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Summary 

Background: Sensitivity is a key measure of lateral-flow antigen test (AT) performance, typically 
compared against qRT-PCR as the gold standard. For COVID-19, diagnostic sensitivity assesses 
the ability of ATs to detect SARS-CoV-2 nucleoprotein. However, sensitivity estimates can be 
strongly skewed by variations of the target concentrations within the clinical sample sets. 
Independent studies evaluating ATs from different manufacturers often display disparate target 
concentration distributions, making it difficult to compare sensitivity across products. We propose 
a new methodology to enhance the accuracy of sensitivity calculations, ensuring more reliable 
comparisons across ATs. 

Methods: Sensitivity is estimated by modeling the probability of positive agreement (PPA) as a 
function of qRT-PCR cycle thresholds (Cts) via logistic regression of antigen test results. Raw 
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sensitivity is calculated as the ratio of antigen test positives to total PCR positives. Adjusted 
sensitivity is derived by applying the PPA function to a reference concentration distribution, 
enabling uniform sensitivity comparisons across tests. This approach minimizes the impact of 
uneven sampling and external factors, as demonstrated using clinical data from a study in Chelsea, 
Massachusetts, USA. 

Findings: Over two years, paired antigen and PCR positive tests from four AT suppliers were 
analyzed: A (211 tests), B (156), C (85), and D (43). The qRT-PCR Ct distributions varied, with 
suppliers A and D having more high viral load samples, while supplier C had more low viral load 
samples, causing significant discrepancies in raw sensitivity. Using the PPA function estimated 
from each supplier's dataset, we calculated the corresponding adjusted sensitivities for common 
reference Ct distributions, highlighting how sample heterogeneity impacts raw sensitivity. Our 
approach successfully mitigates this variability, allowing for more accurate sensitivity 
comparisons. 

Interpretation: This study demonstrates that sensitivity estimates from real-world data are 
susceptible to deviations caused by external factors, particularly the heterogeneity of qRT-PCR Ct 
distributions across studies. We present data supporting a novel methodology that adjusts for this 
variability by calculating the PPA function from raw data and determining the expected sensitivity 
based on a reference distribution of qRT-PCR Cts, allowing for more consistent and accurate 
sensitivity assessments. 

Evidence before this study: Regulatory guidelines for antigen test (AT) performance generally 
require a balanced representation of low, mid, and high viral concentrations, though real-world 
sample distributions are highly variable. Previous studies often focus on sensitivity calculations, 
overlooking the impact of viral load distribution (Ct values) on results. Some studies use logistic 
regression to estimate the probability of positive agreement as a function of viral load, but no prior 
work has proposed adjusting sensitivity estimates based on a reference distribution of viral 
concentration. 

Added value of the Study: This study presents a robust mathematical approach to adjust 
sensitivity estimates based on a standardized reference distribution of viral load, improving the 
precision of this key performance measure. By estimating the probability of positive agreement 
(PPA) as a function of viral load, we offer a more accurate assessment of AT product performance. 
We emphasize the importance of mitigating sample variability, showing how this method can 
enhance quality control and support regulatory oversight of antigen test performance. 

Implications of all the available evidence: Our study underscores the limitations of calculating 
AT sensitivity directly from raw field data, which can lead to inaccurate evaluations. By applying 
our methodology, performance monitoring of ATs can be improved through standardized metrics, 
allowing for more reliable assessments. This approach helps both manufacturers and regulators 
establish clearer benchmarks for AT evaluation and comparison, addressing concerns about the 
sensitivity of antigen tests relative to gold-standard molecular methods. These improvements are 
critical for ensuring public confidence and regulatory accuracy in AT performance. 
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Introduction 

 

Antigen tests have been a common tool utilized to provide evidence for diagnosis and 
health care decisions, and have been used as such for various decades1,2,3,4. During the Covid-19 
pandemic, the worldwide use of antigen tests demonstrated relevance for disease monitoring and 
diagnosis of new cases5,6. Antigen tests are rapid, economical, portable, can be self-administered, 
quick to develop, and provide direct evidence for the presence of the pathogen in the tested sample 
– this combination is not equaled by more sophisticated laboratory tests.  Due to its increasing use, 
it is important to accurately evaluate the AT performance for quality and regulatory control. 

