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Abstract 11 

Antibacterial resistance is an alarming global concern and a public health challenge of the 12 

twenty-first century for which effective systems are required to track and treat ABR. We 13 

performed microbiological and antibiotic susceptibility testing on the samples to detect and 14 

characterize Multidrug-Resistant Bacteria (MDRB) isolated from patients segregating MDRB 15 

characteristics (types, prevalence and distribution of MDRB) based on time (i.e., during 16 

versus post covid-19) and location (i.e., different wards of a tertiary care hospital). We 17 

observed an increase of MDRB in 2022 as compared to 2021 and 2023. These MDRB had a 18 

Shannon and Simpson index values of 1.138 to 1.508 and 0.643 to 0.775, respectively and an 19 

observed evenness values of 0.780 to 1.042, which revealed the microbial diversity recovered 20 

from the patient samples. In keeping with previous MDR studies, Klebsiella, E. coli, 21 

Citrobacter, Acinetobacter and Pseudomonas were identified from the patient samples. 22 

Moreover, compared to previous reports, the percentage of MDR-bacteria, i.e., Klebsiella (40 23 
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%), E. coli (28 %), and Citrobacter (19 %), populations were higher in this study.  We 24 

observed that Gamma-proteobacteria were predominant across all the recovered samples, and 25 

that Acinetobacter and Klebsiella isolated from the samples were 100 % resistant to twenty 26 

and eleven antibiotics, respectively. Furthermore, the fatality rate was low compared with the 27 

available reports suggesting possibilities for effective recovery if given rapid and tailored 28 

treatment. Given the challenges faced by MDRB strains more surveillance and tracking is 29 

needed to ensure effective and specifically targeted treatment strategies. 30 

Keywords: Multi-drug resistant, Microbes, Antimicrobial susceptibility testing, comorbid, 31 

Covid-19, Healthcare. 32 

1. Introduction 33 

Over the previous decades, it has been observed that antibiotic resistance is increasing to 34 

precariously high levels all over the world as new mechanisms of resistance are looming and 35 

spreading worldwide (Alós et al., 2015; Hernando-Amado et al., 2019). Widespread, non-36 

specific, and uninterrupted use of antibacterial antibiotics in treating bacterial infections has 37 

been well documented in fuelling resistance among the distinct elements of bacterial 38 

populations (Klein et al., 2018; Carvalho et al., 2022). Due to the continuous need of 39 

antibacterial substances active against resistant gram-negative microflora, gram-positive 40 

multi drug resistant (MDR) pathogens have been overwhelmed by gram-negative bacterial 41 

infections (Jones, 2001). Among gram-negative microflora, the commonest MDR microbes 42 

identified in severe patients are Pseudomonas aeruginosa, Stenotrophomonas maltophilia, 43 

Acinetobacter sp., and Enterobacteriaceae. Staphylococcus aureus (methicillin-resistant) and 44 

Enterococci sp. (vancomycin-resistant) are the most common gram-positive isolated, 45 

although their occurrence is falling (Jones, 2001; Boucher et al., 2009). Hospital-acquired 46 

infections (HAIs) have been known for over a century as a critical clinical issue affecting 47 
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healthcare quality, and they are the primary source of unfavourable healthcare outcomes (Aly 48 

et al., 2008; Memish and El-Saed, 2009; Nannini et al., 2009). The development of MDR 49 

microbes (MDRM) in the patient has become a public health issue, emerging as a new 50 

concern in many parts of the health system or hospitals (Jindal et al., 2015; Dogru et al., 51 

2010; Teng et al., 2009; Aly et al., 2008). There is extensive use of antibiotics as a drug in 52 

critical care units, which establishes a selection burden and stimulates the development of 53 

MDRM (Teng et al., 2009; Aly et al., 2008). Further, an intensive care unit (ICU) patient is 54 

known to have a high risk of infection due to their underlying health conditions, exposure to 55 

various invasive devices, and weakened immunity (Dettenkofer et al., 2001; Ylipalosaari et 56 

al., 2006). The HAI rate in general wards is lower than that of ICU-HAI (Weinstein, 1998). 57 

