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Abstract  

   
 

Cardiovascular disease and diabetes are intricately related and influenced by factors within the 

“exposome”. Distinguishing between correlational and causal risk associations is challenging, 

especially at exposome scale. Here, we triangulate observational Exposure-Wide Association 

Study (ExWAS) evidence with “randomized” evidence for the exposome using mendelian 

randomization (MR) for almost 500 exposures. First, the ExWAS identified 144 significant 

factors for coronary artery disease (CAD) and 237 for type 2 diabetes (T2D), with 120 shared 

between both. These factors had modest predictive ability (variance explained) for both 

phenotypes. However, genetic-based causality was deduced for only 14 factors in CAD and 16 in 

T2D, with seven implicated in both. Additionally, we found strong concordance of MR-validated 

findings between prevalent and incident disease associations (85.7% [12/14] for CAD and 87.5% 

[14/16] for T2D). Most correlational findings pertain to lifestyle factors (particularly diet), but 

social educational factors are more prominently highlighted among those with causal support.  
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Introduction 

 
Type 2 diabetes (T2D)  and coronary artery disease (CAD) are causally related1 and carry a 

tremendous burden of disease worldwide. Environmental factors are hypothesized to have a 

major role in explaining their risk 2. The exposome 3 is a comprehensive way to assess the 

collective contribution of environmental and behavioral factors in cardiometabolic outcomes.  

One complexity of the exposome includes that there are multiple domains to examine, including 

social (e.g., education and income), behavior (dietary and lifestyle), physical-chemical (e.g., 

nutrients and chemicals), biological (e.g., infection), and ecosystem (e.g. air pollution) variables.   

In the past, exposure association studies have mostly analyzed a few variables from a handful of 

domains at a time with one or few health outcomes of interest, leading to potentially fragmented, 

false positive, biased, and irreproducible literature 4, that does not do justice to how multiple 

exposures are associated with the outcomes.  Genetic epidemiology studies have arguably solved 

some of these issues. Genetic variables, however, are very different from time-varying, non-

static, and densely correlated exposure variables 5. Nevertheless, the large-scale massive 

assessments of genetic epidemiology can be applied to some extent also in  assessing multiple 

exposures and multiple correlated and related outcomes6,7. 

 

Exposome-wide association studies (ExWASs), have been proposed in order to systematically 

analyze hundreds of exposome factors in multiple phenotypes that attempt to analyze across the 

diverse categories of exposure as a whole, while taking into account testing multiplicity 8,9. 

However, the degree by which instrumental variables can guide inference across the exposome is 

understudied 5.   Exposures of the exposome are known to be densely correlated among 

themselves 5,10,11. With the advent of biobank data with both measured genotypes, exposures, and 
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longitudinal phenotypic outcomes one can harness mendelian randomization (MR)1,12,13 as a way 

to triangulate evidence for potentially causal relationships independent of their dense correlation.  

 

We combine ExWAS and MR to identify the exposomic associations with T2D and CAD 

(Figure 1). First, we conducted an ExWAS systematically testing each of 495 individual factors 

of the exposome using a sample of 472,240 white European participants from the UK Biobank 

(UKB). and benchmarked the findings using two-sample MR with a FinnGen sample comprised 

of 218,957 participants. This allowed us to characterize which among a wide array of exposures 

have strongest evidence for causality.  
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Results 

Baseline characteristics  

We report the baseline characteristics of clinical and demographic variables including age, sex, 

average household income, HbA1c, systolic blood pressure, diastolic blood pressure, BMI, LDL, 

HDL, triglycerides, total cholesterol, family history for CAD, family history for T2D, prevalent 

CAD, prevalent T2D, and smoking history of the UK Biobank (UKB) cohort participants in 

Table 1. Briefly, the average age of participants was 56.76, 54.48% were female participants, and 

~64% of participants had an average household income of less than 52,000 Euros. Out of the 

472,240 European White individuals we utilize for our analysis, 7,426 have developed CAD and 

12,050 have developed T2D (after baseline visit) while considering those who had already 

developed CAD (n=10,772) or T2D (n=17,303) at baseline separately. Additionally, out of the 

218,957 participants in the FinnGen sample we utilize to benchmark our findings via two sample 

MR, 29,193 have developed T2D and 21,012 have developed CAD 14. 

 

 

Distribution of observational association sizes in incident CAD and T2D 

We associated 495 exposures (Extended Data Table 1) with CAD and T2D. With FDR<0.05, we 

identified 144 significant exposures for CAD (Supplemental Table 1, Figure 2, Supplemental 

Results) and 237 significant exposures for T2D (Supplemental Table 2, Supplemental Figure 1, 

Supplemental Results). Association per exposomic category (as defined3) for each disease are in 
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Extended Data Table 2. For CAD, exposomic category-wise representation among significant 

associations range from 2.33% (Ecosystems; exposomic factors pertaining to Ecosystems 

comprise 2.33% of significant associations) to 58.9% (Lifestyle). Similarly for T2D, category-

wise representation among significant associations range from 2.59% (Ecosystems) to 52.8% 

(Lifestyle) .  

