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Nonstandard Abbreviations and Acronyms 

AUC: Area Under the Curve 

CatBoost: Categorical Boosting 

CTA: Computed Tomography Angiography 

ESUS: Embolic Stroke of Undetermined Source 

IPH: Intraplaque Hemorrhage 

Light GBM: Light Gradient Boosting Machine 

LRNC: Lipid-rich Necrotic Core 

MATX: Plaque Matrix 

ML: Machine Learning 

PVAT: Perivascular Adipose Tissue 

ROC: Receiver Operating Characteristics curve 

SHAP: SHapley Additive exPlanations 

SVM: Support Vector Machine 

XGBoost: eXtreme Gradient Boosting 
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Abstract 

Background: Embolic stroke of undetermined source (ESUS) may be associated with carotid 
artery plaques with <50% stenosis. Plaque vulnerability is multifactorial, possibly related to 
intraplaque hemorrhage (IPH), lipid-rich-necrotic-core (LRNC), perivascular adipose tissue 
(PVAT), and calcification morphology. Machine-learning (ML) approaches in plaque 
classification are increasingly popular but often limited in clinical interpretability by black-box 
nature. We apply an explainable ML approach, using noncalcified plaque components and 
calcification features with SHapley Additive exPlanations (SHAP) framework to classify 
calcified carotid plaques as culprit/non-culprit. 

Methods: In this retrospective cross-sectional study, patients with unilateral anterior circulation 
ESUS who underwent neck CT angiography and had calcific carotid plaque were analyzed. 
Calcification-level features were derived from manual segmentations. Plaque-level features were 
assessed by a neuroradiologist blinded to stroke-side and by semi-automated software. 
Calcifications/plaques were classified as culprit if ipsilateral to stroke-side. Eight baseline ML 
models were compared. Three CatBoost models were trained: Plaque-level, Calcification-level, 
and Combined. SHAP was incorporated to explain model decisions. 

Results: 70 patients yielded 116 calcific carotid plaques (60 ipsilateral to stroke; 270 
calcifications (146 ipsilateral)). 17 plaque-level and 15 calcification-level features were extracted. 
Baseline CatBoost model outperformed other models. Combined model achieved test AUC 0.77 
(95% CI: 0.59-0.92), accuracy 0.82 (95% CI: 0.71 - 0.91), mean cross-validation AUC 0.78. 
Plaque-level and calcification-level models performed lower (AUC 0.41 95% CI: 0.15-0.68, 0.60 
95% CI 0.44-0.76). Combined model utilized five features: plaque thickness, IPH/LRNC volume 
ratio, PVAT volume, calcification minimum density, and total calcification volume over mean 
density ratio. Plaque thickness was most important feature based on SHAP values, with potential 
threshold at >2.6 mm.  

Conclusions: ML model trained with noncalcified plaque and calcification features can classify 
culprit calcific carotid plaque with greater accuracy than models trained using only plaque-level 
or calcification-level features. Model using clinically interpretable features with SHAP 
framework provides explanations for its decisions and allows identification of potential 
thresholds for high-risk features. 
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Introduction:  

Embolic stroke of undetermined source (ESUS) presents significant diagnostic and 

therapeutic challenges due to its multifactorial etiology [1], affecting approximately 1 in 6 

ischemic stroke patients, with a recurrence rate of 5% per year despite antithrombotic therapy [2].  

Growing evidence suggests carotid plaques with <50% stenosis play a critical role in 

ESUS. The NAVIGATE-ESUS trial failed to demonstrate efficacy or safety of rivaroxaban 

compared with aspirin in patients with ESUS [3], potentially due to high enrollment (40%) of 

patients with carotid plaques <50% stenosis. The trial was stopped early and results did not reach 

statistical significance, but patients with carotid plaques showed a strong trend of higher stroke 

recurrence rates (5.4 vs. 4.3/100 patient-years) and a trend favoring aspirin over rivaroxaban 

(recurrent stroke rate 4.9 versus 5.9/100 patient-years) [4].  

