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Abstract Alterations in brain connectivity provide early indications of neurodegenerative15

diseases like Alzheimer’s disease (AD). Here, we present a novel framework that integrates a16

Hidden Markov Model (HMM) within the architecture of a convolutional neural network (CNN) to17

analyze dynamic functional connectivity (dFC) in resting-state functional magnetic resonance18

imaging (rs-fMRI). Our unsupervised approach captures recurring connectivity states in a large19

cohort of subjects spanning the Alzheimer’s disease continuum, including healthy controls,20

individuals with mild cognitive impairment (MCI), and patients with clinically diagnosed AD.21

The framework successfully identified distinct brain states associated with different clinical stages22

of AD, demonstrating a progressive reduction in functional flexibility as disease severity23

increased. Specifically, we observed that patients with AD spend more time in brain states24

dominated by unimodal sensory networks, while healthy controls exhibited more transitions to25

polymodal, cognitively demanding states. Importantly, the fraction of time spent in each state26

correlated with cognitive performance and anatomical atrophy in key regions, providing new27

insights into the disease’s progression.28

Our findings suggest that the disruption of dynamic connectivity patterns in AD follows a29

two-stage model: early compensatory hyperconnectivity is followed by a decline in connectivity30

organization. This framework offers a powerful tool for early diagnosis and monitoring of AD31

progression and may have broader applications in studying other neurodegenerative conditions.32

Index terms - Alzheimer’s disease, Cognitive impairment, Convolutional neural networks (CNNs),33

Hidden Markov Model (HMM), Resting-state functional magnetic resonance imaging (rs-fMRI),34

Unsupervised analysis35

36

Introduction37

Alzheimer’s disease (AD) is themost common cause of dementia, characterized by a progressive de-38

cline in cognitive function. Early disruptions in neural connectivity, particularly in functional brain39

networks, have been identified as key indicators of the disease’s onset and progression. Resting-40
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state functional magnetic resonance imaging (rs-fMRI) has emerged as a valuable tool for studying41

these connectivity alterations van den Heuvel and Sporns (2019), allowing researchers to investi-42

gate howdifferent brain regions communicate even in the absence of external stimuli. The analysis43

of functional connectivity (FC) from rs-fMRI can provide insights into how neurodegenerative pro-44

cesses unfold, offering potential biomarkers for early diagnosis and tracking disease progression.45

Traditional methods of analyzing FC, such as seed-based correlation and independent compo-46

nent analysis, typically assume that connectivity is static throughout the fMRI scan. However, re-47

cent advances in neuroscience emphasize the dynamic nature of brain connectivity, where distinct48

patterns of FC emerge and dissipate over time Favaretto et al. (2022); Fiorenzato et al. (2019);49

de Vos et al. (2018). Dynamic functional connectivity (dFC) captures this temporal variability, of-50

fering a more nuanced view of brain network alterations that may be critical in understanding51

diseases like AD. Previous research has shown that dynamic changes in connectivity states may52

reflect compensatory mechanisms in early stages of AD, followed by a breakdown of connectivity53

organization as the disease progresses.54

Despite these advancements, current methods for analyzing dFC often rely on disjointed pro-55

cessing pipelines, where FC computation, dimensionality reduction, and state classification occur56

in separate stages. This fragmentation can hinder the optimization of dFC models, limiting their57

ability to provide a comprehensive understanding of connectivity patterns. To address this, we58

introduce a novel unsupervised deep learning framework that integrates a Hidden Markov Model59

(HMM) within a convolutional neural network (CNN). This end-to-end architecture simultaneously60

optimizes both functional connectivity state identification and sequence likelihood, providing a ro-61

bust, dynamic representation of brain activity.62

The use of HiddenMarkov Models (HMMs) for the analysis of FC states is not novel, in itself, but63

past approaches typically relied on disjointed processing pipelines. In contrast, our method incor-64

porates HMMs directly within a deep neural network, ensuring optimal clustering of brain states in65

a single architecture. For example, HMMs have been used to characterize brain state dynamics in66

PTSD subjects Ou et al. (2015), to estimate both static and abruptly changing patterns in children67

and adults Zhang et al. (2019) and, more recently, to infer emotions evokedwith naturalistic stimuli68

Tan et al. (2022). The closest approach to the one we describe here is perhaps that by Suk et al.69

Suk et al. (2016), where a deep neural network is employed for dimensionality reduction, followed70

by a HMM for temporal cluster identification. Nevertheless, in all of the models described above,71

HMMs are applied after a rather lengthy and separated data preparation phase, whose disjointed72

application could potentially hinder a comprehensive optimization of the process. In our knowl-73

edge, the present work is the first attempt to provide the integration of a HMM directly in a deep74

neural network.75

We apply this framework to a large cohort of subjects spanning the Alzheimer’s disease contin-76

uum, from healthy controls to individuals with mild cognitive impairment (MCI) and clinically diag-77

nosed AD. By identifying recurring connectivity states, our model reveals significant alterations in78

brain network flexibility associated with AD progression. Specifically, we observe that patients with79

