD)

AHI
(AVG±STD)

Health Conditions

SHHS
[45, 60]

5793 / 5793 Overnight 63.1 ± 11.2 47.6 28.2 ± 5.1 17.9 ± 16.1
Sleep-disordered
breathing, heart dis-
eases, and others

SleepEDF
[46, 61]

78 / 153 Around 9h 59 ± 22.1 46.4 - - Healthy subjects

MASS
[47]

200 / 200 Overnight 40.6 ± 19.4 48.5 - ≤ 20 Healthy subjects

Physio2018
[48, 61]

994 / 994 7.7h 55 ± 14.3 67.0 33 ± 7.8 19 ± 14.6
Sleep disorders,
healthy subjects

BOAS
[49]

128 / 128 Overnight 42.2 ± 19.0 40.6 23.8 ± 3.2 - Healthy subjects

CAP
[50, 61]

108 / 108 8–10h 45.2 ± 19.7 61.1 - -
Sleep disorders (n=92),
healthy subjects
(n=16)

ISRUC
[51]

86 / 86 Overnight 49.7 ± 15.7 59.4 - -
Sleep apnea (n=76),
healthy subjects
(n=10)

MNC-CNC
[26, 60]

77 / 77 Overnight 28.5 ± 16.9 51.3 23.2 ± 11.5 5.34 ± 1.51
Type-1 narcolepsy
(n=54), healthy sub-
jects (n=23)

MNC-DHC
[26, 60]

79 / 79 Overnight 33.4 ± 14.8 50.0 24.8 ± 4.9 -

Type-1 narcolepsy
(n=21), hypersomnia
(n=38), healthy sub-
jects (n=20)

MNC-SSC
[26, 60]

251 / 251 Overnight 45.4 ± 13.8 59.4 23.9 ± 6.5 13.7 ± 0.7

Type-1 narcolepsy
(n=7), hypersomnia
(n=5), healthy sub-
jects (n=239)

HANG7
[52]

84 / 84 8h 24.5 ± 9.6 47.6 22.72 ± 3.65 -

Type-1 narcolepsy
(n=13), other nar-
colepsy (n=38),
healthy subjects
(n=33)
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Datasets for SleepGPT Pretraining531

Training a transformer-based language model typically requires an extensive text cor-532

pus, often encompassing millions or even billions of web pages or documents. However,533

a sleep dataset of comparable scale, complete with sleep stage annotations, is not534

available. Fortunately, the increasing advancements in sleep medicine research, cou-535

pled with the research community’s open data policy, have produced several publicly536

accessible sleep datasets with sleep stage annotations. The Sleep Heart Health Study537

(SHHS) database, a multi-center cohort study examining the cardiovascular and other538

consequences of sleep-disordered breathing [45, 60], is a noteworthy example. This539

database comprises two rounds of PSG records: Visit 1 (SHHS-1) and Visit 2 (SHHS-540

2). In this work, we use the SHHS-1 cohort, which encompasses 5,793 subjects aged541

between 39 and 90 years, to train the SleepGPT model. Notably, to ensure alignment542

with the AASM scoring standard [3], we merge the N3 and N4 stages into the N3 stage543

while discarding the MOVEMENT and UNKNOWN epochs, as the SHHS-1 database544

was manually scored following the R&K guidelines [62].545

Datasets for Sleep Staging546

The proposed SleepGPT model’s performance on sleep staging tasks is evaluated with547

two widely used sleep datasets, namely, the Sleep-EDF and the Montreal Archive of548

Sleep Studies (MASS). The Physio2018 dataset serves as a benchmark to evaluate the549

generalization performance of SleepGPT in enhancing sleep staging. Table 8 provides550

a detailed summary of these datasets.551

Table 8: Number of subjects, EEG channels, and sleep stage distribution of the sleep
staging datasets