The common statistic used to evaluate the positive agreement performance of antigen tests has 
been the sensitivity, calculated over a set of samples known to be positive by a gold standard 
reference.  However, sensitivity of antigen tests is known to be strongly dependent on the sample 
viral-load.7,8,9   Hence, the sensitivity perse is not an appropriate measure of the AT positive 
agreement performance, because it is largely dependent on the distribution of viral load in the 
statistic support (i.e., the set of samples used to calculate the statistic). Instead, a description of the 
probability of positive agreement (PPA) as a function of the viral load is a more accurate measure 
of the positive agreement performance. The PPA function is commonly calculated with a logistic 
regression of the binary test result positive agreement (1= agreement, 0=disagreement) against a 
variable related with the viral load. In the case of Covid-19 disease the viral load measure is 
commonly the qRT-PCR cycle (Ct) result10,11; hence, the PPA is a function of the Cts.  

Once the PPA function of a given antigen test supplier’s product has been estimated from collected 
data in real-world application conditions, it is straightforward to estimate the expected sensitivity 
for any given Ct distribution or Ct sample set. This is particularly useful for equalizing the expected 
sensitivity to a common standard or reference distribution of Cts for comparison of the 
performance across supplier’s product quality or regulatory purposes. This process removes the 
bias introduced into the sensitivity by the circumstantial uneven representation of viral load in the 
statistic support (i.e. the data used to calculate the statistic). 

Common methods used to calculate the sensitivity of an AT product, whether for regulatory 
compliance or communication purposes, typically involve collecting real-world test results paired 
with the qRT-PCR gold standard. However, in the case of lateral-flow antigen tests, sensitivity 
uncertainty does not adhere to a straightforward Bernoulli process, as the underlying positive 
agreement probability is not constant and is instead conditioned by the viral load. To accurately 
calculate sensitivity, it would be necessary to segment the collected samples based on the most 
influential variable affecting the underlying probability, using a standard reference histogram12. In 
our scenario, the influential variable is the viral load, measured as Ct. Yet, implementing such a 
process in the field with real-world data would be cumbersome and would require a much larger 
dataset. The proposed balancing method overcomes this challenge by adjusting the raw sensitivity 
calculation to any desired standardized reference distribution of the viral load, without the need of 
extended data collection and segmentation. 
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Methods 

Study description 

We conducted a study of AT use in real-world conditions in the city of Chelsea, 
Massachusetts during years 2022-2023 (Advarra Protocol Number 00059157). The objectives of 
the study were multifold: (1) performing frequent Covid-19 testing at two vulnerable population 
sites (elderly housing), (2) evaluating the performance of ATs from different suppliers in the 
laboratory and in the real-world context, (3) collecting longitudinal (time series) AT data for qRT-
PCR positive samples, and (4) implementing a digital AT data collection platform.   

The participants of the study were enrolled after consent. The participant was provided with ATs 
for self-testing, a single AT of any of the available four participating suppliers. The tests were 
Home tests, and data was self-logged by the participants into an internet based informatic platform. 
The participants registered the AT results (their own assessment) and uploaded a photograph of the 
test after completion (15 min). The fraction of positive AT tests was followed daily with paired 
qRT-PCR testing. A random number of negative AT tests were also analyzed by PCR. 

The data analyzed come from ATs provided by four different suppliers, labeled A through D, and 
the corresponding qRT-PCR test results, all of which were processed in the same CLIA-certified 
laboratory. The total negative qRT-PCR tests were 57 for A, 91 for B, 145 for C and 114 for D  and 
positive qRT-PCR tests were 211 for A, 156 for B, 84 for C and 43 for D. Each participant was 
tested with a single brand (i.e., AT supplier), so the distribution of viral load could be different 
between the data collected for each brand. These data were used to calculate the AT performance 
statistics and demonstrate the methodology for balancing the sensitivity according to a reference 
standard distribution.  