AD exhibit prolonged engagement in brain states dominated by unimodal cortices, while healthy80

individuals showmore frequent transitions to polymodal, cognitively demanding states. These find-81

ings align with the growing body of research suggesting reduced metabolic activity and impaired82

network integration in AD.83

Furthermore, our results demonstrate that the fraction of time spent in specific connectivity84

states correlates with clinical measures of cognitive function and anatomical atrophy in key brain85

regions. This dynamic, state-based approach to functional connectivity offers a new perspective86

on the early detection and monitoring of AD, with potential implications for other neurodegener-87

ative conditions. Our method not only identifies clinically relevant connectivity patterns but also88

provides a scalable tool for exploring brain network dynamics in a wide range of neurological dis-89

orders.90
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Figure 1. A. Architecture of the proposed framework for dFC construction and analysis using fMRI data. Thenetwork receives as inputs the pairwise products of fMRI time series from all ROIs, then two convolutionallayers (time conv and space conv) compute time-weighted correlations and provide a low dimensionalrepresentation of input data. The last two layers (RBF and expectation layer) reconstruct the most likelysequence of states in the input time series. B. From the output of the neural network, a discrete time series isderived, in which each value indicates the most likely active state for that time point. C. An approximaterepresentation of the different states is provided. D. The fraction time of the identified recurring states iscalculated and investigated as a possible marker of AD progression, also in association with cognitive/clinicalscores and neurodegenerative trajectories.

Results91

Experimental settings92

We performed two experiments, on data from 1) HC and full-blown AD subjects and 2) in the whole93

AD clinical spectrum (SMC, eMCI, lMCI, and AD). With the first experiment, we aimed to identify a94

subset of dFCs (dynamic functional connectivity states) common in both HC and AD subjects. In95

the second set of experiments, we intended to demonstrate how the distribution of fraction times96

for the identified dFCs changed according to the clinical condition (from HC to AD) and whether it97

related to behavior and neurodegenerative trajectories. All experiments were unsupervised and98

training was performed on all relevant data at once (i.e., no cross-validation was performed).99
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Figure 2. Fraction times for all 6 training runs, with distributions relative to HCs in blue and ADs in green. Thesymbol ∗ indicates p-value <0.05 for Wilcoxon’s test for equal median, with Benjamini-Hochberg correctionfor n=66 multiple comparisons, 226 HCs, 67 ADs. Circled black dots indicate median values of eachdistributions, horizontal bars indicate the mean, while bottom and top edges of the box extend to the 25thand 75th percentiles, respectively. Whiskers extend to the most extreme data points not considered outliers(plotted individually as small dots). The representation order is based on the difference between the meanfraction times of HCs and ADs, with ADs over-represented on the left and HCs over-represented on the right.Only 11 distribution pairs are represented, as, after sorting, 4 dFCs positions are never occupied.

Population comparisons: HC and AD100

To demonstrate the variability and reproducibility of the results obtained from the adoptedmodel,101

we conducted six separate training runs on the HC-AD subset using identical inputs: the only dif-102

ference among them is, therefore, the random initialization of the model. Each subplot in fig. 2103

shows the fraction time of the dFCs identified for a sample training run of the HC-AD experiment.104

Themodel is designed to identify amaximumof 15 distinct dFCs. It is evident how, with the adopted105

settings, no more than 8 dFCs are ever observed in a single training run. Furthermore, some of106

the most commonly occurring states appear with significantly different fraction times between107

HC and AD subjects, as confirmed by statistical analysis (Wilcoxon’s tests for equal medians with108

Benjamini-Hochberg correction, corrected 𝑝-values smaller than 0.05 are marked with asterisks).109

Comparing the results of the six runs can be challenging due to the unsupervised nature of110

the experiments, which led to the arbitrary numbering of identified dFCs. To facilitate comparison,111

dFCs have been sorted according to the gap inmean fraction time betweenHC and AD populations.112

Using this sorting approach, only 11 out of the possible 15 ranks have at least one non-empty113

instance across the six training runs. The remaining four positions have been omitted from fig. 2.114

With the precautions outlined above, it was possible to verify whether, in different training115

repetitions, the attributions to a given dFCs were consistent with one another: we performed a116

permutation test. For dFCs 1, 2 and 15, the counts of matching time volumes in all the six training117

runs (e.g. for subject 1, time point 1 is always identified as dFCs 1) are at least one order of mag-118

nitude higher than the average across permutations (table 1), suggesting that the observed match119

counts are significantly higher than what can be expected by random chance (𝑝-value ≈ 0 for dFCs120

1, 2 and 15, Wilcoxon signed rank for median of permutations equal to observed value). Therefore,121

we can state that these three dFCs were reliably identified in all training runs, thus we decided to122

focus on them in the rest of the paper. It is worth pointing out that the existence of a significant123

number of time volumes systematically attributed to the same dFCs across training runs implied124

that the ranking of dFCs (at least for states 1, 2 and 15) was always consistent.125
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Table 1. Counts of time volumes across all subjects attributed to same dFCs in all training runs in observeddata and permutation tests
dFCs Observed Mean perm. SD perm
1 4586 8.6 3.0
2 130 1.0 1.0
3 0 0 0
4 0 0 0
5 0 0 0
6 0 0 0
11 0 0 0
12 0 0 0
13 0 0 0
14 0 0 0.2
15 5638 208.1 14.3

Dynamic functional states and their representation126

In order to provide a representation of the dFCs, we identified the time volumes that were system-127

ically attributed to dFCs 1, 2 and 15 in all experimental repetitions and constructed "traditional"128

dynamic FC matrices from the relevant sections of the individual recordings. More in detail, we set129

the size of each rectangular window to 60 s, so every single FC matrix is constructed with the same130

data that the convolutional section of themodel uses, even thoughwith different timeweights. Rep-131

resentations of each dFCs were then obtained by taking the median value from the resulting FCs132

across all HC/AD subjects. The results are displayed in fig. 3, where the FC matrices are reported133

along with the information of Yeo’s 7 networks Schaefer et al. (2018) (visual - VIS, somatomotor -134