Datasets Subjects EEG channel W N1 N2 N3 REM Total

SleepEDF 78 Fpz-Cz 69824 21522 69132 13039 25835 199352

MASS 200 C4-A1/C3-A2 31184 19359 107930 30383 40184 229040

Physio2018 994 C3-A2 157945 136978 377870 102592 116877 892262

BOAS 128 C4/AF7 19137 4462 72181 5225 18754 120095

SleepEDF Dataset: We utilize the 2018 version of the SleepEDF Expanded552

dataset [46, 61]. This collection comprises data from 78 healthy Caucasian subjects553

aged 25 to 101 years. Each subject contributed two consecutive day-night PSG record-554

ings, except for subjects 13, 36, and 52, where one recording was lost due to device555

failure. Consequently, the dataset contains 153 overnight recordings. Sleep experts556

manually scored the epochs based on the R&K standard [62], assigning each 30-second557

PSG epoch to one of eight categories: {W, N1, N2, N3, N4, REM, MOVEMENT,558

UNKNOWN}. To align with convention, the N3 and N4 stages were merged into the559

N3 stage, while the MOVEMENT and UNKNOWN epochs were excluded. Notably,560
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the SleepEDF-20 dataset was not assessed because it is a subset of this particular561

version of SleepEDF.562

MASS Dataset: Derived from different hospital-based sleep laboratories, the563

MASS database comprises whole-night recordings from 200 subjects (97 males and564

103 females) aged 18 to 76 years [47]. The annotation process involved sleep experts565

adhering to either the AASM standard [3] (for the SS1 and SS3 subsets) or the R&K566

standard [62] (for the SS2, SS4, and SS5 subsets). In alignment with the previously567

mentioned datasets, we harmonized the R&K annotations with the five sleep stages568

{W, N1, N2, N3, REM} according to the AASM standard. Epochs initially spanning569

20 seconds were extended to 30 seconds by incorporating the 5-second segments before570

and after them.571

Physio2018 Dataset: The PhysioNet 2018 Challenge dataset, also known as the572

Physio2018 dataset, comprises 1,985 polysomnographic recordings provided by the573

Computational Clinical Neurophysiology Laboratory (CCNL) and the Clinical Data574

Animation Center (CDAC) at Massachusetts General Hospital (MGH). This dataset575

was used in the 2018 PhysioNet Challenge [48, 61] to detect sleep arousals. We used576

the training set for our experiments, which included 944 subjects aged 18 to 90. Sleep577

experts manually scored the recordings according to the American Academy of Sleep578

Medicine (AASM) guidelines [3], annotating five sleep stages: W, N1, N2, N3, and579

REM. This dataset is employed to blindly validate the sleep staging model derived580

from the MASS dataset.581

BOAS Dataset: The Bitbrain Open Access Sleep (BOAS) dataset serves to bridge582

the gap between gold-standard clinical sleep monitoring and emerging wearable EEG583

technologies [49]. This dataset comprises data from 128 nights, during which healthy584

participants were simultaneously monitored using both a Brain Quick Plus Evolution585

PSG system by Micromed and a Bitbrain wearable EEG headband. The Micromed586

PSG system collected EEG signals from electrodes placed at F3, F4, C3, C4, O1,587

and O2, following the international 10-20 system. In contrast, the Bitbrain headband588

recorded EEG signals from the frontal AF7 and AF8 electrode sites. Both systems589

utilized a sampling rate of 256 Hz. Sleep staging was independently annotated by three590

expert scorers following the American Academy of Sleep Medicine (AASM) criteria [3],591

with a consensus label established by a fourth expert. The BOAS dataset enables the592

evaluation of the SleepGPT-based model’s ability to achieve sleep staging accuracy593

comparable to PSG using wearable EEG data.594

Datasets for Sleep Disorder Diagnosis595

Two sleep-disorder-related datasets were identified for the sleep disorder diagnosis596

analysis, including the CAP Sleep Database and the Mignot Nature Communications597

(MNC) dataset, which offer both sleep stage annotations and sleep disorder labels.598

CAP Dataset: The CAP Sleep Database is a collection of 108 polysomnographic599

recordings contributed by the Sleep Disorders Center of the Ospedale Maggiore of600