Probability of positive agreement function 

As commonly used, AT operative reading involves steps of device reaction to the sample, 
waiting time, observation and interpretation of the result by the user. Although various device 
designs are used (e.g., cassette, card), the user will see the presence or absence of color in a marked 
zone (test band) on a nitrocellulose strip used for the lateral-flow reaction process. The result is 
considered positive when the test band can be distinguished from the background even if the signal 
is faint versus a negative if the test band cannot be seen visually by the user. For performance 
statistics, the result of the AT provided by the user is compared to the gold standard reference test, 
which in the case of this study was Covid-19 qRT-PCR.  

For the positive agreement analysis of each AT supplier dataset, we compare only the AT results 
that have a paired positive qRT-PCR result (i.e., having a positive qRT-PCR result in a swab sample 
taken the same day as the antigen test swab sample). For the logistic regression analysis, we 
identify the AT results with a binary variable: 1 for a positive results (agreement with the standard 
test), and 0 for a negative result (disagreement with the standard test). The outcome of the user 
assessment can be described by a binary random variable. We model the PPA with a logistic 
function, having the qRT-PCR cycle count (Ct) as the function domain (i.e. the independent 
variable). Logistic regression is well-known analysis to estimate the probability as a function of a 
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dependent variable13. It has been used to describe the probability of positive agreement in antigen 
tests14.  

In addition to estimating the PPA function that characterized each AT supplier data, the regression 
also accounts the uncertainties of the probability function and parameters. We implement the 
logistic regression with a Bayesian approach, combining the objectives of (1) fitting the binary 
observed data, and (2) honoring the Clopper-Pearson binomial confidence limits at the raw Ct data 
sensitivity prediction. Hence, the posterior model uncertainty description ensures compliance with 
the Clopper-Pearson confidence limits for the sensitivity at the raw Ct data. The numerical 
calculations are performed by Markov Chain Monte Carlo methods. 

Sensitivity balancing method 

The sensitivity, s, is the fraction of the positive agreement cases divided by the total positive 
cases in the experimental gold standard results (e.g., collected real-world AT binary data on 
positive qRT-PCR cases). Based on the PPA function characterized for each AT supplier data, we 
can estimate the sensitivity for any set of Ct cases. Let’s consider that the experimental data for a 
given AT supplier involves 𝑁 cases with qRT-PCR cycle counts, 𝐱  =  ሼ𝑥ଵ , 𝑥ଶ , … 𝑥 , … , 𝑥ே ሽ. The 
expected value of the sensitivity is the average of the PPA function, 𝑝ሺ𝑥ሻ, over the cases, 

                                                              E(s ) = 
ଵ

ே
 ∑ 𝑝ሺ𝑥୬ሻ

ே
ଵ  .                                                        (1) 

Likewise, the expected sensitivity over a data support with any Ct probability density function 
(PDF), 𝑔ሺ𝑥ሻ, is given by the probability product integration,  

                                                      E(s ) =    
ଵ

௫ି ௫
 𝑝ሺ𝑥ሻ 
௫
௫  𝑔ሺ𝑥ሻ 𝑑𝑥    .                                 (2) 

The equations (1) and (2) use the PPA function to calculate the expected sensitivity over a specific 
Ct data or distribution. Adequate comparison of sensitivity across different AT datasets requires a 
transformation of the raw sensitivity (i.e., calculated from the observed data) to the expected 
sensitivity over a common reference of Ct data values, or a Ct support distribution (i.e. histogram 
or PDF). Considering observed binary data for various AT suppliers, our proposed process to 
equalize the sensitivity support involves:  

(a) Estimating the PPA functions by logistic regression of the observed AT binary data for 
each one of the supplier’s datasets, 

(b) defining a common reference Ct distribution, by a PDF 𝑔ሺ𝑥ሻ and, 
(c) calculating for each AT supplier dataset the estimated sensitivity over the common 

reference Ct support by equation (2). 

