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 2 

Abstract  19 

Electronic health records (EHRs) provide rich data for diverse populations but often lack 20 

information on social and environmental determinants of health (SEDH) that are important for 21 

the study of complex conditions such as asthma, a chronic inflammatory lung disease. We 22 

integrated EHR data with seven SEDH datasets to conduct a retrospective cohort study of 6,656 23 

adults with asthma. Using Penn Medicine encounter data from January 1, 2017 to December 31, 24 

2020, we identified individual-level and spatially-varying factors associated with asthma 25 

exacerbations. Black race and prescription of an inhaled corticosteroid were strong risk factors 26 

for asthma exacerbations according to a logistic regression model of individual-level risk. A 27 

spatial generalized additive model (GAM) identified a hotspot of increased exacerbation risk 28 

(mean OR = 1.41, SD 0.14, p < 0.001), and inclusion of EHR-derived variables in the model 29 

attenuated the spatial variance in exacerbation odds by 34.0%, while additionally adjusting for 30 

the SEDH variables attenuated the spatial variance in exacerbation odds by 66.9%. Additional 31 

spatial GAMs adjusted one variable at a time revealed that neighborhood deprivation (OR = 32 

1.05, 95% CI: 1.03, 1.07), Black race (OR = 1.66, 95% CI: 1.44, 1.91), and Medicaid health 33 

insurance (OR = 1.30, 95% CI: 1.15, 1.46) contributed most to the spatial variation in 34 

exacerbation odds. In spatial GAMs stratified by race, adjusting for neighborhood deprivation 35 

and health insurance type did not change the spatial distribution of exacerbation odds. Thus, 36 

while some EHR-derived and SEDH variables explained a large proportion of the spatial 37 

variance in asthma exacerbations across Philadelphia, a more detailed understanding of SEDH 38 

variables that vary by race is necessary to address asthma disparities. More broadly, our findings 39 

demonstrate how integration of information on SEDH with EHR data can improve understanding 40 

of the combination of risk factors that contribute to complex diseases. 41 
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Author summary  42 

Electronic health records constitute an important source of data for understanding the health of 43 

large and diverse real-world populations, however, they do not routinely capture socioeconomic 44 

and environmental factors known to affect health outcomes. We show how electronic health 45 

record data can be augmented to include individual measures of air pollution exposures, 46 

neighborhood socioeconomic status, and the natural and built environment using patients’ 47 

residential addresses to study asthma exacerbations, episodes of worsening disease that remain a 48 

major public health challenge in the United States. We found that on an individual patient-level, 49 

Black race and prescription of an inhaled corticosteroid were the factors most strongly associated 50 

with asthma exacerbations. In contrast, neighborhood deprivation, race, and health insurance 51 

type accounted for the most spatial variation in exacerbation risk across Philadelphia. Our 52 

findings provide insight into factors that contribute to asthma disparities in our region and 53 

present a framework for future efforts to expand the scope of electronic health record data. 54 

  55 
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 4 

Introduction 56 

Electronic health records (EHRs) are a source of rich patient-level data for large and diverse 57 

populations that can be used for research due to their widespread availability [1]. However, EHR 58 

data often contain incomplete or low-quality measures of social and environmental determinants 59 

of health (SEDH), limiting their utility for the study of complex diseases [2]. Recent efforts to 60 

address this limitation have included developing methodologies to integrate external data on the 61 

physical, built, and social environment via linkage with patient addresses [3–5], with high-62 

resolution geospatial datasets providing the closest estimate of individual exposures [6]. 63 

Integrated EHR and SEDH datasets can be used to understand both individual-level outcomes 64 

and patterns of risk across a spatial region, thereby providing insights for both precision 65 

medicine and precision public health efforts. Because many environmental exposures pose a 66 

greater risk to select groups of people, integrating external information on SEDH with EHR data 67 

is also helpful to address health disparities according to race, ethnicity, and socioeconomic status.  68 

Asthma, a chronic disease that is characterized by inflammation and reversible narrowing 69 

of the airways, affects over 25 million people or approximately 8% of the United States 70 

population [7]. Racial and ethnic disparities in its morbidity and mortality are well known, and 71 

those living in poverty are also more likely to have asthma [7–11]. The clinical goals of asthma 72 

management are to control patients’ symptoms and minimize long-term risk of lung function 73 

decline [12]. This includes preventing asthma exacerbations, episodes of worsening disease 74 

which require treatment with systemic steroids [13]. However, despite guideline-directed clinical 75 

management, asthma exacerbations remain common, contributing to asthma-related morbidity 76 

and mortality as well as higher health care costs and utilization [14,15]. Risk factors for asthma 77 

exacerbations in adults include female sex [16], obesity [17], current or past smoking [18], 78 
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comorbid allergic rhinitis or chronic obstructive pulmonary disease (COPD) [17,19], and a 79 

history of previous exacerbations [20]. Observational studies have also found independent 80 

associations between asthma exacerbations and exposure to particulate matter (PM), gaseous air 81 

pollutants, and to mixtures of pollutants such as traffic-related air pollution (TRAP) [21]. 82 

Similarly, associations between asthma exacerbations and living in poverty [22], substandard 83 

housing conditions, such as the presence of mold and pests [23,24], and neighborhood 84 

“greenness” [25,26] have been documented.  85 

Because asthma exacerbations result from complex interactions among various 86 

biological, social, and environmental factors that vary across individuals and geographically, 87 

creating generalizable models of exacerbations remains an unachieved goal. Further, because in 88 

the United States there is a high correlation between minoritized race or ethnicity, poverty, and 89 

harmful environmental exposures, disentangling relationships among key variables is difficult 90 

[9,27]. Approaches that model many asthma-related variables in specific regions may lead to the 91 

identification of actionable strategies to reduce exacerbations locally, and using EHR data to 92 

create these models has the advantage of providing health information for the specific catchment 93 

region served by a given healthcare system. Few studies have linked EHRs with a diverse set of 94 

SEDH variables to study asthma exacerbations using patient-level data [28–30], and to our 95 

knowledge, none have used geospatial analysis techniques to understand the contribution of 96 

these factors to the spatial distribution of exacerbation risk. Here, we show how EHR data can be 97 

extended to include individualized measures of air pollution exposures, socioeconomic status 98 

indices, and measures of the natural and built environment to identify local factors associated 99 

with asthma exacerbation risk.  100 

 101 
Methods  102 
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A retrospective cohort analysis was performed using de-identified EHR data from Penn 103 

Medicine, a large health system that serves the greater Philadelphia area, from encounters dated 104 

1/1/2017-12/31/2020. An overview of our study design is shown in Fig 1.  105 

 106 

Ethics statement 107 

Our study was approved by the University of Pennsylvania Institutional Review Board (IRB) 108 

under protocol number 824789. Formal consent was not obtained, as a waiver of HIPAA 109 

Authorization was granted for the conduct of this research. 110 

 111 

Study population  112 

Patient-level encounter data was obtained for adults (i.e. age  18 years) who had at least one 113 

encounter with an International Classification of Diseases (ICD)-10 code for asthma (J45*) and 114 

who were prescribed a short-acting β2-agonist (SABA) (S1 Table). The most recent residential 115 

address for each patient was obtained and geocoded using previously described methods [3]. 116 