Parma, Italy [50, 61]. It contains data from seven groups of patients with distinct601

sleep disorders, as well as a healthy control group without any medical, neurological,602

or psychiatric conditions. The details of these groups are summarized in Table 9. Well-603

trained neurologists who are sleep experts manually scored the sleep recordings based604

22

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 13, 2024. ; https://doi.org/10.1101/2024.10.26.24316166doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.26.24316166
http://creativecommons.org/licenses/by-nc-nd/4.0/


on the R&K rules, categorizing the epochs into sleep stages 1-4, wake, REM sleep,605

and movement artifacts. To adhere to the AASM standard, we harmonized the R&K606

annotations, obtaining five sleep stages: {W, N1, N2, N3, REM}. Notably, the CAP607

Sleep Database has been widely used in numerous studies focusing on sleep disorder608

diagnosis.609

Table 9: Sleep disorder groups in the CAP Sleep
Database.

Sleep disorder No. of subjects

Bruxism (BRUX) 2
Sleep-disordered breathing (SBD) 4
Insomnia (INS) 9
Narcolepsy (NARCO) 5
Nocturnal frontal lobe epilepsy (NFLE) 40
Periodic leg movements (PLMs) 10
REM behavior disorder (RBD) 22
No pathology (N) 16

Note that the CAP Sleep Database is inherently imbalanced. Several groups con-610

tain an extremely limited number of subjects. For instance, the BRUX and SBD groups611

consisted of only 2 and 3 subjects, respectively. To facilitate subject-level diagnoses,612

we conducted binary classification experiments on the CAP Sleep Database, specif-613

ically distinguishing abnormal from normal cases. Furthermore, after incorporating614

the first-session data of 78 subjects (excluding subjects 36 and 52, who had only one615

session available) from the SleepEDF Expanded database into the normal group, the616

comprehensive dataset included 186 subjects, 94 of whom were labeled as normal and617

92 of whom were labeled as abnormal.618

ISRUC Dataset: The ISRUC-Sleep dataset [51] contains full-night PSG record-619

ings, each approximately eight hours in duration, collected at the Sleep Medicine620

Centre of Coimbra University Hospital (CHUC) between 2009 and 2013. Data were621

acquired non-invasively using a SomnoStar Pro multi-channel system, with sensors622

placed according to the international 10–20 standard. The dataset includes recordings623

from both healthy adults and subjects with sleep disorders under medication, divided624

into three groups: 1) 100 subjects with one session each; 2) 8 subjects with two sessions625

for longitudinal studies; 3) 10 healthy subjects with one session, used for comparison626

with sleep disorder patients. Among the dataset, 76 obstructive sleep apnea (OSA)627

patients and 10 healthy controls are included to blindly validate the sleep disorder628

diagnosis model derived from the CAP dataset.629

MNC Dataset: The Mignot Nature Communications (MNC) dataset comprises630

raw polysomnography data collected from an automated sleep staging project utilizing631

neural networks [26, 60]. It encompasses data from ten distinct cohorts recorded at632

twelve sleep centers across three continents: the patient-based Stanford Sleep Cohort633

(SSC), the population-based Wisconsin Sleep Cohort (WSC), the patient-based Inter-634

scorer Reliability Cohort (IS-RC), the Jazz Clinical Trial Sample (JCTS), the patient-635

based Korean Hypersomnia Cohort (KHC), the patient-based Austrian Hypersomnia636
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Cohort (AHC), the patient-based Italian Hypersomnia Cohort (IHC), the patient-637

based Danish Hypersomnia Cohort (DHC), the patient-based French Hypersomnia638

Cohort (FHC), and the patient-based Chinese Narcolepsy Cohort (CNC). The study639

received approval from institutional review boards, and informed consent was obtained640

from all participants. Trained sleep-scoring technicians manually annotated all sleep641

studies according to the AASM Scoring Manual [3]. Additionally, the subjects were642

divided into the Type-1 narcolepsy (T1N; with either low CSF hypocretin-1 levels or643

clear cataplexy), other hypersomnia (OHS), or non-narcolepsy control (NNC) group644

based on multiple sleep latency test (MSLT) results, cataplexy symptoms, and human645

leukocyte antigen (HLA) results (if available). Further information about the MNC646

dataset can be found in [26].647

However, as diagnostic results were only available for the SSC, DHC, and CNC648

cohorts, we exclusively utilized these three cohorts for the sleep disorder diagnosis task.649