The integral (2) can be evaluated by the domain discretization. Alternatively, it can be calculated 
by Monte Carlo integration, pulling a set of Ct realizations from  𝑔ሺ𝑥ሻ and using expression (1). 
Balancing the viral load support could also take as reference the sample set of one of the AT 
suppliers, e.g., supplier A. Then, the estimated sensitivity of the other suppliers can be estimated 
over the same Ct support of supplier A data for appropriate comparison. In the latter case the 
method follows: 
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(a) Estimating the PPA functions by logistic regression of the observed AT binary data for 
each one of the other supplier’s datasets and,  

(b) calculating the expected sensitivity for each one of the supplier’s datasets over the 
reference Ct collection of supplier A using expression (1). 

The described viral load balance processes remove the effect of the Ct field data distribution on 
the sensitivity, providing a common base for comparison and evaluation of the positive agreement 
performance. 

Results 

Raw positive agreement statistics 

This section describes the basic performance statistics of the ATs of the four suppliers 
analyzed, and the estimated PPA functions, based on the binary data collected from the Chelsea 
study. The agreement matrix was determined for each supplier AT, and the common performance 
agreement fractions were calculated:  sensitivity, specificity, positive prediction, negative 
prediction and total prediction. Table 1 displays the basic performance statistics for each one of 
the test suppliers, including the Clopper-Pearson 95% confidence limits15.  

Table 1. Basic performance statistics of IVD suppliers A, B, C and D 
Statistic IVD 

agreement 
cases 

Total cases Value Lower 95% 
confidence 
limit 

Upper 95% 
confidence 
limit 

Supplier A 
Sensitivity 177 211 0.84 0.78 0.89 
Specificity 55 57 0.96 0.88 1.00 
Positive prediction 177 179 0.99 0.96 1.00 
Negative prediction 55 89 0.62 0.51 0.71 
Total agreement 232 268 0.87 0.82 0.90 
Supplier B 
Sensitivity 117 156 0.75 0.67 0.82 
Specificity 90 91 0.99 0.94 1.00 
Positive prediction 177 118 0.99 0.95 1.00 
Negative prediction 90 129 0.70 0.61 0.77 
Total agreement 207 247 0.84 0.79 0.88 
Supplier C 
Sensitivity 55 85 0.65 0.54 0.75 
Specificity 144 144 1.00 0.97 1.00 
Positive prediction 55 55 1.00 0.94 1.00 
Negative prediction 144 174 0.83 0.76 0.88 
Total agreement 199 229 0.87 0.82 0.91 
Supplier D 
Sensitivity 35 43 0.81 0.67 0.92 
Specificity 107 114 0.94 0.88 0.97 
Positive prediction 35 42 0.83 0.69 0.93 
Negative prediction 107 115 0.93 0.85 0.97 
Total agreement 142 157 0.90 0.88 0.95 
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Sensitivities show large differences 
across the suppliers A, B, C and D, 
with values 0∙84, 0∙75, 0∙65 and 
0∙81 correspondingly. A 
comparison plot of the raw AT 
sensitivities for each supplier and 
confidence limits is shown in figure 
1. Differences are significant with a 
large departure of 19% (percentual 
points of the sensitivity) between 
suppliers A and C. However, figure 
2 shows that the histograms of qRT-
PCR Cts supporting the sensitivity 
calculations have marked 
differences across the suppliers. 
Note that suppliers A and D have a 
larger proportion of low Cts (large 

 

Figure 1.  Sensitivities calculated from the raw data from the 
Chelsea study for suppliers A, B, C and D. The boxes show 
50% and the segments 95% confidence limits calculated with 
the Clopper-Pearson method. The dotted line shows the 0∙8 
sensitivity shred hold. 

