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1 ABSTRACT 
Pneumonia is one of the leading causes of death in children under five, particularly in 
resource-limited settings. The timely and accurate detection of pneumonia, often conducted 
through chest X-rays, remains a challenge due to the scarcity of trained professionals and 
the limitations of traditional diagnostic methods. In recent years, Artificial Intelligence (AI) 
models, especially Convolutional Neural Networks (CNNs), have been increasingly applied 
to automate pneumonia detection. However, CNN models are often computationally 
expensive and lack the ability to capture long-range dependencies in images, limiting their 
efficacy in certain medical applications. To address these limitations, lightweight hybrid 
models such as Vision Transformers (ViTs), which combine the strengths of CNNs and 
transformers, offer a promising solution. This study compares the efficacy of two lightweight 
CNNs (EfficientNet Lite0 and MobileNetV3 Large) with two hybrid ViTs (MobileViT Small and 
EfficientFormerV2 S0) for pneumonia detection. The models were evaluated on a publicly 
available chest X-ray dataset using metrics such as accuracy, F1 score, precision, and 
recall. Results show that the hybrid models, particularly MobileViT Small, outperformed their 
CNN counterparts in both accuracy (97.50%) and F1 score (0.9664), demonstrating the 
potential of ViT-based models for medical imaging tasks. The findings suggest that hybrid 
models provide superior recall, reducing false negatives, which is crucial for medical 
diagnostics. Further research should focus on optimizing these hybrid models to improve 
computational efficiency while maintaining high diagnostic performance. 

2 INTRODUCTION 
In 2019, pneumonia killed 740000+ children under the age of five respectively making it one 
of the leading causes of death in vulnerable populations. Pneumonia is an acute respiratory 
infection due to a viral or bacterial pathogen which targets the lungs, the alveoli in particular 
filling them with pus and fluid. Typical symptoms include cough, shortness of breath, chest 
pain, fatigue, and fever (World Health Organization [WHO], 2022).  

In regions with limited healthcare resources, the timely and accurate diagnosis of pneumonia 
poses significant challenges due to a shortage of trained professionals and inadequate 
facilities (Simkovich et al., 2021). Pneumonia detection is commonly done using chest x-rays 
however traditional methods are time-consuming and prone to human error (Alapat et al., 
2022). This is where automated image analysis comes into play, Artificial Intelligence (AI) 
tools, such as Convolutional Neural Networks (CNNs), are increasingly being applied to 
improve accuracy in detecting pneumonia, particularly in resource-limited settings (An et al., 
2024). 
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Many powerful AI models exist but since they are computationally expensive, so they are not 
suited for resource constrained environments (Jia et al., 2023). In cases like this, lightweight 
models like MobileNet are employed which balance efficiency and accuracy (Trivedi & 
Gupta, 2021). The purpose of this study is to compare the efficacy of lightweight hybrid 
Vision Transformers (ViTs) and CNNs for pneumonia detection, focusing on both 
performance and efficiency, with the hypothesis that hybrid ViTs consisting of elements of 
CNNs and ViTs will outperform traditional CNNs. 

3 MATERIALS AND METHODS 

3.1 DATASET 
The dataset used was the Mendeley chest X-ray pneumonia dataset (Kermany et al., 2018) 
and can be accessed here. The train images, which totalled to 5216 images (of which 3875 
were labelled as pneumonia and 1341 were labelled as normal), were used for training, 
validating, and testing. The images were split into training, validation, and test datasets in 
the ratio 7:2:1. 

 

3.2 DATA AUGMENTATION 

The seed was set to 0 to ensure reproducibility using the following code: 

3.2.1 Training dataset augmentation 
Various augmentations from the albumentations (Buslaev et al., 2020) library were 
implemented to ensure model generalisation by introducing variability in the images. The 
augmentations applied are as follows: 

• Rotation: The images were rotated to up to ±180° with a probability of 0.5. 
• Affine: Scaling between 0.9 to 1.1, translation up to 10%, and shear between -2 and 

2 were applied with a probability of 0.5. 
• Flipping: Images were randomly flipped horizontally and vertically with a 50% 

probability for both. 
• Resizing: All images were resized to 224x244 pixels  
• Normalization: The RGB values of pixels were mapped to be in the range 0 to 1. 

 1. seed = 0 

 2. def seed_everything(seed): 

 3.   