Studies suggest plaque vulnerability is complex and various imaging features should be 

considered for risk assessment [5]. For example, noncalcified intraplaque components, such as 

intraplaque hemorrhage (IPH) is a high-risk feature of carotid plaque associated with ischemia 

[6]. Meta-analysis demonstrated that recurrent stroke/TIA in patients with carotid plaques of 

<50% stenosis was 2.6/100 person-years and increased to 4.9/100 person-years if intraplaque 

hemorrhage was present [7]. Additionally, plaque calcification morphologies may also play a role 

in plaque stability, as suggested by imaging biomarkers such as “spotty calcification” and “rim-

sign” [8, 9]. Furthermore, the presence of inflamed adipose tissue surrounding the carotid artery 

has also been identified as a possible indicator of plaque vulnerability [10]. These findings 

highlight the multifactorial nature of plaque vulnerability and consideration of a combination of 

these plaque composition and plaque calcification features may provide insight about high-risk 

plaque. 
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Supervised machine-learning (ML) models, a subfield of artificial intelligence, excel in 

addressing focused problems that involve high-dimensional data, especially binary classification 

tasks [11], and have been previously applied to stroke imaging [12]. The improved predictive 

accuracy of ML models often comes at the cost of increased complexity, resulting in “black box” 

approaches that obscure how decisions are made; this lack of transparency limits their adoption 

in healthcare, where explainability is crucial. Consequently, there is increasing demand for 

succinct, “explainable” models based on clinically interpretable features [13].  

We hypothesize that an explainable ML model trained on a combination of clinically 

interpretable noncalcified plaque features and individual calcification features will be able to 

more accurately classify culprit and non-culprit calcific plaques in ESUS patients compared to a 

model incorporating only carotid plaque or plaque-calcification features.  

Materials and Methods: 

This study was deemed exempt by the University of Pennsylvania Institutional Review Board 

(853355). Individual patient consent was waived because of the retrospective nature of the study. 

The design and reporting of this study was completed according to the Strengthening the 

Reporting of Observational Studies in Epidemiology (STROBE) guidelines [14] and the 

Checklist for Artificial Intelligence in Medical Imaging (CLAIM) [15] (CLAIM checklist 

available as supplemental Table S1). 

Data Availability: The data and model can be made available on reasonable written request to the 

corresponding author. The ML model-building methodology described in this article is based on 

open-source resources, and the hyperparameters of our final models are shared in the Results. 

Patient Selection: This was a single-center retrospective cross-sectional study. Patients satisfying 

the following criteria were included: consecutive patients with unilateral anterior circulation 
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acute ischemic stroke admitted to our health system between October 1, 2015 – April 1, 2017, of 

≥18 years of age, who underwent CT angiography (CTA) of the neck within 10 days of stroke 

onset, met criteria for ESUS as determined by vascular neurologists, and confirmation of carotid 

plaque calcifications on CTA determined by visual inspection. ESUS was confirmed following 

method prior reported [16]. The following patients were excluded: patients with multiple 

possible mechanisms of ischemic stroke, evidence of simultaneous acute ischemic stroke in more 

than one vascular territory, prior carotid endarterectomy or stenting, occlusion of either cervical 

internal carotid artery. 

Definition of Culprit vs. Non-culprit plaque/calcification: Cervical carotid plaques and 

associated calcifications were defined as culprit or non-culprit if they were ipsilateral or 

contralateral to the stroke-side, respectively. 

Imaging Acquisition: CTA of the neck was acquired in the axial plane using a 4th generation, 

helical CT scanner, slice thickness ranging from 0.625 to 1.5 mm. Iodinated contrast (100mL 

Isovue-370) was administered intravenously through a 20-gauge (or larger) antecubital catheter.  