Demographic, comorbidity, and medication data for encounters during the study period was 117 

extracted and used to compute several variables, hereafter referred to as “EHR-derived 118 

variables.” These included: age at first encounter, sex, race, ethnicity, body mass index (BMI), 119 

health insurance type, smoking status, chronic obstructive pulmonary disease (COPD), allergic 120 

rhinitis, a modified Elixhauser score [31], inhaled corticosteroid (ICS) prescription, and years 121 

followed (defined as the number of years between first and last encounter). Additional details, 122 

including inclusion and exclusion criteria and definitions of the EHR-derived variables, are 123 

provided in S1 Text. 124 

 125 
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Outcome 126 

Asthma exacerbations were defined as encounters with an oral corticosteroid (OCS) prescription 127 

(S1 Table) and either 1) a primary asthma diagnosis code (ICD-10, J45*) for encounters with 128 

primary diagnosis codes listed or 2) a nonprimary asthma ICD-10 code for encounters without a 129 

primary diagnosis listed but only one or two ICD-10 codes listed. A count of exacerbations 130 

during the study period was computed for each patient.  131 

 132 

SEDH data 133 

Seven external datasets were integrated with our EHR dataset via linkage with patient geocodes, 134 

creating variables that are hereafter referred to as “SEDH variables.” Additional details on data 135 

processing are reported in S1 Text, and dataset sources and spatiotemporal dimensions are 136 

summarized in S2 Table. All processed SEDH data is available in Sensor-based Analysis of 137 

Pollution in the Philadelphia Region with Information on Neighborhoods and the Environment 138 

(SAPPHIRINE), a web application that integrates spatially distributed high-resolution social and 139 

environmental data in the greater Philadelphia region to facilitate the conduct of local health 140 

studies [32]. 141 

 142 

Air pollution exposures 143 

Average pollutant exposures were assigned to each patient using high-resolution (~1x1 km2) 144 

geophysical model estimates. 2017-2019 NO2 estimates (in parts per billion by volume, or ppbv) 145 

and 2017-2020 PM2.5 estimates (in μg/m3) were downloaded from resources reported in Cooper 146 

et al. and van Donkelaar et al., respectively, temporally averaged, and linked to the study cohort 147 

using bilinear interpolation [33,34]. Exposure to other toxic airborne chemicals from point 148 
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 8 

sources was estimated using the EPA Toxics Release Inventory (TRI) [35]. Total toxic air release 149 

exposure by patient was computed as the sum of toxic releases (in kilograms) over the study 150 

period within a 1-km circular buffer of each patient’s residential address. Exposure to air 151 

pollution from mobile sources was estimated as the sum of the daily vehicle distance traveled 152 

(DVDT), a metric computed using traffic data published by the Pennsylvania Department of 153 

Transportation, within a 300-m circular buffer [36]. 154 

 155 

Neighborhood socioeconomic environment 156 

Socioeconomic disadvantage for each person was summarized as the Area Deprivation Index 157 

(ADI), a validated index computed for each Census block group based on several ACS variables 158 

[37]. A higher ADI score indicates greater disadvantage. 2018 ADI data was extracted from the 159 

Neighborhood Atlas and was assigned to each patient by block group [38]. 160 

 161 

Built and natural environment 162 

Asthma-related housing code violation data (i.e. pests, water damage, and indoor air 163 

contamination) was obtained from a Philadelphia Department of Licenses and Inspections 164 

dataset reported by OpenDataPhilly (S3 Table) [39]. For each block group, the number of 165 

violations during the study period per 100 people (based on the 2019 ACS population estimates) 166 

was computed and assigned to each patient. Vegetation density was summarized as the 167 

normalized difference vegetation index (NDVI), an index with values ranging from -1.0 to 1.0 168 

where higher positive values represent higher vegetation density. NDVI was computed in Google 169 

Earth Engine using surface reflectance images from the Landsat 8 satellite during the study 170 

period and assigned to each patient as the mean value within a 300-m circular buffer [40]. 171 
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 172 

Statistical analysis 173 

Analyses were conducted in R 4.2 [41].   174 

 175 

Study area 176 

To minimize bias in our geospatial analyses introduced by uneven spatial density across the Penn 177 

Medicine catchment area, we restricted our study region to spatial areas in which the geospatial 178 

representativeness of our EHR cohort was adequate compared to the underlying population. 179 

Following methods described in Xie et al. [42], we computed a spatial representation ratio 180 

(SRR), defined as the ratio between the proportion of our EHR cohort living in each census 181 

block group and the proportion of the Philadelphia population living in that block group, as 182 

reported by the 2019 American Community Survey (ACS). We defined our study region as 183 

contiguous census tracts (i.e. adjacent or separated by a non-residential area such as a park) with 184 

a mean SRR of 0.5 or greater. Only patients who resided in this study region were included in 185 

analyses. 186 

 187 

Modeling individual-level risk factors 188 

Chi-squared and Kruskal-Wallis rank sum tests were used in bivariate analyses to assess 189 

associations between patient characteristics and asthma exacerbation level (i.e. 0, 1-2, 3-4, 5+) 190 

during the study period, and to compare the characteristics of complete cases to individuals with 191 

missing data. To identify patient-level factors associated with asthma exacerbations, we fit 192 

logistic regression models with asthma exacerbations as a binary case-control (0 vs >0) outcome. 193 

This approach was chosen to match the dichotomous outcome used in spatial analyses. Logistic 194 
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regression models were initially adjusted for EHR-derived variables only, and then adjusted for 195 

both EHR-derived and SEDH variables (EHR & SEDH-adjusted). Years followed was included 196 

as a covariate in both models to account for variation in the length of available follow-up across 197 

patients. Model fit was assessed using the Akaike information criterion (AIC). We checked for 198 

multicollinearity by computing Pearson’s correlation coefficients between all EHR and SEDH 199 

variables, while selecting White race and Private health insurance type as reference levels for the 200 

two nominal categorical variables, and we computed variance inflation factors (VIF) for all 201 

independent variables. 202 

 203 

Sensitivity analysis for individual-level risk factors 204 

We conducted sensitivity analyses of individual-level risk factors by fitting negative binomial 205 

regression models with asthma exacerbations represented as a count outcome and comparing 206 

results to those of logistic regression models. The negative binomial regression models were 207 

adjusted first for EHR-derived variables only and then for EHR & SEDH variables, while 208 

including years followed as an offset in each model. 209 

 210 

Modeling spatial risk factors 211 

To estimate local odds of exacerbation as a function of location, spatial generalized additive 212 

models (GAMs) were fit with a binary case-control outcome (0 vs >0 exacerbations) on a grid of 213 

points across the study region, using the R MapGAM package and previously described methods 214 

(S1 Text) [3,43]. Maps of spatial effect predictions were created for the smoothed spatial term of 215 

each model, where the spatial odds ratio (OR) at each point represented the ratio between the 216 

odds of exacerbation at that point and the median odds across all points. First, a univariable 217 
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 11 

model adjusted only for years followed, hereafter referred to as “unadjusted model”, was fit to 218 

identify hotspots and coldspots across the study region. Next, multivariable models adjusted for 219 

1) only EHR-derived variables and 2) EHR & SEDH variables were compared to the unadjusted 220 

model by computing the mean and standard deviation (SD) of the spatial ORs at points within 221 

any overlapping hotspots, and by computing the percent difference between the variance in ORs 222 

across the full study region in the adjusted models and the unadjusted model. To understand the 223 

contribution of individual variables to the observed spatial effects, we fit additional models 224 

adjusted for each EHR-derived or SEDH variable one variable at a time (all models were also 225 

adjusted for years followed) and computed the percent difference between the variance in ORs in 226 

these models and the unadjusted model. Model fit was assessed using the AIC. 227 

 228 

Stratified analysis 229 

We conducted a stratified analysis to further evaluate the association between race and asthma 230 

exacerbations. Chi-square and Wilcoxon rank sum tests were used to assess bivariate 231 

relationships between race and other variables. To test whether any EHR or SEDH variables that 232 

were correlated with race influenced spatial patterns of asthma exacerbation risk independently 233 

of race, spatial GAMs adjusted one variable at a time were fit on each race stratum using the 234 

same approach described above. Before fitting the models, SRR selection was repeated for each 235 

stratum to account for the uneven geographic distribution of race across the initial study region.  236 