The ICU-HAI has been associated with higher costs, morbidity, and mortality (Iskandar et al., 58 

2021; Neidell et al., 2012; Montassier et al., 2013; Gastmeier et al., 2005). The objective of 59 

this research was to investigate HAI in various (ICUs, neonatal ICU (NICU), outpatient 60 

departments (OPD), male wards, female wards, pediatric wards, and medicine wards) 61 

departments to reveal the MDR microbial community, the anti-microbial resistance 62 

descriptions, including their effect on MDRM-related mortality and comorbidity. 63 

2. Materials and methods 64 

2.1. Site of study and patients 65 

The study was performed as single-centre retrospective research at a 900-bed hospital (the 66 

Symbiosis University Hospital and Research Centre, SUHRC, Pune, Maharashtra, India), 67 

providing quality healthcare to the Pune’s surrounding rural and upcoming urban areas. High 68 

patient numbers ensure extensive contact with the local community flows daily due to 69 

subsidized healthcare facilities and treatment strategies provided. The hospital provides for 70 

both inpatient and outpatient patient treatment services. The hospital possesses operation 71 
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theatres, ICUs, NICUs, Wards, OPDs. During Covid-19 (Coronavirus disease-2019), the 72 

hospital ran with specialized wards assigned to Covid-19-positive patients. The standard 73 

infection control measures (PPE, personal protective equipment) and sterilization protocols 74 

(https://www.england.nhs.uk/national-infection-prevention-and-control-manual-nipcm-for-75 

england/chapter-1-standard-infection-control-precautions-sicps/) were followed to prevent 76 

cross-contamination and spread of Covid-19. 77 

2.2. Clinical data 78 

A descriptive retrospective investigation of the occurrence of MDR bacteria in patients 79 

treated at the hospital from January 2021 to April 2023, patients’ samples were collected from 80 

the different hospital departments as a part of routine testing or when infections were 81 

suspected /presumed to be the cause underlying diseases (ICU, NICU, OPD, male ward, 82 

female ward, paediatric ward, and medicine ward). Clinical data information relevant to this 83 

study was collected and extracted from the departments mentioned above, patient medical 84 

charts, infection control surveillance forms, and microbiology laboratory results. The clinical 85 

data extracted also included - patient symptoms and comorbidities, neoplasm-related data and 86 

its treatment, and most importantly, MDR related infectious microorganisms and their 87 

resistance pattern (based on sensitivity to antibiotics, which are recorded data from 88 

microbiology laboratory culture test blood culture, etc.) MDRs were determined by applying 89 

the Centres for Disease Control and Prevention (CDC) parameters (Horan et al., 2008). 90 

2.3. Bacterial identification and susceptibility testing 91 

Microbial isolates were determined by applying the BD Phoenix Automated Microbiology 92 

System (USA) and Kirby-Bauer disk diffusion technique (Clinical and Laboratory Standards 93 

Institute, 2006.). The protocol detailed, by Caroll et al. (2006) and Hudzicki (2009), were 94 

applied to identification and antimicrobial susceptibility tests. Microorganism cultures were 95 
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obtained from patient samples from different anatomical locations on the body. We examined 96 

body fluids such as pus, urine, swabs (from the foot and near the colon), sputum, stool, BAL 97 

(Bronchoalveolar lavage) fluid, and ET (Endotracheal Secretion) secretion to determine the 98 

occurrence of antibiotic-resistant microbes or pathogens across the samples. The isolates 99 

Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter sp., and 100 

Citrobacter sp., were examined to be MDR. An infection at many sites in the same patient 101 

was revealed as distinct infection events, except that an identical microbe was revealed 102 

concurrently. The clinical outcomes were evaluated up to hospital discharge or patient death. 103 

For the reasons of this study, patient death was determined concerning the HAIs/ or as non-104 

HAIs-associated in agreement with the professional (Medical) who endorsed the patient 105 

death, including clinical chart data examined by three of the authors of this study. 106 

2.4. Statistical analysis 107 

Descriptive statistics were used for categorised variables and expressed in terms of per cent 108 

frequency. The normal distribution and diversity (alpha and beta) index were applied to 109 

determine the variations in MDR-microbial populations between MDR patient samples 110 