 

For CAD, the IQR of HRs for significant continuous variables (for a 1 standard deviation [SD] 

change) that are protective factors is [0.89,0.94] and for risk factors it is [1.06, 1.11] while the 

IQR of HRs for significant binary variables that are protective factors is [0.75, 0.83] and for risk 

factors it is [1.25, 1.55]. For T2D, respectively, the IQR of HRs for significant continuous 

variables (for a 1 standard deviation [SD] change) are [0.86, 0.92] and [1.07, 1.13] and the IQR 

of HRs for significant binary variables are [0.64, 0.80] and [1.23, 1.53].  

 

We found 120 significant exposures shared between T2D and CAD (119 of which are 

concordant and one discordant in direction of effect). Additionally, we found 117 exposures 

specific to T2D and 24 exposures specific to CAD. The Pearson correlation between the beta 

coefficients of CAD and T2D is 0.56 and 0.30 among continuous and binary exposure factors, 

respectively (Figure 2).  

 

Concordance of findings between prevalent and incident disease ExWAS 

 

Additionally, we sought to assess the concordance of findings from ExWAS-identified 

associations for prevalent disease with those of incident disease. We associated 495 exposures 
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with prevalent CAD and T2D. With FDR<0.05, we identified 232 significant exposures for 

prevalent CAD (Supplemental Table 3) and 309 significant exposures for prevalent T2D 

(Supplemental Table 4, Supplemental Results).  

 

We found 137 significant exposures shared between prevalent and incident CAD (134 of which 

are concordant and 3 discordant in direction of effect). Furthermore, we found 62 exposures 

specific to prevalent CAD and 24 exposures specific to incident CAD. The Pearson correlation 

between the beta coefficients of prevalent and incident CAD is 0.53 and 0.38 among continuous 

and binary exposure factors, respectively (Supplemental Figure 2). Additionally, considering the 

prevalent disease ExWAS as our “diagnostic test”, we sought to compare the concordance of the 

prevalent CAD ExWAS with incident CAD ExWAS by computing the sensitivity and specificity 

of the prevalent CAD ExWAS test. We estimate the sensitivity to be 84.8% and specificity to be 

65.2% (Supplemental Table 5).  

 

Similarly, we compare the concordance between exposure associations for prevalent and incident 

T2D. We found 189 significant exposures shared between prevalent and incident T2D (184 of 

which are concordant and 5 discordant in direction of effect). Furthermore, we found 48 

exposures specific to prevalent T2D and 24 exposures specific to incident T2D. The Pearson 

correlation between the beta coefficients of prevalent and incident T2D is 0.79 and 0.75 among 

continuous and binary exposure factors, respectively. We estimate the sensitivity and specificity 

of the prevalent T2D ExWAS test relative to incident T2D ExWAS to be 88.5% and 61.9%, 

respectively (Supplemental Table 6). 
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MR-based assessment of observational ExWAS associations  

We sought evidence for genetic-based causality and performed bi-directional MR between each 

exposure-outcome pair for which Genome-wide Association Study [GWAS] summary statistics 

were available (for 123/144 (85.4%) of CAD FDR significant associations and 182/237 (76.8%) 

of T2D FDR significant associations) to test whether the observational associations from the 

ExWAS are potentially causal. In order to enhance comparability, we use odds ratios (ORs) of 

exposures computed from logistic regressions after assessing the concordance in estimates 

between hazard ratios computed from Cox proportional hazard models and odds ratios computed 

from logistic regressions (Supplemental Figures 3 and 4). We visualize the concordance (and/or 

discordance) between ExWAS and MR ORs among these exposure-disease pairs in Figure 3 for 

CAD (and Supplemental Figure 5 for T2D).  

We identified 14 associations as being nominally significant (p-value less than 0.05) in forward 

MR and not p-value significant in the reverse direction in CAD while also being found to be 

concordant in direction to the corresponding ExWAS associations. The IQR of the ORs for CAD 

among MR-validated associations was [0.38, 0.58] and [1.79, 6.15] for protective and risk 

factors, respectively. The IQR of ORs for T2D among MR-validated associations was [0.25, 

0.63] and [1.86, 2.38] for protective and risk factors, respectively.   We also formally tested the 

difference in effect sizes (absolute value of beta estimates) of MR-validated factors and non-MR-

validated factors with the Mann-Whitney test.  MR-validated factors had stronger effects than 

non-MR-validated ones for CAD (Mann-Whitney statistic (W) = 571, p-value = 0.0044) and 

possibly also for T2D (W= 935, p-value = 0.021). 
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The MR results for CAD and T2D are made available in Supplemental Tables 7 and 8, 

respectively. Additionally, we found 12 out of the 14 total (85.7%) prevalent ExWAS-identified 

associations validated by MR to be the same as the MR-validated ones for incident ExWAS for 

CAD. Similarly, we found 14 out of the 16 (87.5%) total prevalent ExWAS-identified 

associations validated by MR to be the same as the MR-validated ones for incident ExWAS for 

T2D.  