The dataset compiled from these cohorts encompassed 407 subjects, among whom 82650

were in the T1N group, 43 were in the OHS group, and 282 were in the NNC group651

(see Table 10). To facilitate comparison with previous research, we adhered to the652

methodology outlined in [26] and conducted binary classification experiments on the653

MNC dataset to discriminate T1N subjects from all other subjects, i.e., OHS and654

NNC subjects. This dataset is also employed to blindly assess the generalizability of655

the sleep disorder diagnosis model derived from the CAP dataset.656

Table 10: Sleep disorder groups in the MNC dataset.

Sleep disorder
No. of subjects

CNC DHC SSC Total

Type-1 narcolepsy (T1N) 54 21 7 82
Other hypersomnia (OHS) 0 38 5 43
Non-narcolepsy control (NNC) 23 20 239 282
Total 77 79 251 407

HANG7 Dataset: In the HANG7 dataset [52], 84 participants aged 11 to 57657

years (mean age: 24.5 ± 9.6), including 44 females and 40 males, were recruited to col-658

lect polysomnography recordings at the Affiliated Mental Health Center & Hangzhou659

Seventh People’s Hospital, Zhejiang University School of Medicine. The study was660

conducted at Zhejiang University with Institutional Review Board approval, and writ-661

ten consent was obtained from all participants or their caregivers. PSG recordings662

were collected following the AASM sleep standards [3] and manually scored by experi-663

enced sleep technicians. Each participant’s PSG recording covered one full night, from664

approximately 21:00 to 5:00 the next morning, totaling about 8 hours. Of the 84 partic-665

ipants, 13 were diagnosed with T1N (with clear cataplexy), 38 were other narcolepsy,666

and 33 were healthy controls. The dataset was used to blindly validate the general-667

izability of the sleep disorder diagnosis models derived from the CAP (abnormal vs.668

normal) and MNC (T1N vs. others) datasets.669
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Problem Formulation670

Sleep Staging as Speech Recognition671

A general speech recognition system consists of an acoustic model and a language672

model. The acoustic model M1 predicts the most likely word sequence given speech673

audio features X via674

P (Y ;M1) = P (Y |X;M1), (1)

while the language model M2 is built based on a large-scale text corpus to capture675

the sequential characteristics of the word sequence via676

P (Y ;M2) = P (y1, y2, · · · , yT ) =
T∏

t=1

P (yt|y1, y2, · · · , yt−1). (2)

The trained language model is then used to rectify the word sequence predicted by677

the acoustic model to improve the speech recognition performance as follows [63–65]:678

Y ⋆ = argmax
Y

P (Y ;M1,M2)

= argmax
Y

P (Y |X;M1)P (Y ;M2). (3)

In the automated sleep staging process, features are extracted from a sleep data679

epoch, and a sleep staging model is then applied to predict the most likely sleep stage680

for that epoch. The model, whether it is a traditional machine learning or deep learning681

model, is similar to the acoustic model in a speech recognition system. It is designed682

and trained on a large-scale sleep dataset to achieve satisfactory prediction accuracy on683

unseen sleep epochs. However, due to various factors such as architectural limitations,684

training inadequacies, and data scarcity, imperfections in the PSG-based sleep staging685

model may occur, leading to inaccurate predictions of sleep stages. The inter-scorer686

reliability for sleep stage scoring is reported to be 82.6% on average, which closely687

aligns with that achieved by machine learning-based automated staging systems [26].688

Given the analogous nature of text and sleep stage sequences, emulating the speech689

recognition system paradigm may improve sleep staging performance. This involves690

training a sleep language model that can capture the inherent sequential characteristics691

of sleep stages to assume a role akin to that of a natural language model (see Fig. S5).692