Image Analysis: All image segmentations and scoring were performed blinded to stroke-side. To 

obtain plaque-level features, a board-certified neuroradiologist (JW) reviewed the neck CTAs 

and assessed for carotid plaque thickness, presence of ulcerations, and degree of stenosis based 

on NASCET criteria. Cases with greater than 50% stenosis ipsilateral to stroke were excluded; 

sub-analysis showed contralateral plaques also had less than 50% stenosis (median 0%, IQR 0-

15%). A semi-automated plaque composition segmentation software (Elucid Bioimaging, Boston, 

MA) was used to quantify intraplaque hemorrhage (IPH), lipid rich necrotic core (LRNC), 

plaque matrix and perivascular adipose tissue (PVAT) volumes [17] and checked by a 

neuroradiologist (JWS). For plaque-calcification level features, CTA necks were screened 
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visually for calcific carotid bifurcation plaques across a 4 cm segment of the carotid bifurcation 

by two independent evaluators (ACH, HQP) with consensus by radiologists (YS, JWS); cases 

without carotid plaque calcifications by visual inspection were excluded. Each carotid artery was 

evaluated independently. If a patient had only one carotid artery with calcified plaque, then that 

plaque was used for further segmentation of the calcification and the carotid artery without 

calcified plaque was excluded. Two evaluators (ACH, HQP) independently labeled each discrete 

plaque calcification using 3D Slicer (https://www.slicer.org) and both labelling masks were 

overlaid and proofed by a radiologist (YS) to curate the final labeled dataset. Segmentation maps 

from 3D Slicer were used to derive calcification morphological features: volume, diameter, 

surface area, roundness, elongation, flatness, and density (attenuation values in Hounsfield units 

(HU)). Each discrete plaque calcification was manually scored by an evaluator (PB) for the 

location of the calcification relative to the vessel wall (adventitial, intimal, or transmural) and 

angle of calcification arc (between 0-90°, 90-180°, 180-270°, or 270-360°). “Spotty calcification” 

was defined as calcifications with arc <90° and axial thickness <3mm [8, 18]. “Rim-sign” was 

identified as a plaque-level feature designated by the presence of a calcification at an adventitial 

site with >90 degrees arc with adjacent non-calcified plaque measuring ≥2mm in thickness [9].  

 

Statistical Analysis and Machine Learning (ML) Methods: All statistical analyses and ML 

methods were conducted with Python (3.10.12) using relevant packages: scipy 1.13.1; numpy 

1.26.4; matplotlib 3.7.1; pandas 2.1.4; scikit-learn 1.3.2; xgboost 2.1.1; catboost 1.2.7; lightgbm 

4.5.0).  

Input Data for ML models: Three datasets were prepared: (1) Plaque-level: features and laterality 

of each plaque relative to stroke; (2) Calcification-level: features and laterality of each 
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calcification; (3) Combined: Merged Plaque-level and Calcification-level features, each row 

representing a calcification and its parent plaque. Baseline feature distributions were assessed 

using the Wilcoxon rank sum or t-test with normality evaluated by the Shapiro-Wilk test. 

Training and Test Set Split: To simulate a prospective use case, data was split by admission date: 

cases from 2015-2016 formed the Training set and cases from 2017 formed the Test set. 

Feature Engineering and Selection: Feature engineering and selection were performed on the 

Training set. Continuous variables were discretized into ten quantiles to reduce noise [19]; 

thresholds based on Training set were applied to the Test set preventing data leakage [20]. Chi-

square tests evaluated associations between binned features and a binary outcome (ipsilateral vs. 

contralateral). Monte Carlo simulations (10,000 iterations) ensured reliable p-values when 

expected counts were <5. Plaque-level and Calcification-level models used significant features 

(p<0.05) if available. Five clinically relevant features were selected for the Combined model (see 

Results).  