 

We describe the associations that were not only identified as significant from the ExWAS but 

also found to be significant (p-value less than 0.05) from the MR analysis for CAD (while also 

concordant in direction). The top 3 MR-validated protective factor associations (in order of 

increasing MR p-value) were having the educational qualification of A levels/AS levels or 

equivalent (MR OR: 0.39, MR p-value: 1.12x10-5, ExWAS OR: 0.71, ExWAS FDR: 1.92x10-26), 

having the educational qualification of college or university degree (MR OR: 0.57, MR p-value: 

3.51 x10-5, ExWAS OR: 0.66, ExWAS FDR: 3.57x10-44), and the age participant first had sexual 

intercourse (MR OR: 0.75, MR p-value: 4.08x10-5, ExWAS OR: 0.82, ExWAS FDR: 3.44x10-

45). The top 3 MR-validated risk factors were Townsend deprivation index at recruitment (MR 

OR: 1.75, MR p-value: 5.86x10-3, ExWAS OR: 1.14, ExWAS FDR: 9.23x10-20), having no 

educational or other professional qualifications (e.g. nursing, teaching) (MR OR: 1.83, MR p-

value: 0.0105, ExWAS OR: 1.51, ExWAS FDR: 6.22x10-49), and no type of physical activity in 

the last four weeks (MR OR: 10.5, MR p-value:  0.0313, ExWAS OR: 2.07, ExWAS FDR: 

2.37x10-73).   

 

We also report the proportion of MR-validated exposures by exposomic category for CAD. 
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Among social factors, 7.87% (7/89) were MR-validated and among lifestyle factors 5.3% (7/132) 

were MR-validated. More specifically, among education factors, 62.5% (5/8) were MR-validated 

and among dietary factors only 4.1% (3/73) were MR-validated. None were MR-validated 

among ecosystems and physical-chemical factors.  Similarly, we report the proportion of MR-

validated exposures by exposomic category for T2D.  Among social factors, 6.9% (6/87) were 

MR-validated and among lifestyle factors 6.8% (9/132) were MR-validated. More specifically, 

among education factors, 62.5% (5/8) were MR-validated and among dietary factors only 4.1% 

(3/73) were MR-validated. 4.8% (1/21) were MR-validated among physical-chemical factors and 

none were MR-validated among ecosystems factors.  

 

Next, considering ExWAS as our “diagnostic test”, we sought to better understand the 

concordance of our ExWAS test with respect to MR by computing the sensitivity and specificity 

of ExWAS. Therefore, we extended our MR analysis to compute associations for all ExWAS 

tested disease-exposure pairs for which GWAS summary statistics were available [518 (52.3% of 

990 total ExWAS-tested disease-exposure pairs)]. More specifically, we estimated the degree to 

which findings were both ExWAS significant and MR significant, or sensitivity (77.8% for CAD 

and 94.1% for T2D). Additionally, we estimated the degree to which ExWAS non-significant 

associations were also found to be MR non-significant, or specificity (37.3 % for CAD and 

26.3% for T2D) (Extended Data Tables 3 and 4).  

 

We observed a difference in the sensitivity and specificity of ExWAS between the lifestyle and 

social exposomic variable categories. For lifestyle factors, we estimate 70% sensitivity for CAD 

and 75% for T2D and (31.3% specificity for CAD and 21.4% for T2D) [Supplemental Tables 9 
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and 10]. For social factors, the sensitivity was 87.5% for CAD and 85.7% for T2D and 

specificity was 45% for CAD and 34.6% for T2D [Supplemental Tables 11 and 12]. The 

correlation between ExWAS and MR beta estimates were 0.146 and -0.0271 among binary and 

continuous variables, respectively.  

 

 

Additionally, we report evidence of reverse causal associations among p-value less than 0.05 

significant associations identified from MR for both CAD and T2D (~21%). For example, we 

identified major dietary changes in last 5 years due to illness (Reference category: no major 

dietary changes due to illness) in relation to CAD (MR OR: 2.159x103, MR p-value: 1.37x10-2, 

MR reverse OR: 1.01, MR reverse p-value: 4.73x10-8) and T2D (MR OR: 3.07x105,  MR p-

value: 5.69x10-5, MR reverse OR: 1.02, MR reverse p-value: 1.5x10-17).  

 

We identified 7 MR associations (5 education-related variables and 2 lifestyle factors [age first 

had sexual intercourse and usual walking pace]) in both T2D and CAD (Table 2). These 

variables included age first had sexual intercourse, educational qualification of college or 

university degree, usual walking pace, having no educational or other professional qualifications 

(e.g. nursing, teaching), educational qualification of A levels /AS levels or equivalent, 

educational qualification of O levels/GCSEs or equivalent, age completed full time education. 