(collected from 2021, 2022, and 2023 at SUHRC, Pune) used in this study. 111 

3. Results 112 

3.1. Overview of patient infection across all the samples 113 

One hundred patients aged one day to 98 years were included (data not shown). Eighty-five 114 

patients (out of 100 patients) were treated successfully and discharged (Table 1, data not 115 

shown), five patients (out of 100 patients) died (Table 1) in the hospital, and there was no 116 

clarity in the reporting of 10 patients’ data whether they discharged or died. Fifty-three 117 

patients (53 %), 38 patients (38 %), and nine patients (9 %) were male, female, and child 118 

(female), respectively (Table 1, Fig. S1) with various clinical characteristics (data not shown 119 
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and Table 1). An overall lowest death rate of males were observed among patients (Fig. 1A). 120 

Patients with comorbidities or with no comorbidities are shown in Table 1. 18 patients with 121 

no co-existing comorbidities were observed (Table 1 and data not shown). The medical 122 

conditions at presentation or during the hospital study included; UTI (urinary tract infection, 123 

35 % patient), sepsis (16 % patient), foot gangrene (3 % patient), respiratory disease (2 % 124 

patient), cancer (1 % patient), hepatic disease (1 % patient), hepatic cyst (1 % patient), 125 

asthma (1 % patient), IHD (ischemic heart disease, 1 % patient), CKD (chronic kidney 126 

disease,1 % patient), septic shock (1 % patient), post-CAR (chimeric antigen receptors, 1 % 127 

patient) T-cell therapy, hyperthyroidism (1 % patient), osteoporosis (1 % patient), 128 

hemoperitoneum (1 % patient), multiple vessel (1 % patient), HIE (hypoxic-ischemic 129 

encephalopathy, 1 % patient), femur fracture (1 % patient), that were simultaneously present 130 

in a patient (Table 1). Table 2 revealed the sample type distribution and predominance of 131 

MDR-gram-negative bacteria (MGNB). The sample urine from the patient showed the 132 

highest number (61) of MGNB (Table 2). In comparison the lowest number (2) of MGNB 133 

was present in stool samples (Table 2). In terms of bacterial species identified in the samples, 134 

MDR-Klebsiella pneumoniae was predominant in urine samples (Table 2). 135 

3.2. Evaluation of antibiotic resistance 136 

To evaluate antibiotic resistance, an antimicrobial susceptibility test (AST) was performed 137 

(Table S1). The AST of five GNBs, Klebsiella pneumoniae (K. pneumoniae), followed by 138 

Escherichia coli (E. coli), Citrobacter sp., Pseudomonas aeruginosa (P. aeruginosa), and 139 

Acinetobacter sp., were determined during our investigation (Table S1). Thirty-one 140 

antibiotics were used for susceptibility tests to reveal the MDR characteristics of GNBs 141 

isolated from patients. All five GNBs (K. pneumoniae, E. coli, Citrobacter sp., P. aeruginosa, 142 

and Acinetobacter sp.) showed the highest (100 %) resistance to ampicillin, ceftazidime, and 143 

ertapenem (Table S1). K. pneumoniae, E. coli, P. aeruginosa, and Acinetobacter sp. were 144 
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ampicillin/sulbactum-resistant (100 %) (Table S1). K. pneumoniae, E. coli, Citrobacter sp., 145 

and P. aeruginosa were aztreonam-resistant (100 %) (Table S1). K. pneumoniae, E. coli, 146 

Citrobacter sp., and Acinetobacter sp. were ceftriaxone- and cefuroxime-resistant (100 %) 147 

(Table S1). K. pneumoniae, Citrobacter sp., and Acinetobacter sp. were cefotaxime- and 148 

cefixime-resistant (100 %) (Table S1). Citrobacter sp., P. aeruginosa, and Acinetobacter sp. 149 

were cotrimoxazole-, meropenem-, and gentamicin-resistant (100 %) (Table S1). E. coli, P. 150 

aeruginosa, and Acinetobacter sp. were ciprofloxacin-resistant (100 %) (Table S1). 151 