Baseline ML Algorithm Type Assessment and Selection: Eight common ML algorithms [21-24] 

—Logistic Regression, SVM, Decision Tree, Random Forest, Naïve Bayes, XGBoost, CatBoost, 

and LightGBM—at default settings were compared using the Combined model Training set. 

CatBoost, showing highest performance through 10-fold cross-validation, was selected for 

further optimization. 

Training: Plaque-level, Calcification-level, and Combined CatBoost models [22] were trained. 

Cross-validation and Hyperparameter tuning: CatBoost hyperparameters were optimized using 

exhaustive grid search (GridSearchCV) with 10 group-fold cross-validation, minimizing 

logarithmic loss. Three hyperparameters were tuned: depth (3-5), iterations (100-300), and 

learning rate (0.001, 0.01, 0.1); descriptions of hyperparameters have been previously described 
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[22]. Group-fold cross-validation [25] based on Plaque ID ensured no calcifications from the 

same plaque appeared in both training and validation sets, preventing data leakage. Mean cross-

validation AUC with 95% confidence interval was reported. 

Testing and Performance Analysis: Final models were evaluated on their respective Test datasets. 

Performance metrics included accuracy, ROC curve, and AUC. 95% confidence intervals were 

computed using the bootstrap method (1000 iterations) [26]. AUCs between models tested on 

separate test sets were compared using the independent t test. Additional metrics such as 

precision, recall, and F1-score were also calculated for the best model.  

Feature Analysis:  

Feature correlation analysis: Spearman’s rank correlation matrix was generated for the 

Combined model features. 

SHAP analysis: SHapley Additive exPlanations values (SHAP) were calculated for each feature 

for the final best model [27]. SHAP values help visualize the contribution of each feature to the 

model’s predictions and explain directionality thereby making “black-box” ML models 

interpretable [28, 29].  

Failure Analysis: A confusion matrix for the best model’s performance on the test set was 

generated. SHAP waterfall plots were used to visualize how specific features contributed to 

errors in misclassified cases. 

 

Results:   

Patient demographics: 

Patient flow diagram is shown in Figure 1 and demographic data are summarized in Table 1. 

From 772 acute ischemic stroke patients, 94 met criteria for ESUS among which 24 were 
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excluded due to the absence of carotid plaque calcifications, as a study aim was to investigate 

and compare a model with plaque calcification-level features. 70 patients (50% men, mean age 

68+/-11 yeas) were included in this study. 

Imaging Feature Derivation: 

From 70 ESUS patients, 116 calcific carotid plaques were identified on neck CTA (60 ipsilateral, 

56 contralateral to stroke). Each carotid artery was evaluated independently. 270 noncontiguous 

plaque calcifications were manually segmented (146 ipsilateral, 124 contralateral) (Figure 1). 17 

plaque-level and 15 calcification-level features were derived, definitions summarized in 

supplemental Table S2. 

Shapiro-Wilks test showed features were not in normal distribution (p<0.05) except for minimum 

calcification density (p = 0.36). The distributions of the imaging features for the Combined 

dataset (N=270) between ipsilateral (N=146) and contralateral (N=124) sides are summarized in 

Table S3. During the model-building process and feature selection, distribution information of 

the entire dataset (which includes information about the test set) were not leveraged.  

Training and Test Split: The Training set (2015-2016 admissions) yielded 56 patients with 96 

calcified carotid artery plaques (48 ipsilateral) with 214 noncontiguous calcifications (112 

ipsilateral). The Test set (2017 admissions) yielded 14 patients with 20 calcified carotid artery 

plaques (12 ipsilateral) with 56 noncontiguous calcifications (32 ipsilateral) (Figure 1). This 

naturally provided a ~80:20 split. Demographic data of Training/Test sets are provided in Table 

1. 

Feature Engineering and Selection: Significant features based on Chi-square analysis with 

Monte Carlo simulation after 10-quartile binning are summarized in supplemental Table S4. 
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Twelve significant plaque-level features were used to train the Plaque-level model (supplemental 

Table S4). There was no significant calcification-level feature and thus all calcification features 

were used for the Calcification-level model (Calc-level features in supplemental Table S2). 