For example, we identified the educational qualification of college or university degree to be 

among the top associations for both T2D (MR OR: 0.407, MR p-value: 5.49x10-10, ExWAS OR: 

0.54, ExWAS FDR: 2.64x10-137) and CAD (MR OR: 0.566, MR p-value: 3.51 x10-5, ExWAS 

OR: 0.657, ExWAS FDR: 3.57x10-44). Furthermore, we found all of the factors to be protective 
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except for having no educational or other professional qualifications (e.g. nursing, teaching) 

which we found to be a risk conferring factor for both CAD (MR OR: 1.83, MR p-value: 0.0105, 

ExWAS OR: 1.51, ExWAS FDR: 6.22x10-49) and T2D (MR OR: 2.59, MR p-value: 2.68x10-4, 

ExWAS OR: 1.81, ExWAS FDR: 3.92x10-163). 

  

 

Assessing the variance of cardiometabolic diseases explained by exposomic, demographic, 

genetic and clinical risk factors  

 

We contextualize the variance (computed as Nagelkerke R2) explained by validated exposomic 

factors with demographic risk factors (Extended Data Table 5). Briefly, for each incident disease 

we run two major sets of models: a) regressing incident disease status on demographic factors 

and b) regressing disease status on demographic factors and exposomic factors. Additionally, we 

ran sets of models where we constrained the space of exposomic factors to just MR-validated 

exposures in addition to separate sets of models considering a wider array of 196 exposures 

measured (albeit limited by number of complete cases), cumulatively leading to the specification 

of models A-I (Extended Data Table 5). 

 

For incident CAD, we find that 42.3% of the variance explained by exposomics and 

demographics can be explained by exposomics alone. Additionally, 15.8% of the variance 

explained by the model including MR validated exposures and demographics is explained by 

MR-validated exposures alone. Moreover, we observed how the variance explained by the 

models change after adjusting for T2D PRS and BMI. Exposomic variables alone account for 
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60.5% of the variance explained by the full model. Similarly, MR validated exposures alone 

account for 18.9% of the variance explained by the full model. We describe the T2D results in 

the Supplemental Results section. 

 

Additionally, we computed the Nagelkerke R2 from logistic regression models that were run by 

serially adding exposomic factors to the previous model in order of increasing FDR-corrected p-

values in addition to the baseline demographic and clinical risk factors (Figure 4). The IQR of 

the absolute value of pairwise correlations of the 196 exposures was [0.01, 0.08] (Supplemental 

Figure 6). For CAD and T2D, the Nagelkerke R2 for models ceased to increase when 

incorporating beyond the top 175 exposures by FDR-corrected p-values.  

 

Contextualization of MR-validated exposures in risk for cardiometabolic disease with 

established clinical risk factors 

Finally, we run clinical risk factor models for CAD and T2D consisting of age, sex, family 

history, BMI, systolic blood pressure, diastolic blood pressure, HbA1c, LDL, HDL, triglycerides, 

total cholesterol, and smoking history (inspired by prior literature 15,16 ). We compare the effects 

of these factors with those of seven MR-validated exposures commonly implicated in CAD and 

T2D (Supplemental Table 13). As shown, the magnitude of the effects of the MR-validates 

exposures matches or sometimes even exceeds the magnitude of the effects of established 

clinical risk factors.   
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Discussion 

Our analysis integrates ExWAS and MR methods to characterize the exposomic architecture of 

factors associated with cardiometabolic disease, made possible by use of biobank data, such as 

UK Biobank and FinnGen. Using ExWAS, we identified 144 (out of 495 [29.1%]) and 237 

factors (out of 495 [47.9%]) for CAD and T2D, respectively. The larger number of factors 

identified for T2D may reflect, at least in part, the larger power available for T2D which was 

more common an outcome than CAD. Overall, statistically significant associations for these 

major outcomes seem to be too numerous. This may explain also the plethora of significant 

associations published in the epidemiological literature, where exposures are usually tested one 

at a time or a few at a time 17.  

 

However, for both CAD and T2D the magnitude of the effect sizes of ExWAS-identified factors 

was modest. Furthermore, the vast majority of them showed no causal evidence on MR 

assessment. MR is an approach that uses genetic variants as “instruments” to test for a potential 

causal association between exposures and disease 12. From our MR analysis, the validated factors 

tended to have somewhat larger effect sizes than those seen with simple observational correlation 

analyses in ExWAS. Only 14 (9.72%) and 16 (6.75%) of ExWAS findings were concordant with 

MR findings for the two phenotypes, CAD and T2D, respectively. We observed higher causality 

rates among social and more specifically, education-related factors than for lifestyle factors, even 

though the latter accounted for the vast majority of ExWAS associations. While ExWAS may be 

fairly sensitive when a large database like the UK Biobank is analyzed, specificity is quite low 

for T2D and CAD relative to MR, if MR is seen as the gold standard.   