 237 

Results 238 

Following selection of patients based on inclusion/exclusion criteria and spatial filtering (S1 239 

Fig), the retrospective study cohort consisted of 6,656 asthma patients, 2,329 of whom had one 240 
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 12 

or more exacerbations (Table 1), with residence in 249 census tracts in Philadelphia (S2 Fig). 241 

The spatial distribution of all processed SEDH datasets within the study region is shown in S3 242 

Fig. The EHR-derived variables years followed, age, race, BMI, health insurance type, smoking 243 

status, COPD, allergic rhinitis, Elixhauser comorbidity score, and ICS, as well as the SEDH 244 

variable ADI were the most significantly associated with exacerbations according to bivariate 245 

analyses (p < 0.001) (Table 1). Patients with more exacerbations during the study period were 246 

followed for more years, more likely to be aged 35-54, of Black race, or class 2 or class 3 obese, 247 

and more likely to have Medicaid health insurance, a history of smoking, COPD, allergic rhinitis, 248 

higher Elixhauser comorbidity scores, an ICS prescription, or live in neighborhoods with higher 249 

ADI. The proportion of patients in the study cohort who were prescribed controller medications 250 

including ICS, leukotriene modifiers, long-acting β2-agonists (LABA), and biologic therapies 251 

was positively associated with exacerbation count (S4 Table). Bivariate analyses comparing the 252 

distribution of characteristics between the study cohort and patients excluded due to missing 253 

EHR data found statistically significant differences in years followed, age, sex, health insurance 254 

type, COPD, allergic rhinitis, Elixhauser comorbidity score, and ICS (p < 0.001) (S5 Table).  255 

Based on Pearson’s correlation coefficients, there were no strong correlations between 256 

any EHR-derived or SEDH variables, except for NO2 and PM2.5 ( = 0.77) (S4 Fig). Moderate 257 

correlations (|| > 0.50) were observed between age and Medicare health insurance, Black race 258 

and ADI, and NO2 and NDVI. Furthermore, adjusted generalized VIFs for all variables did not 259 

exceed 2.00, suggesting that all variables could be included in multivariable models (S6 Table). 260 

 261 

Individual risk factors associated with asthma exacerbations 262 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 2, 2024. ; https://doi.org/10.1101/2024.10.24.24316063doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.24.24316063
http://creativecommons.org/licenses/by/4.0/


 13 

ORs for the EHR-derived and SEDH variables included in the multivariable logistic regression 263 

model are summarized in Table 2. The EHR-derived variables years followed, age 35-54, Black 264 

race, and ICS had the strongest positive associations with having at least one exacerbation during 265 

the study period (p < 0.001) (Table 2). These effects persisted after additionally adjusting for 266 

SEDH variables, and of the SEDH variables in the logistic regression model, only NO2 exposure 267 

was positively associated with exacerbations (p = 0.0059). Inclusion of the SEDH variables did 268 

not improve model fit as determined by AIC (8,320 for both the EHR-adjusted and EHR & 269 

SEDH-adjusted models). Sensitivity analyses showed that the risk factors identified by logistic 270 

and negative binomial regression models were mostly consistent, with Black race and ICS 271 

prescription having the strongest effects between both models (p < 10-4), and variables such as 272 

Medicaid health insurance and Elixhauser comorbidity score of 1-9 having statistically 273 

significant p-values in both models though smaller in the negative binomial regression (p < 274 

0.001) than the logistic regression (p < 0.05) (S7 Table).  However, the negative binomial 275 

regression model did not identify statistically significant associations between asthma 276 

exacerbations and age 35-54 or NO2 exposure as did the logistic regression, although the 277 

directions of effect were consistent in both models. In addition, the negative binomial regression 278 

model identified an association with the SEDH variable housing code violations (p = 0.045) that 279 

was not present in the logistic regression model.  280 

 281 

Spatial risk factors associated with exacerbations 282 

Maps of ORs across the study region for the unadjusted, EHR-adjusted, and EHR & SEDH-283 

adjusted spatial GAMs are shown in Fig 2. In the unadjusted model, the global test of the null 284 

hypothesis that asthma exacerbations were not associated with geographic location was 285 
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significant (p < 0.001) (Fig 2A). Local tests identified a statistically significant hotspot of 286 

exacerbations (p < 0.01) in West and South Philadelphia with a mean spatial OR of 1.41 (SD 287 

0.14). In the model adjusted for EHR-derived variables (Fig 2B) the global test statistic remained 288 

significant (p < 0.001). Local tests again identified a hotspot (p < 0.01) in West and South 289 

Philadelphia which had a decreased mean spatial OR of 1.27 (SD 0.055). In this EHR-adjusted 290 

model, the variance in spatial ORs across the study region was 34.0% lower than the variance of 291 

the unadjusted model (S5 Fig). In the model adjusted for both EHR-derived and SEDH variables, 292 

the global test statistic remained significant (p < 0.001, Fig 2C) and local tests identified a 293 

hotspot (p < 0.01) in West Philadelphia that overlapped geographically with the one in the other 294 

models, although of a smaller area and with a smaller mean spatial OR of 1.24 (SD 0.042) 295 

compared to the EHR-adjusted model. The variance in spatial ORs in the EHR & SEDH-296 

adjusted model was strongly attenuated (66.9% lower than that of the unadjusted model), 297 

suggesting that these variables partially explained the spatial correlation of exacerbations (S5 298 

Fig). The ORs for the other terms included in the spatial GAMs (i.e., the EHR-derived and 299 

SEDH variables) are summarized in Table 3. All variables (i.e., years followed, age 35-54, Black 300 

race, class 3 obesity, Medicaid health insurance, Elixhauser score 1-9, ICS) that were significant 301 

in the multivariable logistic regression models (Table 2) were also significant in the spatial 302 

GAMs (Table 3), except for NO2 exposure, which was significant in the logistic regression 303 

model but not in the spatial GAM.  304 

In the spatial GAM models adjusted one variable at a time, ADI, race, and health 305 

insurance type most strongly attenuated the variation in spatial ORs (Fig 3), individually 306 

accounting for 55.2%, 38.5%, and 26.5%, respectively, of the variation in the unadjusted model 307 

(S5 Fig). In these models, each variable was positively associated with exacerbations (p < 308 
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0.001): ADI with OR = 1.05 (95% CI: 1.03, 1.07); Black race with OR = 1.66 (95% CI: 1.44, 309 

1.91); and Medicaid health insurance with OR = 1.30 (95% CI: 1.15, 1.46) (S8 Table). The 310 

spatial distribution of these variables followed similar patterns: high ADI and high density of 311 

Black patients and patients with Medicaid insurance cooccurred in West, North, and South 312 