Sleep Disorder Diagnosis as Text Classification693

It is believed that sleep architecture, i.e., the distribution of sleep stages, is strongly694

related to the quality of sleep. Certain sleep disorders exhibit disrupted sleep architec-695

ture and atypical sleep stage transitions. Examples include shortened deep sleep stages696

in cases of insomnia, and short REM sleep latency or immediate transitions from wake-697

fulness to REM sleep in narcolepsy. An overnight sleep stage sequence has the form698

{W, · · · ,N1, · · · ,N2, · · · ,N3, · · · ,REM, · · · }. Such sequences are plotted as hypno-699

grams in Fig. 1 (top-left). They are akin to concise news pieces or textual documents700

with a vocabulary of only five words. In turn, the sleep stage sequence encodes the701
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sequential attributes and transitional patterns characterizing the progression between702

sleep stages. The integration of a sequential model enables these characteristics to be703

identified and described.704

Hence, a viable approach is to treat sleep disorder diagnosis as a long text classi-705

fication task. Here, the trained sleep language model is harnessed to extract features706

from the sleep stage sequences (hypnograms), enabling the subsequent classification707

of these sequences as associated with a sleep disorder or not. This is an innovative708

method for sleep disorder diagnosis using only the sleep stages obtained from either709

human experts or automated sleep staging models.710

The SleepGPT model711

Recently, the success of transformer-based language models (LMs), including bidirec-712

tional encoder representations from transformers (BERT) and generative pretrained713

transformers (GPT), has been noted across various natural language processing714

(NLP) tasks, such as machine translation, question-answering, and text genera-715

tion [43, 44, 66]. BERT, which functions as a bidirectional LM, is trained to predict716

masked words based on neighboring words and to perform next-sentence prediction.717

Conversely, GPT operates as a decoder-only transformer LM, autoregressively pre-718

dicting the next character or word based on preceding ones. Both models undergo719

self-supervised training on extensive text corpora. The success of ChatGPT has illus-720

trated its proficient ability to capture the inherent sequential attributes of natural721

language. This ability has been extensively utilized to improve performance in speech722

recognition and diverse NLP tasks, such as text classification.723

Transformers consist of multiple transformer blocks, typically including a multi-724

head self-attention layer, a feed-forward layer, and residual and normalization lay-725

ers [67]. GPT employs causal attention in its self-attention layer to ensure exclusive726

attention to preceding words. This concept has been applied in sequential sleep stag-727

ing models that rely on prior sleep epochs for current sleep stage predictions. It has728

proven to be especially significant in online sleep staging systems, where only preced-729

ing epochs are accessible during the current prediction task. Hence, GPT is selected730

to capture the sequential traits of sleep stages. The SleepGPT model adopts the archi-731

tecture of the GPT-2 language model developed by OpenAI [43, 44]. As illustrated in732

Fig. S4, the main part of the model is composed of a series of n transformer decoder733

blocks, marked by the masked multi-head self-attention layers. Token embedding and734

position embedding layers are employed to map the sleep stage tokens into a vec-735

tor space and to infuse positional information into each token’s sequence placement,736

respectively. The final transformer block’s output is input to a linear layer to obtain737

the probability distribution of the next sleep stage.738

The model undergoes self-supervised training through the autoregressive fore-739

cast of the most likely sleep stage based on preceding sleep stages. For each subject740

or sleep session, the overnight sleep stage annotations are structured as a long741

sequence U = {u1, ..., uN}, where ui ∈ {0, 1, 2, 3, 4} represents the five sleep stages742

{W,N1,N2,N3,REM} as integers ranging from 0 to 4. Training samples are derived743

from the sequence using a sliding window of dimensions K, passing over the sequence744

with a stride of 1, where K signifies the sample sequence length. Consequently, the745
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overnight stage sequence yields N−K+1 overlapping instances. The (i−1)th instance746

of the K sleep stages, denoted as Ui−1 = {ui−K , ..., ui−1}, constitutes the input747

and is fed into the model for predicting the target; the target is the ith instance748

