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Abstract 

Individuals have different preferences for setting hearing aid (HA) algorithms that 

reduce ambient noise but introduce signal distortions. “Noise haters” prefer greater noise 

reduction, even at the expense of signal quality. “Distortion haters” accept higher noise levels 

to avoid signal distortion. These preferences were assumed to be stable over time, and 

individuals were classified solely on the basis of these stable, trait scores. However, the 

question remains as to how stable individual listening preferences are and whether day-to-day 

state-related variability needs to be considered as a further criterion for classification. We 

designed a mobile task to measure noise-distortion preferences over two weeks in an ecological 

momentary assessment study with N = 185 (106 f, Mage = 63.1, SDage = 6.5) unaided individuals 

with subjective hearing difficulties. Latent State-Trait Autoregressive (LST-AR) modeling was 

used to evaluate stability and dynamics of individual listening preferences. The analysis 

revealed a significant amount of state-related variance. The model has been extended to a 

mixture LST-AR model for data-driven classification, taking into account trait and state 

components of listening preferences. In addition to successful identification of noise haters, 

distortion haters and a third intermediate class based on longitudinal, outside of the lab data, 

we further differentiated individuals with different degrees of variability in listening 

preferences. It follows that individualisation of HA fitting could be improved by assessing 

individual preferences along the noise-distortion trade-off, and the day-to-day variability of 

these preferences needs to be taken into account for some individuals more than others.  

 

Keywords: listening preferences, noise-distortion trade-off, ecological momentary 

assessment, latent state-trait model, classification 
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Introduction 

Proper fitting of hearing aids (HAs) is critical to user satisfaction, speech intelligibility, 

and listening comfort. Noisy situations are among the most challenging environments for HA 

users (Perry et al., 2019). Therefore, noise reduction (NR) algorithms are an essential part of 

the HA, as they aim to improve listening comfort and speech intelligibility by improving the 

signal-to-noise ratio (SNR) in noisy situations and reducing the annoyance of ambient noise. 

However, the increase in listening comfort comes at the expense of speech naturalness. NR 

processing introduces a certain amount of distortion into the speech signal due to noise 

estimation errors and processing artifacts of the algorithm (Brons, Dreschler, et al., 2014; 

Houben et al., 2012; Reinten et al., 2019). Such signal degradation reduces speech intelligibility 

and perceived sound quality (Arehart et al., 2007).  

Individual preferences for NR settings are subject to large between-person variability 

(Brons et al., 2013; Brons, Houben, et al., 2014; Houben et al., 2023; Kubiak et al., 2022; 

Völker et al., 2018). Some individuals prefer weak NR (i.e., accept lower listening comfort) to 

minimize signal distortions and have been referred to as “NR haters” (Neher & Wagener, 2016) 

or “distortion haters” (Kubiak et al., 2022; Völker et al., 2018). Conversely, “noise haters” 

(Kubiak et al., 2022; Völker et al., 2018) also called “NR lovers” (Neher & Wagener, 2016), 

prefer aggressive NR despite the presence of more distortions that impact speech naturalness. 

An additional intermediate third category has also been found in recent studies (Houben et al., 

2023; Kubiak et al., 2022), including individuals that prefer a more moderate NR strength.  

The underlying determinants of these individual preferences are still being investigated. 

While some studies suggest that individuals with larger pure tone average (PTA) prefer 

stronger NR (noise haters) (Houben et al., 2023; Neher & Wagener, 2016), this relationship 

has not been confirmed in other studies (Brons, Dreschler, et al., 2014; Kubiak et al., 2022). 

Instead, the Speech Recognition Threshold (SRT) turned out to better predict individual 
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listening preferences than other individual factors like PTA (Kubiak et al., 2022). Effects of 

HA use on NR preferences have not yet been investigated, though first findings point towards 

more tolerance of signal distortions for experienced HA users, potentially due to adaptation to 

HA signal processing (Reinten et al., 2023). Self-report questionnaires (sound preference and 

hearing habits) or cognitive performance measures (reading span) did not explain between-

person variability in NR preferences (Neher, 2014; Neher et al., 2016).  

At the within-person level, listening preferences for different HA settings (e.g., 

intensity, gain-frequency slope and directionality) have been shown to vary across different 

auditory environments and situational contexts (Korzepa et al., 2018; Walravens et al., 2020). 

Under similar listening conditions, individual listening preferences have so far been considered 

as prototypical subjective traits, stable over time with good retest reliability (Nelson et al., 

2018; Völker et al., 2018). With respect to NR algorithms, experienced HA users were found 

to exhibit consistent preferences for NR strength at a test-retest over a one year period (Neher 

& Wagener, 2016). Stability of individual preferences along the noise-distortion trade-off was 

also observed in a one-week test-retest (Kubiak et al., 2022), as well as over three (Reinten et 

al., 2023) and six (Houben et al., 2012) consecutive repetitions for both normal-hearing and 

hearing-impaired individuals. However, to our knowledge, no study investigated the stability 

of listening preferences across repeated measures on multiple consecutive days.  

According to the revised Latent State-Trait (LST) theory (Steyer et al., 2015), 

observations do not occur in a situational vacuum. This requires to account not only for 

measurement errors, but also for situational (or state) fluctuations of the personal attribute 

(trait) to be measured. Longitudinal data modelled within the LST framework can provide 

important insights into the degree of stability (i.e., consistency of the trait) and within-person 

variability (i.e., state-related variance) of individual listening preferences. Indeed, a recent 

study which demonstrated reliable day-to-day fluctuations of hearing performance (Kuhlmann 
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et al., 2023) calls for the assessment of potential fluctuations in individual listening preferences 

for noise vs. distortion, given their association with auditory measures.  

The development of a mobile measure of NR strength preference would facilitate 

repeated assessment of listening preferences outside the lab and in different listening situations, 

thereby increasing knowledge on their potential within-person variability. Moreover, such a 

mobile task would pave the way for future implementations of self-adjustment options for NR 

algorithms in hearing mHealth applications. The observed inter-individual differences in 

listening preferences underscore the need of self-tailored designs and personalized HA 

solutions (Nielsen et al., 2018).  

In the present study, we developed an objective and mobile measure of individual 

listening preferences along the noise-distortion trade-off, based on artificially introduced, 

controlled distortions. To assess trait- as well as state-related characteristics, we collected 

longitudinal data on listening preferences as part of a larger Ecological Momentary Assessment 

(EMA) study. The Latent State-Trait Autoregressive (LST-AR) model (Holtmann et al., 2023) 

was used to quantify the temporal dynamics of individual listening preferences. This model has 

been further extended to a mixture LST-AR model to identify latent subgroups of individuals 

that differ in their listening preferences, both related to trait and state properties. In addition, 

we tested for associations of listening preferences with different trait-related covariates 

(hearing performance, self-reported sound preferences, noise sensitivity and personality traits).   

More specifically, the following research aims and questions were addressed: 

RQ1. Are the psychometric properties of the proposed individual listening 

preferences measure for noise vs. distortion applied on a smartphone acceptable?  

