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Abstract 33 
 34 
Polygenic scores (PGS), which aggregate the effects of genetic variants to estimate 35 
predisposition for a disease or trait, have potential clinical utility in disease prevention and 36 
precision medicine. Recently, there has been increasing interest in using deep learning (DL) 37 
methods to develop PGS, due to their strength in modelling complex non-linear relationships 38 
(such as GxG) that conventional PGS methods may not capture. However, the perceived value 39 
of DL for polygenic scores is unclear. In this study, we assess the underlying factors impacting 40 
DL performance and how they can be better utilised for PGS development. We simulate large-41 
scale realistic genotype-to-phenotype data, with varying genetic architectures of phenotypes 42 
under quantitative control of three key components: (a) total heritability, (b) variant-variant 43 
interaction type, and (c) proportion of non-additive heritability. We compare the performance 44 
of one of most common DL methods (multi-layer perceptron, MLP) on varying training sample 45 
sizes, with two well-established PGS methods: a purely additive model (pruning and 46 
thresholding, P+T) and a machine learning method (Elastic net, EN). Our analyses show EN 47 
has consistently better overall performance across traits of different architectures and training 48 
data of different sizes. However, MLP saw the largest performance improvements as sample 49 
size increases. MLP outperformed P+T for most traits and achieves comparable performance 50 
as EN for numerous traits at the largest sample size assessed (N=100k), suggesting DL may 51 
offer some advantages in future when they can be trained on biobanks of millions of samples. 52 
We further found that one-hot encoding of variant input can improve performance of every 53 
method, particularly for traits with non-additive variance. Overall, we show how different 54 
underlying factors impact how well methods leverage non-additivity for polygenic prediction. 55 
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Introduction 57 
 58 
Polygenic scores (PGS), which aggregate the effects of many genetic variants into a single 59 
number, have become an important tool to predict the genetic predisposition of an individual 60 
towards a phenotype and have been shown to have promising utility such as in disease 61 
prevention and precision medicine1–3. There is increasing interest in using deep learning (DL) 62 
approaches to develop PGS of complex traits4–11. Known as universal function 63 
approximators12,13, the value of deep learning models is in their ability to model complex non-64 
linear effects among genetic variants and their flexibility in combining with other non-genetic 65 
factors for subsequent applications (e.g. disease related biomarkers and environmental factors 66 
for disease risk models).  67 
 68 
Human traits, including quantitative traits and diseases, are heritable to varying degrees and 69 
many of them have been found to have a highly polygenic architecture (i.e., their variance is 70 
accounted for by many thousands or even millions of genetic variants genome-wide)14. While 71 
studies have shown that for most phenotypes15,16 the associated variants contribute largely in a 72 
linearly additive manner, non-linear interaction effects (GxG) are present and sometimes make 73 
a substantial contribution to the genetic variation of phenotypes, e.g. autoimmune diseases7,17. 74 
 75 
It has been shown that common machine learning methods, such as elastic net and gradient 76 
boosting trees, can capture GxG in the genetic prediction of common traits and diseases5,18,19, 77 
frequently improving PGS performance. While these methods do not explicitly model 78 
interaction terms, GxG can still be captured to an extent through variant encoding or inherently 79 
non-linear structures of the model. Deep learning methods readily model complex non-linear 80 
relationships and have recently been proposed for PGS development of various human traits4–81 
7,20,21. DL methods have been found to improve PGS of several traits and diseases, such as breast 82 
cancer6, Alzheimer’s disease10 and  type 1 diabetes7, but in many cases substantially improved 83 
performance over simpler machine learning models has not been found4,5,7. DL methods may 84 
also be susceptible to confounding by joint tagging effects, whereby GxG is in fact attributed 85 
to unaccounted additive genetic variants, and only provide moderate improvements in 86 
prediction performance even under extreme genetic architectures.22 87 
 88 
Despite substantial efforts, it remains unclear under what conditions (if at all) DL may offer an 89 
advantage over simple approaches to polygenic score construction. Here, we investigate how 90 
and to what extent key factors of genetic architecture and sample size affect the performance 91 
of PGS models and in particular, under what circumstances DL methods outperform linear 92 
models. To answer these questions, we simulated genotype data of 100,000 individuals with 93 
realistic linkage disequilibrium (LD) patterns, and phenotypes whose genetic architectures 94 
were of varying: (a) total heritability (broad sense), (b) types of GxG interaction, and (c) 95 
proportion of non-additive heritability. We compared the performance of a suite of common 96 
methods for PGS development of these simulated phenotypes, which included a univariate 97 
linear model (pruning and thresholding), a regularized linear regression (elastic net), and a deep 98 
learning approach (multi-layer perceptron). We also investigated the impact of training data 99 
sizes and variant encoding types on the performance of these methods. Our findings inform 100 
study designs and methodology selection for future PGS development. 101 
 102 
 103 
 104 
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Methods 105 
 106 
Simulating genotypes  107 
 108 
HAPGEN223 was used to simulate genotypes with realistic linkage disequilibrium (LD) 109 
patterns. As an empirical reference panel from which to draw haplotypes, we utilised 110 
chromosome 22 (171,457 variants in total) from 99 individuals of the phase 3 of the 1000 111 
Genomes project24 (Finnish subset). This reference panel was used to generate 100,000 112 
simulated individual haplotypes which after conversion to genotypes contained 100,455 113 
variants (after keeping variants with minor allele frequency (MAF) between 1% and 40%). No 114 
variant was found to violate the Hardy-Weinberg equilibrium (p<10-6) using PLINK25.  115 
 116 
Simulating phenotypes  117 
 118 
Phenotypes (in this study, continuous traits) were simulated using the simulated genotypes 119 
above, where genotypes were coded in a minor allele dosage format {0, 1, 2}. For each 120 
phenotype, a total of 1,000 variants were randomly chosen (~1% of the total variants in the 121 
simulated dataset) and were given an effect size randomly drawn from a normal distribution 122 
with a standard deviation 𝜎! (others have effect sizes of 0): 123 