Philadelphia (Fig 3). No other EHR (S6 Fig) or SEDH (S7 Fig) variable attenuated the hotspot 313 

area or its effect size, however, adjustment for NO2 levels resulted in an expansion of a coldspot 314 

area (S7A Fig). 315 

 316 

Stratified analysis by race 317 

Bivariate analysis comparing the distribution of all EHR and SEDH characteristics between 318 

patients of Black and White race found statistically significant differences for all variables except 319 

ethnicity and ICS (Table 4). Given that ADI, race, and health insurance type had the strongest 320 

relationship with asthma exacerbations in spatial analyses, and their spatial distributions were 321 

similar, we performed stratified spatial analyses by race to determine whether ADI and health 322 

insurance status remained significantly associated with asthma exacerbations within race-323 

stratified groups. After applying SRR inclusion criteria in strata according to race, an additional 324 

265 Black patients were excluded from the stratified spatial analysis, resulting in a sample size of 325 

4,363 patients (Fig 4A). The unadjusted spatial GAM for patients of Black race had a significant 326 

global test statistic (p < 0.001) and local tests identified hotspots in West and South Philadelphia 327 

consistent with results of the full cohort (Fig 4B). In contrast to spatial analyses in the full 328 

cohort, adjusting for ADI and health insurance separately for Black patients did not attenuate the 329 

spatial variance in ORs, instead increasing the variance by 4.70% and 2.79%, respectively, 330 

compared to the unadjusted model (Fig 4C and 4D). In patients of White race, 73 additional 331 
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patients were removed after applying SRR inclusion criteria, resulting in 1,383 patients included 332 

in the spatial model for which the global test statistic was no longer significant (p = 0.098, S8 333 

Fig).  334 

 335 

Discussion 336 

Our analysis of individual-level risk factors found that Black race and ICS prescription had the 337 

strongest positive associations with asthma exacerbations, as determined by individual-level 338 

logistic regression and spatial GAM models. In our cohort of Penn Medicine asthma patients, 339 

66% with no exacerbations were Black compared to 83% with 5+ exacerbations, consistent with 340 

known racial disparities in asthma and observations in past Penn Medicine cohorts [44,45]. With 341 

regard to the observed association between exacerbations and ICS prescription, international 342 

asthma management guidelines underwent a major shift in 2019, recommending ICS as part of 343 

the first-line treatment for all asthma patients [46]. This shift was not reflected in our cohort, 344 

with only 76.0% of patients prescribed ICS. We observed exacerbations in patients in our cohort 345 

regardless of whether they had an ICS prescription, however, the strong association between ICS 346 

and exacerbations suggests that patients with more severe asthma were prescribed ICS more 347 

frequently than those with milder asthma. Our sensitivity analysis found that logistic regression 348 

identified positive associations between age 35-54 and NO2 exposure that were not observed in a 349 

negative binomial regression model, suggesting that these factors were associated with risk of 350 

having at least one exacerbation compared to none, but not with having a higher count of 351 

exacerbations.  352 

Our spatial analysis of patient-level data revealed several important insights. First, we 353 

observed that asthma exacerbation risk across Philadelphia was spatially correlated and 354 
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identified a hotspot with 41% higher odds of exacerbation compared to the median across the 355 

study region. This finding is consistent with the results of community-based pediatric asthma 356 

screening in Philadelphia, which have found that local asthma prevalence can vary significantly 357 

from regional or national estimates [47]. Our findings are also consistent with studies that have 358 

assessed spatial heterogeneity of pediatric and adult asthma data in other United States 359 

metropolitan areas, albeit with less granular spatial resolution. Zárate et al. observed statistically 360 

significant spatial patterning of asthma-related emergency department visits across census tracts 361 

in Central Texas [48], Grunwell et al. identified a group of contiguous census tracts in the State 362 

of Georgia with high rates of admission to the pediatric intensive care unit for asthma [49], and 363 

Harris et al. and Corburn et al. identified a statistically significant cluster of zip codes in St. 364 

Louis, Missouri and of census tracts in New York City, respectively, with elevated pediatric 365 

asthma hospitalization rates [50,51]. Our observation of a West and South Philadelphia hotspot 366 

of exacerbation risk is also consistent with analyses of past Penn Medicine cohorts [3,4] that 367 

focused on validating methods for augmenting EHR datasets rather than identifying factors 368 

associated with the hotspots.  369 

The factors we found to be associated with asthma exacerbations according to EHR- and 370 

EHR & SEDH- adjusted spatial GAM models were largely consistent with individual-level 371 

logistic regression findings, but the spatial analysis provided an improved context to understand 372 

the individual-level results. Adjusting for all EHR and SEDH variables decreased the variance in 373 

spatial ORs by 66.9%, indicating that these variables together accounted for a large proportion of 374 

the spatial variance in exacerbation odds. By adjusting the spatial model one variable at a time, 375 

we found that ADI, race, and health insurance type most attenuated the hotspot area and effect 376 

size by reducing the variance of spatial ORs, suggesting that these variables were the most 377 
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influential in determining the spatial distribution of exacerbation risk. Our findings are consistent 378 

with known asthma disparities by race/ethnicity and socioeconomic status [7–11], as well as past 379 

neighborhood-level analyses of pediatric asthma: Harris et al. and Corburn et al. found that 380 

asthma hospitalization hotspots in St. Louis and New York City had greater proportions of non-381 

White residents and greater rates of poverty, unemployment, high-density housing, and lack of 382 

access to a household vehicle, although they did not test for statistical significance [50,51]. 383 

Grunwell et al. found a statistically significant difference between hotspot and non-hotspot 384 

census tracts in Georgia for poverty, unemployment, and high-density housing, but not for race 385 

[49].  386 

Nearly all patient characteristics in our cohort, including health insurance type and ADI, 387 

differed significantly between Black and White patients (Table 4). Most notably, 8.5% of White 388 

patients had Medicaid health insurance compared to 39% of Black patients, and the median ADI 389 

for White patients was 2.60 (IQR 1.50-4.30) compared to 8.40 for Black patients (IQR 6.50-390 

9.40), making it difficult to assess confounding in our spatial models. Although the VIF indicated 391 

that all variables could be included in a multivariable model without substantially inflating 392 

variance, collinearity between race and ADI as well as race and health insurance type (S4 Fig) 393 

may help explain why ADI and health insurance type were statistically significant in bivariable 394 

spatial models but not in the EHR & SEDH-adjusted spatial GAM nor in the EHR & SEDH-395 

adjusted logistic regression (Tables 2 and 3). We attempted to overcome some of these 396 

limitations by stratifying our analysis by race. We found that, unlike in the full cohort, adjusting 397 

for ADI and health insurance type for Black patients did not attenuate the variance in spatial 398 

ORs, suggesting that in our cohort the association between these variables and asthma 399 

exacerbations was confounded by race. Our results are consistent with previous observations that 400 
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racial disparities in asthma control persist even after accounting socioeconomic status [52], but 401 

that it is difficult to separate out the effects of socioeconomic status from the effects of race [53]. 402 

Confounding of the asthma-socioeconomic status relationship by race has also been observed in 403 

past neighborhood-level analyses of asthma morbidity. Zárate et al. found that spatial patterning 404 

of asthma-related emergency department visits in Central Texas was partially explained by 405 

socioeconomic characteristics in White patients, but not in Black or Hispanic patients [48]. More 406 

broadly, understanding the relative contributions of many social determinants of health to asthma 407 

is made difficult by their unequal distribution across racial/ethnic groups in the United States 408 

[10]. 409 

Our health insurance type variable serves as a proxy for individual-level socioeconomic 410 

status, and the relationship we measured between it and asthma exacerbation risk is potentially 411 

mediated by several pathways including increased rates of smoking [54], psychosocial stress 412 