RQ2. Evaluate trait consistency and state specificity of listening preferences: is the 

trait stable or does it fluctuate considerably over time (state-related variance)?   

RQ3. Perform a data-driven, model-based classification of noise and distortion haters: 
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3.1 Can individuals be classified based on their trait levels measured by the 

mobile app? 

3.2 Can we further differentiate the classification when taking the latent state 

variability into account?  

3.3 Which covariates are associated with these latent classes? The purpose of 

this analysis is to gain a better understanding of the class properties. 

 

Methods 

Study overview 

The data was collected in the context of an EMA study distributed over three 

consecutive weeks, as described in Angonese et al. (2024). The study was conducted in the 

field using the personal smartphones of the participants. During the first week, participants 

were asked to complete different questionnaires on their smartphone browser once a day. This 

baseline assessment aimed at collecting information on several audiological and psychological 

variables associated with hearing and hearing help-seeking (Knoetze et al., 2023). In the 

present study, we considered a subset of the baseline questionnaires, namely sound preferences 

and hearing habits, noise sensitivity and personality. For further measures included, please refer 

to Angonese et al. (2024). During the second and third week, participants completed a 

longitudinal assessment of listening preferences (noise-distortion trade-off task) and hearing 

performance in their everyday life. A total of 20 measurement time points were distributed 

along 10 weekdays (morning and evening) and lasted approximately 15 minutes each. The 

study was conducted using formr, an open-source web-based application programming 

interface for the R language that creates automated studies (Arslan et al., 2019). Participants 

were prompted to conduct the experimental tasks via email and SMS and were remunerated 

with 10 Euros per hour. Written informed consent was collected prior to enrolment. The study 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 27, 2024. ; https://doi.org/10.1101/2024.10.25.24316092doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.25.24316092
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

 

plan and data management have been approved by the Research Ethics Committee of the Carl 

von Ossietzky Universität Oldenburg (08.09.2021, EK/2020/020-01).  

Participants 

The study included N = 185 participants, 106 females and 79 males (0 diverse), aged 

between 47 and 82 years, with Mage = 63.1 and SDage = 6.5. To target potential future users of 

HAs and hearing mHealth applications, we recruited older adults with self-reported hearing 

difficulties but without HAs. As part of the inclusion criteria, all participants were German 

native speakers and could use a smartphone. Less than half of the participants (48.1%) had 

previously consulted a doctor about their hearing problems, which had been present for an 

average of 5.2 years. One third of the sample reported the presence of tinnitus (35.1%).  

Materials 

Mobile assessment of listening preferences  

We designed a mobile task in formr to assess listening preferences along the trade-off 

between noise annoyance and signal distortion, simulating the general effect of a NR algorithm. 

The stimuli and the task were chosen for comparability with previous studies (Gößwein et al., 

2022; Kubiak et al., 2022). The task is based on sliders with discrete buttons, along which the 

SNR (and artificially introduced distortions based on peak clipping) between a speech and a 

noise signal can be varied. By comparing the results of different sliders, the trade-off between 

noise and distortion preferences will be assessed as explained in the following sections. After 

one practice trial, the task was presented three consecutive times at baseline to obtain a multiple 

indicator trait measure. The task was presented an additional 20 times during the longitudinal 

phase of the study. 

Stimuli  

The stimuli consisted of speech signals in background noise, with or without distortions 

contingent on the task condition. The signals were constructed as follows. 
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 Speech signal. The target speech material consisted of sentences from the German 

Matrix Sentence Test (Oldenburger Satztest – OLSA, Kollmeier et al., 2015) with 

female, synthetic speech (Nuesse et al., 2019). The sentences were pseudo-randomised 

to differ across stimuli. The level of the speech signal was varied during the experiment, 

indicated in the following by the SNR relative to the noise signal.  

 Noise signal. The noise consisted of multi-talker babble noise (Kubiak et al., 2022), 

and its level was kept fixed across stimuli. This noise is a mix of 10 adult voices (male 

and female) superimposed to the point of unintelligibility, with a total duration of 60 

seconds. For each stimulus, a different random noise snippet corresponding to the 

respective duration of the sentence was extracted from the noise file.  

 Clipping. Signal distortions were introduced by applying hard peak clipping to the 

speech signal similar to Kubiak et al., 2022. The clipping rate was defined as the number 

of clipped speech samples divided by the total number of speech samples. The 

Perceptual Similarity Measure (PSM) of the PEMO-Q model (Huber & Kollmeier, 

2006) was used to achieve perceptually equidistant distortions over stimuli, such that 

the clipping can be varied approximately linearly with the SNR (along the slider 

dimension, see below). The PSM measure predicts the difference in perceived audio 

quality between the reference signal (the unclipped mixed signal, with noise and 

speech) and the test signal (the clipped mixed signal, with noise and clipped speech). 

To achieve a linear perception of distortions with increasing SNR (in the respective 

SNR range for each slider), the target quality (PSM) was estimated by a linear fit to 

PSM values obtained for linear clipping values (in the interval [0 to 80] %) employed 

as starting point. After that, the optimal clipping values (supplementary material 1) 

were estimated by interpolation to the respective target PSM, based on precalculated 

PSM maps for all combinations of SNR and clipping values. In addition to the sound 
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quality, we modelled the perceived loudness by means of the loudness model of Moore 

and Glasberg (ISO 532-2). This was necessary in order to equalize the loudness of all 

stimuli since in general clipping increases the loudness of a signal. The loudness of the 

unclipped mixed signal was used as reference loudness.  

Noise-distortion trade-off task 

The noise-distortion trade-off task included three listening conditions, each presented in 

the form of a slider with nine discrete positions. A speech-in-noise stimulus of approximately 

two seconds (length of the respective sentence) was presented at each slider position. The three 

listening conditions were adapted from measures previously used in laboratory settings 

(Gößwein et al., 2022; Kubiak et al., 2022) and are summarized in figure 1.  

1. Simple linear gain condition (slider 1). This condition identified the SNR level at 

which the individual reports little listening effort in the absence of signal distortions. 

Nine signals were presented with linear gain applied to the speech signal, namely with 

increasing SNR from left to right (in the interval [-7 to 23] dB SNR in steps of 3.75 dB), 

with varying speech level and constant noise level as adjusted to a comfortable level by 

subjective calibration (see below under Procedure). The range of SNR values provided 

a complete range of listening effort. The lower limit was chosen to avoid too high 

listening effort, as values below -7 dB SNR would require excessive listening effort. 

Individuals with normal hearing associated an SNR between -7 and 22 dB with a 

“moderate listening effort”, with 22 dB SNR being mostly “effortless” (Krueger et al., 

2017).  

2. General trade-off condition (slider 2). In this condition, better SNR comes at the 

expense of hard peak-clipping distortions. As in slider 1, the nine stimuli had linearly 

increasing SNR from left to right (in the interval [-7 to 23] dB SNR in steps of 3.75 dB). 

In addition, hard peak clipping of the signal was introduced as perceptually linearly 
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increasing from left to right. Thus, increasing SNR corresponded to increasing clipping 

distortions. The peak clipping rate ranged from 0 to 80% of the samples clipped, in 10% 

steps according to the button spacing. 