Citrobacter sp. and Acinetobacter sp. were amikacin-, cefepime-, and tobramycin-resistant 152 

(100 %) (Table S1).  E. coli and Citrobacter sp. were ceftazidime avibactam-resistant (100 153 

%) (Table S1). K. pneumoniae and E. coli were cefazolin-, norfloxacin-resistant (100 %) 154 

(Table S1). K. pneumoniae and Acinetobacter sp. were imipenem-, nitrofurantoin-, and 155 

piperacillin tazobactam-resistant (100 %) (Table S1). Acinetobacter sp. was amoxicillin 156 

clavulanic acid-, ceftazidime clavulanic acid-, cefoxitin-, and minocycline-resistant (100 %) 157 

(Table S1). E. coli was doripenem-resistant (100 %) (Table S1). Further, E. coli was 158 

tigecycline- and tetracycline-susceptible (100 %) (Table S1). 159 

3.3. Identification of MGNB across all the samples 160 

A total of 100 MGNBs belonging to c_Gammaproteobacteria, were identified across all the 161 

samples. 28 %, 56 %, and 16 % MGNB were observed in 2021, 2022, and the early part of 162 

2023, respectively (Fig. 1B). Further, in the year 2021, 14 adult males, 11 adult females, and 163 

3 children (female) were infected with MGNB, while in the year 2022, 29 adult males, 23 164 

adult females, and 4 children (female) were found to be diseased with MGNB (Fig. 1C). 165 

Furthermore, in 2023, 10 adult males, 4 adult females, and 2 children (female) were infected 166 

with MGNB (Fig. 1C). The highest number of adult males, adult female, and children 167 

(female) patients with MGNB was revealed in the year 2022 (Fig. 1C), while the lowest 168 
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number of adult male, adult female, and children (female) patients with MGNB were 169 

observed in the year 2023 (Fig. 1C). 170 

In 100 MGNB isolates, Pseudomonadota was noticed as the dominant phylum among 171 

the patient samples. Pseudomonadota alone shared 28, 56, and 16 of the total MGNB isolates 172 

in the patient samples collected in 2021, 2022, and 2023, respectively (Fig. 1B). The 173 

dominant MGNB isolates belonging to Gammaproteobacteria among the patient samples 174 

(Fig. 1D) depiced the genera E. coli (28 % isolates), Citrobacter sp. (19 % isolates), K. 175 

pneumoniae (40 % isolates), P. aeruginosa (7 % isolates), and Acinetobacter sp. (7 % 176 

isolates) (Fig. S2). 177 

3.4. Specific and shared MGNB population 178 

The number of distinct and shared MGNB isolates present in the patient samples were 179 

examined applying a Venn diagram (http://bioinformatics.psb.ugent.be/cgi-180 

bin/liste/Venn/calculate_venn.htpl) (Fig. 1E, Table S2). Five shared MGNB populations were 181 

identified across all samples. E. coli, K. pneumoniae, and Citrobacter sp. were shared 182 

between three patient samples (2021, 2022, and 2023), while P. aeruginosa and 183 

Acinetobacter sp. were shared between only two patient (2021 and 2022) and (2022 and 184 

2023) samples, respectively (Fig. 1E, Table S2). 185 

3.5. Identification of MGNB in patient (with comorbid) samples 186 

K. pneumoniae, E. coli, and Citrobacter sp. were present in the patient (with comorbid 187 

medical conditions) samples collected in 2021 (Fig. S3A). E. coli (in UTI) was highest 188 

among the patient (with comorbid) samples (Fig. S3A), while E. coli (in sepsis and hepatic 189 

cyst), K. pneumoniae (in foot gangrene, respiratory disease, and Asthma), Citrobacter sp. (in 190 

femur fracture) were noted lowest in the patient (with comorbid) samples (Fig. S3A). 191 
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K. pneumoniae, E. coli, P. aeruginosa, Citrobacter sp., and Acinetobacter sp. were 192 

identified in patient (with comorbid medical conditions) samples collected in 2022 (Fig. 193 

S3B). K. pneumoniae (in UTI) was highest among the patient (with comorbid) samples (Fig. 194 