SMN, dorsal-attention - DAN, ventral-attention - VAN, limbic - LIM, frontoparietal - FPN and default135

mode network - DMN, for left and right hemispheres).136

Population comparisons: All groups137

In our second experiment, the model was trained on subjects from the 5 available populations.138

Given the stability of the results observed in the previous experiment, we deemed it sufficient to139

perform only one repetition of model training. We sorted the order of the identified dFCs exactly140

as in the previous case. Fraction times are reported in fig. 4, panel A. It is possible to appreciate141

a state-clinical gradient in terms of fraction times. Specifically, AD, and lMCI patients spent more142

time in state 1 and state 2, showing a decrease for state 15. HC subjects show a divergent pattern,143

with the highest fraction of time in state 15 and a steady decrease in states 1 and 2. Notably, the144

SMC groups showed a similar trend compared to HC, with even an higher amount of time spent in145

state 15 compared to the healthy counterpart. Table 2 displays the p-values for Kruskal-Wallis tests146

for equal distributions performed on the state-specific fraction times, with Dunn-Sidak correction147

for multiple comparisons.148

Clinico-anatomical interplay with dFCs149

In order to investigatewhether the identified dFCs have a behavioralmeaning, we tested for a possi-150

ble association between state-specific fraction times and three different clinical scores widely used151

in AD: Alzheimer’s Disease Assessment Scale (ADAS11), Mini-Mental State Examination (MMSE) and152

Clinical Dementia Rating Scale Sum of Boxes (CDRSB). The rationale behind this analysis is that if153

a specific brain state is neurobiologically relevant, its occurrence (as measured by fraction time)154

might be associated with cognitive performance and clinical outcomes.155

HC and AD subjects were involved in the sorting of states, thus in their numbering. In order to156

eliminate any possible confounding effects on the results of the association analysis, this has been157

restricted to MCI and SNC populations. For each dFCs, MCI and SMC subjects have been divided158
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Figure 3. Panel A. Median of FC matrices attributed to dFCs 1, 2, and 15 (respectively for left, middle and rightcolumns) over all training repetitions. The color bar on the right is the same for all panels, while themulticolor bars on the left and bottom of each image provide labelling for the different networks covered bythe Schaefer atlas with 7 networks. Bottom row panels display the same data but averaged overintra/inter-networks (excluding values on the main diagonal). Panel B. Connectograms of median FC matricesover all training repetitions. Only connections with values above 0.85 are represented, with line thicknessproportional to the connection strength.

in two sub-populations: one for subjects with fraction times for a given dFCs greater or equal to159

0.5 and the second for subjects showing that dFCs for less than half of the recording time. As the160

different sub-populations had different age ranges, the different groups obtained in the previous161

step have been age-corrected as detailed in theMaterials andMethods section in order tominimize162

any possible impact of age on the outcome. The resulting distributions of the clinical scores in the163
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Figure 4. Panel A. Fraction times of the three recurring dFCs, with distributions separated by subject group.The significance between each pair of groups has been tested with Kruskal-Wallis test for equal distributions,with Dunn-Sidak correction to account for the multiple comparisons. The horizontal black lines in the top partof the figure link distributions for which p-values are smaller than 0.05. n=226 HCs, 160 SMCs, 144 eMCIs, 130lMCIs, 67 ADs. Boxplots are built as in fig. 2. Panel B. Distribution of three clinical scores in the twosub-populations identified according to the fraction times of each dFCs, with blue and red bars for subjectswith fraction times less than (or equal to) and greater than 0.5, respectively. The symbol ∗ indicates p-valuesmaller than 0.05 (Benjamini-Hochberg correction for 9 comparisons). n changes for each sub-population andranges between 38 and 343 (exact values below each boxplot). Panel C. Distribution of normalized volumesfor three well-known regions in the sub-populations identified by fraction times of each dFCs as described inPanel B. The symbol ∗ indicates p-value smaller than 0.05 (Benjamini-Hochberg correction for 9 comparisons).
n changes for each sub-population and ranges between 48 and 378 (exact values below each boxplot).

two sub-populations are represented in fig. 4, panel B. In order to test for a possible association,164

a Wilcoxon test was conducted for each pair, with a Benjamini-Hochberg correction for multiple165

comparisons (n=9). Resulting p-values are presented in table 3. The statistical analyses highlighted166

a significant association between the fraction times of dFCs 1 and 15, and all the three clinical167

scores. Subjects with higher fraction time for dFCs 15 showed the best clinical scores compared to168

the cohort expressing less rs-fMRI frames for this dFCs. This result was reversed for state 1, while169

state 2 proved significantly associated only with the CDRSB score.170
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Table 2. p-values of fraction times comparisons in different populations, Kruskal-Wallis test for equaldistributions, Dunn-Sidak correction for multiple comparisons (n=10).
Group 1 Group 2 dFC 1 dFC 2 dFC 15

HC SMC 0.86 0.51 0.03
HC eMCI 1.00 0.83 0.98
HC lMCI <1e-2 1.00 0.13
HC AD <1e-2 0.56 <1e-4
SMC eMCI 0.53 0.03 <1e-2
SMC lMCI <1e-2 0.40 <1e-4
SMC AD <1e-3 0.03 <1e-4
eMCI lMCI 0.14 0.99 0.84
eMCI AD 0.03 1.00 <1e-2
lMCI AD 0.99 0.87 0.11