𝛽𝑗			̴̴		𝑁!0, 𝜎𝛽"	 (1). 124 

After all the 1,000 variants were given a linear effect size, as drawn from equation (1) with 𝜎! 125 
initialised at 0.01, these effect sizes were used to scale the non-additive heritability for the trait. 126 
Of these 1,000 causal variants, if the trait was influenced by GxG, 500 of them (250 variant-127 
variant pairs are randomly sampled) were given non-additive effects, which were modelled 128 
according to the two locus interaction types from Li and Reich26. A non-additive effect was 129 
simulated under a given combination of effect alleles for both variants according to four 130 
interaction types: threshold (“T”), recessive/recessive (“RR”), exclusive/or (“XOR”), and 131 
heterozygote/heterozygote (“HH”, previously named as “m16”26) (Figure 4). If an individual 132 
contains this specific combination of effect alleles, these variants will exhibit a variant 133 
interaction effect on their phenotype.  134 
 135 
The GxG interaction effect for a given pair of variants 𝑘 of sample 𝑖 is determined by the 136 
following equation: 137 
 138 

I$,& = 	𝑍$,& 	γ'	 (2)
𝑤ℎ𝑒𝑟𝑒:		𝛾& 			̴̴	𝑁80, 𝜎(9

 139 

 140 
where 𝑍$,& is an indicator function for the GxG interaction types (Figure 4) for interacting 141 
variant pair 𝑘 of sample 𝑖 and is either 1 or 0 depending on the combination of genotypes and 142 
the GxG interaction type; if 	𝑍$,& = 1 (i.e. a given interaction type exhibits), the interaction 143 
effect size is drawn from a normal distribution. 𝜎( is initialised at 0.01 and scaled with respect 144 
to the total (i.e. additive and non-additive) genetic variation within the phenotype to control 145 
the level of non-additive variation contributing towards the phenotype (See below).  146 
 147 
As well as GxG interaction effects and linear effects, there was also a proportion of noise in 148 
the phenotype that genetics do not explain, i.e. a non-heritable contribution. This was modelled 149 
as follows: 150 
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𝜖$ 			̴̴	𝑁(0, 𝜎)*$+,) (3) 151 
 152 
where 𝜎)*$+, is scaled to fix the heritability of the trait.  153 
 154 
The above equations combine for the phenotype like so: 155 

																																																																𝑃$ = G- + I- + 𝜖$ 																																																																				(4) 156 

𝑤ℎ𝑒𝑟𝑒, 𝐺$ = ∑ 𝑥$,.𝛽./
. , 𝐼$ = ∑ 𝑍$,&γ'0

& , 157 

	𝛽. 		̴̴	𝑁80, 𝜎!9, 𝛾& 		̴̴	𝑁80, 𝜎(9, 𝜖$ 		̴̴	(0, 𝜎)*$+,), 158 

𝐺$ , 𝐼$  and 𝜖$  are the combined linear effects, combined non-additive effects for variants 159 
exhibiting interactions and the noise for sample 𝑖  respectively; 𝑥$,.  is the number of effect 160 
alleles present in variant 𝑗 of sample 𝑖; 𝛽. is the linear effect size drawn from equation (1) for 161 
the effect allele in variant j; 𝑍$,&  determines if the kth pair of interacting variants exhibits a 162 
certain GxG interaction type in sample 𝑖 where 4 interaction types are applied using the two 163 
locus penetrance tables in this study (Figure 4). The phenotype value for sample 𝑖  is 164 
determined by summing all contributions from the linear effects of m simulated variants, the 165 
GxG interaction effects of S pairs of simulated interaction variants, and the noise. 166 
 167 
Heritability simulation 168 
 169 
After the first step of initialization of phenotype values (i.e. its noise, non-additive and linear 170 
components) as described above, we then performed linear regression to scale the contribution 171 
of each component to control the non-additive contribution to the total heritability and its total 172 
heritability or broad sense heritability for the purpose of simulating phenotypes of different 173 
settings27. 174 
 175 
As described above, the sum of all genetic effects on a given phenotype for individual i is as 176 
follows: 177 
 178 

𝑺𝒊 = 𝐆𝐢 +	𝐈𝐢. 179 
 180 
To determine the proportion of non-additive heritability in the total genetic effects, we 181 
performed the following linear regression across all individuals: 182 