3. Adaptive trade-off condition (slider 3). This last condition was similar to slider 2, but 

here the SNR range was dependent on the participant’s SNR value selected in slider 1. 

The minimum value for the SNR remained -7 dB SNR (leftmost position) and it linearly 

increased up to 3 dB above the SNR value measured with slider 1. As an exception, if 

the participants selected the initial two values on slider 1 (-7 or -3.25 dB SNR) the 

upper-limit of slider 3 was set at 3 dB SNR. If they selected the last value on slider 1 

(23 dB SNR), the upper limit of slider 3 was kept at 23 dB SNR. Clipping distortions 

of the signal were introduced as in slider 2 and increased perceptually linear from left 

to right (in the interval [0 to 80] %), thus with a different mapping of clipping values to 

SNR. This adaptive SNR range has been implemented in order to enforce the trade-off 

between noise and distortion by providing a higher amount of distortion at a SNR level 

that was previously judged to require little listening effort (slider 1).  

 

Figure 1. Graphical representation of the three listening conditions, which were presented to participants in the form of sliders. 

Each slider consisted of nine discrete positions, each containing a speech-in-noise stimulus. Information on SNR and clipping 

values for each position on the slider is shown. SNR: signal-to-noise ratio. 
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Procedure  

 Participants were instructed to perform the task on their smartphone browser in a quiet 

environment. They were asked to use their personal headphones and to refrain from changing 

them throughout the study. It should be noted that we did not enquire about the type/brand of 

smartphone and headphones used. Three participants used the smartphone loudspeakers, as 

headphones were not available to them. A pilot study was conducted in June 2021 with 21 

participants (10 males, 11 females, aged between 18 and 70 years old) to develop appropriate 

and clear task instructions. At each task presentation (before slider 1), users were asked to 

perform a subjective calibration by adjusting the noise stimulus to a comfortable listening level. 

This level was defined as the smartphone’s output volume with headphones (due to 

implementation limitations of formr we could not control this level via the software). 

Participants were instructed to keep this volume level constant during the entire task. Users 

were asked to move the slider button stepwise from left to right via the touchscreen until they 

could hear the speech with little listening effort. Figure 2 shows how the task was displayed on 

the smartphone’s browser (see also supplementary material 2). 
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Figure 2. Task design as displayed on the participants’ smartphone. First, participants were asked to complete a calibration 

task to adjust the volume level of their device (left). The three sliders followed, each in a separate browser page. Here, only 

slider 1 is shown (right). Supplementary material 2 provides an overview of the entire task (all three sliders) as displayed on 

the browser. The instructions have been here translated to English for consistency with the language of the paper, but were 

presented to the study participants in German. 

 

Measures of listening preferences for noise vs. distortions 

Two measures were derived from the noise-distortion trade-off task: The SNR 

difference between the response to slider 1 and 2, namely between the simple linear gain vs. 

the general trade-off condition (∆SNRg), and the SNR difference between slider 1 and 3, 

namely between the simple linear gain vs. adaptive trade-off condition (∆SNRa). Both 

measures aimed to assess the preferred trade-off between noise and distortions at the individual 

point of lowest listening effort. The goal of the psychometric analysis (RQ1) was to investigate 

which of the two difference measures was more consistent at the between-person level and 

better able to capture the targeted trade-off, that is, providing suitable combinations of SNR 

and clipping that enforce a decision between the two dimensions. Figure 3 provides an example 

of ideal preferences along each slider for a noise hater and a distortion hater. Noise haters 

would show a ∆SNRg,a close to zero, meaning that they desire a similarly high SNR in slider 

2/3 and slider 1, at the expense of a high level of distortions causing a degradation in speech 

quality. In an ideal scenario, a noise hater would choose the same SNR level on all sliders (note 

that we looked at the differences between slider 1 and 2 as well as slider 1 and 3). On the 

contrary, distortion haters would show a positive ∆SNRg,a, indicating that they accept a lower 

SNR in slider 2/3 as compared to slider 1 in order to avoid distortions. This choice would 

ensure better speech quality, albeit at the expense of listening effort and speech intelligibility 

performance at lower SNR. As illustrated in figure 3, the constrained SNR range of slider 3 

forces a distortion hater to select an even lower SNR compared to slider 2, given that the 

clipping value at the same button position is higher for slider 3. Accordingly, we anticipate that 

the trade-off would be more evident in ∆SNRa measures. It is important to note that even 
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distortion haters would prefer a high SNR if distortions were to be removed. Indeed, depending 

on the degree of hearing loss, a distortion hater can sacrifice some SNR to avoid distortions 

only at the point where speech intelligibility is still acceptable. 

 

Figure 3: Graphical representation of ideal slider position choices (black squares) for a noise hater (left) and a distortion hater 

(right). The two graphs show the SNR values (X axis) and clipping values (Y axis) for slider 1 (simple linear gain condition), 

slider 2 (general trade-off condition) and slider 3 (adaptive trade-off condition). Here it can be seen how slider 3 values vary 

depending on the choice made in slider 1, while slider 1 and 2 are the same for all participants. 

 

Assessment of trait-related covariates  

Hearing performance. Hearing performance was assessed with the Digit Triplets Test 

(DTT) (Smits et al., 2004; Buschermöhle et al., 2014), an adaptive speech-in-noise screening 

test that measures SRT with triplets of monosyllabic digits presented in test-specific noise (i.e., 

superimposed from speech material). The DTT has proven to be suitable for mobile, remote 

self-test screening of hearing abilities due to its robustness to ambient noise levels outside of 

audiometric booth environments (Denys et al., 2019). Moreover, SRT estimation is relatively 

robust against changes in presentation level and no exact calibration is needed (Löw et al., 

2018). Thanks to its low linguistic and cognitive demands the DTT is also a valid instrument 

for the older population (Denys et al., 2019). The test was performed in an online browser page 

hosted by the Hörzentrum Oldenburg gGmbH. Participants were instructed to use their personal 

headphones and to keep the same type of headphones throughout the study. Three participants 
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used phones-loudspeakers due to reported technical difficulties. The use of different types or 

quality of headphones has shown no impact on test reliability for the DTT (Potgieter et al., 

2016; Van den Borre et al., 2021). Each hearing test began with a signal adjustment trial, in 

which a digit triplet in noise was presented to the participants with the task to “adjust the 

volume to hear both digits and noise clearly”. After a practice trial, participants completed 20 

daily hearing assessments during the longitudinal part of the study. The hearing performance 

data was then summarized into an individual trait score (mean SRT).   

Sound preference and hearing habits. The German version of the Sound Preference 

and Hearing Habits Questionnaire (SPHHQ) (Meis et al., 2018) was used at baseline to assess 

the individual sound preferences profile, which can be seen as a stable trait related to 

preferences for specific sounds and hearing habits. Its 23 items load onto seven different factors. 

Three of them have been included here as potential covariates, as they have been considered as 

mostly related to response to noise and processing artifacts (Neher et al., 2016): annoyance or 

distraction by background noise; importance of sound quality; noise sensitivity. Higher scores 

on each scale reflect higher agreement with the respective domain. 