 4.     random.seed(seed) 

 5.     os.environ['PYTHONHASHSEED'] = str(seed) 

 6.     np.random.seed(seed) 

 7.     torch.manual_seed(seed) 
 8.     torch.cuda.manual_seed(seed) 

 9.     torch.cuda.manual_seed_all(seed) 

10.     torch.backends.cudnn.deterministic = True 
11. seed_everything(seed) 

12.   
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3.2.2 Validation and Test dataset augmentation 
The transformation pipeline for the validation dataset and test dataset was simpler and was 
as follows: 

• Resizing: Images were resized to 224x224 pixels. 
• Normalization: RGB values were normalized to be in the range 0 to 1. 

 

3.3 MODEL ARCHITECTURES 
Four lightweight image classification models were employed in this study: 

• EfficientNet Lite0 
• MobileNetV3 Large 
• MobileViT Small 
• EfficientFormerV2 S0 

3.3.1 EfficientNet Lite0 
A scaled-down version of the original EfficientNet model, EfficientNet Lite0 was created with 
mobile and edge devices in mind. It makes use of MBConv layers, which combine squeeze-
and-excitation blocks with depthwise separable convolutions. By keeping performance high 
while lowering the number of parameters, these layers strike a balance between accuracy 
and efficiency. The model employs a compound scaling method that uniformly scales depth, 
width, and resolution of the network based on a predefined factor. This enables the model to 
perform well across various tasks with fewer computations (Tan, & Le, 2019). 

3.3.2 MobileNetV3 Large 
MobileNetV3 Large is intended for use by mobile devices with constrained computational 
resources. It uses squeeze-and-excitation layers, inverted residuals, and depthwise 
separable convolutions. For increased accuracy at the lowest possible computational cost, it 
also makes use of hard-swish and swish activation functions. MobileNetV3 further optimizes 
performance by using Neural Architecture Search (NAS) to identify the best configurations of 
layers. Higher accuracy is given priority in the large version, but the lightweight design is 
kept (Howard et al., 2019). 

3.3.3 MobileViT Small 
The goal of MobileViT, a ViT-CNN hybrid model, is to integrate the local feature extraction 
powers of CNNs with the globally receptive field of Vision Transformers (ViT). MobileViT 
combines CNNs that extract local features with transformer encoders to capture long-range 
dependencies in the image. Because of this combination, MobileViT offers a balance 
between accuracy and efficiency that is optimal for mobile applications (Mehta & Rastegari, 
2021). 

3.3.4 EfficientFormerV2 S0 
An effective vision transformer for quick inference on edge devices is EfficientFormerV2. To 
achieve high performance on image classification tasks, it combines the simplicity of 
depthwise separable convolutions with the efficiency of transformers. Memory and 
computational expenses are decreased by EfficientFormerV2 models, such as the S0 
variant, by using an optimized transformer block and a hierarchical design. MLP (Multi-Layer 
Perceptron) blocks and multi-head self-attention mechanisms have been integrated into the 
architecture of EfficientFormerV2. One of the smallest models, the S0 version was created 
especially for mobile and edge applications (Li et al., 2022). 
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3.4 TRAINING AND OPTIMIZATION 
All models were trained for 30 epochs using the following setup: 

• Optimizer: The Adam optimizer with a learning rate of 1e-4 and a weight decay of 1e-
5 was used to minimize the loss. 

• Loss function: The loss function used as the criterion was Binary Cross-Entropy with 
Logits Loss as it was suited for this binary classification problem. 

• Scheduler: ReduceLROnPlateau was employed which would reduce the learning rate 
by a factor of 0.1 when the validation loss would plateau. 

The following code was used to configure the optimizer, the loss function, and the scheduler: 

In each epoch, the model was trained on the training dataset and then evaluated on the 
validation dataset. The validation loss was used to update the scheduler to ensure that the 
learning rate was reduced when validation loss would stop decreasing. 

 

3.5 EVALUATION METRICS 
After training each model was evaluated on the test set using the following metrics: 

• Accuracy score: the proportion of correctly predicted labels out of the total. 
• F1 score: the harmonic mean of precision and recall. 
• Precision score: the ratio of true positives to the sum of true positives and false 

positives. 
• Recall score: the ratio of true positives to the sum of true positives and false 

positives. 