𝑺𝒊			~			𝑰𝒊 (𝟓) 183 

where the goodness-of-fit (𝑅3) of the regression determines the total non-additive contribution 184 
to the heritability. For example, if the 𝑅3 was 20%, then only 80% of the total heritability 185 
would be narrow sense (linear additive) and the other 20% being non-additive, i.e. from GxG. 186 
These non-additive effects are increased or decreased by scaling all the pairwise interacting 187 
effects to obtain the required level of non-additive variance in the trait. The linear regression 188 
was performed using Scikit-learn python package28. 189 
 190 
Similarly, we performed the following regression to determine the broad sense heritability of 191 
a given trait: 192 

𝑷𝒊				̴̴		𝜖𝒊 (𝟔) 193 

with which, noise in the trait is increased or decreased to obtain the required broad sense 194 
heritability.  195 
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Summary of the simulated dataset 196 
 197 
In total, we simulated 60 phenotypes of different settings, which were under control of three 198 
parameters: (a) total heritability (20, 50, or 80%), (b) GxG interaction type (HH, RR, XOR, or 199 
T)26, and (c) proportion of non-additive heritability (0, 20, 40, 60, or 80%). 200 
 201 
For each phenotype, 500 variants were randomly selected and given a linear contribution for 202 
the phenotype. The remaining 500 variants were given linear and paired GxG interaction 203 
effects for a given epistatic model, where variants are randomly selected to generate 250 non-204 
overlapping pairs. In the case of no non-additive effects, these 500 variants were only given 205 
linear effects. These effects were summed for all 1000 variants, noise was added, and 206 
heritability and the proportion of non-additive heritability were fixed. Three predictive models: 207 
(i) additive PGS, (ii) elastic net PGS and (iii) feed forward neural networks, were used to 208 
develop polygenic scores for these phenotypes, which are detailed below. 209 
 210 

 211 
Figure 1. Schematic study design for data simulation and genetic prediction. Simulations of 100k genotypes were 212 
generated using HAPGEN2 and subsampled to smaller datasets of 50k and 10k samples. Using these simulated genotypes, 213 
traits with different settings of heritability, GxG interaction type, and proportion of non-additive heritability were generated. 214 
The samples were split into training and testing sets in each dataset of 100k, 50k and 10k samples, after which they were used 215 
to train and test the prediction methods (neural networks, elastic net PGS and additive PGS). 216 

Three sample sets of different sizes (100k, 50k, and 10k) were randomly selected from the 217 
simulated dataset for each phenotype, each of which was then split 60/40% into training and 218 
testing sets (Figure 1). Then every prediction model used the same generated sample sets to 219 
train PGS models and test their performance.   220 

100k

50k

10k

Prediction & 
Evaluation

Performance metrics: R2 and Spearman Rs

Neural 
Network

fits all SNPs and 
attempts to learn 

complex 
relationships 

Elastic Net 
PGS

effect sizes 
estimated from  
penalized linear 

regression

Additive PGS
effect sizes 

estimated from 
GWAS, a 
univariate 
method

Training 60% Testing 40%

Training data Validation data

Training/Testing 
Sample sizes 

Dataset 
Simulation Phenotype Properties

Number of Variants ~100k (using HAPGEN2)

Total heritability 20, 50, 80%

Proportion of epistatic heritability 0, 20, 40, 60,  80%

Interaction types XOR, RR, T, HH
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Additive PGS method P+T 221 

This additive PGS method assumes that the genetic variants have linear additive effects on 222 
PGS of the trait, and develops PGS of a trait using the weighted sum of genotypes of the 223 
selected variants for that trait: 224 

𝑆$ =O𝛽.𝑥$,. 	
/

.45

(6) 225 

where Si is a polygenic score for individual 𝑖; 𝑥$,. is the genotype dosage of variant j of the 226 
individual i; the 𝛽 j is the effect size of the variant j that is usually obtained through the 227 
univariate statistical association tests on training data; the m variants were often selected 228 
through a LD pruning/clumping and p-value thresholding step29 (so this method is often named 229 
as P+T). The software PLINK25 was used to estimate the univariate effect sizes for each 230 
simulated variant on the training data of a given simulated phenotype. Using these univariate 231 
estimations, PRSice-230 was then employed to develop PGS of the phenotype on the training 232 
data. PRSice-2 performs LD clumping to reduce the correlation amongst variants and then tests 233 
thousands of optimised p-value filtered PGSs to obtain the most predictive PGS.  234 
 235 
Elastic net PGS method 236 
 237 
Elastic net (EN) also assumes variants have a linear additive effect, estimated via penalised 238 
regression, where all the variants are jointly fit together. SparSNP31 is a tool designed to fit 239 
penalised linear models for genetic prediction, and was used to perform elastic-net regression 240 
in this study. SparSNP minimizes the following loss function for estimating the effect sizes of 241 
genetic variants: 242 
 243 

𝐿(𝛽6, 𝛽) = 	
1
2O(𝑦$ − 𝛽6 − 𝒙𝒊7𝜷)3

)