 

Figure 2.  Histograms of the samples qRT-PCR cycle count (Cts) for the four datasets analyzed, each 
one corresponding to a different AT supplier. The Cts shown are the average between the cycle counts 
of gene N and gene ORFab. 
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viral sample concentration). On the other hand, supplier C has a larger representation of large Cts 
(low viral sample concentration).  

Probability of positive agreement functions 

Raw sensitivities, as shown in figure 1, superpose the effects of the viral concentration 
support to the true performance of the ATs. In what proportion the differences in sensitivity shown 
in the figure is caused by the uneven distribution of viral concentration shown in figure 2? 
Following our method, a first step to decouple the two effects is estimating the PPA function from 
the raw data of each AT supplier by logistic regression, as explained in the previous section. Figure 
3 shows the binary data collected for each AT supplier plotted against the Cts, and the estimated 
PPA function for each test supplier. The estimation of the PPA function by fitting the observed 
binary AT data also provides description of the uncertainties in the PPA function. This is illustrated 
in figure 3 by the 95% confidence intervals of the PPA function; our formulation estimates the full 
distribution of the PPA conditioned to the Ct value. 

 

Figure 3.  Probability of positive agreement (PPA) as function of the qRT-PCR cycle count (Ct) for 
naked-eye assessments of the Chelsea project participants after self-application of the antigen tests. 
Naked-eye assessments of the antigen test result are plotted in the vertical axis with value 1 for positive 
and 0 for negative. The PPA function is obtained by logistic regression of the binary naked-eye results, 
and shows the strong dependency of the agreement probability with the qRT-PCR Cts.  
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Figure 3 shows that the PPA functions for suppliers A and B are similar: note that the Ct of median 
probability (i.e., limit of detection at probability p=0∙5) are very close. Also, the inclination of the 
function is similar, slightly higher for supplier A. The PPA function for supplier C shows a slightly 
larger Ct at median probability and lower inclination of the function. The PPA function for supplier 
D is also close to the A and B functions, but showing larger uncertainties as expected form the 
smaller data support of supplier D. 

Reference distributions of viral-load 

Due to the dependency of the sensitivity on the Ct value distribution the comparison of raw 
sensitivities is biased by the uneven distribution of the Ct support, as shown by the histograms in 
figure 2. Utilizing our support balance methodology, we computed the sensitivities of the ATs from 
the four suppliers across four distinct reference distributions of the Cts. The sample statistics of 
the PPA exhibit particular sensitivity to low positive samples, i.e., those with low viral 
concentration. Consequently, we opt for a uniform distribution of qRT-PCR cycles spanning 10-
35 Cts, with variable proportions within the 35-40 range, to underscore the significance of 
representing low-positive cases in the overall sample PPA. Additionally, we employed the 
combined Ct distribution of all four tests as a reference, i.e., the joint positive qRT-PCR Ct counts 

 

Figure 4.  Four different reference distributions used to correct the raw data sensitivity calculations 
from uneven viral concentration sampling. Histograms a, b, and c correspond to 200 cases with variable 
fraction of low positives (35-40 Cts) and uniform distribution in the 10-35 Ct range. Histogram d 
corresponds to the joint four supplier’s observed data.  
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of the four supplier’s data. The corresponding histograms for these distributions are depicted in 
Figure 4. 

Sensitivities for the reference distributions 

Figure 5 shows the estimated sensitivities of the ATs of the four suppliers over each one of 
the reference distributions shown in figure 4, according to the described viral load balance method. 
It is useful to compare these results to the raw sensitivities shown in figure 1. Although the order 
of performance of the four suppliers has been preserved, the sensitivity differences are much 
smaller once removed the effect of the source support by the balancing process. The difference 
between suppliers A and C are only 5% points (precent of sensitivity) instead of the 19% points 
for the raw sensitivity calculation. Large proportion of the raw sensitivity difference between these 
two suppliers was caused by the over representation of large viral concentrations in supplier A 
samples, and over representation of low viral concentrations in supplier C samples. 