 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 27, 2024. ; https://doi.org/10.1101/2024.10.26.24316153doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.26.24316153
http://creativecommons.org/licenses/by-nd/4.0/


 

15 

The strong presence of education-related variables among the apparently causally validated ones 

is in line with other studies, including MR-based ones. For example, Tillmann et al. found that  

educational attainment is causal and protective (OR: 0.67 for a 1 SD increase in higher education 

roughly corresponding to 3.6 years of additional schooling18)  risk factor for coronary artery 

disease in the Coronary Artery Disease Genetics Consortium (CARDIoGRAMplusC4D), also 

suggesting increased levels of education have a protective effect 18. Additionally, we identified 

some factors suggestive of behavior including the age first had sexual intercourse in association 

with CAD and T2D risk and this is also in accordance with prior evidence19.  Focused and 

intense “lifestyle” interventions that target weight loss for individuals with elevated glucose have 

been developed that have causally led to decreases in T2D incidence20. Interventions may need 

to be tailored and tested targeting social and, in particular, educational factors. Such 

interventions would require a broader community outlook. Life course studies that examine 

education early in life may also be needed.  

 

Conversely, among many lifestyle dietary factors, none survived MR scrutiny for causality in our 

data. While some factors may not have been detected in MR analyses due to low power, the 

overall pattern suggests a disjoint between correlational and causative structures of different 

types of factors associated with these two major disease phenotypes. With rare exceptions, 

detected associations with lifestyle factors (most prominent among them being dietary factors 

may reflect plain correlations rather than causal relationships.  This is congruent with the 

evidence that while millions of published articles present or discuss observational associations 

with specific dietary and other lifestyle factors, the far smaller corpus of interventional 

randomized trials relevant to these exposures yields mostly null results21, 22. Moreover, other 
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investigators using MR methods in large genetic consortia for CAD, T2D and ischemic stroke 

found no causal evidence for any of the dietary factors that they tested and found only one causal 

association (with fat) for heart failure23.   

 

Overall, we provide an overview of the currently measured exposomic risk architecture shared 

between T2D and CAD. Specifically, we can explain up to ~8% and ~12% in CAD and T2D 

outcomes respectively with current biobank scale measurements leaving much to be ascribed to 

newer measurements and instruments 3. However, we find low concordance between MR and 

ExWAS for both CAD and T2D. Restricting the variables to just MR-implicated findings, we 

find that these variables explain 2 and 3% of variation, in CAD and T2D respectively. Although 

a crude comparison, heritability ranges have been reported from 30-50%, leaving much to be 

explained with the exposures considered in this study.  The main reason for lack of concordance 

includes confounding with ExWAS findings reflecting false positive associations.  Additionally, 

we suggest potential classes of exposures to assay for a larger number of participants and with 

greater resolution in the future. For example, the physical-chemical exposome (e.g., chemical 

pollutants, etc.) needs to be more comprehensively assayed at biobank scale 24.  

 

We also note limitations of our study. First, given the small sample size of individuals of non-

White ethnic groups, we expect the results to have high uncertainty in MR approaches; therefore, 

we have excluded other ethnic groups from our analysis. A systematic review of MR studies for 

CAD suggests that direction of effects of modifiable risk factors tends to be similar in different 

ethnic groups, but differences in magnitude of effects may not be uncommon25. Second, MR 

methods may also have bias and flaws, and they are not a perfect gold standard by any means. 
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Limited power may lead to false-negative findings for causality26, but some biases may actually 

also create larger causal effects27.  Third, it is unclear if we have addressed confounding for all 

domains of exposures as there is no consensus on which adjustment factors to use for the 

different domains; future work could look at optimizing the difference between observational 

and MR associations as a function of covariate selection.  Results may vary depending on what 

analytical choices are made28.  

 

Finally, prevalent disease outcome data coupled with genetic variant data as instrumental 

variables for MR may suffice to identify exposures, especially when working with cohorts 

without sufficient longitudinal outcome follow-up data. This is evidenced by the high degree of 

commonality of MR-validated exposures between prevalent and incident disease ExWAS-

identified associations (85.7% [12 out of 14 total] for CAD and 87.5% [14 out 16 total] for T2D). 

However, prevalent and incident outcome data may each have its sets of distinct biases.  

 

In conclusion, MR-validated factors for CAD and T2D are far fewer than the rich range of 

factors identified by ExWAS. Causality also seems more commonly documented for educational 

factors, while lifestyle factors have many ExWAS signals, but these rarely have MR causal 

support. Additional similar analyses in more cohorts with relevant information would be useful 

to expand evidence on the robustness of these findings.  
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Online Methods 

Study population 

The UK Biobank cohort is a prospective cohort including over 500,000 participants of ages 40-

69 during recruitment from 2006-2010 13.  Differences between the UK Biobank cohort 

individuals and the general UK population were studied by Fry et al. in order to better 

understand sampling uncertainty 14. Their study suggested that nonparticipants are more likely to 

be male, younger, and live in more socioeconomically deprived areas than UK Biobank 

participants 14. Information regarding how the UK Biobank data is maintained and validated can 

be found at 

https://biobank.ndph.ox.ac.uk/~bbdatan/Data_cleaning_overall_doc_showcase_v1.pdf. 