Table 3. p-values of population comparisons of clinical scores in sub-populations divided by state fractiontimes (Wilcoxon’s test with Benjamini-Hochberg’s correction for n = 9 comparisons).
Score dFCs 1 dFCs 2 dFCs 15
ADAS11 <1e-3 0.08 <1e-4
MMSE <1e-4 0.11 <1e-4
CDRSB <1e-3 0.05 <1e-4

Similarly, we explored a possible association between fraction times and anatomical variations171

in MCI and SMC groups. In this case, we tested whether the sub-populations identified by frac-172

tion time thresholding were characterized by significant differences in the relative volumes of hip-173

pocampus, amygdala and cerebellum cortex. The former two regions are known to be vulnerable174

to AD pathology, whereas the latter is generally preserved even in the latest stages (Braak and175

Braak (1991); Thompson et al. (2003); Frisoni et al. (2002)). Fig. 4, panel C displays average relative176

volumes for the obtained sub-populations, after age-correction. Table 4 reports the 𝑝-values of a177

Wilcoxon test for different median conducted on each pair of subpopulations, with a Benjamini-178

Hochberg correction for multiple comparisons. Fraction times of all the considered states dis-179

played an association with relative volumes of hippocampus and amygdala, while differences for180

the cerebellum cortex resulted not significant at the 0.05 level.181

Discussion182

In this study, we introduced a novel framework integrating a Hidden Markov Model (HMM) within183

a convolutional neural network (CNN) to capture dynamic functional connectivity (dFC) states in184

subjects across the Alzheimer’s disease (AD) continuum. Our results provide compelling evidence185

that functional connectivity states do not disappear with disease progression but rather become186

progressively harder to reach. These findings suggest that the weakening of specific links or the187

atrophy of brain regions may be a consequence of shifts in the dominant connectivity patterns,188

rather than the result of isolated or localized damage. While this hypothesis requires further in-189

Table 4. p-values of population comparisons of relative region volumes in sub-populations divided by statefraction times (Wilcoxon’s test, Benjamini-Hochberg’s correction for n = 9 comparisons).
Score dFCs 1 dFCs 2 dFCs 15

Hippocampus <1e-2 0.01 <1e-3
Amygdala 0.01 0.01 <1e-3

CerebellumCortex 0.41 0.47 0.25
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vestigation, it opens new directions in understanding AD pathophysiology and the progression of190

neurodegenerative disorders.191

Dynamic functional connectivity and disease progression192

Previous studies have demonstrated that brain networks, particularly the default mode network193

(DMN) and salience network (SAN), exhibit reduced functional connectivity in AD patients Agosta194

et al. (2012); Brier et al. (2012); Greicius et al. (2004); Dai et al. (2015); Gu et al. (2020). Traditionally,195

these changes have been interpreted as localized network disruptions due to structural atrophy,196

particularly in regions like the hippocampus and posterior cingulate cortex (PCC) He et al. (2007);197

Bullmore and Sporns (2009); Teipel et al. (2018). However, our findings suggest a different mecha-198

nism: the reduced frequency with which certain dynamic states are accessed could underlie the de-199

cline in functional connectivity observed in these regions. Rather than being disrupted altogether,200

these states persist but become harder to reach, implying that network flexibility diminishes over201

time.202

This interpretation is in line with the emerging understanding of AD as a disorder not only of203

localized damage but also of global network dysfunction. Our results support the idea that the204

brain’s inability to transition between different connectivity states could drive functional decline,205

reinforcing the need to study connectivity dynamics as a hallmark of disease progression.206

Compensatory mechanisms and network flexibility207

In the early stages of AD, some studies suggest that hyperconnectivity may act as a compensatory208

mechanism to maintain cognitive performance Chiesa et al. (2019); Li et al. (2018); Chen et al.209

(2020). Our analysis provides further evidence for this, as subjects with early mild cognitive im-210

pairment (MCI) exhibited relatively higher fractions of time spent in cognitively demanding states211

compared to later stages. These findings align with the two-stage model of AD progression, in212

which initial compensation is followed by a gradual breakdown of connectivity.213

However, the diminishing ability to reach certain states may signify the loss of this compen-214

satory capacity, leading to cognitive decline. The decreased network flexibility observed in AD215

patients may stem from a progressive inability to transition from states characterized by unimodal216

sensory network activity tomore polymodal, higher-order states. This suggests that targeting treat-217

ments to preserve or restore network flexibility could be a promising avenue for early interven-218

tions.219

Linking connectivity states to behavior and anatomy220

One of the key contributions of this study is the linkage between dynamic connectivity states,221

cognitive performance, and anatomical atrophy. Our results showed that the fraction of time222

spent in specific connectivity states correlated with well-established clinical measures such as the223

Alzheimer’s Disease Assessment Scale (ADAS11) and Mini-Mental State Examination (MMSE), as224

well as anatomical atrophy in regions like the hippocampus and amygdala. This provides a new225

perspective on how the brain’s dynamic functional connectivity relates to both behavior and struc-226

tural degeneration.227

While previous studies have explored the relationship between functional connectivity and cog-228

nitive decline Bergamino et al. (2024); Huang et al. (2022), few have made direct connections be-229

tween dynamic states, behavior, and anatomical features. Our findings suggest that theweakening230

of certain connectivity states is not merely a reflection of structural damage, but may actively con-231

tribute to the progression of neurodegenerative changes. These results support the notion that232

alterations in functional connectivity could precede and potentially drive the structural atrophy233

observed in key regions affected by AD.234
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Implications and future directions235