Noise sensitivity. Noise sensitivity is a stable, individual attribute that influences 

reactions to environmental sounds and indicates how sensitive a person is to perceived noise. 

Individual sensitivity to perceived noise was assessed through the Weinstein Noise Sensitivity 

Scale (WNSS) (Weinstein, 1978; Zimmer & Ellermeier, 1997). It consists of 21 items 

investigating reactions and attitudes towards noise in general and in relation to environmental 

sounds. The global score was used as covariate, with a higher global score indicating greater 

noise sensitivity. 

Personality. The German version of the NEO Five-Factor Inventory (NEO-FFI) 

(Borkenau & Ostendorf, 1993) was used at baseline to assess individual differences in the five 

major personality traits. From these, neuroticism, extraversion and conscientiousness have 
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been considered as potential covariates. Neuroticism is the predisposition to experience 

negative emotions (Cox et al., 2005). Extraversion refers to the tendency to be optimistic and 

outgoing. Conscientiousness is associated with being proactive, organized and methodical 

(Cox et al., 2005). People high in neuroticism would be expected to show greater variability in 

their daily listening preferences, whereas people high in conscientiousness would be expected 

to show less variability. Recent research also suggests that higher levels of neuroticism and 

lower levels of extraversion explain higher listening effort and lower acceptable noise levels 

(Wöstmann et al., 2021). 

 

Statistical analysis 

Data preprocessing 

Data analysis was performed with R version 4.2.1 (R Core Team, 2019) and Mplus 

version 8.6 (B. O. Muthén & Muthén, 1998). Raw data from the questionnaires and the 

listening preference task was imported from the online platform formr into the R environment 

using the package formr (Arslan, 2018). The daily hearing test results were received via 

automatized emails from the Hörzentrum Oldenburg and imported in R as .eml files. In some 

cases, participants performed the hearing test more than once at a given measurement time 

point due to limitations of the formr implementation. When this happened, only the last SRT 

result at a given time point was kept for analysis. A total of 43.8% of participants completed 

all 20 hearing tests, and in 95.1% of cases at least 15 SRT results were obtained. By visual 

inspection of the individual SRT distributions, some specific outlier patterns were identified 

and removed (implausible SRT value at the first measurement time point). We reached 100% 

completeness rate for the baseline data.  

Two data sets were used in the subsequent analysis. One data set included the baseline 

measures for all N1 = 185 participants. These included the SPHHQ, WNSS and NEO-FFI 
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questionnaires, together with the individual mean SRT and the three baseline repetitions of the 

noise-distortion task. A second data set contained the longitudinal measures of listening 

preferences (20 repetitions). Here, a visual inspection of slider responses in the noise-distortion 

trade-off task revealed careless or inattentive responding (Curran, 2016) in 16 participants, who 

showed no variance in their data. These participants were therefore excluded from the 

longitudinal data analysis, resulting in N2 = 169 participants. In this second data set, 2.8% of 

data was NA. 

RQ 1. Are the psychometric properties of the proposed individual listening 

preferences measure for noise vs. distortion applied on a smartphone acceptable? 

For this analysis we used the baseline data (three consecutive repetitions of the task) 

with N1 = 185 participants. The initial step was to assess the consistency of measurements for 

the two slider measures ∆SNRg and ∆SNRa, which we will refer to as indicators. This analysis 

aimed at testing whether the two indicators measure the same rank order of individuals and, 

consequently, whether they would be equally suitable for assessing the noise-distortion trade-

off. We run a confirmatory factor analysis (CFA) by fitting a model series with the cfa() 

function of the lavaan package in R. Two model versions were evaluated (figure 4). A two-

factor model was initially fitted, with two separate latent factors T∆g for ∆SNRg and T∆a for 

∆SNRa. This model assumes the two indicators to measure at least partly different latent 

variables. Subsequently, a single-factor solution was evaluated by fixing the correlation 

between the two factors to one. This model assumes that both indicators measure the exact 

same latent variable T∆. The anova() function applied to the model results was used to 

compute a χ2-difference test to compare the two models with regard to their fit. The following 

factor model equation (see also figure 4) applies: 

∆𝑖𝑗 = α𝑖𝑗+ λ𝑇∆𝑇∆ +  ε𝑖𝑗 
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where ∆𝑖𝑗 is the measurement observation of indicator i (∆SNRg or ∆SNRa) at repetition 

j (for a total of 3 repetitions at baseline for each indicator); α𝑖𝑗 indicates the intercept and ε𝑖𝑗 

the measurement error for each observation;  λ𝑇∆ is the loading for the latent trait factor T of 

the variable ∆SNR. In a second step, after identifying the best-fitting model, we evaluated the 

factor loadings for ∆SNRg and ∆SNRa to identify which of the two slider measures should be 

considered for subsequent analysis, due to higher consistency. Higher loadings  λ𝑇∆ of one 

measure on the latent variable indicate higher consistency of the measure between person. 

 

Figure 4. CFA diagrams of the model series for the two indicators ∆SNRg (here depicted as ∆g) and ∆SNRa (here depicted as 

∆a) for the three measurement occasions at baseline (N1 = 185). (Left) Two-factor model. (Right) Single-factor model. T: latent 

trait; 𝜆: factor loading; ∆: observed indicator; ε: measurement error. 

 

RQ 2. Are listening preferences stable or do they fluctuate considerably over 

time (state-related variance)?  

For the second research question, the longitudinal data frame (N2 = 169 participants) 

was used, with up to 20 observations per participant. Temporal dynamics of individual listening 

preferences were investigated with a simplified version of the LST-AR model from Holtmann 

et al. (2023). In this modeling framework, individual short-term variability of latent processes 

can be modelled while taking into account temporal dependencies between consecutive 

observations (autoregressive effects). According to the LST theory, an observed variable ∆t (at 

time point t) can be decomposed into a trait variable Tt (the attribute of a person (Steyer et al., 

2015)), a residual variable St (the attribute of a person in a situation (Steyer et al., 2015)), and 
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a measurement error variable εt. Trait and state variables together constitute a person’s true 

score. The trait is defined as the expectation of the person-specific distribution of ∆t across all 

possible situations that might be experienced at that time point (Holtmann et al., 2023). The 

state residual captures the effects of the situation and of the interaction between person and 

situation at a specific time point. 

∆𝑡= 𝑇𝑡 +  𝑆𝑡 + 𝜀𝑡    

By extending the LST model to the LST-AR model, we consider carryover effects across 

temporally adjacent observations. The autoregressive (AR) parameters capture the effect of 

cumulative experiences across time, namely to which degree person-situation interaction 

effects at a time point t predict trait values at the following time point (Holtmann et al., 2023).  