$45

+ 𝜆5OX𝛽.X
/

.45

	+
𝜆3
2 O|𝛽.|3

/

.45

(7) 244 

 245 
where, 𝑦$ is the simulated phenotype value; 𝑥$ are the genotype dosages of the m variants for 246 
sample 𝑖 (i.e. the 100,455 simulated variants after quality control); 𝛽 is the vector of effect 247 
sizes for the m variants; 𝛽6	is the intercept term; 𝜆5	and 𝜆3	are the penalties for a LASSO and 248 
Ridge regularisation respectively. A 5-fold cross validation was performed for 10 times in 249 
SparSNP to select the optimal 𝜆5, 𝜆3 pair on a given training set, where 𝜆3was set as 0.2 and 250 
𝜆5  was identified from a default set of thirty options in SparSNP. Finally, effect sizes of 251 
variants were estimated by minimizing equation (7) on the training set, which are then used to 252 
construct the PGS using equation (6).  253 
 254 
Neural networks 255 
 256 
Multilayered perceptrons (MLPs; also called feed-forward neural networks) are one of most 257 
common neural network architectures and can improve genetic prediction of quantitative traits, 258 
e.g. blood cell traits5. MLPs do not make any assumptions about the distributions behind the 259 
data they fit, and can be trained to approximate any smooth function in theory13. They usually 260 
consist of nodes (functions) connected to many other layers through directed acyclic graphs13; 261 
the output of a layer is used as the input to subsequent layers and element-wise transformed by 262 
non-linear activation functions, which allows for it to model complex correlations. Given m 263 
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nodes in the 𝐿𝑡ℎ layer, the output of a node 𝑖 in the next or (𝐿 + 1)𝑡ℎ layer is calculated like 264 
so: 265 

𝑜𝑢𝑡𝑝𝑢𝑡$,895 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 cO 𝑖𝑛𝑝𝑢𝑡:,8

;

:45

𝑤𝑒𝑖𝑔ℎ𝑡: 	+ 	𝑏𝑖𝑎𝑠g (8) 266 

where 𝑜𝑢𝑡𝑝𝑢𝑡$,895 is the output of a node 𝑖 in the (𝐿 + 1)𝑡ℎ layer; 𝑖𝑛𝑝𝑢𝑡:,8 is the input from 267 
node a (from the total n nodes) in the previous layer. Each 𝑖𝑛𝑝𝑢𝑡:,8 is multiplied by a weight 268 
(i.e. 𝑤𝑒𝑖𝑔ℎ𝑡:) and added to a 𝑏𝑖𝑎𝑠, which are then summed up and passed into an activation 269 
function as the output of node i. As mentioned above these activation functions are used to 270 
incorporate non-linearity to the modelling process. This process occurs from the first hidden 271 
layer, to any hidden layers until the output is reached (Supplementary Figures 13-14). MLP 272 
models were implemented with Keras (keras.io) and TensorFlow32 in our study. 273 
 274 
Genotype Encoding 275 
 276 
We considered two different types of genotype encoding, additive encoding (i.e. effect allele 277 
dosage) and one hot encoding, as the input of the prediction models in this study (Figure 2). 278 
The first encoding involved the use of Plink v1.925 to encode the variants into allelic dosages, 279 
where the variants were input as counts of the effect alleles (i.e. 0, 1, 2). In “one hot” encoding, 280 
variants were encoded into the absence or presence of their genotype classes.  281 

 282 
Figure 2. Schematics of genotype encoding. This schematic shows the two different variants encodings used in this study 283 
and shows how genotypes are represented in additive and one hot encodings. 284 

Hyperparameter optimisation 285 
 286 
An essential component in neural network model training, in particular MLP in this study, is 287 
hyperparameter optimisation. Hyperparameters are variables that dictate the network’s 288 
structure, its complexities and training process, which are set before the model training. Each 289 
set of hyperparameters can perform differently on a given task, thus a search must be conducted 290 
to determine the optimal set for each task. The hyperparameter search was conducted using 291 
Talos33 package which aids in performing the random search for the best set of hyperparameters 292 
for a given task (i.e. predicting each phenotype) on the training data. Given a list of 293 
hyperparameters to optimise from, Talos randomly searches this list to create numerous unique 294 
combinations of hyperparameters (see details in Supplementary Table 1), which were used 295 
to determine the best performing set of hyperparameters for a given phenotype. 296 

Assessment of prediction accuracy  297 

Finally, the two metrics: coefficient of determination (𝑅3) and Spearman correlation coefficient 298 
(Rs), were used to measure the performance of each PGS method on the testing data of any 299 
given phenotype setting as described above. 300 
 301 
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 9 

Results 302 
 303 
In this study, we simulated genotype data of 100,000 individuals using the 1000G reference 304 
panel, with which we further simulated 60 phenotypes of different settings, including (a) total 305 
heritability (20, 50, or 80%), (b) GxG interaction type (HH, RR, XOR, or T)26, and (c) 306 
proportion of non-additive heritability (0, 20, 40, 60, or 80%). We then evaluated the 307 
performance of three polygenic score methods, including a simple additive PGS method (the 308 
pruning and thresholding), a linear machine learning method (elastic net) and a deep learning 309 
method (multilayered perceptron), in predicting these simulated phenotypes using training data 310 
of different sizes. Two different types of genotype encoding: additive dosage encoding and one 311 
hot encoding, were also applied to investigate its impact on the performance of PGS methods.  312 
 313 