[55], and obesity [56], or an unmeasured variable that varies with socioeconomic status and is 413 

also associated with minoritized racial and ethnicity groups in the United States [57]. On the 414 

other hand, low neighborhood-level socioeconomic status, which we measured with ADI, is 415 

associated with differential exposure to indoor and outdoor air pollution, psychosocial stress 416 

from neighborhood violence, and community norms surrounding health behaviors, all of which 417 

have been linked to asthma exacerbations [27]. Due to geographic segregation by race that 418 

resulted from structural racism and is common in many US cities, including in Philadelphia as 419 

we observed in our study, race and neighborhood-level SES are also highly correlated [58]. Thus, 420 

our inability to identify an association between asthma exacerbations and ADI when restricting 421 

our analysis to Black patients may be due to a restriction of the range of people across the ADI 422 

spectrum relative to the range observed in all patients [48]. Future work is needed to understand 423 
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what specific SEDH variables that covary with race, ADI, and health insurance type are the 424 

primary drivers of local disparities in asthma exacerbation risk across Philadelphia.  425 

Our results demonstrate that integration of diverse SEDH datasets with the EHR and the 426 

use of both spatial and non-spatial modeling approaches are helpful to understand factors 427 

contributing to complex health conditions in real world populations. In both our logistic 428 

regression models and spatial GAMs, model fit was not improved by adjusting for SEDH 429 

variables in addition to EHR-derived variables. However, in our spatial models, adjusting for 430 

SEDH variables resulted in twice as much reduction of the initial variance in spatial ORs 431 

compared to adjusting for EHR variables only. Our non-spatial and spatial models also identified 432 

different sets of factors associated with exacerbations. For example, ICS prescription was found 433 

to have a strong positive association with exacerbations in logistic regression models but did not 434 

contribute to the spatial distribution of ORs; conversely, ADI attenuated the variance in spatial 435 

ORs more strongly than all other variables tested but was not significant in either logistic 436 

regression or negative binomial models. These findings present a framework for future efforts to 437 

expand the scope of EHR data, which, especially as the spatial resolution of SEDH datasets 438 

continues to increase, will allow for improved individualized exposure estimates. In the future, 439 

integration of SEDH data into the EHR may be helpful to tailor asthma management strategies 440 

and for health systems to create population-level interventions to improve health of their patients. 441 

This study is strengthened by the high spatial resolution of both our SEDH data and our 442 

analysis. Integrating the highest resolution SEDH data available during the time of the study 443 

period allowed us to most closely approximate individual-level exposures, and analyzing EHR 444 

data at a fine resolution allowed us to understand local health patterns that may not be visible at 445 

the census tract or zip-code level. Additional strengths included accounting for many variables 446 
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and increasing the likelihood that Penn Medicine was patients’ primary care provider by applying 447 

SRR restriction. Our study is also subject to limitations, including some related to use of EHR 448 

data, such as missingness, entry error, and phenotype misclassification. Additionally, the 449 

geocoded addresses used in our study reflect residence at the time of the data pull, but they do 450 

not account for residential mobility during the study period, nor does residence information 451 

provide a full assessment of environmental exposures.  452 

 453 

Conclusion 454 

By integrating seven datasets containing information on SEDH with an EHR dataset to create 455 

individualized exposure assessments, we identified non-spatial and spatial factors associated 456 

with asthma exacerbations. Race and prescription of an ICS were most strongly associated with 457 

exacerbations in individual-level models. Race also accounted for the most spatial variation in 458 

exacerbation odds, along with ADI and health insurance type. Because these three variables had 459 

similar spatial distributions, understanding which contributes most to disparities in asthma 460 

exacerbations requires additional study of people living in the region identified as a hotspot. Our 461 

findings demonstrate how integrating diverse data types and geospatial modeling approaches 462 

with EHR data are helpful to understand complex diseases locally.  463 
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Table 1. Patient characteristics by exacerbation count levels. Shown are the characteristics of 468 
patients according to their number of exacerbations during the study period. For each 469 
exacerbation level, the number and percentage of patients are shown for categorical variables, 470 
and the Median and Interquartile Range (IQR) are shown for continuous variables. 471 
 472 

 Number of Exacerbations  

Characteristica 0 
N = 4,327 

1-2 
N = 1,810 

3-4 
N = 328 

5+ 
N = 191 

p-
valueb 

Years followed 2.69 (1.89, 
3.32) 

2.81 (1.96, 
3.46) 

3.12 (2.48, 
3.64) 

3.60 (2.82, 
3.84) 

<10-4 

Age     <10-4 
    18-34 1,498 (35%) 524 (29%) 82 (25%) 51 (27%)  
    35-54 1,445 (33%) 688 (38%) 144 (44%) 81 (42%)  
    55-74 1,198 (28%) 512 (28%) 87 (27%) 54 (28%)  
    75+ 186 (4.3%) 86 (4.8%) 15 (4.6%) 5 (2.6%)  
Sex     0.29 
    Male 1,020 (24%) 397 (22%) 71 (22%) 51 (27%)  
    Female 3,307 (76%) 1,413 (78%) 257 (78%) 140 (73%)  
Race     <10-4 
    White 1,059 (24%) 325 (18%) 52 (16%) 20 (10%)  
    Black 2,860 (66%) 1,349 (75%) 260 (79%) 159 (83%)  
    Unknown/Other 408 (9.4%) 136 (7.5%) 16 (4.9%) 12 (6.3%)  
Ethnicity     0.10 
    non-Hispanic/Latino 4,160 (96%) 1,747 (97%) 322 (98%) 188 (98%)  
    Hispanic/Latino 167 (3.9%) 63 (3.5%) 6 (1.8%) 3 (1.6%)  
BMI     <10-4 
    Not Overweight or Obese 907 (21%) 305 (17%) 49 (15%) 30 (16%)  
    Overweight 1,003 (23%) 430 (24%) 81 (25%) 40 (21%)  
    Class 1 Obesity 979 (23%) 381 (21%) 63 (19%) 37 (19%)  
    Class 2 Obesity 650 (15%) 297 (16%) 40 (12%) 41 (21%)  
    Class 3 Obesity 788 (18%) 397 (22%) 95 (29%) 43 (23%)  
Health insurance type     <10-4 
    Private 1,976 (46%) 735 (41%) 131 (40%) 49 (26%)  
    Medicaid 1,270 (29%) 625 (35%) 113 (34%) 87 (46%)  
    Medicare 1,081 (25%) 450 (25%) 84 (26%) 55 (29%)  
Smoking status     <10-4 
    Never Smoked 2,533 (59%) 997 (55%) 167 (51%) 84 (44%)  
    Ever Smoker 1,233 (28%) 517 (29%) 110 (34%) 77 (40%)  
    Current Smoker 561 (13%) 296 (16%) 51 (16%) 30 (16%)  
COPD 398 (9.2%) 219 (12%) 44 (13%) 30 (16%) <10-4 
Allergic rhinitis 1,478 (34%) 636 (35%) 133 (41%) 104 (54%) <10-4 
Elixhauser comorbidity score     <10-4 
    <0 220 (5.1%) 85 (4.7%) 21 (6.4%) 5 (2.6%)  
    0 3,035 (70%) 1,214 (67%) 193 (59%) 99 (52%)  
    1-9 723 (17%) 356 (20%) 71 (22%) 60 (31%)  
    10+ 349 (8.1%) 155 (8.6%) 43 (13%) 27 (14%)  
ICS 3,074 (71%) 1,489 (82%) 309 (94%) 188 (98%) <10-4 
NO2 exposure 7.20 (6.86, 

7.77) 
7.18 (6.90, 

7.70) 
7.24 (6.86, 

7.79) 
7.14 (6.78, 

7.56) 
0.35 

PM2.5 exposure 8.20 (7.84, 
8.65) 