S3B) while E. coli (in sepsis, septic shock, cancer, and hemoperitonen), Citrobacter sp. (in 195 

sepsis, post-CAR, and osteoporosis), K. pneumoniae (in foot gangrene, respiratory disease, 196 

IHD, CKD, hepatic disease, hyperthyroidism) and P. aeruginosa (in foot gangrene) had the 197 

lowest representation in patient (with comorbid) samples (Fig. S3B). 198 

K. pneumoniae, E. coli, Citrobacter sp., and Acinetobacter sp. were observed in the 199 

patient (with comorbid medical conditions) samples collected in 2023 (Fig. S3C). E. coli (in 200 

UTI) was highest among the patient (with comorbid) samples (Fig. S3C), while K. 201 

pneumoniae (in sepsis and multiple vessels), Acinetobacter sp. (in UTI and in HIE) had the 202 

lowest representation in the patient (with comorbid) samples (Fig. S3C). 203 

3.6. Variance indices 204 

Normal distribution, alpha and beta-diversity (taxonomic variance) of the MGNB population 205 

was determined utilizing data from various patient’ samples. The Shapiro-Wilk (S-W) and 206 

Anderson-Darling (A-D) normality test were used to determine distributions of MGNB 207 

community within the patient samples. (Table S3). The S-W analysis for normality varied 208 

from 0.800 to 0.888, with a P-value of 0.081 to 0.351. The observed A-D normal distribution 209 

differed from 0.343 to 0.511, with a P-value of 0.098 to 0.315 (Table S3). The Alpha (α)-210 

diversity metrics (Shannon, Simpson, Evenness, Brillouin, Fisher alpha, Chao1, and ACE) of 211 

the MGNB population were differed notably within the patient samples (Table 3). The values 212 

of Shannon diversity (1.138 to 1.508), Simpson diversity (0.643 to 0.775), Evenness diversity 213 

(0.780 to 1.042), and Brillouin diversity (0.933 to 1.340) (Table 3) revealed community 214 

structure with moderate species richness and abundance in patient samples. The values of 215 
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Fisher alpha and Chao1 ranged from 1.277 to 1.712 and 4 to 5, respectively (Table 3). The 216 

ACE (abundance-based coverage estimator; a species richness index) varied from 4.000 to 217 

5.111, with the increase index in MDR bacteria in 2021 among the patient samples (Table 3). 218 

Notably, the MDRs in the sample (2022) had more MGNB population than the other samples 219 

(Table 3). Palaeontological Statistics (PAST, v3) software package was applied to determine 220 

the beta (β) diversity of the MGNB population between the patient samples (Fig. 2A) 221 

collected in 2021, 2022, and 2023. PCoA (principal coordinate analysis, based on the Bray-222 

Kurtis index) was computed using eigenvalues and eigenvectors (coordinates) algorithm from 223 

Davis (1986). Before Eigen investigation, PCoA eigen values were produced to the 224 

transformation exponent (the power of C), and the definitive index was C = 2. The “Eigen 225 

value scaling” measure was applied for each axis, applying the square root of the eigen 226 

matrix (value), and the minimum spanning tree preference was based on the picked PCoA 227 

matrix. PCoA revealed the existence or absence of MGNB elements between the patient 228 

(2021, 2022, and 2023) samples (Fig. 2A). Further, analysis of the data, of pair-wise patient 229 

sample, comparisons was determined by applying the Bray-Kurtis similarity and dissimilarity 230 

index (Table S4). Bray-Kurtis pairwise similarity and distance index of the patient samples 231 

varied from 0.444 - 1.000 (Table S4). Moreover, the Whittaker indexes for the resemblance 232 

between MGNB population of the patient samples ranged from 0.11 - 0.25 (Table S5). 233 

3.7. Comparison of MGNB populations between de Souza GHA et al. (2023), Ruegsegger et 234 

al. (2022), and in the present study 235 

In an effort to understand and correlate the MGNB populations of the present study bacterial 236 

communities with that present in the study of de Souza GHA et al. (2023), and Ruegsegger et 237 

al. (2022) (Fig. 2B, Table 4). Pseudomonas sp. and Klebsiell sp. were revealed at 6.0 and 238 