Minimum Density approached significance (p=0.056) and was thus included for consideration 

for the Combined model. Pearson correlation matrix of these 13 features showed high 

correlations between many features (supplemental Figure S1). From 13 features, 5 were selected 

for the Combined model based on domain knowledge and multicollinearity analysis (see 

Supplement: Feature Selection): IPH over LRNC volume ratio (IPHvol/LRNCvol), Plaque 

thickness (mm), Perivascular adipose tissue (PVAT) volume (mm3), Plaque-level total 

calcification volume over mean density (mm3/HU), and Calcification minimum density (HU). 

Spearman’s rank correlation matrix showed that there were no strong correlations among these 

five features (Figure 2).  

 

Baseline model performance: Comparisons of eight commonly employed models in their default 

parameter settings using the Combined dataset demonstrated that all model types struggled to 

perform greater than chance, but CatBoost showed highest performance with AUC of 0.62 

(Figure 3).  

Hyperparameter-tuning of models: The optimal hyperparameter values for the Combined model 

were learning_rate 0.001, depth 5, and iterations 200. Hyperparameters for the Plaque-level and 

Calcification-level models are in supplemental Table S6. 

Final model performance: The Combined model achieved mean cross-validation AUC of 0.78, 

test set accuracy 0.82 (95% CI: 0.71-0.91) and AUC 0.77 (95% CI 0.59-0.92) (Figure 4). 
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Plaque-level and Calcification-level models performed lower (p<0.001), with AUC 0.41 (95% CI 

0.15-0.68) and AUC 0.60 (95% CI 0.44-0.76), respectively. Additional metrics are summarized 

in supplemental Table S7, and Precision-Recall curve with AUC of 0.82 is in supplemental 

Figure S2.  

Sub-analysis of aggregating the Combined model results from the calcification-and-plaque-pair-

level results to the plaque-level resulted in AUC of 0.74, again outperforming the Plaque-level 

model. 

SHAP Feature Analysis of Best Performing Model (Combined Model):  

Based on the mean SHAP score (represents impact of each feature in influencing the model to 

decide culprit or non-culprit), plaque thickness was the most important feature of the Combined 

model, followed by PVAT volume, total calcification volume to mean density ratio, 

IPHvol/LRNCvol ratio, and calcification minimum density (Figure 5). Example of each imaging 

feature is shown in Figure 6. 

SHAP dependency plots visualized how the model used each feature to determine culprit/non-

culprit and allowed visualization of potential thresholds for the features (supplemental Figure 

S7) based on our 10 quantile bins (supplemental Table S5): Plaque thickness >2.6 mm, PVAT 

volume >112 mm3, total calcification volume to mean density ratio >0.32, and IPHvol/LRNCvol 

ratio >0.4, and calcification minimum density >240HU.  

Top 10 important features of the Calcification-level and Plaque-level models by mean SHAP 

scores are summarized in supplemental Figures S3 and S4. 

Failure Analysis: 
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The confusion matrix for the Combined model (supplemental Figure S5) showed 16 true 

negatives, 4 false negatives, 6 false positives, and 30 true positives. SHAP water-fall plots 

analyzed incorrect cases, and select examples are shown in supplemental Figure S8. In a false 

positive example (supplemental Figure S8A), the model incorrectly classified the calcification-

plaque pair as culprit because there was relatively high plaque thickness and PVAT, overriding 

the impact by minimum calcification density. Conversely, in a false negative example 

(supplemental Figure S8B), the model incorrectly classified a case as non-culprit because there 

was relatively low plaque thickness and PVAT volume.  