In our model, depicted in figure 5, we have only one indicator per time point (either 

∆SNRg or ∆SNRa following RQ1). Hence, the residual variance which is not captured by the 

trait will include both the state-related variance (St) and the error term (𝜀𝑡). Further parameters 

introduced in the model equation are the intercept αt, which captures the average additive trait 

change, and the factor loadings  λ𝑇𝑡 , which have been constrained here to 1 under the 

assumption of time invariance. Our final model equation for each observation ∆𝑡 is: 

∆𝑡= α𝑡 + 𝑇 + 𝑆𝑡 

 

In a first step, a single-trait LST model (without AR effects) has been implemented for 

the indicator of choice (based on the results of RQ1) in Mplus using the Maximum likelihood 

robust (MLR) estimator with 100 random sets of starting values. The trait mean together with 

intercepts and residual variances were estimated for each time point. We evaluated trait 

consistency and state specificity by estimating the amount of state-related variance. A large 

proportion of state-related variance would indicate that listening preferences are not stable over 

time. In a second step, the model has been extended to a LST-AR model to gain more insight 
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on potential time-series dynamics. In this step, we evaluated the temporal linear dependence of 

an observation on the previous time point, defined as first-order AR effect.  

Model fit was evaluated using the root-mean-square error of approximation (RMSEA), 

standardised root mean square residual (SRMR), comparative fit index (CFI), Tucker-Lewis 

index (TLI), and the χ2-test, together with Akaike information criterion (AIC), Bayesian 

information criterion (BIC) and sample-size adjusted BIC (SABIC) for model comparison. 

 

Figure 5. Path diagram of the LST-AR model for one latent variable measured by one indicator (either ∆SNRa or ∆SNRb 

depending on RQ1) on the 20 measurement occasions of the longitudinal data (N2 = 169). T: latent trait variable; ∆: observed 

indicator; S: latent state variable. 

 

RQ 3. Can we perform a data-driven, model-based classification of noise and 

distortion haters using the proposed listening preference measure and longitudinal data? 

For the last research question, the longitudinal data frame (N2 = 169) was used. We 

extended the previous models to mixture LST and mixture LST-AR model. Mixture models 

aim at detecting latent subgroups of individuals differing in some specified model parameters 

that drive the distribution of the observed variables (Holtmann et al., 2023). The models were 

implemented in Mplus using the MLR estimator with a varying number of random sets of 

starting values (between 100/10 and 1000/100 depending on the number of parameters to be 

estimated). In a first step, we investigated the distribution of latent classes c that can be 

separated based on their trait means, holding all other LST model parameters constant across 

classes:  

∆𝑡= α𝑡 + 𝑇𝑐 +  𝑆𝑡 
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Two-, three-, and four-class solutions were estimated. The evaluation of the optimal solution 

was based on model fit indices (AIC, BIC, SABIC) and entropy, as well as on the substantive 

interpretability of the identified classes, as recommended by several authors (e.g., Holtmann et 

al., 2023; B. Muthén, 2003; Ram & Grimm, 2009).  

In a second step, we extended the LST-AR model to a mixture LST-AR model in order 

to identify latent classes c of participants that can be separated based on their listening 

preferences dynamics, namely with different distributions of LST-AR model parameters:  

∆𝑡= α𝑡 + 𝑇𝑐 + 𝑆𝑡𝑐 

We again estimated two-, three-, and four-class solutions and evaluated them with respect to 

model fit, entropy and interpretability.  

Finally, we explored potential covariates of the latent classes that emerged from the 

best classification solutions. We used one-way ANOVAs with between-subject factor classes 

for each of the following variables: average hearing performance (SRT), sound preference and 

hearing habits (SP-HHQ subscales annoyance/distraction by background noise, importance of 

sound quality, noise sensitivity), noise sensitivity (WNSS global scale) and personality (NEO-

FFI subscales neuroticism, extraversion and conscientiousness scales). 

 

Results 

Response to RQ 1: Both indicators measure the same rank order and ∆SNRa shows higher 

consistency 

The two latent factors ∆SNRg and ∆SNRa showed a correlation of r = .86 in the two-

factor model. The model fit of the two-factor solution did not improve over the single-factor 

model significantly, with χdiff
2 (1, N = 185) = 1.1, p = . 293, RMSEA = .024. Moreover, the 

observations for the two indicators at the same time point showed correlations of magnitude r 
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= .40 to r = .50. We can therefore conclude that the single-factor model best fits the data, and 

that the two indicators ∆SNRg and ∆SNRa are measuring the same rank order of individuals. 

 To decide which of the two indicators (∆SNRg or ∆SNRa) should have been considered 

for subsequent analysis and as best measurement indicator in a mobile app of listening 

preferences, we inspected the magnitude of their factor loadings in the single-factor model. As 

can be seen in figure 6, the loadings for ∆SNRg were on average  λ∆g=.378 and the ∆SNRa 

loadings were on average  λ∆a=.501. Higher loadings for ∆SNRa onto the factor mean that this 

indicator had higher overall consistency across repeated measures. In addition, when inspecting 

the distributions of the single observations (see figure 7), ∆SNRa showed the noise-distortion 

trade-off more clearly. Indeed, the distribution of the SNR differences showed a median shift 

of about 4 dB, indicating that participants were successfully “forced” to take a decision in the 

adaptive trade-off condition created in slider 3. Furthermore, the distribution of accepted 

clipping ratios was also broader for ∆SNRa, leading to a better separation between noise haters 

preferring to keep their chosen SNR at the cost of high distortion, and distortion haters 

preferring to reduce distortions at the cost of SNR. In contrast, many observations for ∆SNRg 

had a negative value, meaning that participants chose a higher SNR level in slider 2 (general 

trade-off) than in slider 1 (linear gain scenario). These negative values are unexpected, as they 

indicate that individuals do not adjust slider 2 beyond their preferred SNR position of slider 1, 

as this would introduce distortion that would impair listening effort. Such cases of negative 

∆SNRa might indicate that the level of distortions present in slider 2 at the preferred SNR 

position of slider 1 was too low to successfully enforce a noise-distortion trade-off. 
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Figure 6. CFA diagram of the single-factor model for the two indicators ∆SNRg (here depicted as ∆g) and ∆SNRa (here depicted 

as ∆a) for the three measurement occasions at baseline (N1 = 185). Factor loadings for each indicator are shown. T: latent trait; 

𝜆: factor loading; ∆: observed indicator; ε: measurement error. 

 

Figure 7. Distribution of observations for ∆SNRg (top) and ∆SNRa (bottom). The X axis shows the ∆SNR in dB measured as 

the difference between slider 1 - slider 2 and between slider 1 - slider 3. The Y axis shows the corresponding clipping ratio. 

For each of the N1 = 185 participants the three baseline measures are shown. The marginal density plots show the overall 

distributions of the individual ∆SNR measures and clipping. SNR: signal-to-noise ratio. 

 

Response to RQ 2. There is a considerable amount of state-related variance but no 

temporal dependencies between consecutive observations 

First, we implemented the single-trait LST model for ∆SNRa (as chosen in RQ1) to 

investigate the overall state-related variance. The complete Mplus output can be consulted in 

our Zenodo repository (https://doi.org/10.5281/zenodo.13960717).  Table 1 provides an 
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overview of model fit indices, with good model fit usually indicated by RMSEA < .07; CFI > 

0.95; TLI > .95; SRMR < .08 and a low χ2 relative to the degrees of freedom with p > .05 

(Hooper et al., 2008). Among all indices, the RMSEA indicated good fit, while the others did 

not meet the cut-off criteria. The average state-related variance amounted to .787 for the 20 

longitudinal measures taken into account (N2 = 169 participants). This indicates that almost 

79% of the variance observed in the measured listening preferences is attributable to situational 

(or state) fluctuations, while about 21% of the variance observed is due to stable trait-like 

preferences. Variance estimates for the single time points varied between .607 (p = < .001) 

and .895 (p = <.001) and can be consulted in the Mplus output.  

