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34 Abstract

35 Background 
36 Climate change, leading to more frequent and intense extreme weather events (EWEs), could significantly 

37 impact dengue transmission. However, the associations between EWEs and dengue remains underexplored in the 

38 Southeast Asia (SEA) region. We investigated the association between selected EWEs (i.e. heatwaves, extremely 

39 wet, and drought conditions) and dengue in the SEA region.

40 Methods and Findings 
41 Monthly dengue case reports were obtained from 291 locations across eight SEA countries between 1998 and 

42 2021. Heatwaves are defined as the monthly total number of days where temperatures exceed the 95th percentile 

43 for at least two consecutive days. Droughts and extremely wet conditions are defined by a self-calibrating 

44 Palmer Drought Severity Index (scPDSI). We implemented a generalized additive mixed model coupled with a 

45 distributed lag non-linear model to estimate the association between each EWE and dengue. Months with fewer 

46 than 12 heatwave days increased dengue risk with delayed effect after two months lag, compared with months 

47 without any heatwave. Highest dengue risk is at 7 heatwave days (RR=1·28; 95%CI: 1·19,1·38). Compared to 

48 normal conditions (i.e. scPDSI=0), drought conditions (i.e. scPDSI=–4) were positively associated with dengue 

49 risk (RR=1·85; 95%CI: 1·73,1·99), while extremely wet conditions (i.e. scPDSI=4) have reduced dengue risk 

50 (RR=0·89; 95%CI: 0·87,0·91). Although the findings of this study are significant, its limitations arise from the 

51 inconsistency of dengue case reporting, which might complicate dengue risk estimation. 

52 Conclusions 
53 This study shows that the delayed effect of heatwaves and drought conditions magnifies the risk of dengue in the 

54 SEA region. Our findings offer stakeholders sizeable amount of time to organize and implement public health 

55 interventions in minimizing the prospective dengue risk, posed by EWEs in the context of climate change in 

56 SEA. Future research may focus on factors associated with dengue risk variations within SEA region to facilitate 

57 the development of location-based, tailor-fit mitigation and preventative interventions.
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58 Introduction
59 Dengue is caused for Flaviviruses, transmitted by the infectious bite of Aedes aegyti, and Ae. albopictus 

60 mosquitoes. Dengue poses an alarming impact on human health, and the global economy, particularly in the 

61 Southeast Asian (SEA) region [1]. The climate in the SEA region, characterized by persistent hot and humid 

62 weather throughout most of the year, offers optimal environmental conditions for mosquito development and 

63 dengue transmission [2]. According to a recent projection study, dengue incidence in SEA is expected to reach 

64 its peak in the 21st century [3]. By the end of this century, the length of dengue transmission season in the SEA 

65 region is expected to be longer with a rise in number of population at risk of up to 696 million additional people 

66 [4].

67 Climate change, including extreme variations in precipitation and prolonged extreme temperatures, could modify 

68 the population density of the dengue vector [2]. Consequently, variation in the dengue transmission risk may 

69 occur following Extreme Weather Events (EWEs), including heatwaves, drought, and flood [5–7]. Briefly, 

70 heatwaves, defined as prolonged periods of extreme heat over a given threshold, could result in higher mosquito 

71 populations as heatwaves can accelerate the early development stage of mosquitoes life cycle [8]. Drought 

72 conditions have been also linked to increased dengue transmission risk via water storage in man-made containers 

73 [9]. Moreover, while cumulative precipitation might enhance mosquito abundance, heavy precipitation flushes 

74 away breeding sites, thereby decreasing mosquito populations [10].

75 In the context of a warming climate, EWEs are anticipated to become more frequent and intense [11]. Predictive 

76 models suggest that the dengue-endemic SEA region is becoming more susceptible to the adverse effects of 

77 climate change that included but are not limited to heat stress, heavy precipitation, widespread flooding both 

78 inland and in coastal zones, prolonged dry spells and acute deficits in water supply [11]. Heatwave intensity is 

79 projected to rise by 0·5 to 1·5 °C above a given global warming threshold, with an increase in duration of 2 to 10 

80 days per 1°C of global temperature rise [12]. Climate models under Representative Concentration Pathway 

81 (RCP4·5) scenario and the 14-model ensemble mean from Coupled Model Intercomparison Project Phase 5 

82 (CMIP5) projected an increasing trend of drought in SEA in the future [13].
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83 Despite the substantial growth in evidence regarding the impacts of EWEs on human health, their effect on 

84 mosquito-borne diseases like dengue is limited especially in SEA, where dengue is endemic [14]. In line with 

85 WHO’s Global Vector Control Response operational framework, it is essential to investigate the impact of 

86 climate factors, particularly EWEs, on dengue using a multi-country approach in generating evidence required to 

87 efficiently prevent and manage dengue transmission and respond to subsequent outbreaks [15]. To our 

88 knowledge, this is the first study investigating the associations between multiple EWEs (i.e. heatwaves, 

89 extremely wet and drought conditions) and dengue in the SEA region, utilizing a robust statistical modelling 

90 approach.