Discussion: 

ML approach to calcified carotid plaque classification:  

Our Combined model achieved an AUC of 0.77 (95% CI: 0.59-0.92) and a precision-

recall AUC of 0.74 (95% CI: 0.58-0.90) for classifying culprit (ipsilateral) versus non-culprit 

(contralateral) calcification-plaque pairs in patients with <50% carotid stenosis. Comparable 

studies to date have focused on plaques >50% stenosis. For example, a ML model using clinical 

metrics, plaque stenosis and size classified culprit plaque with AUC of 0.73 [30], and another 

model trained on CT radiomics in a cohort with mean ipsilateral stenosis of 72% achieved AUC 

of 0.76 [31]. Two additional models using radiomic features reported AUCs >0.90 [32, 33], but 

these were in carotid endarterectomy candidates (>70% stenosis). Another recent study involving 

patients with >50% stenosis used CTA-based plaque compositions for a model with AUC of 0.89 

[34]. In contrast, our study focusing on plaques with <50% stenosis may cause ischemic stroke 

via a different mechanism (e.g., plaque rupture and embolism) and leverages both noncalcified 

component and calcification features. Comparing eight different models at default-settings 

suggested that our dataset presented a challenging binary classification task (Figure 3). However, 
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fine-tuning of the CatBoost model resulted in improved performance (Figure 4), consistent with 

prior research showing CatBoost may outperform other ML models, including in stroke-related 

research [35, 36]. Our Combined model also outperformed non-ML classification methods based 

on domain knowledge, such as plaque-thickness (>3 mm; AUC 0.63), presence of IPH (AUC 

0.53), “spotty calcifications” (AUC 0.50), and “rim-sign” (AUC 0.50), and combination of these 

criteria (AUC 0.46), underscoring the advantages of a ML approach (details in Supplement).  

Explainable ML model with 5 clinically-relevant features:  

 There is growing demand for explainable ML models over high-performing "black-box" 

models, particularly in healthcare, where trust and subsequent adoption is closely tied to model 

interpretability [13]. Models trained on radiomic features—quantitative metrics from medical 

images—can achieve high performance but are difficult to interpret due to complex features such 

as “entropy” [32] or “Grey Level Dependence Matrix: dependence Variance” [31]. Our model 

provides five explainable features with SHAP analysis to clarify the decision-making process 

and identify potential thresholds for each feature.  

Plaque Thickness: A study comparing ESUS and cardioembolic stroke cohorts found plaque 

thickness was significantly greater ipsilateral to stroke than contralateral in ESUS but not in 

cardioembolic strokes [37]. While there is no established cutoff, studies have reported that 

plaques with <50% stenosis with >3 mm thickness are more prevalent on ipsilateral side in 

ESUS patients [16, 38]. Our model and cutoff of >2.6 mm aligns with these findings.   

IPH/LRNC volume: IPH is a key marker of carotid plaque vulnerability with strong association 

with stroke risk as highlighted by two recent meta-analyses [39, 40]. LRNC, composed of 

cholesterol crystals and necrotic cell debris, is also associated with stroke [40, 41], and the ratio 

of IPH/LRNC volume has further been tied to stroke risk [42]. In a prior ML model [25], this 
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ratio was the most important feature, with top five features also including IPH 

volume/percentage and lipid minus IPH volume/percentage. For our Combined model, we 

incorporated the ratio of IPH/LRNC volume. Our model suggested a potential cutoff at 0.40 for 

identifying culprit cases, aligning with the prior finding of 0.50 [25]. 

PVAT volume: PVAT, the adipose tissue surrounding vessels, is involved in regulating vascular 

homeostasis [43]. There is growing evidence that PVAT may relate to plaque inflammation [10, 

44], which makes it a potential imaging biomarker in ESUS [45]. Prior models using plaque 

compositions did not include PVAT [34]. Our model suggests higher PVAT volume relates to 

culprit plaque (supplemental Figure S6). Our model suggests 112 mm3 may be a threshold for 

risk stratification in ESUS. Further research on an external dataset is warranted.  