The implications of our findings are twofold. First, they highlight the need to investigate the tem-236

poral dynamics of functional connectivity in greater detail, particularly in relation to how these dy-237

namics evolve with disease progression. The persistence of connectivity states, even in advanced238

AD, suggests that interventions aimed at preserving the brain’s ability to transition between states239

could help slow cognitive decline. This aligns with recent research advocating for network-based240

approaches to neurodegeneration, where restoring or maintaining connectivity may be more im-241

portant than targeting specific regions of atrophy Hammond et al. (2020); Strom et al. (2022).242

Second, our work underscores the potential of dynamic connectivity analysis as a diagnostic243

tool. By identifying patterns of state transitions that correlate with cognitive performance and244

anatomical degeneration, we can develop more sensitive biomarkers for early-stage AD detec-245

tion. Additionally, this approach may be applicable to other neurodegenerative conditions, such246

as Parkinson’s disease or frontotemporal dementia, where similar disruptions in brain network247

dynamics are thought to play a role.248

Limitations249

Despite these promising findings, our approach has several limitations. While we successfully iden-250

tified connectivity states associated with cognitive decline, the long durations of these states may251

limit their utility for direct classification purposes. The persistence of states across different stages252

of AD suggests that classification based on state frequency alone may not capture the full com-253

plexity of the disease. Future work should explore more granular, transient sub-states that could254

provide additional diagnostic value.255

Moreover, the link between dynamic connectivity states and structural atrophy, while com-256

pelling, requires further validation. Longitudinal studies are needed to determinewhether changes257

in network flexibility precede or follow anatomical degeneration. Additionally, our current model258

does not account for individual variability in disease progression, which may affect the generaliz-259

ability of our findings to broader populations.260

Conclusion261

This study provides strong evidence for the role of dynamic functional connectivity in Alzheimer’s262

disease progression. Our results suggest that changes in network flexibility, rather than the dis-263

appearance of specific connectivity states, may drive cognitive decline and neurodegeneration. By264

linking dynamic connectivity states to both cognitive performance and anatomical atrophy, we of-265

fer a novel perspective on how brain network dynamics contribute to AD pathology. These findings266

pave the way for future investigations into network-based interventions that aim to preserve func-267

tional flexibility and slow disease progression.268

Material and Methods269

Study cohort270

The data used in this study were obtained from the Alzheimer’s Disease Neuroimaging Initiative271

(ADNI) Phase 3 (ADNI-3) and include T1-weighted and resting-state functional MRI (rs-fMRI) scans.272

The selected cohort comprises 601 subjects, categorized into five groups: 225 healthy controls273

(HC), 155 significant memory concern (SMC), 143 early mild cognitive impairment (eMCI), 130 late274

mild cognitive impairment (lMCI), and 67 individuals with Alzheimer’s disease (AD). Further details275

on the cohort demographics are available in the Supplementary Information.276

MRI data acquisition and preprocessing277

Resting-state fMRI scans were acquired using 3TMRI scanners, with 200 fMRI volumes collected for278

most participants. T1-weighted structural images were also available for all subjects. Preprocess-279

ing of the rs-fMRI data followed standard procedures, including motion correction, normalization,280
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and spatial smoothing. Further details on the acquisition parameters and preprocessing steps are281

available in the Supplementary Information.282

Deep network model283

The deep network model employed in this study is designed to address specific challenges in the284

analysis of dynamic FC. The structure of this network is presented in the following table ??, along285

with the dimension of the activations of each layer in space (S), channels (C) and time (T). Further286

details on each layer can be found in the Supplementary Information.287

Table 5. Network model structure and activations
Layer type Activation size
Sequence input 1e4 (S) × 1 (C) × 192 (T)
Temporal convolution layer 1e4 (S) × 𝐿1 (C) × 173 (T)
Leaky ReLU 1e4 (S) × 𝐿1 × 173 (T)
Spatial convolution layer 1 (S) × 𝐿2 (C) × 173 (T)
Leaky ReLU 1 (S) × 𝐿2 (C) × 173 (T)
Fully connected layer 1 (S) × 3 (C) × 173 (T)
Batch normalization 1 (S) × 3 (C) × 173 (T)
RBF layer 1 (S) × 𝐾 (C) × 173 (T)
Likelihood layer 1 (S) × 𝐾 (C) × 173(T)

Convolutional layers288

The convolutional section, inspired by the neural network described in Jie et al. Jie et al. (2020), is289

designed to overcome the issues associated with the sliding-window approach and identify rele-290

vant spatial patterns. This is achieved by designing short-scale time and spatial kernels that provide291

a compact representation of the input data.292

Leaky ReLUs293

We chose to adopt leaky ReLUs as non-linearities because the radial basis function layer (described294

below) is sensitive to the distribution of its inputs. Ideally, the inputs to the radial basis func-295

tion layer should resemble a mixture of several multivariate normal distributions. However, when296

paired with ReLUs or tanh layers, the inputs are often concentrated around extreme values, caus-297

ing the radial basis function layer to under-perform. Leaky ReLUs help mitigate this issue by allow-298

ing a wider range of values to pass through, resulting in a more suitable input distribution for the299

radial basis function layer.300

Radial basis function301

A radial basis function (RBF) layer is incorporated to estimate the likelihoods of the outputs from302

the first section of the network. This layer essentially estimates the probability of the system being303

in a specific state at a given time, independent of its relation with preceding and following time304

points.305

Likelihood layer306

The final layer, termed the ’Likelihood layer’, implements the core of the HMM. This layer ensures307