40.0 %, respectively, in the present study, while in the de Souza GHA et al. (2023), they were 239 

noted at 11.4 and 40.0 % (Fig. 2B, Table 4). Further, E. coli and Citrobacter sp. were 240 
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observed at 28.0 and 19.0 %, respectively in the present study, while in the de Souza GHA et 241 

al. (2023) they were noted at 2.8 and 2.8 % (Fig. 2B, Table 4). Furthermore, Acinetobacter 242 

sp. was present at 7.0 % in the present study, while in the de Souza GHA et al. (2023) they 243 

were revealed at 20.0 % (Fig. 2B, Table 4). 244 

Pseudomonas sp. and Klebsiella sp. were present at 6.0 and 40.0 %, respectively, in the 245 

present study, while Ruegsegger et al. (2023), reported 34.0 and 14.0 %, respectively (Fig. 246 

2B, Table 4). Further, E. coli and Citrobacter sp. were present at 28.0 and 19.0 %, 247 

respectively, in the present study, while Ruegsegger et al. (2023) reported 7.0 and 7.0 %, 248 

respectively (Fig. 2B, Table 4). Furthermore, Acinetobacter sp. was present at 7.0 %, in the 249 

present study, while in the Ruegsegger et al. (2023) study, they were not reported (Fig. 2B, 250 

Table 4). 251 

4. Discussion 252 

GNB are an important public health issue globally due to their antibiotic resistance 253 

characteristic (Oliveira and Reygaert, 2022). The invasion of the host by bacteria and the 254 

resulting infection is a versatile mechanism that includes various biological factors, i.e. the 255 

host defense mechanism, the prevalence and antibiotic susceptibility pattern of microbial 256 

isolates, various bio-physicochemical and genetic attributes (Peterson, 1996). The various 257 

virulence factors (persistence, transmissibility (ratio of output to input), cling to host cells, 258 

host cells invasion, toxigenicity, and the capability to elude or live the host’s defence 259 

mechanism) of bacteria have been extensively investigated and have shown to have a 260 

negative impact on patient’s health, particularly when a patient is immunocompromised due 261 

to severe disease (Freeman et al., 2020; Moradi et al., 2021). Moreover, it would be valuable 262 

to investigate whether patient genotypes can influence survival by influencing the number of 263 

MGNB within them (increased or decreased count of MGNB). 264 
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ICU-MDR percentages are maximum than in other hospital wards (Table 1) due to the 265 

multiple associations between the patient’s underlying medical conditions, hospital ward 266 

type, LOS (length of stay), and employment of various invasive tools (Erbay et al., 2003; 267 

Inweregbu et al., 2005; Vincent et al., 2009). 268 

Among the 100 patients investigated, 85 (85 %) were discharged, while 5 (5 %) expired in 269 

the hospital (Fig. 1A). An overall lower mortality rate was found among elderly, severe 270 

patients (with comorbidities) admitted to the different units of the hospital. Our outcomes are 271 

not in concurrence with the investigations of Juliana et al. (2022) and Boorgula et al. (2022), 272 

who revealed a higher death rate in serious patients. Taking this observation into 273 

consideration, we speculate that the lower mortality rate, in our study, might be due to the 274 

higher immunity of studied patients during their hospitalization (Parohan et al., 2020; Weiss 275 

and Murdoch, 2020; Ejaz et al., 2020). However, such intrinsic protective factors have yet to 276 

be determined in specific populations to make the above claims regarding mortality. 277 

In our investigation, K. pneumoniae, E. coli, Citrobacter sp., Acinetobacter sp., P. 278 

aeruginosa were the most frequent isolates (GNB) in various patient’ samples (Vijay et al., 279 

2021; Sharifipour et al., 2020). GNB isolates were higher in adult males than in adult females 280 

and children (female) (Fig. 1C). With this observation in view, we hypothesize that a higher 281 

level of an enzyme called carboxypeptidase (ACE 2, angiotensin-converting enzyme 2) in 282 

men and the predisposition of adult females (at reproductive age) to autoimmune disorder 283 

than infectious diseases might be the two reasons for higher MDR-GNB male than in female. 284 