The National Research Ethics Service Committee North West Multi-Centre Haydock has 

approved the UKB cohort research and written informed consent to participate in the study was 

provided by all participants15. We analyzed n = 472,240 European White individuals (out of total 

N =�502,628 participants in the cohort). The other top three ethnicities represented (by sample 

size) in the UKB cohort (Indian, Caribbean, and African) were low in sample size (Indian n = 

5,951, Caribbean n = 4,517, African n = 3,394) when integrating exposure data and therefore we 

may not have adequate power for detection of associations. Given the small sample size of 

individuals of non-white ethnic groups, we expect the results to have high uncertainty and thus 

the correlations would be weaker; therefore, we have excluded other ethnic groups from our 

analysis. Approval for the use of this data was approved by the UK Biobank (project ID: 22881). 

The Harvard internal review board (IRB) deemed the research as non-human subjects research 

(IRB: IRB16-2145). Formal consent was obtained by the UK Biobank (https:// 

biobank.ctsu.ox.ac.uk/ukb/ukb/docs/Consent.pdf). 
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Cardiometabolic disease outcomes  

In our study, we investigate two major cardiometabolic incident outcomes in the UKB, including 

coronary artery disease (CAD) and type 2 diabetes as ascertained by using ICD-10 and self-

reported disease status information (Supplemental Table 14). We identify cases of CAD and T2D 

as ones that occur after the baseline visit (incident cases) while considering individuals who have 

the disease at baseline (prevalent cases) separately. 

 

Categorizing ecosystems, lifestyle, social, and physical-chemical exposures 

We considered 538 total variables of which we had an adequate number of complete cases to 

investigate 495 “exposures” that can be categorized (as per Vermeulen et al. 3 ) as ecosystems, 

lifestyle, social, and physical-chemical factors throughout the paper. We utilize the data for these 

exposures collected during the participants’ baseline visits (2006-2010).  These 495 exposures 

spanned 17 UK Biobank-defined categories (e.g., education, smoking, greenspace and coastal 

proximity, sun exposure, estimated nutrients yesterday) (Extended Data Table 1). 

 

We averaged quantitative factors (e.g., infectious antigens [25 exposures]) across measurements 

from multiple visits. For exposures that did not have many observations in subsequent instances, 

we used only the data from the baseline visit (first instance of measurement collected during 

2006–2010) (e.g., environmental factors from the estimated nutrients yesterday category). We 

also performed rank-based inverse normal transformation (INT) of these factors (as was 

suggested by Millard et al. 29). For categorical variables (which were also collected from multiple 

visits of a participant to the assessment center), we used data from the baseline visit (first 
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instance of measurement collected during 2006–2010) as this contained the highest number of 

observations. Additionally, categorical variables with multiple levels were converted to sets of 

binary variables where each binary variable indicates whether a participant has a given value of 

this variable (as was suggested by Millard et al. 29). Ordinal categorical environmental factor 

variables were analyzed by treating such variables as continuous variables and real-valued 

quantitative environmental factor variables were scaled. 

 

Data-driven identification of exposure-disease associations 

 

We used Cox proportional hazard models to associate each of the 495 factors and each of the two 

cardiometabolic diseases: CAD (coronary artery disease), T2D (type 2 diabetes) [individually], 

while adjusting for sex, age, assessment center, ethnicity, average total household income after 

tax, and 40 genetic principal components (computed and provided by the UK Biobank). We 

adjust resulting p-values of associations for multiple comparisons using the false discovery rate 

(FDR) approach 30. We report hazard ratios and FDR-adjusted p-values for the associations. 

Additionally, we run logistic regression to enhance comparison for downstream analyses (i.e. 

MR). 

 

Concordance between observational and MR-based exposure-disease associations 

We performed two-sample bidirectional mendelian randomization for all associations for which 

there were available GWAS summary statistics for the corresponding exposures (n = 292 

exposures). We perform bidirectional MR to account for potential reverse causality 31. We used 

GWAS summary statistics for identifying instruments for each exposure from GWAS summary 
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statistics generated by the Neale Lab32 and MRC IEU OpenGWAS 33 and made freely accessible 

on the MR-Base platform 33. We use the TwoSampleMR R package 33 to test the identified 

instruments for each exposure for each of the two outcomes using summary statistics of GWAS 

from the FinnGEN cohort (https://www.finngen.fi/en). Summary statistics from FinnGen were 

adjusted by sex, age, genotyping batch, and ten principal components. We utilize the FinnGen 

sample of 218,957 participants to validate our findings via two sample MR. Among these 

participants,  29,193 have developed T2D and 21,012 have developed CAD 14. Additionally, we 

used the following thresholds to ascertain genetic instruments including p-value < 5x10-8, 

linkage disequilibrium (LD) R2: 0.001, and clumping distance of 10000 kb. We report causal 

estimates computed using the inverse-variance weighting (IVW) method between each exposure-

disease pair.  