Ui = {ui−K+1, ..., ui}:749

h0 = Ui−1We +Wp (4)

hl = transformer block(hl−1), ∀l ∈ [1, L] (5)

P (Ui) = softmax(hnW
T
s ) (6)

where L is the number of transformer layers, We is the token embedding matrix, Wp750

is the position embedding matrix, and Ws is the weight of the classification head.751

The model is trained with the objective of minimizing the cross-entropy loss, thereby752

reducing the disparity between the predicted sleep stage and the actual ground truth:753

L(U) = −
∑
i=1

logP (Ui|Ui−1; Θ), (7)

where Θ is the parameter of the GPT sequential model.754

Sleep Staging with SleepGPT755

Automated sleep staging is an active research topic within the realm of sleep medicine;756

it aims to automate the prediction of sleep stages for individual sleep PSG data epochs,757

typically spanning 30 seconds. Several excellent deep learning models have been pro-758

posed for this purpose. Most of them share a common architecture, comprising a CNN759

to extract intra-epoch features and an RNN to incorporate the contextual informa-760

tion in adjacent PSG data epochs[9, 11–14, 23]. Among cutting-edge sleep staging761

models, XSleepNet[23] employs two network streams to learn from multi-view inputs762

(e.g., both raw signals and time-frequency images) for sleep staging. By adapting the763

contributions of the two views on time to perform joint feature learning during train-764

ing, XSleepNet outperforms the single-view baselines and multi-view baselines with a765

simple fusion strategy. However, while contextual information within PSG signals is766

incorporated into the above deep learning models, they neglect the inherent sequential767

traits and transition patterns within sleep stages.768

To use the trained SleepGPT model to improve sleep staging performance, we treat769

the sleep staging task as a speech recognition task and follow the pipeline in Fig. S5.770

The sleep staging model (SSM) is used to predict the most likely sleep stage given a771

PSG data epoch or preceding epochs, while the SleepGPT model is used to rectify the772

predicted sleep stage given past stages. That is, the output logits of the SSM PSSM(y)773

and those of the sleep language model (SLM) PSLM(y) are weighted by a factor α to774

obtain the final sleep stage prediction:775

P (y) = αPSSM(y|x) + (1− α)PSLM(y|y−), (8)

where x is the set of input data epochs, including the current and preceding epochs776

depending on whether a memory staging model is used, and y− is the set of preceding777
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sleep stages (context). Notably, the hyperparameter α governs the relative influences778

of these two models, ultimately steering the sleep stage prediction toward the highest779

probability outcome.780

Sleep Disorder Diagnosis with SleepGPT781

Sleep disorder diagnosis involves discerning the presence and specific type of sleep dis-782

order in an individual. This task is typically conducted either by sleep specialists or by783

ML models that leverage PSG data for automated assessment. ML-based approaches784

often include PSG data feature extraction, followed by the classification of sleep dis-785

orders. However, the high dimensionality of PSG data, coupled with a lack of labeled786

instances, makes it challenging to train an ML model with robust generalizability. The787

situation is even worse in the case of deep learning models, which commonly demand788

an extensive volume of labeled data to achieve optimal model performance.789

Pretrained language models, such as GPTs trained on expansive text corpora, can790

capture the intrinsic sequential characteristics of natural language. These pretrained791

sleep language models can function as feature extractors, processing text sequences792

to subsequently enable classification. Notably, these pretrained models can be fur-793

ther fine-tuned using limited-scale datasets, significantly enhancing the classification794

performance. This strategy, referred to as transfer learning, effectively addresses the795

challenge of limited sample size, and it has a proven track record of success across796

numerous NLP applications.797

Drawing inspiration from this pretraining and fine-tuning paradigm, we leverage798

the pretrained SleepGPTmodel as a feature extractor. We replace the subsequent stage799

prediction layer with a classifier and perform comprehensive fine-tuning to facilitate800

sleep disorder classification. Nevertheless, a challenge arises for the SleepGPT model801

