Abstract
Background For a growing number of food-based dietary guidelines (FBDGs), diet optimization is the tool of choice to account for the complex demands of healthy and sustainable diets. However, decisions about such optimization models’ parameters are rarely reported nor systematically studied.
Objectives The objectives were to develop a framework for (i) the formulation of decision variables based on a hierarchical food classification system; (ii) the mathematical form of the objective function; and (iii) approaches to incorporate nutrient goals.
Methods To answer objective (i), food groups from FoodEx2 levels 3-7 were applied as decision variables in a model using acceptability constraints (5th and 95th percentile for food intakes of German adults (n=10,419)) and minimizing the deviation from the average observed dietary intakes. Building upon, to answer objectives (ii) and (iii), twelve models were run using decision variables from FoodEx2 level 3 (n=255), applying either a linear or squared and a relative or absolute way to deviate from observed dietary intakes, and three different lists of nutrient goals (allNUT-DRV, incorporating all nutrient goals; modNUT-DRV excluding nutrients with limited data quality; modNUT-AR using average requirements where applicable instead of recommended intakes).
Results FoodEx2 food groups proved suitable as diet optimization decision variables. Regarding deviation, the largest differences were between the four different objective function types, e.g. in the linear-relative modNUT-DRV model, 46 food groups of the observed diet were changed to reach the model’s goal, in linear-absolute 78 food groups, squared-relative 167, and squared-absolute 248. The nutrient goals were fulfilled in all models, but the number of binding nutrient constraints was highest in the linear-relative models (e.g. allNUT-DRV: 11 vs. 7 in linear-absolute).
Conclusion Considering the various possibilities to operationalize dietary aspects in an optimization model, this study offers valuable contributions to a framework for developing FBDGs via diet optimization.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
The author(s) received no specific funding for this work.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
N/A
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
The data underlying the results presented in the study are available from the European Food Safety Authority (https://www.efsa.europa.eu/sites/default/files/2023-08/pad-guidance-for-applicants.pdf) and from the Max Rubner-Institut (https://blsdb.de/license).