 314 
Figure 3. Performance comparison of different PGS methods. a. Elastic net is more accurate than neural network MLP 315 
in PGS development. Each sub-plot shows the percentage change in the predictive performance (R2) between Elastic net and 316 
MLP at a given sample size. Simulated traits are grouped by interaction and variant encoding types, then we compare the 317 
performance between Elastic net and MLP by using the mean and standard deviation of (𝑅!"#$ −	𝑅%&$ )/𝑅%&$  in a selected trait 318 
group, where 𝑅%&$ 	is the R2 performance of EN on a trait. Note that both the one hot (red) and additively (black) encoded 319 
elastic net PGS methods are compared against one hot encoded MLP. b. Elastic net outperforms additive P+T method. 320 
Each sub-plot shows the percentage change in the predictive performance (R2) of additive PGS method P+T and elastic net at 321 
a given total sample size, which are measured using the mean and standard deviation of (𝑅%&$ −	𝑅#'($ )/	𝑅#'($  in each trait 322 
group by GxG interaction type. 323 

 324 
Performance of polygenic prediction methods across different settings 325 
 326 
Across various simulation settings, elastic net performed consistently well across phenotypes 327 
and training datasets when compared to the other methods (Figures 3-4 and Supplementary 328 
Figures 1-5). Using the 10k simulated data (training sample size: 6k), EN improved R2 by 22% 329 
on average over the simple additive method (P+T) across traits of different GxG interaction 330 
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types and neural network model MLP underperformed EN by 65% in terms of R2 (additive 331 
variant encoding for P+T and EN; Figure 3). However, at this smallest sample size applied, 332 
P+T slightly performed better than EN for a few traits with low heritability and high 333 
proportions of non-additive heritability, e.g. P+T improves over EN by 3% (R2) for traits of 334 
20% heritability and 60% non-additive heritability (additive variant encoding; Supplementary 335 
Figure 1 and Supplementary Table 2). As the sample size increased, EN continued to 336 
outperform both P+T and MLP for most traits. EN is commonly used with additive variant 337 
encoding (‘dosage model’), and the MLP with one-hot encoding frequently outperformed this 338 
approach. In particular, for traits with HH interactions, MLP had R2 25% greater than EN with 339 
additive variant encoding when sample size was 100k. However, using one hot encoding 340 
enabled EN to outperform MLP (Figure 3a).  341 

 342 
Figure 4. Heritability and proportion of non-additive heritability affect prediction performances of different PGS 343 
methods (sample size: 100k). Predictive performance (R2) of all the three PGS methods with the two variant encoding types 344 
were compared for traits of different groups, where elastic net PGS are in black, neural network MLP in red and additive P+T 345 
in yellow; solid lines and dashed lines represent additively and one hot encoded models respectively. The plots detail each 346 
PGS method’s performance for a given phenotype. Each row has the same underlying interaction model labelled by the tables 347 
and each column has the same total heritability as noted by the column title and within each sub-plot, the x-axis details the 348 
proportion of non-linear contribution for a given trait. 349 
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 351 
Figure 5. R2 performance improvement of PGS methods using the one-hot encoding over the additive encoding for 352 
traits of different groups (sample size: 100k). Each row has the same interaction model as noted by the row title and each 353 
column has the same total heritability as noted by the column title and within each sub-plot, the x-axis shows the proportion 354 
of non-linear contribution for a given trait. The improvement is calculated using )!"#$%!&

' *	)())*&*+#
'

	)())*&*+#
' , where 𝑅,-.*/,0$  is the R2 355 

performance of a PGS method using one-hot encoding for a given trait. 356 

 357 
One hot encoding of variants frequently improved polygenic prediction 358 

We further assessed how using one-hot encoding as variant inputs affect the accuracy of the 359 
three PGS methods. Overall, relative to additive encoding (‘dosage model’), we found one-hot 360 
encoding improved the predictive accuracy (R2) for traits with non-additive variance on 361 
average by 42% for MLP, 14% for EN, and 20% for additive P+T PGS method (Figures 3a, 362 
4-5 and Supplementary Figures 6-7). However, for purely additive traits, one-hot encoding 363 
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resulted in a percentage change in R2 performance of +14%, -9% and +8%, when using MLP, 364 
EN and P+T respectively. This indicates that one hot encoding will consistently increase MLP 365 
performance but may worsen EN’s performance, depending on the genetic architecture (which 366 
is rarely known a priori). Note that (i) the MLP using additive encoding were only tested on 367 
data with total sample size of 100k due to its poor performance on smaller data sets and 368 
extremely expensive training costs (both significant time and computational resource needed), 369 
and (ii) performance gains at relatively low heritability (20%) can be susceptible to substantial 370 
noise and should be interpreted with caution. 371 