 

Assessing the variance of cardiometabolic diseases explained by exposomic and 

demographic risk factors 

 

We estimated the variance (computed as Nagelkerke R2) explained by validated exposomic 

factors with demographic risk factors (Extended Data Table 6). Briefly, for each disease we run 

two major sets of logistic regression models: a) regressing disease status on demographic, 

genetic risk score (for CAD and T2D) and clinical (BMI for T2D) factors and b) regressing 

disease status on demographic factors and exposomic factors. Additionally, we ran sets of 

models where we constrained the space of exposomic factors to just MR-validated ones in 

addition to separate sets of models considering a wider array of 196 exposures measured (albeit 

limited by number of complete cases). Finally, we ran logistic regression models serially adding 
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exposomic factors to the previous model in order of increasing FDR-corrected p-values until we 

ran the final model including the full wider array of exposomic factors (in addition to the 

baseline demographic and clinical risk factors). Additionally, pairwise correlations between 

categorical and numeric exposure variables were computed using the “polycor” R package.  
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Figure Legends 

Figure 1. Schematic overview of analysis of exposome-wide risk architecture of T2D and 

CAD. This schematic diagram depicts our analytic workflow. (a) Exposure-wide association 

study (ExWAS) was performed to discover exposure-disease associations for T2D and CAD in 

the UK Biobank.  (b) Two Sample bi-directional mendelian randomization (MR) was performed 

to replicate ExWAS-identified associations and test for causality. Briefly, genetic instruments for 

exposures were identified from the UK Biobank sample and tested on the FinnGen sample with 

respect to CAD and T2D  

 

Figure 2. Exposomic architecture of CAD. This multipanel figure depicts exposome-wide 

findings for CAD. (a) Volcano plot of ExWAS associations for CAD. We visualize the FDR-

corrected p-values on the negative log 10 scale versus hazard ratios of exposures. The red color 

indicates FDR < 0.05 significant associations and blue color indicates FDR > 0.05 associations. 

Top five associations are labeled. (b) Distribution of hazard ratios of ExWAS associations for 

CAD and T2D stratified by significance. The distribution of the hazard ratios (HR) computed 

from the absolute value of the regression beta coefficients for CAD and T2D are depicted with 

empirical cumulative distribution function plots and are colored by ExWAS significance. The 

distribution of HRs for exposures that are ExWAS FDR less than 0.05 significant are depicted in 

red. The distribution of HRs for exposures that are ExWAS FDR greater than 0.05 are depicted 

in blue. For the underlying dataset, n=472,240. (c) Distribution of p-values of ExWAS and 

MR associations for CAD and T2D. The distributions of all p-values derived from ExWAS for 

CAD and T2D are depicted with empirical cumulative distribution function plots. For the 

underlying dataset, n=472,240. (d) Association size of CAD versus T2D for 495 exposures. 
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The hazard ratios (HR) of CAD versus T2D for 495 different exposures. Exposures that are FDR 

less than 5x10-4 significant for both CAD and T2D deviate and have HRs either less than 0.5 or 

greater than 2 for either disease are labeled and shown with error bars corresponding to the 95% 

confidence intervals for both CAD and T2D. The black dashed line on the scatterplot represents 

a linear regression line. For the underlying dataset, n=472,240. 

 

Figure 3. ExWAS association size versus MR causal estimate for CAD. The odds ratios (OR) 

computed from ExWAS versus the OR computed from MR for 260 different exposures in 

association with CAD. The blue color indicates evidence for potential reverse causality and the 

red color indicates no evidence for potential reverse causality. Triangles indicate associations 

with significant MR p-values. Horizontal and vertical black lines demarcate OR of 1 (null 

association). For the underlying datasets, n=472,240 for the UK Biobank sample and n = 

218,957 for the FinnGen sample. 

 

Figure 4. Visualizing the change in variance explained by step-wise addition of exposomic 

variables to baseline model of demographic and clinical risk factors compared to exposure-

specific univariate models. We visualize the Nagelkerke R2 of each model constructed by step-

wise addition of exposomic factors in descending order of FDR significance to the original 

baseline model comprised of demographic, genetic risk score (for CAD and T2D) and clinical 

(BMI for T2D) factors. Black dot indicates variance explained by the baseline model. Top 

exposures (by FDR) for the multivariable analysis are labeled. We also overlay the univariate 

(exposure) model results. We visualize the cumulative exposure-specific Nagelkerke R2 as we 

iterate through each univariate (exposure) model in descending order of FDR significance with 
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smaller point size for both CAD and T2D, separately. 
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Tables 

Variable (units) Label Mean (SD) or Percentage 
Age (years) Age 56.76 (8.028) 
Sex (%) Female 54.48 
Sex (%) Male 45.52 
Avg. household income (%) < 18,000 19.07 
Avg. household income (%) 18,000 to 30,999 21.74 
Avg. household income (%) 31,000 to 51,999 22.43 
Avg. household income (%) 52,000 to 100,000 17.55 
Avg. household income (%)  > 100,000 4.65 
HbA1c (mmol/mol) HbA1c 35.96 (6.517) 
Systolic pressure (mm Hg) Systolic pressure 139.9 (19.68) 
Diastolic pressure (mm Hg) Diastolic pressure 82.16 (10.68) 
BMI (kg/m2) BMI 27.41 (4.783) 
LDL (mmol/L) LDL 3.57 (0.87) 
HDL (mmol/L) HDL 1.45 (0.383) 
Triglycerides (mmol/L) Triglycerides 1.75 (1.02) 
Total cholesterol (mmol/L) Total cholesterol 5.71 (1.14) 