Secondly, we extended the LST model for ∆SNRa to a LST-AR model to explore 

potential time-series dynamics of the observed state-related variance. First-order AR effects 

indicate the temporal dependency of each observation on the previous one. When taking AR 

effects into account, the model fit improved. AIC, BIC, SABIC were smaller than in the LST 

model and the other fit indices were closer to the cut-off values (see table 1). The average state-

related variance amounted to .778 (see the Mplus output for the single time points estimates). 

Overall, four out of 19 AR effects were significant: AR effect of time point 2 on 3 (.222, p 

= .004), time point 6 on 7 (.120, p = .046), time point 8 on 9 (.243, p = < .001), and time point 

18 on 19 (.349, p = < .001). These four first-order AR effects indicate an effect of the evening 

measurement on the following morning’s observation. However, these effects had very low 

magnitude and did not show a consistent pattern, thus no conclusions on systematic linear 

temporal dependency could be derived. Consequently, we did not estimate second-order AR 

effects, which refer to the dependence of an observation to the previous-to-last time point (in 

our case the dependence of a morning measurement on the previous morning and of an evening 

measurement on the previous evening). We refer to the Mplus output for all first-order AR 

effects estimates (see Zenodo repository). 
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Table 1. Overview of average state-related variance and model fit for the LST model and the LST-AR model on the 

longitudinal data (N2 = 169).  

Model 𝑺 AIC BIC SABIC RMSEA CFI TLI SRMR χ2  

df 

 

p-value 
LST .787 15444.777 15573.103 15443.285 .065 .743 .741 .102 322.432 189 < .001 

LST-AR .778 15422.094 15609.888 15419.911 .060 .802 .779 .090 272.499 170 < .001 

*Note: LST: latent state-trait model; LST-AR: autoregressive latent state-trait model; 𝑆: average state-related variance; AIC: 

Akaike information criterion; BIC: Bayesian information criterion; SABIC: sample-size adjusted BIC; RMSEA: root mean 

square error of approximation; CFI: comparative fit index; TLI: Tucker–Lewis index; SRMR: standardised root mean square 

residual; χ2: Chi-Square; df: degrees of freedom.   

 

Response to RQ 3.1 Data-driven classification suggests the identification of three classes 

based on the trait means 

We extended the analysis to a mixture LST model for ∆SNRa. AR effects were not 

taken into account for classification since only weak effects had been observed (see above). 

First, we investigated the distribution of latent subgroups or classes c that could be separated 

based only on their trait means T. For this, the intercepts αt were fixed to equality across time 

and the state-related variance St was constrained to equality across classes. Mean differences 

in latent trait levels were freely estimated and allowed to vary across latent classes. The results 

of the two-, three-, and four-class solutions can be found in table 2, together with model fit and 

entropy measures. The two-class solution showed the highest entropy and identified a small 

class comprising six individuals with trait mean close to zero, which aligns with our definition 

of noise haters. The remaining participants had been grouped into a second majority class, 

which may encompass distortion haters of varying degrees. The three-class solution further 

differentiated this majority class, thereby enhancing the interpretability of the classification 

output. In addition to the six noise haters (𝑇𝑐1 = 0.643), the three-class solution identified a 

small class with the highest trait mean (𝑇𝑐3 = 6.055), which may encompass a group of extreme 

distortion haters. The majority class exhibited here an intermediate mean trait (𝑇𝑐2 = 4.103). 

The selection of the optimal solution relies on balancing information provided by the metrics 

(model fit and entropy) and the interpretability of the latent classes. The three-class solution 

was selected as the optimal solution, as it provided the highest model fit (as indicated by the 
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smallest AIC and SABIC), while maintaining a good level of entropy. It should be noted that 

model fit indices and entropy are on different scales, which means that even small differences 

in model fit can motivate the choice of a model over a competing one. Furthermore, discerning 

three distinct classes (here noise haters, intermediate, and distortion haters) is epistemologically 

equivalent to identifying two classes where one exhibits varying degrees of the trait. The three-

class solution is also consistent with previous findings, wherein laboratory studies similarly 

identified a comparable distribution of three classes. Figure 8 shows the class-specific 

distribution of individual ∆SNRa averaged across all longitudinal measures, and illustrates the 

model-derived classification of individuals into the three distinct classes. It should be noted 

that the model-derived class-specific trait means do not equal the class-specific arithmetic 

means of the observed ∆SNRa measures. The latent trait is an estimated variable reflecting an 

attribute of a person that is not directly measured but inferred from the observed data (Steyer 

et al., 2015).  

Table 2. Overview of model fit, entropy, class sizes and trait means for the mixture LST models with classification based on 

the trait mean for the longitudinal data set (N2 = 169). 

  AIC BIC SABIC Entropy Class sizes Tc 

2 classes 15438.856 15573.442 15437.292 .946 class 1 6 0.759 

class 2 163 4.354 

3 classes 15437.242 15578.087 15435.604 .806 class 1 6 0.643 

class 2 149 4.103 

class 3 14 6.055 

4 classes 15439.448 15586.553 15437.737 .713 class 1 6 0.474 

class 2 36 3.170 

class 3 109 4.46 

class 4 18 6.283 

*Note: AIC: Akaike information criterion; BIC: Bayesian information criterion; SABIC: sample-size adjusted BIC;  𝑇𝑐: class-

specific trait mean. 
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Figure 8. Class-specific distributions of individual mean ∆SNRa averaged across all longitudinal measures for the 3-class 

solution based on the trait mean (N2 = 169). The three classes are color- and shape-coded. The single measures are jittered 

along the Y axis for better visualization. The marginal density plot shows the class-specific distributions of the individual 

mean ∆SNRa. SNR: signal-to-noise ratio.  

 

Response to RQ 3.2 Classification improves when accounting for state-related variance  

We extended the previous classification (see response to RQ 3.1) to account for the 

longitudinal dynamics of listening preferences. Due to the small number of individuals 

classified in the noise hater class (nc1 = 6) and in the distortion hater class (nc3 = 14), the analysis 

was conducted only on the majority class (nc2 = 149). A mixture LST model was implemented 

to identify latent subgroups c of participants that differed in their state-trait variability. 