in handling long sequences: the sequence length limitation. A whole-night (8-hour)802

sleep stage sequence comprises 960 time steps, significantly exceeding the sequence803

length restriction of the SleepGPT model. We address this by segmenting the overnight804

sequence into shorter sections. Initially, the SleepGPT model is employed to extract805

local context features from these short sleep stage segments. Subsequently, another806

sequential model (a transformer encoder) is used to capture the global contextual fea-807

tures from the SleepGPT output [67]. Finally, the resulting global context features808

are fed into a classification head to predict sleep disorder labels. The configuration809

of the hierarchical transformer network (HTN) is depicted in Fig. S6. This archi-810

tecture, which is tailored for lengthy sequence classification, is borrowed from the811

hierarchical attention network (HAN) and hierarchical transformers utilized for long812

text classification [68, 69].813

Additionally, to facilitate mini-batch training, we pad the short sleep stage814

sequences within a batch to achieve a uniform length. Subsequently, a mask matrix is815

employed to exclude the padded values during the computation of attention weights816

and the loss calculation. The loss function involves cross-entropy loss, which compares817

the predicted sleep disorder labels with the ground truth:818

U = {Ui}, ∀i ∈ [1, N ] (9)

zi = SleepGPT(Ui) (10)
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V = transformer encoder(Z) (11)

P (U) = softmax(Wcv0 + bc) (12)

L(U) = −
∑
i=1

logP (U ; Φ), (13)

where Ui is the ith segment, and N represents the number of segments within a819

sleep stage sequence. zi denotes the ith local feature vector generated by SleepGPT.820

Notably, Z = {z0, · · · , zN} and V = {v0, · · · ,vN} denote the input and output821

sequences of the transformer encoder, respectively. Here, z0 corresponds to the CLS822

token, while v0 represents the global feature vector at the CLS token’s output position.823

The CLS token in transformers is a special token added at the beginning of the input824

sequence, and its final output serves as a global representation of the entire sequence for825

tasks like classification [66, 70]. The parameters of the classification head are denoted826

as Wc and bc, and Φ includes the trainable parameters of the entire model.827

Baseline Models828

To evaluate the efficacy of the SleepGPT model, we utilized two baseline models829

for sleep staging tasks: TinySleepNet [12] and XSleepNet [23]. TinySleepNet is a830

lightweight architecture integrating a convolutional neural network (CNN) and long831

short-term memory (LSTM) components. It extracts local EEG signal features via832

the CNN, while the LSTM captures sequential dependencies between sleep epochs833

(refer to Fig. S7). Despite its simplicity, TinySleepNet exhibits competitive perfor-834

mance across various publicly available sleep datasets. XSleepNet, on the other hand,835

is a state-of-the-art sleep staging model that harnesses multi-view inputs, including836

raw signals and time-frequency images, to increase sleep staging accuracy. The model837

comprises two network streams, each learning from a distinct view, with a fusion838

strategy to integrate the contributions of the two views. Additionally, a bidirectional839

LSTM is employed to capture temporal dependencies within sleep stage sequences.840

XSleepNet has demonstrated superior performance over single-view and multi-view841

baselines by employing a simple fusion strategy. Further details regarding the XSleep-842

Net model can be found in [23]. However, to eliminate the impact of numerical843

precision and device-specific factors, we reimplemented the XSleepNet models using844

the PyTorch framework. Experiments were conducted with the reimplemented version845

of XSleepNet, referred to as XSleepNet-reimp.846

In the context of sleep disorder diagnosis based on stage sequences, two types847

of models were employed: empirical feature-based XGBoost classifiers and end-to-848

end deep neural networks. One XGBoost classifier was trained on statistical features849

extracted from the sleep stage sequences, including the percentage of each sleep stage,850

stage latency, stage duration, sleep efficiency, and transition probabilities between851

stages (as detailed in [53]). Another XGBoost classifier was trained on hypnodensity852

features, which represent the classification probabilities for each sleep stage, introduced853

by [26]. On the other hand, deep neural network models were trained directly on the854

raw sleep stage sequences. As a baseline end-to-end model (BaseNet), we employed the855

widely recognized fastText model for feasibility validation [71]. The fastText model856
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consists of an embedding layer followed by averaging operations and a hidden layer857