Sample size and relative performance of polygenic prediction method 372 

We examined how increasing the sample size of training data results in an increased predictive 373 
power for each PGS method (Figure 6, Supplementary Figure 8). One hot encoded MLP saw 374 
the largest increase in predictive accuracy: increasing the sample size from 10k to 100k yielded 375 
a 62% increase in mean R2 scores for traits with 50% heritability and 20% or less GxG (0.22 to 376 
0.36), compared to less than 50% for other PGS methods (Figure 6). Across all 60 simulated 377 
traits, the MLP's mean R2 improved by 113% (0.15 to 0.32), while other methods showed less 378 
than 56% improvement (Supplementary Figure 8). Similarly, increasing the sample size from 379 
50k to 100k resulted in the MLP achieving 15% mean R2 improvement for traits with 50% 380 
heritability and 20% or less GxG, and a 19% improvement across all simulated traits. In 381 
contrast, other methods showed less than a 7% increase for both trait groups. In addition, one 382 
hot encoding allowed EN to gain larger improvements when sample size increases compared 383 
with using additive variant encoding. For example, increasing from 10k to 50k, the one hot 384 
encoded EN had a mean R2 increase of 42% (from 0.24 to 0.34), but the additively encoded 385 
EN saw a smaller improvement of 29% across all simulated traits. 386 

 387 
 388 

Figure 6. The R2 performance improvements of PGS methods by sample size increase. This plot shows the mean R2 389 
performance of each PGS method (P+T, elastic net and MLP) with either of the two variant encoding types across these 390 
simulated traits with 50% total heritability and either no or 20% non-linear contribution at given sample sizes (10k, 50k, 100k). 391 
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Elastic net PGS compared to P+T 394 
 395 
Consistent with previous studies, our results showed that elastic net outperformed the additive 396 
P+T method for almost every trait under different settings (Figure 4, Supplementary Figures 397 
1-5). For example, EN consistently outperformed P+T for all the traits (mean R2 improvement: 398 
40%) when a larger sample size (50k and 100k) was used in training; even with the smallest 399 
sample size (10k), there were only 10 traits (out of 60) that had a lower R2 score with EN. 400 
 401 
We further examined how differently EN and P+T methods estimate linear effect sizes of 402 
variants in PGS development for traits of different settings. Overall, our results showed the 403 
outperformance of EN can be reflected in its better estimation of linear effect sizes of causal 404 
variants of the trait (both additively encoded and sample size = 100k; Supplementary Figures 405 
9-12). For example, for purely additive traits, the Spearman correlation (Rs) between the true 406 
linear effect size (from simulation) and the EN-estimated effect size was about 25% higher on 407 
average when compared with using P+T method (Supplementary Figure 10). When total 408 
heritability of the trait decreases, EN maintained its accuracy in estimating variant effect sizes 409 
(Rs = 0.71, 0.73 and 0.72 for traits with total heritability of 80%, 50% and 20% respectively), 410 
but P+T saw a significant performance drop (Rs = 0.63, 0.56 and 0.54 for traits with total 411 
heritability of 80%, 50% and 20% respectively) (Supplementary Figure 10). We also found 412 
EN was able to better capture true linear effect sizes of variants for traits that are controlled by 413 
very high or low proportions of GxG interactions (Supplementary Figures 9, 11-12). For 414 
example, the Rs between the true linear effect size and the estimated effect size from EN was 415 
43% higher on average for traits with either 20% or 80% of non-linear heritability (80% total 416 
heritability; Supplementary Figures 9, 11) than additive P+T, but this improvement decreased 417 
to 9% for traits with 50% of non-linear heritability (Supplementary Figure 12). 418 
 419 
 420 
Discussion 421 
 422 
In this work, we simulated realistic genotype-to-phenotype data with varying key parameters 423 
then compared the performance of deep learning using a multi-layer perceptron to two other 424 
common methods (i.e. elastic net and P+T, pruning and thresholding). These key parameters 425 
included GxG interaction types, total trait heritability, proportions of non-linear heritability 426 
(i.e. from GxG), genotype encoding (additive and one hot encoding), and different sample sizes 427 
for training data. Our results showed that traits with low GxG heritability were best predicted 428 
by EN but when the proportion of GxG increases, one hot encoding allowed EN to outperform 429 
MLP. Our results also showed that the MLP performed considerably better with an increased 430 
sample size in training, and as the total trait heritability increases, the relative performance of 431 
MLP in comparison with the linear PGS methods increased. Our results suggest that as the size 432 
of the training dataset increases substantially beyond 100k toward a million or more 433 
individuals, neural network models may achieve equal or better performance as linear PGS 434 
methods. However, currently the computational and financial expense of training even an MLP 435 
to UK Biobank data is out of reach for the vast majority of academic groups. As costs come 436 
down, neural network models, such as MLP, could be useful for the prediction of highly 437 
heritable, substantially GxG phenotypes (e.g. some autoimmune diseases) in massive-scale 438 
biobanks, e.g. those of millions of individuals. 439 
 440 
We found that EN was better at capturing the true linear effect sizes present in the causal 441 
variants involved in GxG, indicating EN can better predict traits with GxG even when no 442 
interaction terms are explicitly defined in the model. When individual-level genotypes are not 443 
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available, lasso and related models can be run on GWAS summary statistics using tools such 444 
as LDpred34,35, Lassosum36, PRS-CS37 and SBayesRC38. Studies have also shown some traits 445 
may benefit from PGS methods (e.g. EN) that are based on individual-level genetic data in the 446 
current era of large-scale biobanks such as blood cell traits39, and ensemble PGS methods, that 447 
combine both summary-level (or PGS previously developed in external cohorts) and 448 
individual-level data, can result in improved PGS for phenotypes such as coronary heart 449 
disease40. Nonetheless, our findings support the use of and continued access to individual-level 450 
data by bona fide researchers so that optimal PGS can be constructed using the most advanced 451 
methods.  452 
 453 
Limitations 454 