that the identified states are not just the most likely in isolation, but also when considering the308

entirety of the time sequence. It computes the likelihood of observing the sequence of inputs,309

taking into account the temporal dependencies between states.310

Loss function311

The loss function used for network training is a function of two terms: the first is the opposite of312

the log-likelihood of the most probable sequence, while the second term is obtained by comput-313
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ing the same quantity for a sham sequence in which the time positions of the network inputs have314

been randomly shuffled. This second term has been introduced to prevent a possible degenerate315

solution, in which the width parameter of all RBF neurons but one become so small as to be irrel-316

evant and each sequence is decoded as a constant repetition of the state corresponding to the317

only "large" neuron left. This issue is prevented with the addition of the second loss term, which318

ensures that the order of inputs is relevant.319

Network training320

The optimizer used was ADAM, learning rate was constant and set to 1e-3. Gradient decay was321

set to 0.75, while squared gradient decay to 0.95. Batch size corresponded to ∼4% of available322

subjects in the HC-AD experiments, ∼2% when analyzing all available data. Training proceeded for323

15 epochs, with no early-stop conditions. 𝐿1, 𝐿2, and 𝐾 were constant for all experiments and set324

to 16, 32, and 15, respectively. The length of the temporal filters was 20 time volumes, while spatial325

filters had the same size as the input space (1e4 dimensions).326

Dynamic functional connectivity states analysis327

Fraction times328

The output of the network described above is the clustering of each time volume, for every subject,329

in one of the possible dynamic functional connectivity states (dFCs). We decided to compare sub-330

jects across populations in terms of the fraction times (𝑓𝑘) of each dFCs, given by the percentage331

of times during which the state is active:332

𝑓𝑘 ∶=
#(𝑥(𝑛) = 𝑘)

𝑇
, 𝑘 = 1, ..., 𝐾 (1)

where #(𝑎) is the number of times for which condition 𝑎 is verified and 𝑇 is the total length of333

the time series (in this case, the length of the network output, 173).334

dFCs sorting and permutation test335

The network training procedure is completely unsupervised: as a consequence, the order of clus-336

ters is random in each training run. We addressed this problem by sorting the identified dFCs:337

fraction times for each dFCs were computed and then averaged separately for HC and AD popula-338

tions. Sorting occurred based on the difference between average fraction time in AD and average339

fraction time in HC.340

An additional issue we encountered is that, due to the stochastic initialization of the network,341

the attribution of dFCs is not entirely consistent across different training runs. To verify that the ob-342

served overlap of dFCs across all training runs is significantly greater than what could be expected343

by chance alone, we performed a permutation test.344

Inmore detail, we first calculated the total number of time volumes attributed to the same dFCs345

across all subjects and training runs. Then, we randomly shuffled the dFCs labels and performed346

the same calculation. This label-shuffling procedure was repeated 10,000 times, generating a dis-347

tribution of counts under the null hypothesis that the overlap of dFC states is due to chance.348

Next, we used a two-sided Wilcoxon signed-rank test to assess whether the median of the dis-349

tribution of counts from the permutations is significantly different from the observed count of350

overlapping dFCs. This test allowed us to determine if the observed degree of overlap in dFCs351

attributions across training runs is greater than what would be expected by chance alone.352

Fraction times group comparisons353

For the dFCs consistently identified across training runs, we assessed whether the observed frac-354

tion of time spent in each dFCs significantly differed across the five available populations (HC, SMC,355

eMCI, lMCI, and AD): we conducted a Kruskal-Wallis test, with the null hypothesis stating that the356

observed fraction time for each population originates from the same underlying distribution. To357

account for multiple comparisons and control the family-wise error rate, we applied a Dunn-Sidak358

12 of 18

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 28, 2024. ; https://doi.org/10.1101/2024.10.25.24316107doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.25.24316107
http://creativecommons.org/licenses/by-nc/4.0/


correction to the p-values obtained from pairwise comparisons between populations (with a total359

of 10 pairwise comparisons in this case).360

Clinico-anatomical comparisons and age correction361

Association tests between the fraction times of each dFCs and clinico-anatomical variables were362

performed only on subjects in the SMC and MCI populations. The rationale for this choice is that363

both the HC and AD groups were used for the ranking of the identified clusters; thus, their use in364

this case could produce spurious results.365

For each association test, we split the combined SMC-MCI population into two subgroups based366

on the fraction time of the dFC currently being tested. One subpopulation consisted of subjects367

who showed the dFC under examination for more than half of the available time points, while the368

other subpopulation included the remaining subjects. In order to eliminate a possible confound369

due to age, we used an iterative approach to balance the age distribution between the two supopu-370

lations: we randomly selected and removed a subject from themost extreme age quartile from the371

majority subpopulation until the ages of the two groups were not significantly different, as deter-372

mined by a Wilcoxon rank test for equal medians with a significance level of 0.2. Finally, we tested373

each clinical and anatomical variable for different medians among the two subpopulations using a374

two-sided Wilcoxon rank sum test, followed by a Benjamini-Hochberg correction for multiple tests.375

dFCs-feature pairs that rejected the null hypothesis of equal medians were considered to have a376

significant association.377

Hardware and software378

All the algorithms described in this paper have been developed on a Asus ROG Strix PC, sporting an379

AMD Ryzen 9 6900HX and NVIDIA GeForce RTX 3070 Ti Laptop GPU. The OS is Microsoft Windows380

11, while the actual code has been developed in MATLAB R2022a.381
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Table S1. Participants’ demographics
# Age Sex (M/F) APOE4 (0/1/2/U) ADAS11 MMSE CDRSB