8.16 (7.81, 
8.62) 

8.22 (7.86, 
8.62) 

8.14 (7.78, 
8.58) 

0.018 

Toxic releases exposure 231 (5.3%) 87 (4.8%) 18 (5.5%) 10 (5.2%) 0.85 
Vehicular traffic exposure     0.095 
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    Lowest 1,079 (25%) 447 (25%) 85 (26%) 53 (28%)  
    Low 1,079 (25%) 441 (24%) 96 (29%) 48 (25%)  
    High 1,046 (24%) 485 (27%) 80 (24%) 53 (28%)  
    Highest 1,123 (26%) 437 (24%) 67 (20%) 37 (19%)  
Area deprivation index 7.00 (3.50, 

9.10) 
7.80 (4.30, 

9.20) 
7.70 (5.30, 

9.13) 
7.80 (5.25, 

9.30) 
<10-4 

Housing violations 0.80 (0.36, 
1.47) 

0.83 (0.39, 
1.49) 

0.90 (0.45, 
1.61) 

0.84 (0.38, 
1.28) 

0.083 

Normalized difference vegetation 
index 

0.21 (0.17, 
0.27) 

0.21 (0.17, 
0.26) 

0.21 (0.16, 
0.27) 

0.22 (0.19, 
0.26) 

0.26 

aUnits are as follows: age (years), ICS (yes/no indicator of inhaled corticosteroid prescription), NO2 (ppbv), PM2.5 473 
(μg/m3), toxic releases exposure (yes/no indicator of exposure), area deprivation index (unitless index scaled by 474 
dividing by 10), housing violations (housing violations per 100 people), normalized difference vegetation index 475 
(unitless index ranging from -1 to 1). See Methods for more details. 476 
bKruskal-Wallis rank sum test; Pearson's Chi-squared test   477 
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Table 2. Individual-level asthma exacerbation risk factors in multivariable logistic 478 
regression models. Shown are the adjusted odds ratios (ORs), 95% confidence intervals (CIs), 479 
and p-values for logistic regression models of asthma exacerbations as a dichotomous outcome 480 
adjusted for EHR-derived variables only and for both EHR and SEDH variables. 481 
 482 

 EHR-adjusted EHR & SEDH-adjusted 
Characteristica OR 95% CI p-value OR 95% CI p-value 
Years followed 1.16 1.09, 1.24 <10-4 1.17 1.09, 1.24 <10-4 
Age       
    18-34 — —  — —  
    35-54 1.26 1.11, 1.44 5.2x10-4 1.27 1.12, 1.45 3.6x10-4 

    55-74 1.08 0.92, 1.28 0.35 1.09 0.92, 1.29 0.30 
    75+ 1.29 0.96, 1.74 0.090 1.33 0.99, 1.79 0.060 
Sex       
    Male — —  — —  
    Female 0.99 0.87, 1.12 0.82 0.98 0.87, 1.12 0.79 
Race       
    White — —  — —  
    Black 1.49 1.29, 1.72 <10-4 1.52 1.28, 1.81 <10-4 
    Unknown/Other 1.01 0.79, 1.28 0.95 1.01 0.79, 1.29 0.93 
Ethnicity       
    Non-Hispanic/Latino — —  — —  
    Hispanic/Latino 0.99 0.71, 1.36 0.95 0.98 0.71, 1.35 0.92 
BMI       
    Not Overweight or Obese — —  — —  
    Overweight 1.17 0.99, 1.38 0.059 1.18 1.00, 1.39 0.054 
    Class 1 Obesity 0.97 0.82, 1.15 0.71 0.98 0.82, 1.16 0.80 
    Class 2 Obesity 1.09 0.90, 1.31 0.39 1.09 0.90, 1.31 0.39 
    Class 3 Obesity 1.24 1.04, 1.48 0.016 1.25 1.04, 1.49 0.015 
Health insurance type       
    Private — —  — —  
    Medicaid 1.22 1.07, 1.39 0.0034 1.19 1.04, 1.36 0.012 
    Medicare 0.90 0.77, 1.06 0.21 0.89 0.76, 1.04 0.15 
Smoking status       
    Never Smoked — —  — —  
    Ever Smoker 1.04 0.92, 1.18 0.51 1.04 0.92, 1.18 0.56 
    Current Smoker 1.17 0.99, 1.37 0.059 1.16 0.98, 1.36 0.077 
COPD       
    No — —  — —  
    Yes 1.14 0.95, 1.36 0.17 1.11 0.93, 1.34 0.24 
Allergic rhinitis       
    No — —  — —  
    Yes 1.09 0.97, 1.22 0.13 1.09 0.98, 1.22 0.11 
Elixhauser comorbidity score       
    <0 — —  — —  
    0 1.20 0.94, 1.54 0.14 1.20 0.94, 1.54 0.14 
    1-9 1.40 1.08, 1.83 0.012 1.39 1.07, 1.82 0.015 
    10+ 1.20 0.90, 1.62 0.22 1.19 0.89, 1.61 0.25 
ICS       
    No — —  — —  
    Yes 2.19 1.91, 2.51 <10-4 2.20 1.92, 2.52 <10-4 
NO2 exposure    1.27 1.07, 1.51 0.0059 
PM2.5 exposure    0.89 0.72, 1.09 0.25 
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Toxic releases exposure       
    No    — —  
    Yes    1.07 0.83, 1.37 0.60 
Vehicular traffic exposure       
    Lowest    — —  
    Low    1.01 0.87, 1.17 0.86 
    High    1.10 0.95, 1.28 0.19 
    Highest    0.95 0.82, 1.11 0.54 
Area deprivation index    1.02 0.99, 1.04 0.22 
Housing violations    0.96 0.90, 1.01 0.11 
Normalized difference vegetation index    1.08 0.47, 2.44 0.86 
AIC 8,320   8,320   

aUnits are as follows: age (years), ICS (yes/no indicator of inhaled corticosteroid prescription), NO2 (ppbv), PM2.5 483 
(μg/m3), toxic releases exposure (yes/no indicator of exposure), area deprivation index (unitless index scaled by 484 
dividing by 10), housing violations (housing violations per 100 people), normalized difference vegetation index 485 
(unitless index ranging from -1 to 1). See Methods for more details.  486 
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Table 3. Spatial asthma exacerbation risk factors in multivariable spatial GAMs. Shown are 487 
the adjusted odds ratios (ORs), 95% confidence intervals (CIs), and p-values for spatial GAMs of 488 
asthma exacerbations as a dichotomous outcome adjusted for EHR-derived variables only and 489 
for both EHR-derived and SEDH variables.  490 
 491 

 EHR-adjusted EHR & SEDH-adjusted 
Characteristica OR 95% CI p-value OR 95% CI p-value 
Years followed 1.17 1.10, 1.25 <10-4 1.17 1.09, 1.25 <10-4 
Age       
    18-34 — — — — — — 
    35-54 1.28 1.12, 1.46 3.3x10-4 1.27 1.12, 1.46 3.5x10-4 