Whilst the MLP model used in our work is relatively standard and unspecialized, domain 455 
knowledge, such as total heritability and GxG interaction type, can be utilised to further 456 
optimize neural network architectures. These factors may make neural networks become better 457 
predictive models in polygenic prediction of certain traits. Our study utilized simulated 458 
phenotypes involving statistical GxG, with a fixed proportion of variance attributed to epistasis. 459 
However, in real data analyses, the presence of statistical epistasis can be confounded by LD. 460 
In such cases, untyped causal variants may be jointly tagged by SNPs included in the dataset, 461 
potentially manifesting as statistical epistasis41. To differentiate between these joint tagging 462 
effects and true epistasis, dedicated methods are required.22 In this study, we only included 463 
GxG interaction types that were enumerated by one of the previous studies26, a variation of 464 
diverse pairwise or two-loci interactions. However, it is possible that higher orders of 465 
interactions, not considered in this study, could be present within the human genome. For 466 
instance, higher order of interactions have been reported in genes affecting several non-human 467 
traits, such as chicken body weight42 or colony morphology in yeast43. If such interactions exist 468 
in humans as well, it is conceivable that neural networks or other complex prediction methods 469 
would be more favourable in their polygenic prediction. Finally, we could not justify the costs 470 
(both financial and carbon emissions) of simulating data and training neural networks to 471 
datasets substantially greater than 100k individuals. We believe such an approach may be 472 
justifiable for real data for select autoimmune diseases where substantial GxG is likely (e.g. 473 
type 1 diabetes); however, given the paucity of autoimmune cases in existing biobanks a 474 
concerted effort would be needed to assemble and harmonise individual-level data for neural 475 
network training. 476 
 477 
Conclusion 478 

In summary, this work provides a detailed assessment of neural network models for predicting 479 
traits in diverse genetic architectures, in comparison with two commonly used linear PGS 480 
methods. It gives general insights into the application of deep learning methods in polygenic 481 
prediction, and provides guidance for the selection of optimal PGS methods, variant encoding 482 
approach, and training sample size when developing PGS for a target trait. Investigations into 483 
customised neural network models, that utilise the genetic architecture of a target trait, may 484 
represent a promising future for deep learning in polygenic prediction.  485 
  486 
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Carbon impact of this study 487 
 488 
Based in Victoria, Australia, the computational methods used in this study had an estimated 489 
carbon footprint of 2,973 kgCO2, which is equivalent to 3,130 tree months. This was estimated 490 
using calculated using green-algorithms.org v1.044. 491 
 492 

Code availability 493 
 494 
The original codes used to simulate phenotypes of various genetic architectures are available 495 
at https://github.com/JasonGrealey/Simulations. The codes of using the three methods (P+T, 496 
EN and MLP) to develop PGS are available at https://github.com/xuyu-cam/Deep-learning-497 
for-genetic-prediction-of-complex-traits. 498 
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Supplementary Figures 623 

 624 
Supplementary figure 1. Predictive performances (R2) of all PGS methods with a training size of 6k and testing set of 625 
4k samples. Elastic net PGS method is in black, neural network MLP in red and additive P+T PGS in yellow. Solid lines and 626 
dashed lines represent additively and one hot encoded models respectively. The plots detail each PGS Method’s performance 627 
for a given phenotype. Each row has a different underlying interaction model labelled by the tables; each column has the same 628 
total heritability as noted by the column title and within each plot. The x axis details the proportion of epistatic contribution 629 
for a given trait.  630 
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 632 
Supplementary figure 2. Predictive performances (R2) of all PGS methods with a training size of 30k and testing set 633 
of 20k samples. 634 
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 635 

 636 
Supplementary figure 3. Predictive performances (Spearman Rs) of all PGS methods with a training size of 60k and 637 
testing set of 40k samples. 638 

 639 

 640 
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 641 

 642 
Supplementary figure 4. Predictive performances (Spearman Rs) of all PGS methods with a training size of 6k and 643 
testing set of 4k samples. 644 

 645 

 646 

 647 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 27, 2024. ; https://doi.org/10.1101/2024.10.25.24316156doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.25.24316156
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22 