Family history for CAD (%) 
Family history for 
CAD 39.8 

Family history for T2D (%) 
Family history for 
T2D 17.1 

Smoking (%) Never 53.94 
Smoking (%) Previous 35.55 
Smoking (%) Current 10.5 
Prevalent CAD (%) Prevalent CAD 2.28 
Prevalent T2D (%) Prevalent T2D 3.66 
 

Table 1. Sample baseline characteristics. 
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Exposure 
CAD MR 
OR 

CAD MR p-
value 

CAD ExWAS 
OR 

CAD ExWAS 
FDR T2D MR OR 

T2D MR 
p-value 

T2D 
ExWAS 
OR 

T2D ExWA
FDR 

Qualifications: A 
levels/AS levels or 
equivalent 0.386 1.12E-05 0.705 1.92E-26 0.419 7.02E-04 0.627 2.97E-
Qualifications: 
College or 
University degree 0.566 3.51E-05 0.657 3.57E-44 0.406 5.49E-10 0.54 2.64E-1
Age first had 
sexual intercourse 0.749 4.08E-05 0.821 3.44E-45 0.626 1.50E-10 0.826 6.85E-
Age completed full 
time education 0.598 3.59E-04 0.896 9.84E-11 0.551 1.55E-03 0.876 3.42E-
Qualifications: 
None of the above 1.825 1.05E-02 1.51 6.22E-49 2.591 2.68E-04 1.81 3.92E-1
Qualifications: O 
levels/GCSEs or 
equivalent 0.398 1.38E-02 0.797 8.78E-18 0.21 7.12E-04 0.731 2.40E-

Usual walking pace 0.592 1.81E-02 0.74 7.65E-115 0.233 1.34E-06 0.625 < 1E-163 
 

Table 2. Exposomic variables significant in both MR and ExWAS and in both phenotypes. 
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Table Legends 

  

Table 1. Sample baseline characteristics. This table shows the mean (and standard deviation) 

or percentage of key clinical and demographic variables for the sample of White UKB 

participants that were primarily used for our analysis including age, sex, average household 

income, HbA1c, systolic blood pressure, diastolic blood pressure, BMI, LDL, HDL, 

triglycerides, total cholesterol, family history for CAD, family history for T2D, prevalent CAD, 

prevalent T2D, and smoking history.   

 

Table 2. Exposomic variables significant in both MR and ExWAS and in both phenotypes. 

This table includes MR-derived odds ratios (ORs) and p-values and ExWAS-derived ORs and 

FDR-corrected p-values for the seven exposomic variables we found significant in both MR and 

ExWAS in both phenotypes. 
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Extended Data Table Legends 

 

Extended Data Table 1. Exposure variable breakdown. This table shows the exposure 

categories as defined by Vermeulen et al.3  as well as the UKB, the number of variables within 

each category, the class of the variable category (i.e. whether the category contains biomarker 

(B), geographic (G) or questionnaire (Q) variables), and some example variables within each 

category. 

 

Extended Data Table 2. ExWAS-identified enrichment of exposomic categories (as defined 

by Vermeulen et al.3) for each disease. This table shows the breakdown of the percentage of 

ExWAS-identified FDR < 0.05 associations by exposure categories as defined by Vermeulen et 

al for CAD and T2D. 

 

Extended Data Table 3. Observational versus MR significance classification table for CAD. 

This table includes estimates of false positives, false negatives, true positives, true negatives 

when comparing ExWAS findings with respect to gold-standard causal estimates obtained from 

MR for CAD. True Positives were ascertained as associations that had observational and MR 

beta estimates concordant in direction in addition to the aforementioned observational and MR 

significance criteria. 

 

Extended Data Table 4. Observational versus MR significance classification table for T2D.  

This table includes estimates of false positives, false negatives, true positives, true negatives 

when comparing ExWAS findings with respect to gold-standard causal estimates obtained from 
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MR for T2D. True Positives were ascertained as associations that had observational and MR beta 

estimates concordant in direction in addition to the aforementioned observational and MR 

significance criteria. 

 

Extended Data Table 5. Breakdown of variance (R2) explained by exposomic and MR-

validated exposomic factors with demographic risk factors.  This table contextualizes the 

variance (computed as R2) explained by exposomic, MR-validated exposomic factors with 

demographic risk factors. Delta R2 is computed as the difference between R2 computed from full 

model and R2 computed model only including demographic and clinical risk factor covariates. 

 

Extended Data Table 6. Baseline demographic breakdown of samples used for models A-I. 

This table shows the breakdown of the mean and shows the mean or percentage of key 

demographic variables for the samples of White UKB participants that were primarily used for 

our models A-I including age, sex, average household income, and assessment center. 
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