    55-74 1.08 0.91, 1.27 0.39 1.08 0.91, 1.27 0.38 
    75+ 1.31 0.97, 1.76 0.078 1.32 0.98, 1.78 0.070 
Sex       
    Male — — — — — — 
    Female 0.99 0.87, 1.12 0.85 0.99 0.87, 1.12 0.84 
Race       
    White — — — — — — 
    Black 1.58 1.35, 1.84 <10-4 1.55 1.30, 1.85 <10-4 
    Unknown/Other 1.03 0.81, 1.31 0.81 1.02 0.79, 1.30 0.90 
Ethnicity       
    non-Hispanic/Latino — — — — — — 
    Hispanic/Latino 1.03 0.74, 1.42 0.87 1.02 0.74, 1.41 0.91 
BMI       
    Not Overweight or Obese — — — — — — 
    Overweight 1.18 1.01, 1.40 0.043 1.18 1.00, 1.39 0.047 
    Class 1 Obesity 0.98 0.83, 1.16 0.82 0.98 0.83, 1.16 0.81 
    Class 2 Obesity 1.09 0.90, 1.31 0.37 1.09 0.90, 1.31 0.39 
    Class 3 Obesity 1.26 1.05, 1.50 0.011 1.25 1.05, 1.50 0.013 
Health insurance type       
    Private — — — — — — 
    Medicaid 1.18 1.03, 1.35 0.014 1.18 1.03, 1.35 0.018 
    Medicare 0.89 0.76, 1.05 0.16 0.89 0.76, 1.04 0.15 
Smoking status       
    Never Smoked — — — — — — 
    Ever Smoker 1.04 0.91, 1.17 0.57 1.03 0.91, 1.17 0.59 
    Current Smoker 1.15 0.98, 1.35 0.094 1.15 0.98, 1.35 0.095 
COPD       
    No — — — — — — 
    Yes 1.10 0.92, 1.32 0.30 1.10 0.92, 1.32 0.29 
Allergic rhinitis       
    No — — — — — — 
    Yes 1.09 0.98, 1.22 0.12 1.10 0.98, 1.22 0.11 
Elixhauser comorbidity score       
    <0 — — — — — — 
    0 1.20 0.94, 1.54 0.14 1.20 0.94, 1.53 0.15 
    1-9 1.39 1.06, 1.81 0.016 1.38 1.06, 1.80 0.018 
    10+ 1.18 0.87, 1.59 0.28 1.17 0.87, 1.58 0.29 
ICS       
    No — — — — — — 
    Yes 2.22 1.93, 2.54 <10-4 2.21 1.93, 2.54 <10-4 
NO2 exposure    1.08 0.82, 1.43 0.58 
PM2.5 exposure    1.08 0.81, 1.45 0.59 
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Toxic releases exposure       
    No    — — — 
    Yes    1.06 0.82, 1.37 0.65 
Vehicular traffic exposure       
    Lowest    — — — 
    Low    1.02 0.88, 1.18 0.76 
    High    1.10 0.95, 1.27 0.22 
    Highest    0.97 0.83, 1.13 0.66 
Area deprivation index    1.01 0.99, 1.04 0.32 
Housing violations    0.97 0.91, 1.02 0.23 
Normalized difference vegetation index    0.99 0.43, 2.27 0.97 
AICb 8,293   8,307   

aUnits are as follows: age (years), ICS (yes/no indicator of inhaled corticosteroid prescription), NO2 (ppbv), PM2.5 492 
(μg/m3), toxic releases exposure (yes/no indicator of exposure), area deprivation index (unitless index scaled by 493 
dividing by 10), housing violations (housing violations per 100 people), normalized difference vegetation index 494 
(unitless index ranging from -1 to 1). See Methods for more details. 495 
bThe AIC of the unadjusted model was 8,576.  496 
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Table 4. Patient characteristics by race. Shown are the number and percentage of patients in 497 
each level for categorical variables, and the Median and Interquartile Range (IQR) for 498 
continuous variables in patients of White race versus Black race. 499 
 500 

 Race  

Characteristica White 
N = 1,456 

Black 
N = 4,628 p-valueb 

Exacerbation count   <10-4 
    0 1,059 (73%) 2,860 (62%)  
    1-2 325 (22%) 1,349 (29%)  
    3-4 52 (3.6%) 260 (5.6%)  
    5+ 20 (1.4%) 159 (3.4%)  
Years followed 2.62 (1.86, 3.28) 2.82 (1.98, 3.46) <10-4 
Age   <10-4 
    18-34 468 (32%) 1,458 (32%)  
    35-54 481 (33%) 1,667 (36%)  
    55-74 407 (28%) 1,332 (29%)  
    75+ 100 (6.9%) 171 (3.7%)  
Sex   <10-4 
    Male 473 (32%) 905 (20%)  
    Female 983 (68%) 3,723 (80%)  
Ethnicity   0.0024 
    non-Hispanic/Latino 1,431 (98%) 4,591 (99%)  
    Hispanic/Latino 25 (1.7%) 37 (0.8%)  
BMI   <10-4 
    Not Overweight or Obese 522 (36%) 633 (14%)  
    Overweight 461 (32%) 936 (20%)  
    Class 1 Obesity 265 (18%) 1,051 (23%)  
    Class 2 Obesity 106 (7.3%) 859 (19%)  
    Class 3 Obesity 102 (7.0%) 1,149 (25%)  
Health insurance type   <10-4 
    Private 981 (67%) 1,621 (35%)  
    Medicaid 124 (8.5%) 1,782 (39%)  
    Medicare 351 (24%) 1,225 (26%)  
Smoking status   <10-4 
    Never Smoked 898 (62%) 2,519 (54%)  
    Ever Smoker 463 (32%) 1,328 (29%)  
    Current Smoker 95 (6.5%) 781 (17%)  
COPD 115 (7.9%) 536 (12%) <10-4 
Allergic rhinitis 571 (39%) 1,541 (33%) <10-4 
Elixhauser comorbidity score   <10-4 
    <0 32 (2.2%) 262 (5.7%)  
    0 1,117 (77%) 2,986 (65%)  
    1-9 222 (15%) 924 (20%)  
    10+ 85 (5.8%) 456 (9.9%)  
ICS 1,105 (76%) 3,510 (76%) 0.97 
NO2 exposure 7.85 (7.40, 8.18) 7.10 (6.81, 7.39) <10-4 
PM2.5 exposure 8.72 (8.28, 8.90) 8.05 (7.77, 8.41) <10-4 
Toxic releases exposure 115 (7.9%) 194 (4.2%) <10-4 
Vehicular traffic exposure   <10-4 
    Lowest 279 (19%) 1,283 (28%)  
    Low 267 (18%) 1,244 (27%)  
    High 312 (21%) 1,177 (25%)  
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    Highest 598 (41%) 924 (20%)  
Area deprivation index 2.60 (1.50, 4.30) 8.40 (6.50, 9.40) <10-4 
Housing violations 0.41 (0.15, 0.74) 0.99 (0.52, 1.68) <10-4 
Normalized difference vegetation 
index 0.18 (0.13, 0.25) 0.22 (0.18, 0.27) <10-4 

aUnits are as follows: age (years), ICS (yes/no indicator of inhaled corticosteroid prescription), NO2 (ppbv), PM2.5 501 
(μg/m3), toxic releases exposure (yes/no indicator of exposure), area deprivation index (unitless index scaled by 502 
dividing by 10), housing violations (housing violations per 100 people), normalized difference vegetation index 503 
(unitless index ranging from -1 to 1). See Methods for more details. 504 
bPearson's Chi-squared test; Wilcoxon rank sum test   505 
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Figure Legends 506 

Figure 1. Overview of study design. Graphical overview of study design, including processing 507 

and linkage of electronic health record (EHR) and social and environmental determinants of 508 

health (SEDH) data, cohort selection including spatial filtering by assessing the representation of 509 

the EHR cohort compared to the underlying population, and patient-level and geospatial analyses 510 

on the expanded EHR dataset.  511 

Figure 2. Spatial odds ratios (ORs) of exacerbations before and after adjusting for EHR-512 

derived and SEDH variables. (A) Unadjusted spatial GAM (adjusted only for years followed). 513 