The metrics were calculated using the methods provided in the scikit-learn library which 
required a list of the predicted labels and a list of the true labels (Pedregosa et al., 2011). 

4 RESULTS 
The following results were obtained from the evaluation of the models on the test dataset 
and computation of the above-mentioned metrics for each of the four models. 

 

Model Accuracy 
score 

F1 score Precision 
score 

Recall score 

EfficientNet Lite0 0.9539 0.9385 0.9241 0.9558 
MobileNetV3 
Large 

0.9578 0.9433 0.9306 0.9583 

1. optimizer = optim.Adam(model.parameters(),lr = 1e-4, weight_decay = 1e-5) 

2. criterion = nn.BCEWithLogitsLoss() 
3. scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=0.1, 

patience=1,verbose=True, min_lr = 1e-10) 

4.   
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MobileViT Small 0.9750 0.9664 0.9539 0.9808 
EfficientFormerV2 
S0 

0.9558 0.9418 0.9234 0.9655 

Table (a): Evaluation metrics on the test dataset of each model 

Model Accuracy 
score 

F1 score Parameters 
(M) 

Giga Multiply 
Add 
Operations per 
second 

EfficientNet Lite0 0.9539 0.9385 4.7 0.4 
MobileNetV3 
Large 

0.9578 0.9433 5.5 0.2 

MobileViT Small 0.9750 0.9664 5.6 2.0 
EfficientFormerV2 
S0 

0.9558 0.9418 3.6 0.4 

Table (b): Comparison of models in context of parameter count and computational cost 

5 DISCUSSION 

5.1 COMPARISON OF CNN AND HYBRID VIT MODELS 
The results reveal that while both the CNN models and the hybrid ViT models performed well 
on the test dataset, both the hybrid ViTs performed better than their CNN counterparts in 
terms of accuracy score and F1 score. The best performing models was MobileViT Small 
with an accuracy score of 0.9750 and an F1 score of 0.9664, performing better than the 
other models in all metrics used in the study. The best performing CNN model was 
MobileNetV3 Large, achieving an accuracy score of 0.9578 and an F1 score of 0.9433 but 
fell short in recall score in comparison with the hybrid ViT models. 

The CNN models rely heavily on local feature extraction through convolutional layers, which 
makes them efficient in identifying localized patterns within an image, such as the texture of 
lung tissues (Tan, & Le, 2019) (Howard et al., 2019). However, their ability to capture long-
range dependencies across the image is limited, which could explain why they 
underperformed compared to hybrid models like MobileViT Small, which integrate both local 
and global feature extraction. This blend enables hybrid models to capture more complex 
relationships across the entire X-ray image, which is crucial in medical diagnostics where 
subtle, distributed patterns may indicate disease. 

EfficientFormerV2 S0 was outperformed by both MobileNetV3 Large and MobileViT Small in 
terms of accuracy score and F1 score, achieving an accuracy score and F1 score of 0.9558 
and 0.9418, respectively. It did however have a low GMACs value of 0.4 (Li et al., 2022) 
while attaining a high recall score of 0.9655, outperforming both CNN models in this regard. 
This suggests that transformer components in hybrid architectures significantly enhance 
performance by allowing the model to consider the entire image context and produce fewer 
false negatives. 

5.2 PRACTICAL IMPLICATIONS AND FURTHER RESEARCH  
The results highlight that lightweight hybrid ViT models, such as MobileViT Small and 
EfficientFormerV2 S0, exhibit superior recall compared to lightweight CNN models, which is 
critical in medical applications like pneumonia detection, where false negatives can lead to 
missed diagnoses and delayed treatment. This makes hybrid models particularly valuable for 
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preventing underdiagnosis, ensuring that more cases of pneumonia are correctly identified, 
even in resource-constrained settings. However, CNN models like MobileNetV3 Large still 
performed strongly, particularly in terms of computational efficiency, indicating that CNNs are 
not far behind and continue to be viable options for real-time applications where model 
complexity needs to be minimized. 

Further research should focus on optimizing hybrid models to reduce their computational 
demands while maintaining high recall. Additionally, exploring hybrid architectures in diverse 
medical imaging tasks, along with investigating how CNNs can be enhanced to capture long-
range dependencies, would provide valuable insights into creating more efficient and 
accurate diagnostic tools. 
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