Intercepts αt, trait mean T and state-related variances St were freely estimated and allowed to 

vary across latent classes. Occasion-specific state-related variances were averaged across 

classes to a single value S per class. The results of the two-, three-, and four-class solutions can 

be found in table 3. The four-class solution reached only a local solution, as the number of 

parameters was larger than the sample size. Model fit indices and entropy measures favored 

the three-class solution. This solution identified a majority class with low state-related variance 

and a comparatively lower trait mean (𝑇𝑐1 =  3.928, 𝑆𝑐1 = 0.880). The second class had the 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 27, 2024. ; https://doi.org/10.1101/2024.10.25.24316092doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.25.24316092
http://creativecommons.org/licenses/by-nc-nd/4.0/


 27 

 

highest trait mean and intermediate state-related variance (𝑇𝑐2 =  4.966, 𝑆𝑐2 = 0.892). The third 

class had an intermediate mean and the highest variance (𝑇𝑐3 =  4.089, 𝑆𝑐3 = 0.943). When 

accounting for state-related variance, individuals who exhibited similar trait levels could be 

differentiated based on the degree of variability observed in their listening preferences. Figure 

9 shows the class-specific distribution of individual ∆SNRa mean and standard deviation across 

all longitudinal observations (for Nc2 = 149 participants). As with the considerations made for 

figure 8, it should be noted that the standard deviation of the observed data does not directly 

correspond to the model-derived state-related variance (which is a standardized latent variable 

ranging from 0 to 1). In figure 9, standard deviations were employed for the purpose of 

visualizing the degree of variability observed in the data for each model-derived class.   

Table 3. Model fit indices, entropy, class-specific proportions, trait-means and state variances for the mixture LST models 

with classification based on the LST model parameters for the majority class, identified in RQ 3.1 through classification based 

on the trait means (Ncl2 = 149).  

 AIC BIC SABIC Entropy Class sizes Tc 𝑺𝒄 

2 classes 13231.513 13477.836 13218.329 .849 class 1 110 4.015 0.885 

class 2 39 4.303 0.948 

3 classes 13156.464 13525.950 13136.689 .900 class 1 100 3.928 0.880 

class 2 18 4.966 0.892 

class 3 31 4.089 0.943 

4 classes 
*p > N 

13122.124 13614.771 13095.757 .914 class 1 24 3.456 0.856 

class 2 30 3.981 0.949 

class 3 79 4.181 0.885 

class 4 16 4.815 0.855 

*Note: The four-class model reaches a local solution due to the number of parameters p being larger than the sample size N. 

In the three-class solution a residual variance of 0 and trait loading of 1 was observed for time point 3. Given the small class 

size this parameter was not well identified and it was therefore not included when computing the average state variance S of 

the class. No other anomalies occurred in the model. AIC: Akaike information criterion; BIC: Bayesian information criterion; 

SABIC: sample-size adjusted BIC; 𝑇𝑐: class-specific trait mean; 𝑆𝑐: class-specific average state variance. 
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Figure 9. Class-specific distributions of individual mean ∆SNRa (X axis) and standard deviation (Y axis) across all longitudinal 

measures for the 2-class solution based on LST model parameters (Nc2 = 149). Three latent subgroups have been here separated 

from the majority class identified in the first classification step (RQ 3.1). The classes are color-coded. The marginal density 

plots show the class-specific distributions of the individual mean ∆SNRa and of the individual standard deviations. SNR: 

signal-to-noise ratio; sd: standard deviation. 

 

Response to RQ 3.3 The class with largest state-related variance shows significantly 

higher neuroticism trait level  

We investigated potential covariates for the latent classes identified from the data-

driven, model-based classifications (RQ 3.1 and RQ 3.2). An overview of all one-way 

ANOVAs results is provided in the supplementary material 3. The latent classes identified in 

response to RQ 3.1 (classification based on trait means) did not significantly differ with respect 

to hearing performance, sound preference and hearing habits, noise sensitivity and personality. 

When considering the latent classes identified in response to RQ 3.2 (classification based on 

trait and state-variance on Nc2 = 149), hearing performance and neuroticism only approached 

significance with p < .1. Specifically, the ANOVA results for hearing performance were F(2,146) 

= 2.390, p = .095 with no significant class differences at the post-hoc pairwise comparisons 

(TukeyHSD test with 95% CI). Despite the subjective reports of hearing difficulties, 74.1% of 

all participants had on average good hearing performance (individual mean SRT < -7.1 dB 
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SNR) at the repeated measures of the DTT. 2.7% of participants showed intermediate average 

performance (individual mean SRT >= -7.1 dB SNR and < -5.1 dB SNR) while the remaining 

3.2% had on average poor hearing performance (individual mean SRT >= -5.1 dB SNR) 

(Buschermöhle et al., 2014; Smits et al., 2006).  The ANOVA results for neuroticism were 

F(2,146) = 3.630, p = .050 and the post-hoc pairwise comparisons (TukeyHSD test with 95% CI) 

revealed a significant difference between class 2 and 3 (p = .043). As can be seen in figure 10, 

class 3, which had shown the highest state-related variance (𝑆𝑐3= .943), had significantly higher 

neuroticism values as compared to class 2, which had shown comparatively lower state 

variance (𝑆𝑐3= .892). 

 
Figure 10: Class-specific distributions of individual SRT mean values (averaged across all longitudinal measures) and 

individual neuroticism trait levels for the classification based on the LST model parameters for Nc2 = 149 (RQ 3.2). The violin 

plots depict the distribution of all observations within each class, and the box plots represent the median, interquartile range, 

and potential outliers. SRT: Speech Recognition Threshold, SNR: signal-to-noise ratio. 

 

Discussion 

The present study evaluated the psychometric quality of a newly proposed mobile 

measure of individual listening preferences along the noise-distortion trade-off and showed 

that such preferences are not fully stable over time. Through this novel mobile task, we were 

able to measure individual listening preferences outside the laboratory for 185 older adults with 

subjective hearing difficulties. Listening preferences were assessed over ten days (mornings 

and evenings), resulting in a total of 20 measurement time points. The difference between 
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preferred SNR level in a linear gain scenario (slider 1) and in an adaptive noise-distortion trade-

off scenario (slider 3) shows good between-person consistency across three consecutive 

repetitions in a baseline assessment. The adaptive trade-off scenario simulated the general 

effect of a NR algorithm and the derived measure can help in estimating the individual 

preference for NR strength. Smaller values (ideally close to zero) on the derived difference 

measure indicate less tolerance towards noise and a need for stronger NR, characterizing a 

noise hater (Kubiak et al., 2022; Völker et al., 2018) or NR lover (Neher & Wagener, 2016). 

Larger values on this difference measure indicate less tolerance towards distortions and 

characterize a distortion hater (Kubiak et al., 2022; Völker et al., 2018) or NR hater (Neher & 

Wagener, 2016). This noise-distortion trade-off measure could serve as a preliminary reference 

point in the fine-tuning stage of a NR algorithm, informing a clinically based selection of a 

limited pre-set of NR strengths. Our measure relied on a discrete number of signal choices 

(buttons) for each slider due to limitations in mobile implementation. Nevertheless, the use of 

a discrete button approach in a mobile task proves sufficient to evaluate the trade-off, with 

results comparable to those obtained with a continuous slider (Gößwein et al., 2022).  