(B) Spatial GAM adjusted for EHR-derived variables only. (C) Spatial GAM adjusted for both 514 

EHR-derived and SEDH variables. Base maps were created using the Stamen Design from 515 

Stadia Maps. 516 

Figure 3. Spatial distribution of individual variables that most strongly attenuated the 517 

spatial odds ratios (ORs) of exacerbations along with corresponding spatial GAM results 518 

adjusted for these individual variables. Spatial distribution in the study region of (A) the area 519 

deprivation index (ADI), (B) race, and (C) health insurance type of patients. Corresponding 520 

spatial GAMs adjusted only for years followed and (D) ADI, (E) race, or (F) health insurance 521 

type.  522 

Figure 4. Spatial odds ratios (ORs) of exacerbations among Black patients along with the 523 

effects of ADI and health insurance type on this distribution. (A) SRR values for the updated 524 

study region used in spatial GAMs for patients of Black race only (SRR = 1 indicates no 525 

representativeness bias). (B) Unadjusted spatial GAM (adjusted only for years followed) for 526 

patients of Black race (N = 4,363). Spatial GAMs adjusted additionally for (C) area deprivation 527 
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index (ADI) and (D) health insurance type. Base maps were created using the Stamen Design 528 

from Stadia Maps.  529 
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Supporting information 696 

S1 Text. Supplementary Methods. 697 

S1 Figure. Flowchart of patient cohort selection. Overview of steps followed to select final 698 

patient cohort (N = 6,656) from EHR data on all Penn Medicine patients with at least one asthma 699 

ICD code (N = 86,787).  700 

S2 Figure. Selection of study region using the spatial representation ratio (SRR). (A) SRR 701 

values, defined as the cohort population residing in a block group divided by the underlying 702 

population as reported by the 2019 American Community Survey, for all of Philadelphia and for 703 

the selected study region (inset box). SRR = 1 indicates no representativeness bias. Density plots 704 

of the study cohort (B) before and (C) after filtering for the study region. Base maps were created 705 

using the Stamen Design from Stadia Maps. 706 

S3 Figure. Spatial distribution of SEDH datasets that were integrated with EHR data.  707 

The following maps are shown for the spatial area which comprised our study region: (A) raster 708 

of NO2 pollution levels, (B) raster of PM2.5 pollution levels, (C) point sites of toxic releases and 709 

the total summed emissions at each site, (D) line segments of roadways and the daily vehicle 710 

miles traveled (DVDT) on each, (E) housing violations per block group, normalized by the 711 

underlying 2019 American Community Survey population, (F) raster of the normalized 712 

difference vegetation index (NDVI). A map of area deprivation index (ADI), which most 713 

strongly reduced the spatial variance of odds of exacerbation risk in our spatial GAMs, is shown 714 

in Figure 3A. Base maps were created using the Stamen Design from Stadia Maps. 715 

S4 Figure. Pairwise correlation between all EHR and SEDH variables. Measures in each box 716 

correspond to Pearson’s correlation coefficients. For nominal categorical variables, reference 717 

levels are as follows: White (race), Private (health insurance type). 718 
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S5 Figure. Influence of individual EHR and SEDH variables on the odds ratio (OR) of the 719 

unadjusted spatial GAM. Percent reduction in the variance of ORs across the study region for 720 

one-variable-at-a-time adjusted spatial GAMs compared to the unadjusted model. OR changes 721 

for models adjusted one variable at a time (in addition to years followed) are shown in blue. 722 

Multivariable models (both EHR-adjusted and EHR & SEDH-adjusted) are shown in red for 723 

comparison.  724 

S6 Figure. Spatial GAMs adjusted one-at-a-time for the EHR-derived variables that did 725 

not greatly reduce variance. Spatial odds ratios (ORs) of exacerbation are shown after 726 

adjusting for years followed and one-at-a-time for the following variables whose percent 727 

reduction in variance of ORs was less than 25: (A) age, (B) sex, (C) ethnicity, (D) BMI, (E) 728 

smoking status, (F) COPD, (G) allergic rhinitis, (H) Elixhauser comorbidity score, (I) ICS. Base 729 

maps were created using the Stamen Design from Stadia Maps. 730 

S7 Figure. Spatial GAMs adjusted one-at-a-time for the SEDH variables that did not 731 

greatly reduce variance. Spatial odds ratios (ORs) of exacerbation are shown after adjusting for 732 

years followed and one-at-a-time for the following variables whose reduction in variance of ORs 733 

was less than 25: (A) NO2, (B) PM2.5, (C) toxic releases exposure, (D) vehicular traffic, (E) 734 

housing violations, (F) normalized difference vegetation index (NDVI). Base maps were created 735 

using the Stamen Design from Stadia Maps. 736 

S8 Figure. Spatial odds ratios (ORs) of exacerbations among White patients along with the 737 

effects of ADI and health insurance type on this distribution. (A) SRR values for the updated 738 

study region used in spatial GAMs for patients of White race only (SRR = 1 indicates no 739 

representativeness bias). (B) Unadjusted spatial GAM adjusted only for years followed for 740 

patients of White race (N = 1,383). Spatial GAMs adjusted additionally for (C) area deprivation 741 
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index (ADI) and (D) health insurance type. Base maps were created using the Stamen Design 742 

from Stadia Maps. 743 

S1 Table. Generic medication names included in medication classes. The following generic 744 

drug names recorded in the EHR during the study period were used for asthma and exacerbation 745 

phenotyping as well as used as independent variables in select models (i.e., ICS). Instances in 746 

which these drugs were listed as investigational or nasal formulations were not included. 747 

S2 Table. Sources and spatiotemporal dimensions of geospatial datasets merged with EHR 748 

data. 749 

S3 Table. Asthma-related housing code violations extracted from the Philadelphia 750 

Department of Licenses and Inspections.  751 

S4 Table. Patient medications by exacerbation count levels. Shown are the number and 752 

percentage of patients receiving each of the medication types listed according to their number of 753 

exacerbations during the study period.  754 

S5 Table. Characteristics of complete cases and patients excluded due to missingness. 755 

Shown are the number and percentage of patients in each level for categorical variables and the 756 

Median and Interquartile Range (IQR) for the Years followed variable in complete cases versus 757 

those excluded due to missingness in the sex, ethnicity, health insurance type, BMI, and smoking 758 

status variables.  759 

S6 Table. Adjusted Generalized Variance Inflation Factors (GVIFs) for each EHR and 760 

SEDH variable included in the EHR & SEDH-adjusted negative binomial and logistic 761 

regression models. 762 

S7 Table. Individual-level asthma exacerbation risk factors in multivariable negative 763 

binomial regression models. Shown are the adjusted incidence rate ratios (IRRs), 95% 764 
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confidence intervals (CIs), and p-values for negative binomial models of asthma exacerbations as 765 

a count outcome adjusted for EHR-derived variables only and for both EHR-derived and SEDH 766 

variables.  767 

S8 Table. Spatial GAMs of asthma exacerbations adjusted for individual risk factors that 768 

most changed risk. Shown are the adjusted odds ratios (ORs), 95% confidence intervals (CIs), 769 

and p-values for spatial GAMs of asthma exacerbations as a dichotomous outcome adjusted for 770 

years followed and one-at-a-time for ADI, race, and health insurance type, the three variables 771 

whose percent reduction in variance of ORs was greater than 25. 772 
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