Features related to Calcification: The role of plaque calcification density on stability and its 

relationship with calcification volume remain areas of investigation [46]. Studies in coronary 

arteries showed that when considering calcium density alone, higher density is associated with 

increased cardiovascular risk [47]. Our model appears to align with this, as cases with higher 

minimum calcification density were more often classified as culprit. However, other coronary 

artery studies showed that after adjusting for calcium area or volume, higher calcium density 

may be associated with lower risk of events [48, 49]. Given our model classified higher 

minimum density and a higher ratio of calcification volume to density as culprit, the effect of 

increased calcification volume may be stronger in our dataset. Further studies are warranted to 

explicitly study the interaction between calcification density and volume with respect to plaque 

stability. In our cohort, previously reported high-risk features of “spotty calcifications” and the 

plaque-level “rim-sign” were not successful in accurately classifying culprit calcification-plaque 

pairs (see Sub-analysis of Non-ML methods in Supplement).  
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Limitations 

There are several limitations. First, our ML models were trained with and tested on a 

small-sample (N=70 patients) single-center data. While our data and model output generally 

agreed with the literature, ulcerations in our data were rarely observed and present on the carotid 

plaque contralateral to stroke-side. Ulceration is a well-established high-risk carotid plaque 

feature and is expected to be more prevalent ipsilateral to stroke-side. This is likely due to 

variability in small sample size. Ulceration was removed during the feature selection process and 

was also not included in recent similar work [34]. For future work in an independent validation 

cohort, it may be reconsidered as an additional potential model feature.   

Second, carotid plaque calcifications were manually segmented by visual assessment, 

which may have introduced bias. However, we had 3 independent evaluators, including expert 

proofing, for this time-intensive task to create the segmentation maps. Additionally, a fourth 

evaluator also reviewed all maps and scored each calcification to determine arc angle and 

location. Nonetheless, at the voxel-level there may have been over/under-segmentations. Effects 

due to data noise and outlier values were mitigated by our quantile binning process.  

Third, while we have explored eight different ML models (Figure 3), we did not compare 

our results to a convolutional neural network approach in which the segmentation maps and the 

underlying imaging data would be used as direct inputs. In a carotid endarterectomy population, 

a convolutional neural network model classified plaque using CT images with histological 

specimens as a ground truth and identified unstable plaque according to the modified American 

Heart Association definition with AUC of 0.97 [33]. While promising, the model was not 

validated in a stroke population with carotid plaque of <50% stenosis. While such a computer-

vision approach may be a valid alternative, ML methods such as CatBoost may be preferred on a 
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tabulated dataset because the feature importances are readily interpretable, especially when 

combined with the SHAP framework.  

Our Combined model was more sensitive than specific in classifying culprit 

calcification/plaque features, resulting in more false positives than false negatives on the test set 

(supplemental Figure S5). Although our model achieved an AUC of 0.77, plaque thickness was 

the most important feature, which may lead to missed cases with low thickness but a high IPH-

to-LRNC ratio. To avoid overfitting, external validation of the model is essential for improving 

sensitivity. 

In this study, we screened ESUS cases for those with calcified carotid plaques of less than 

50% stenosis. We assumed that this cohort experienced strokes due to ipsilateral plaques, but it is 

important to acknowledge that other stroke etiologies remain possible. While this assumption is a 

limitation of this model, literature suggests that it is less common for other etiologies to overlap 

in patients with carotid plaques [50].    

Clinical Implications  

Using this unique ESUS dataset incorporating detailed plaque-level and calcification-

level imaging features, we employed advanced ML techniques to classify calcified carotid 

plaques as either culprit or non-culprit using clinically-explainable CT imaging features. The five 

features used to build our Combined model parallel our understanding from imaging and 

histologic studies and include plaque thickness, IPHvol/LRNCvol, PVAT, minimum calcification 

density, and calcification volume/density ratio. Further investigations on these features may 

improve risk stratification in ESUS patients with carotid plaque with <50% stenosis. A 

longitudinal follow-up of ESUS patients with carotid plaques and calcifications classified as 
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culprit by this model is a future direction to assess whether these features are truly predictive of 

future ischemic events. 