HC 226 71.4 ± 6.1 99/127 136/50/5/35 6.2 ± 4.3 28.7 ± 1.8 0.37 ± 1.3
SMC 160 71.6 ± 6.0 66/94 102/51/5/2 5.4 ± 3.2 29.1 ± 1.2 0.11 ± 0.39
eMCI 144 70.9 ± 7.2 78/66 75/38/13/18 8.8 ± 5.7 27.7 ± 2.4 1.71 ± 2.05
lMCI 130 72.0 ± 8.0 72/58 63/41/9/17 12.1 ± 6.6 26.4 ± 4.2 2.34 ± 2.59
AD 67 74.8 ± 8.0 43/24 15/21/10/21 20.2 ± 6.4 22.7 ± 2.4 4.58 ± 2.00

Table S2. Participants’ demographics
# Age Sex (M/F)

HC 226 71.4 ± 6.1 99/127
SMC 160 71.6 ± 6.0 66/94
eMCI 144 70.9 ± 7.2 78/66
lMCI 130 72.0 ± 8.0 72/58
AD 67 74.8 ± 8.0 43/24

Supplementary information456

Study Cohort Details457

The demographic information of the cohort, including age, sex, and clinical scores, is reported in458

the tables S1, S2 and S3.459

460

Clinical and Cognitive Assessments461

In this study, several well-established biomarkers and clinical assessments were used to evaluate462

the subject population. Below is a detailed explanation of each measure:463

• APOE4: Apolipoprotein E (APOE) is a gene associated with Alzheimer’s disease (AD) risk. The464

APOE4 allele is considered a major genetic risk factor for late-onset Alzheimer’s disease. Indi-465

viduals carrying one or two copies of the APOE4 allele are at an increased risk of developing466

AD.467

• ADAS11: The Alzheimer’s Disease Assessment Scale-Cognitive Subscale (ADAS-Cog) is a stan-468

dard cognitive test used to measure the severity of cognitive impairment in Alzheimer’s pa-469

tients. ADAS11 refers to an 11-item version of this test, focusing on areas such as memory,470

language, and praxis.471

Table S3. p-values of age comparisons in different populations, Kruskal-Wallis test for equal distributions,Dunn-Sidak correction for multiple comparisons (n=10).
Group 1 Group 2 P-value

HC SMC 0.02
HC eMCI 0.87
HC lMCI 0.10
HC AD <1e-4
SMC eMCI <1e-2
SMC lMCI <1e-5
SMC AD <1e-9
eMCI lMCI 0.64
eMCI AD <1e-2
lMCI AD 0.09
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• MMSE: The Mini-Mental State Examination (MMSE) is a widely used test for screening cogni-472

tive function. It includes questions designed to assess orientation, attention, memory, lan-473

guage, and visual-spatial skills. A lower score on theMMSE indicates greater cognitive impair-474

ment.475

• CDRSB: The Clinical Dementia Rating-Sum of Boxes (CDRSB) is a measure used to assess the476

severity of dementia symptoms. It provides a global rating of dementia severity by scoring477

patients across six domains, including memory, orientation, judgment, and personal care.478

MRI Data Acquisition and Preprocessing Details479

Acquisition parameters480

Resting-state fMRI data were acquired on 3T MRI scanners with the following parameters (up-to-481

date informationon the acquisition protocols canbe foundat https://adni.loni.usc.edu/methods/documents/mri-482

protocols/).483

• Repetition/echo time (TR/TE): 3000/30 ms484

• Flip angle (FA): 90°485

• Field of view (FOV): 220x220x163 mm486

• Voxel size: 3.4-mm isotropic487

• Number of volumes: 200 (with small variations, e.g., 197 volumes in a few cases)488

T1-weighted structural images were collected with the following parameters:489

• TR = 2300 ms, TE = minimum490

• Inversion time (TI) = 900 ms491

• FOV = 208x240x256 mm492

• Voxel size: 1-mm isotropic493

Preprocessing Steps494

Resting-state fMRI data were preprocessed using the FMRIB Software Library (FSL version 6.0) with495

the following steps:496

• Initial preprocessing:497

– Removal of the first 5 volumes498

– Motion correction using MCFLIRT499

– 4D mean intensity normalization500

– Spatial smoothing with a 6-mm full-width half maximum (FWHM) kernel501

– Interleaved slice-timing correction502

• Regressing out confounds:503

– The sixmotion parameters (plus their derivatives), whitematter (WM), and cerebrospinal504

fluid (CSF) signals were regressed out along with a linear trend component.505

– WM and CSF signals were extracted from segmented T1-weighted scans, registered to506

the fMRI native space, and eroded and binarized with a threshold of 0.8.507

• Band-pass filtering:508

– A band-pass filter was applied with a frequency range of 0.01-0.08 Hz.509

• Scrubbing and zero-padding:510

– High-motion frames (defined as exceeding 0.5mmframewise displacement)were scrubbed.511

– Zero-padding of the volumes, along with one preceding and two subsequent volumes,512

was performed to ensure data consistency across subjects.513

• Normalization:514
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– The preprocessed rs-fMRI volumeswere spatially normalized to the 2-mmMontreal Neu-515

rological Institute (MNI) space using both linear and non-linear registration techniques516