A second point shown in figure 5 is the strong influence of the reference distribution of Cts on the 
absolute values of the sensitivity. The absolute value of the sensitivity experiences important 
variation of the order of 8% points across the different reference distributions– larger than the 
difference across the supplier sensitivities. In particular, the fraction of low positives plays an 

 

Figure 5.  Sensitivity corrected from the uneven distribution of viral concentration across the four 
supplier’s datasets, and corresponding to the four optional referential distributions of qRT-PCR cycles 
shown in figure 4. The boxes show 50% and the segments 95% confidence limits. The dotted line shows 
the 0∙8 sensitivity shred hold. 
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important role, as expected: the PPA functions in figure 3 show that the probability of positive 
agreement is in all suppliers is very low for low positives (35-40 Cts). The indicated line at 0∙8 
sensitivity in figure 5 helps to illustrate this point. With the reference distribution including 5% of 
low positives the four suppliers have sensitivities over the 0∙8 threshold. With the reference 
distribution including 15% of low positives suppliers B and C are below the threshold, whereas 
suppliers A and D are borderline. With the distribution that combines the four suppliers observed 
samples, all the suppliers are below the 0∙8 threshold. 

 

Discussion 

Due to inherent factors such as the number of participants, demographics, and sampling conditions 
in real-world data, the qRT-PCR Ct distribution used for sensitivity or PPA calculation may yield 
varying results.   Due to limitations on the considerable list factors, it is feasible to take into 
consideration all incoming datapoints to shape a particular Ct distribution if a probability function 
(PPA) is applied. This practical challenge arising from the intrinsic variability of a study, including 
divergent viral load distributions, can be addressed through a data balancing procedure. This 
procedure involves estimating the PPA function, followed by recalculating sensitivity over a 
selected referential or standard Ct distribution. By doing so, the process mitigates the impact of 
uneven Ct distributions in the raw data and provides a mathematical computation of the expected 
PPA. 

Regulatory agencies have considered incorporating low levels of the target in antigen test 
performance analysis to ensure less biased statistics and a comprehensive representation of both 
low and high viral loads. While this approach is practical, it lacks a generalizable method, focusing 
solely on low positive bins and neglecting to describe the remaining data ranges. This method 
provides an alternative for making assumptions when comparing two datasets, as it models the 
entire dataset, including both low and high Ct values, to achieve balanced data distribution. By 
modeling the distributions of the data, we encompass all outcome ranges, allowing for meaningful 
comparisons between groups. The statistics we propose rely on distributions rather than specific 
ranges. 

The described methodology enhances the reliability of performance metrics for antigen tests (ATs), 
addressing the significant bias inherent in raw data sensitivity calculations. We propose the 
calculation of the PPA function characterizing the AT supplier data, whereas in the domain of Cts, 
copies per mL, or other sample viral concentration related variable. However, comparing supplier’s 
AT performance based on direct examination of the PPA function is not straightforward, as various 
characteristics of the PPA function (such as Ct at median probability, slope, uncertainties, etc.) 
have a coupled effect in the overall performance. Sensitivity offers the advantage of providing a 
single numerical value for evaluation and comparison. Thus, we propose the viral load adjusting 
methodology: defining a standard reference Ct distribution and calculating sensitivity over the 
reference distribution as a accurate measurement of AT positive agreement performance.  

The real-world data includes factors that will bias the result of the sensitivity of the antigen test 
and does not reflect performance with accuracy. The method we describe allow for the adjusted 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 28, 2024. ; https://doi.org/10.1101/2024.10.25.24316137doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.25.24316137


and more accurate representation of the tests’ sensitivity. The model proposed provides a robust 
statistical analysis based on logistic regression of the positive agreement probability variable. 

The raw sensitivity directly calculated from real world datasets show to be strongly influenced by 
the distribution of the virus concentration at the time of testing the participats of the study. 
Therefore, having a way to balance to a common distribution is a useful. We provide a model to 
adjust the raw sensitivities.  
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