Lifestyles of men (heavy smoking and drinking) make them more susceptible to infections 285 

(Ramírez-Soto et al., 2021; Bwire, 2020). Nevertheless, this is yet to be elucidated. 286 

Regarding AST, we revealed Acinetobacter sp. to be the most (100 %) resistant strain when 287 

measured against twenty antibiotics (Table S1), while Klebsiella sp., was found to be 100 % 288 
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resistant against eleven antibiotics (Table S1). All these five different bacterial species (Table 289 

S1) were resistant to numerous antimicrobial agents, which gives them the title of multidrug-290 

resistant bacteria (Giannitsioti et al., 2022). Surprisingly antibacterial resistance, in this study, 291 

is related to a decrease in the mortality rate compared with the previous study (Tanwar et al., 292 

2014). 293 

Our data provides evidence of an increase in antimicrobial resistance post-Covid-19 (Fig. 1C, 294 

data collected in 2022). This is in keeping with previous reports that have mentioned a similar 295 

pattern of increased antimicrobial resistance in specific locations (Shomuyiwa et al., 2022). 296 

Indiscriminate and irrational antimicrobial use and weak antimicrobials regulatory ecosystem, 297 

which could be partially attributed to health systems disruption by inadequate access to health 298 

services during the Covid-19 pandemic, are suggested causes for the rapid growth of 299 

antimicrobial resistance in the community (Lobie et al., 2021; Shomuyiwa et al., 2022). 300 

Given the rapid increase in antimicrobial resistance post-Covid-19 in our study, it is 301 

important to further analyze how the policies adopted to manage Covid-19 (i.e. widespread 302 

antibiotic and disinfectant usage) affect or have a long-lasting consequence on 303 

antimicrobial resistance (AMR) (Nieuwlaat et al., 2021). Furthermore, programs at a 304 

governmental level need to be adopted widely, particularly in low- and middle-income 305 

countries (LMIC), to contain the possible increase in AMR (Lucien et al., 2021). 306 

5. Conclusion 307 

In conclusion, outcomes achieved from the present investigation revealed that MDR-308 

microbes present in patients are predominantly elements of the gamma-proteobacteria. 309 

Antibacterial resistance has an important impact on therapeutics and the outcome of bacterial 310 

infection. In this study, five gram-negative bacteria, K. pneumoniae, E. coli, Citrobacter sp., 311 

Acinetobacter sp., and P. aeruginosa, had increased resistance to the antibacterial agents 312 
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applied. Therefore, it is essential that the public health and drug susceptibility patterns of 313 

microorganisms initiating pathogen infection are continually observed to instruct clinical 314 

trials and treatment strategies, thereby reducing the appearance of multi-drug-resistant 315 

microbial pathogens. 316 
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Figure legends 535 

Fig. 1� Overview of study. (A) Outcomes of patients with MDR-gram negative bacterial 536 

pathogens. (B) Percentage overview of patients with MDR-gram negative bacterial 537 

pathogens. (C) Distribution of MDR-gram negative bacterial pathogens in adult male, adult 538 

female, and children (female). (D) Relative abundance of different MDR-gram negative 539 

bacterial pathogens among all patient samples at the level of genus. (E) Identification of 540 

specific and shared MDR-gram negative bacterial pathogens among the patient samples. 541 

Fig. 2� Principal coordinate analysis and comparative overview of MGNB communities 542 

identified in patients. (A) Analysis of MDR-gram negative bacterial pathogens diversity in 543 

the patient samples collected in different, 2021, 2022, and 2023, years. MDR-gram negative 544 

bacterial pathogens diversity in the patient samples using principal coordinate analysis 545 

(PCoA-Bray-Kurtis index). (B) Comparative overview of MDR-gram negative bacterial 546 

communities identified in patient samples of the Hospital-acquired infection (in this study), 547 

de Souza GHA et al (2023), and Ruegsegger et al (2022). 548 

Table legends 549 

Table 1� �Representation and clinical traits in patients with hospital-acquired infections (HAI, 550 

2021-2023). 551 

Table 2� Predominance of MDR-gram negative bacterial pathogens from different sample 552 

types of patients. 553 
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Table 1� Characteristics of hospital stay of patients with or without comorbidities, 2021-2023 
(Covid-19/ or post Covid-19) period. 