(FLIRT and FNIRT).517

The Schaefer functional atlas Schaefer et al. (2018) with 100 parcels and 7 RSNs was used to ex-518

tract the mean time course for each region of interest (ROI), which were normalized using 𝑍-score519

before further processing.520

The T1-weighted volumes wereminimally preprocessed for bias-field correction (fsl_anat tool Jenk-521

inson et al. (2012)), and a complete brain parcellation/segmentationwas performedusing FreeSurfer522

version 7.0 Fischl (2012). In this study, we focused our analyses on three regions of interest, that523

are Hippocampus and Amygdala, which are relevant to AD, and cerebellum cortex, which is a con-524

trol region that is not typically affected by the disease Braak and Braak (1991); Thompson et al.525

(2003); Frisoni et al. (2002). The volumes of these regions were then normalized by the estimated526

total intracranial volume of the respective subject, and averaged over hemispheres.527

Network structure528

Convolutional layers529

The input of the network is the vectorized, pairwise product of the timeseries for all ROIs, while the530

shape of the time window used to compute the correlations is learned by the network itself (i.e., it531

is defined by the kernels of the time convolution layer of the network). More in detail:532

𝑘(𝑥𝑖, 𝑥𝑗) =
𝐿1
∑

𝑙=1
𝑤𝑙𝑥𝑖𝑥𝑗 (2)

where 𝑥𝑖 and 𝑥𝑗 are the normalized time series for ROIs 𝑖 and 𝑗, while 𝑤 = [𝑤1, 𝑤2, ..., 𝑤𝐿1 ] is one533

of the learnable weight vectors. The proposed approach reduces to the computation of Pearson’s534

coefficient of correlation if all elements in𝑤 equal 1. Differently from Jie et al. (2020), here only one535

spatial convolutional layer is used. As the dimension of the kernels of this layer equals that of its536

inputs and no padding is performed, the outputs of this layer project the dFC matrices computed537

with the windowing technique described above to a space of dimension 1×𝐿2. Here, 𝐿1 and 𝐿2 are538

the number of kernels used in the temporal and spatial convolutional layer, respectively.539

Non-linearity layers540

Each convolutional layer described above is followed by a leaky ReLU layer with scale parameter541

𝛼 = 0.5. The element-wise transformation applied by this layer is thus described by:542

𝑦(𝑙) = 𝑚𝑎𝑥(𝑥(𝑙), 𝛼𝑥(𝑙)) (3)
Fully connected and batch normalization layer543

The fully connected layer is added to perform a final projection of each input to a 1 × 3 vector. The544

set of experiments we performed showed that increasing this dimension resulted in additional545

computation time with no significant differences in terms of final output results (data not shown).546

A batch normalization layer has been added to prevent degenerate solutions: as the network547

is trying to maximize the likelihood of the input sequences (see ), an obvious (and non-useful)548

solution would be to collapse all data to the same value, e.g., by setting all the weights of the549

fully connected layer to zero. The presence of a batch normalization layer prevents that from550

happening, as it decouples network loss from simple scale manipulations that would eventually551

lead to a degenerate solution.552

Radial basis function553

Each radial basis function neuron, as implemented here, learns the parameters of a multivariate554

normal distribution with covariance matrix Σ = 𝜎2𝐼 .555
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𝑥𝑠(𝑡) is the 1 × 3 output of the preceding fully connected layer for subject 𝑠 at time 𝑡 and the556

output 𝜙𝑠
𝑖 (𝑡) is the likelihood of 𝑥𝑠(𝑡) for hidden state 𝑖:557

𝜙𝑠
𝑖 (𝑡) = 𝑒𝑥𝑝

(

−
‖𝑥𝑠(𝑡) − 𝑐𝑖‖2

2𝜎2
𝑖

)

(4)
where ‖ ⋅ ‖ is the Euclidean norm, 𝑐𝑖 and 𝜎𝑖 are the learned parameters of neuron 𝑖 (center and558

width, respectively).559

Likelihood layer560

The last layer receives as inputs the sequence in time of likelihoods for each state and provides561

as output the likelihood of the most probable time sequences. This layer implements part of the562

Viterbi algorithm: all states have the same probability for 𝑡 = 1, while each element of the transition563

matrix 𝐴𝑠 for subject 𝑠 is estimated as:564

𝐴𝑠
𝑖𝑗 =

∑𝑇−1
𝑡=1 𝜙𝑠

𝑖 (𝑡)𝜙
𝑠
𝑗(𝑡 + 1)

∑𝑇−1
𝑡=1 𝜙𝑠

𝑖 (𝑡)
(5)

The transition matrix 𝐴 is estimated at each iteration as the average of 𝐴𝑠 across all subjects.565

𝑇 𝑠
1 at the last time point contains the likelihood of the observations for the most likely sequence of566

states for subject 𝑠. 𝑇 𝑠
2 contains the information needed to reconstruct the most likely sequence567

of visited hidden states. However, the sequence itself is not required to compute the loss function568

(see Section ) and it is therefore computed separately from network operations.569

Loss function570

The loss function used for network training is a function of two terms: the opposite of the log-571

likelihood of the most probable sequence (i.e., 𝐿𝑎𝑏𝑠 = −𝑙𝑜𝑔(𝑚𝑎𝑥𝑖(𝑇1[𝑖, 𝑇 ])) and the same quantity572

for a sham sequence 𝐿𝑠ℎ𝑎𝑚 in which the time positions of the network inputs have been randomly573

shuffled.574

The definition of the complete loss term used in training is, therefore:575

𝜆 =

√

𝐿2
𝑎𝑏𝑠 +

(

𝐿𝑎𝑏𝑠

𝐿𝑠ℎ𝑎𝑚

)2 (6)
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