(Fig. S8). While extremely simple, it often matches the accuracy of deep learning858

classifiers and is significantly faster in both training and evaluation.859

Experimental Setup860

Settings for SleepGPT pretraining861

Importantly, the sleep stage vocabulary consists of only five ”words”, namely {W, N1,862

N2, N3, REM}, so it is significantly smaller than the vocabulary of a typical language863

model. Consequently, the size of SleepGPT is much smaller than the original GPT864

model. Specifically, the SleepGPT model architecture comprises 3 stacked transformer865

blocks, each having 6 attention heads and 48 hidden units. Both the token and position866

embeddings have a size of 48. Training is performed on the SHHS dataset for 50 epochs,867

utilizing a batch size of 256. The learning rate is set at 5e-4, and the Adam optimizer is868

employed, utilizing a cosine learning rate decay schedule. The training is implemented869

is done via the PyTorch framework and the HuggingFace Transformers library.870

Settings for sleep staging871

We adapted the original TinySleepNet and XSleepNet by eliminating the temporal872

LSTM layer, allowing them to make predictions based solely on the current EEG873

epoch. This exclusion of memory resulted in versions named TinySleepNet-nonseq and874

XSleepNet-nonseq. We deployed both TinySleepNet-nonseq and XSleepNet-nonseq875

and their original implementations, TinySleepNet and XSleepNet, for a thorough876

evaluation of the proposed SleepGPT model. The temporal sequential model has a877

sequence length of 15, utilizing the current and preceding 14 epochs to forecast the878

current sleep stage. All sleep staging models underwent 200 training epochs, utilizing879

a batch size of 256. A learning rate of 5e-4 was employed along with the Adam opti-880

mizer, implementing a cosine learning rate decay schedule. To determine a reasonable881

value for the weight α in Eq. 8, which influences the balance between the sleep staging882

model and the SleepGPT model, a grid search was conducted on an independent val-883

idation set. The evaluation of model performance involved ten-fold cross-validation,884

conducted at either the subject or session level, aligning with the evaluation proto-885

cols commonly adopted in related research. Independent validation experiments were886

also conducted to assess the generalization performance of the models across different887

sleep datasets.888

Settings for sleep disorder diagnosis889

Given that a sleep cycle typically spans approximately 90 minutes, multiple SleepGPT890

models were trained, each with distinct context sizes: 30, 60, 120, and 180 epochs891

(equal to 15, 30, 60, and 90 minutes, respectively). The context size directly influences892

the segment lengths of the sleep stage sequences used in our sleep disorder diagnosis893

HTN model. Despite the use of larger local context sizes, noteworthy performance894

gains were not observed. Instead, these larger sizes led to increased training time895

and memory utilization. Consequently, a context size of 60 epochs (30 minutes) was896
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selected for both the SleepGPT model and the HTN model. In the HTN architecture,897

the local feature extraction SleepGPT module adopts a configuration identical to that898

of the pretraining phase, facilitating the direct application of the pretrained model.899

For global feature extraction through the transformer encoder, one transformer block900

consisting of 6 attention heads and 48 hidden units is sufficient. Moreover, to validate901

the efficacy of pretraining, we trained the hierarchical sleep disorder diagnosis model902

entirely from scratch. Additionally, we evaluated the previously mentioned fastText903

model as a baseline in the context of the sleep disorder diagnosis task, facilitating904

direct comparison. Training was conducted for 100 epochs on both the CAP and905

MNC datasets, employing a batch size of 16. The learning rate was set at 5e-5, with906

optimization performed by the Adam optimizer with a cosine learning rate decay907

schedule. Furthermore, following previous protocols, both ten-fold cross-validation and908

independent-sample test were utilized to evaluate model performance.909

Reporting Summary. Further information on research design is available in the910

Nature Research Reporting Summary linked to this article.911
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