Conclusions:  

Our ML model trained on a combination of plaque-level and calcification-level metrics 

can classify culprit calcification-plaque pairs with AUC 0.77, better than models only trained 

with plaque-level or calcification-level features. We provide a succinct model with 5 unique 

clinically-relevant features with an explainable SHAP framework to interpret its decision-making 

process.  
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Figures and Tables: 

Graphic Abstract: Overall design of our study.  
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Figure 1: Patient flow diagram with Train and Test split 

 

Figure 1. Flow diagram shows 70 total embolic stroke of undetermined source (ESUS) patients 
included in this study which yielded 116 calcified carotid artery plaques and 270 noncontiguous 
calcifications. This was split into Training (56 patients with 86 calcified carotid artery plaques 
and 214 noncontiguous calcifications) and Test sets (14 patients with 20 calcified carotid plaques 
and 56 noncontiguous calcifications). 
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 Table 1. Demographic data 

Total Dataset     Training Set Test Set 

N= 70     N=56 N=14 

Characteristic 
Mean 
(SD) n (%)     

Age 68 (11)   67 (10) 71 (14) 

Sex         
Female 35 (50) 26 (46%) 9 (64%) 

Diabetes   22 (31%) 18 (32%) 4 (29%) 

Hypertension   53 (76%) 44 (79%) 9 (64%) 

Coronary Artery Disease 19 (27%) 16 (29%) 3 (21%) 

Dyslipidemia   28 (40%) 18 (32%) 10 (71%) 

Smoker   14 (20% 12 (21%) 2 (14%) 
Abbreviations: SD: standard deviation.  
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Figure 2. Spearman’s rank correlation matrix for Combined model features. 

 

Figure 2. Spearman’s rank correlation matrix showed that for the five features used by the 
Combined model, there were no features with strong correlation in the Training Set (correlation 
coefficient >0.7).   

Abbreviations: IPH: intraplaque hemorrhage, LRNC: lipid-rich-necrotic-core, PVAT: 
perivascular adipose tissue. 
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Figure 3. Receiver operating characteristic curves of eight default ML models. 

Figure 3: Receiver operating characteristic curves obtained during cross-validation process (thus 
using only Training set, not Test set) shows that eight models in their default settings struggled to 
classify culprit and non-culprit plaques better than chance, but CatBoost (gray) performed 
highest (AUC 0.62).   
Abbreviations: AUC: Area under the curve, CatBoost: categorical boosting, SVM: support vector 
machine, LightGBM: light gradient boosting machine, ML: machine learning, XGBoost: 
extreme gradient boosting. 
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Figure 4: Receiver operating characteristic curve of Combined Model 

 

Figure 4. Receiver operating characteristic curve of Combined model on test set shows AUC of 
0.77 (95% CI 0.59-0.92).  
Abbreviations: AUC: Area under the curve. ROC: Receiver operating characteristic. CI: 
confidence interval. 
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Figure 5. Feature importance ranking of Combined model.  

 

Figure 5. Five features used for the Combined model were ranked by mean SHapley Additive 
exPlanations (SHAP) score, with plaque thickness being the most important.  

Abbreviations: PVAT: Perivascular adipose tissue, IPH: Intraplaque hemorrhage, LRNC: Lipid-
rich-necrotic-core.  
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Figure 6. Imaging features used in the Combined model  

 

Figure 6. Example of each imaging feature used in the Combined model; Maximal plaque 
thickness was measured from CTA image directly, Lipid-rich-necrotic-core (LRNC), intraplaque 
hemorrhage (IPH) and perivascular adipose tissue (PVAT) volumes are based on Elucid 
Bioimaging software, and calcification-related features are based on 3D Slicer segmentations.  
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