 

S. No. Characteristic Patients (N=100) 
1 Age (range) 1 day - 98 years 
2 Discharged 85 (85 %) 
3 Death 5 (5 %) 
4 Male (adult) 53 (53 %) 
5 Female (adult) 38 (38 %) 
6 Children (female) 9 (9 %) 
7 Male ward 27 (27 %) 
8 Female ward 25 (25 %) 
9 Intensive care unit (ICU) admission 29 (29 %) 
10 Outpatient department (OPD) 12 (12 %) 
11 Pediatric ward 4 (4 %) 
12 Neonatal intensive care unit (NICU) admission 1 (1 %) 
13 Comorbidities  

a.  no comorbidities 18 (18 %) 
b.  Urinary Tract Infection (UTI) 35 (35 %) 
c.  Sepsis 16 (16 %) 
d.  Foot gangrene 3 (3 %) 
e.  Respiratory disease 2 (1 %) 
f.  Cancer 1 (1 %) 
g.  Hepatic disease 1 (1 %) 
h.  Hepatic cyst 1 (1 %) 
i.  Asthma 1 (1 %) 
j.  Ischemic heart disease (IHD) 1 (1 %) 
k.  Chronic kidney disease (CKD) 1 (1 %) 
l.  Septic shock 1 (1 %) 
m.  Post-compensatory anti-inflammatory response (CAR) 1 (1 %) 
n.  Hyperthyroidism 1 (1 %) 
o.  Osteoporosis 1 (1 %) 
p.  Hemoperitoneum 1 (1 %) 
q.  Multiple vessel 1 (1 %) 
r.  Hypoxic-ischemic encephalopathy (HIE) 1 (1 %) 
s.  Femur fracture 1 (1 %) 

 

 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 30, 2024. ; https://doi.org/10.1101/2024.10.25.24315976doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.25.24315976


Table 2� Dominancy of MDR bacterial isolates from different types of patient’s sample. 

 

Note# Pus; A thick, whitish-yellow fluid of WBCs (white blood cells), cellular debris, and liquefied tissue. SWAB; a medical device used for the 
collection of biological samples from the patient body. BAL; Bronchoalveolar lavage, ET; Endotracheal secretion.  

Isolates Sample types 
Pus Urine SWAB Sputum Stool BAL ET 

Klebsiella pneumoniae 7 20 3 2 2 2 3 
Escherichia coli 2 18 4 1 0 0 1 
Citrobacter 2 16 0 0 0 0 1 
Pseudomonas aeruginosa 1 6 0 0 0 0 0 
Acinetobacter 2 1 2 1 0 1 0 
Total 14 61 9 4 2 3 4 
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Table 3� Alpha-diversity metrics of MDR bacterial population in the patient samples. 

 

 

Sample name Shannon Simpson Evenness Brilloium Fisher-alpha Chao1 ACE Observed species 
2021 (Covid-19) 1.138 0.643 0.780 0.933 1.277 4 5.111 28 
2022 (post Covid-19) 1.508 0.755 0.903 1.340 1.328 5 5.000 56 
2023 (post Covid-19) 1.427 0.775 1.042 1.077 1.712 4 4.000 16 
Total 4.073 2.173 2.725 3.350 4.317 13 14.111 100 
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Table 4� Comparative synopsis of MDR bacteria observed in present study patient’ samples (during Hospital stay), de Souza GHA et al., 2023, 
and Ruegsegger et al., 2022. (ND; Not determined). 

 

 

 

 

 

 

 

 

 

  

S. No. MDR microbes Present study (%) de Souza GHA et al., 2023, (%) Ruegsegger et al., 2022, (%) 
1 Pseudomonas 6.0 11.4 34.0 
2 Klebsiella 40.0 40.0 14.0 
3 Escherichia coli 28.0 2.8 7.0 
4 Citrobacter 19.0 2.8 7.0 
5 Acinetobacter 7.0 20.0 ND 
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