 648 
Supplementary figure 5. Predictive performances (Spearman Rs) of all PGS methods with a training size of 30k and 649 
testing set of 20k samples. 650 
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 670 
Supplementary figure 5. Neural network MLP predicts more accurately with one hot encoded variants. The plot details 671 
the percentage change in the predictive performance (R2) of neural network MLP method with one hot encoding over that of 672 
using additive encoding at the total sample size of 100k, which are measured using the mean and standard deviation of 673 
(𝑅,-.*/,0$ −	𝑅1223034.$ )/𝑅1223034.$  (𝑅,-.*/,0$  and 𝑅1223034.$  are R2 performance of MLP using one hot encoding and additive 674 
encoding respectively for a trait) in each trait group by GxG interaction type or with no interactions. 675 
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 696 
Supplementary figure 7. One hot encoding allows elastic net to better predict non-linear traits. The plot details the 697 
percentage change in the predictive performance (R2) when comparing additively encoded elastic net to one hot encoded elastic 698 
net by groups of traits with different interaction types in each of the sample sizes used in this study. 699 
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 733 
Supplementary figure 8. The R2 performance improvements of PGS methods by sample size increase. This plot shows 734 
the mean R2 performance of each PGS method (P+T, elastic net and MLP) with either of the two variant encoding types across 735 
all the 60 simulated traits at given sample sizes (10k, 50k, 100k). 736 
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 738 

Supplementary figure 9. Elastic-net better estimates effect sizes in highly non-additive traits than additive P+T method 739 
(80% total heritability and 80% GxG). Each sub-plot corresponds to a single trait under control of different types of 740 
interactions, in which the trait has the total heritability of 80% and 80% of heritability is explained by GxG. The total sample 741 
size used is 100k. The x-axis presents the real linear effects of causal variants and the estimated effect sizes are displayed on 742 
the y axis. The upper row shows non-zero effect sizes estimated by Elastic net for causal variants; bottom row shows effect 743 
sizes of causal variants estimated by P+T. Columns are separated by the GxG interaction type present in the trait (i.e. XOR, 744 
RR, HH and T). Points in the off diagonal are coloured in red. The Spearman correlation between the two effect sizes across 745 
all the variants in each plot is labelled at the top left. Note that for clarity any effect size estimated to be exactly zero is removed 746 
from the plot. 747 
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 749 

 750 
Supplementary figure 10. Elastic-net better learns effect sizes of variants in linear traits than additive P+T. Each sub-751 
plot corresponds to a single trait with no interactions (i.e. purely additive traits). The total sample size used is 100k. The x-752 
axis presents the real linear effects for each causal variant (from estimation) and the y axis shows the estimated effect sizes 753 
using EN or P+T. The upper row shows non-zero effect sizes of causal variants estimated by Elastic net for traits with 80%, 754 
50%, and 20% total heritability from left to right respectively; bottom row shows effect sizes of causal variants estimated by 755 
P+T. Points in the off diagonal are coloured in red. The Spearman correlation between the two effect sizes across all the 756 
variants in each plot is labelled at the top left. Note that for clarity any effect sizes estimated to be exactly zero are removed 757 
from the plot. 758 
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 761 

762 
Supplementary figure 11. Elastic-net better estimates effect sizes in highly non-additive traits than additive P+T (80% 763 
total heritability and 20% GxG). Each sub-plot corresponds to a single trait under control of different types of interactions, 764 
in which the trait has the total heritability of 80% and 20% of heritability is explained by GxG. The total sample size used is 765 
100k. The x-axis presents the real linear effects of causal variants and the estimated effect sizes are displayed on the y-axis. 766 
The upper row shows non-zero effect sizes estimated by Elastic net for causal variants; bottom row shows effect sizes of causal 767 
variants estimated by P+T. Columns are separated by the interaction type present in the trait (i.e. XOR, RR, HH and T). Points 768 
in the off diagonal are coloured in red. The Spearman correlation between the two effect sizes across all the variants in each 769 
plot is labelled at the top left. Note that for clarity any effect size estimated to be exactly zero is removed from the plot. 770 
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 786 
Supplementary figure 12. Elastic-net better estimates effect sizes in highly non-additive traits than additive P+T (80% 787 
total heritability and 50% GxG interaction).  Each sub-plot corresponds to a single trait under control of different types of 788 
interactions, in which the trait has the total heritability of 80% and 50% of heritability is explained by GxG. The total sample 789 
size used is 100k. The x-axis presents the real linear effects of causal variants and the estimated effect sizes are displayed on 790 
the y-axis. The upper row shows non-zero effect sizes estimated by Elastic net for causal variants; bottom row shows effect 791 
sizes of causal variants estimated by P+T. Columns are separated by the interaction type present in the trait (i.e. XOR, RR, 792 
HH and T). Points in the off diagonal are coloured in red. The Spearman correlation between the two effect sizes across all the 793 
variants in each plot is labelled at the top left. Note that for clarity any effect size estimated to be exactly zero is removed from 794 
the plot. 795 
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 812 
Supplementary figure 13. One hot encoded Neural network (NN) schematic. The above is an example of the MLP network 813 
structure  used in this study. This NN has two input variants, two hidden layers and an output layer where the phenotype is 814 
predicted. The input variants are firstly encoded into their genotype classes through one hot encoding, then these are passed 815 
through the network’s hidden layers and finally the phenotype is predicted. The NNs in this study had 100,455 variants as 816 
input.  817 
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 820 
Supplementary figure 14. Additively encoded Neural network (NN) schematic. The plot is an example of the MLP network 821 
structure used in this study. This NN has six input variants, two hidden layers and an output layer where the phenotype is 822 
predicted. The input variants are encoded by counting the number of affect alleles, then these are passed through the network’s 823 
hidden layers and finally the phenotype is predicted. The NNs in this study had 100,455 variants as input. 824 
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