The LST-AR modeling framework was employed to investigate the collected set of 

longitudinal data, with the aim of evaluating trait consistency and state specificity of individual 

preferences for noise vs. distortion. These preferences, which had been so far regarded as a 

stable individual trait (Kubiak et al., 2022; Neher & Wagener, 2016; Reinten et al., 2023; 

Völker et al., 2018), show considerable day-to-day fluctuations within-person. A large amount 

of the observed variance is attributable to situational states and/or person-situation interaction 

effects. There is however no temporal dependency between consecutive time points. It follows 

that the HA fine-tuning process of NR algorithms should account not only for inter-individual 

differences in listening preferences at supra-threshold levels (Jepsen & Dau, 2011; Kubiak et 

al., 2022), but also for intra-individual differences in similar listening scenarios. Repeated 
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assessments of listening preferences in everyday life with an easy and short mobile task should 

be considered for successful fine-tuning of HAs, particularly for those listeners where greater 

instability is anticipated. 

Information on mean trait levels and state-related variances was used to improve on the 

established classification of individuals into noise haters/NR lovers vs. distortion haters/NR 

haters (Houben et al., 2023; Kubiak et al., 2022; Neher & Wagener, 2016; Völker et al., 2018). 

As a first step, we sought to identify latent subgroups of individuals who differed solely in their 

habitual listening preferences (latent trait means) in order to replicate previous studies that did 

not consider longitudinal assessments. Three distinct classes emerged. Two comparatively 

small classes are distinguished by low (noise haters) and high (distortion haters) trait levels, 

respectively. The majority of individuals are classified into an intermediate class. It could be 

argued that the most extreme classes, characterized by very low sample sizes, might be 

influenced by outliers. However, we mitigated this risk by excluding individuals with invariant 

or inattentive responses (for example, participants who consistently selected the leftmost slider 

position at -7 dB SNR). Moreover, this distribution of class membership is consistent with 

previous laboratory studies (Gößwein et al., 2022; Kubiak et al., 2022; Reinten et al., 2023) in 

which only a limited number of participants exhibited a clear preference for noise or distortion. 

These findings may indicate that individual preferences along the noise-distortion trade-off, 

which underlies the preferences for NR strength, do not conform to a binary classification, but 

rather lie along a continuum, which we also found with our discrete slider measure.  

To account for the substantial intra-individual variability observed, we explored a novel 

classification based on state-related variance. The majority and intermediate class identified 

before was thus further separated into three subgroups, each differing in their listening 

preferences dynamics (with different LST model parameter distributions). When no 

differentiation could be made based on habitual preferences (latent traits), extending the 
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classification to consider the degree of variability in listening preferences proves informative. 

Knowledge on the individual stability vs. instability of listening preferences can facilitate 

further personalization of the fine-tuning process of NR algorithms. Moreover, we found that 

individuals with more unstable listening preferences show higher levels of neuroticism trait. 

This fits to literature showing neuroticism to be typically linked to instability (Robinson & 

Tamir, 2005). Indeed, individuals higher in neuroticism exhibit increased variability in daily 

emotions (Mader et al., 2023), behaviour (Geukes et al., 2017) and basic cognitive processes 

involved in linking stimulus to response (i.e., reaction times (Robinson & Tamir, 2005)). 

Moreover, neuroticism has been correlated with more mind-wandering during cognitive tasks, 

lower working memory capacity, and poorer attention control (Robison et al., 2017).  

In the present study, hearing performance does not emerge as a significant covariate. It 

is important to note, however, that the majority of participants demonstrate good average 

hearing performance, despite reporting subjective hearing difficulties in daily life. A better 

understanding of the relationship between hearing performance and listening preferences (and 

their variability) may be achieved through future studies that include individuals with varying 

degrees of hearing loss. Previous studies have found an effect of hearing loss on preferred NR 

strength, showing that hearing impaired listeners prefer greater NR (Houben et al., 2023; Neher 

& Wagener, 2016) and are less sensitive to distortions (Brons, Dreschler, et al., 2014). 

Moreover, individuals with greater hearing impairment exhibit larger day-to-day variability of 

hearing performance in stable listening environments (Kuhlmann et al., 2023). Therefore, it 

can be hypothesized that individuals with worse hearing performance may prefer stronger NR 

(noise haters) and show a higher degree of variability in their listening preferences. 
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Outlook and limitations 

In a subsequent stage of this study, we plan to investigate the determinants of the observed 

large state-related variance of listening preferences along the noise-distortion trade-off. Other 

subjective states such as momentary mood or stress might have an influence on the intra-

individual variability of listening preferences. We plan to examine cross-lagged effects 

between state variance in listening preferences and variability in daily mood and hearing 

performance. Listening preferences may vary depending on the nature of the task and future 

studies might consider more naturalistic target speech signals. It is possible that listeners who 

accept distortions applied to a short sentence (as in the present study) may not exhibit similar 

listening preferences when the distortion is applied to a longer signal, such as an audiobook 

excerpt or a conversation between different speakers (Walravens et al., 2020). To enhance the 

ecological validity of the signals, it would be beneficial to consider different types of distortions 

that better simulate the signal distortion typically created by NR algorithms, such as “musical” 

noise distortion (Gößwein et al., 2023). Future studies should also assess listening preferences 

in different populations: children, younger and older adults with different types and degrees of 

hearing loss, as well as HAs users. Another limitation of the present mobile study is the lack 

of control over the surrounding environment and measurement conditions. To increase control 

over the procedures, it would be advisable to install accompanying apps that record the ambient 

noise and check for the usage of headphones, which should ideally be calibrated. Future 

feasibility studies are needed to improve the user-interface and the implementation of the noise-

distortion preference task in a mobile app. The use of a continuous slider (Gößwein et al., 2022) 

has the potential to enhance precision in the measurements, with the requisite degree of 

precision warranting further investigation.  
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Conclusion 

The present study introduced a novel mobile measure of listening preferences that 

allows for repeated assessment in an ecological and momentary manner. We evaluated 

individual listening preferences over several days, shedding light on the large within-person 

variability of preferences that had been so far considered as a subjective trait stable over time. 

We highlight how both trait levels and state-variance components should be considered in the 

classification of listeners, thus improving over the classical view of noise haters and distortion 

haters and considering the individual’s stability or instability of listening preferences. Gaining 

knowledge on how individual listening preferences vary between and within individuals can 

enhance the efficacy of HA self-adjustment programs, particularly in the presence of 

environmental noise, for individualized HA fitting. 
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Acronyms:  

AIC: Akaike Information Criterion  

ANL: Acceptable Noise Level  

AR: Autoregressive  

BIC: Bayesian Information Criterion 

CFA: Confirmatory Factor Analysis 

CFI: Comparative Fit Index 

EMA: Ecological Momentary Assessment 

HA: Hearing Aid  

LST: Latent State-Trait 

LST-AR: Latent State-Trait Autoregressive 

MLR: Maximum Likelihood Robust 

NR: Noise Reduction 

PSM: Perceptual Similarity Measure 

PTA: Pure Tone Average  

RMSEA: Root-Mean-Square Error of Approximation 

SABIC: Sample-Size Adjusted Bayesian Information Criterion 

SNR: Signal-to-Noise Ratio  

SRMR: Standardised Root Mean square Residual 

SRT: Speech Recognition Threshold 

TLI: Tucker-Lewis Index 
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