91 Methods

92 Data collection

93 Dengue data

94 Monthly dengue count data were obtained from the Southeast Asia Research on Climate change and Dengue 

95 (SEARCD) collaboration platform for 268 locations in seven countries including Indonesia (33 provinces during 

96 2010–2020), Lao PDR (2 provinces during 2005–2021), Malaysia (14 states and federal territories during 2010–

97 2017), the Philippines (79 provinces during 2010–2020), Singapore (1 city state during 2010–2017), Thailand 

98 (76 provinces during 2003–2021), and Vietnam (63 provinces during 2011–2021). Briefly, SEARCD is a 

99 platform with collaborators from the seven SEA countries that encourages research on meteorological factors 

100 and dengue. Additionally, monthly dengue count data from 23 locations in Cambodia during 1998–2010 was 

101 obtained from project Tycho 2·0 [16].

102 Temperature and precipitation

103 Monthly meteorological data, including mean temperature, mean dew point temperature, and total precipitation, 

104 were obtained from the ERA5-Land dataset generated by the European Centre for Medium-Range Weather 

105 Forecasts (ECMWF) (appendix pp. 2) [17]. ERA5-Land is a reanalysis data set providing climate information at 

106 a fine spatiotemporal resolution (0·1×0·1 grid) for the whole global land surface [17]. 
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107 Heatwave definitions

108 Heatwaves were defined using relative thresholds, which consider the long-term daily mean temperature at each 

109 location. Heatwave were defined as two or more consecutive days with a daily mean temperature surpassing the 

110 95th percentile of its distribution in each specific location [18,19]. Hourly temperature data were averaged to 

111 compute the daily mean temperature for each location. The total number of heatwave days (HWt) was then 

112 calculated for each month and location. If a heatwave begins in the final days of one month and continues into 

113 the next, the heatwave days are included to each respective month (Table S2). 

114 Wet and drought conditions 

115 We used the Palmer Drought Severity Index (PDSI) to assess the effect of drought and extremely wet conditions 

116 on dengue. PDSI is a widely recognized standardized index for tracking drought and long-term variations in 

117 aridity and is computed by considering soil moisture content, the projected rate of evapotranspiration (i.e. the 

118 evaporation from soil under adequate water availability, considering mean daily temperature and numbers of 

119 days in the month) and rainfall amounts [20]. Here, we used the self-calibrating PDSI version (scPDSI) since it 

120 represents a geographically comparable index by calibrating a distinct normal condition for each location [21]. 

121 The scPDSI data were sourced at a geographical resolution of 0·5×0·5 grid from the Climatic Research Unit 

122 gridded Time Series (version 4·05) corresponding to the specific time in each location [22]. The scPDSI ranges 

123 from –10 (i.e., very dry conditions) to 10 (i.e. very wet conditions). Values below –4 or over 4 are categorized as 

124 drought and extremely wet conditions, respectively [21]. 

125 Population data

126 Total population count for each location were obtained from the Gridded Population of the World Version 4 

127 developed by the Socioeconomic Data and Application Center for the period 2000 to 2020 at five-year intervals 

128 [23]. Linear interpolation was used to estimate yearly total population values for each location over the study 

129 period.
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130 Statistical analysis
131 We specified a generalized additive mixed model (GAMM) coupled with a distributed non-linear model 

132 (DLNM) to investigate the association between EWEs and dengue [24,25]. A quasi-Poisson distribution was 

133 assumed to account for potential over-dispersion in the dengue data. The logarithm of the total population for 

134 each location was included as an offset to adjust dengue case count by population. A smoothing spline with 5 

135 degrees of freedom (df) per year was included to control for potential seasonality (Table S4). A cross-basis 

136 function was included in each model using natural cubic spline with two equally spaced knots for heatwave and 

137 3 df for scPDSI (i.e. the exposure dimension) and 3 df for the lag dimension based on exploratory analyses 

138 (Table S5). We included a smoothing spline with 3 df to control for potential nonlinear effects of monthly mean 

139 temperature and total precipitation based on previous study [26]. Long-term trends and interannual variability 

140 were accounted for incorporating an indicator term for each year in the time series. Unmeasured factors, such as 

141 public health interventions, were specified as unstructured random effects for each location. The reference value 

142 of heatwave was set at 0 heatwave days per month and scPDSI at 0. Models were fitted in R (version 4·3·1), 

143 using the packages mgcv 1·9·1 and dlnm 2·4·7 [24,25]. 

144 The algebraic definition of the EWE-dengue model is given by: 

145 Log (Yi,t) = α + Log(Pi,t) + f(EWEi,t;𝓁) + s(Tempi,t) + s(Precii,t) + s(t) + δi,t +  νi

146 where Yi,t indicates monthly dengue case at time t in location i, assumed to follow an over-dispersed quasi-

147 Poisson distribution; α represents the intercept; Log(Pi,t) represents the logarithm of the total population per 

148 location i at the time t, included as an offset; f(EWEi,t;𝓁) designate the cross-basis functions of either heatwave 

149 (HW) or scPDSI for maximum lag (𝓁) of 4 months; s(Tempi,t) and s(Precii,t) denotes the smooth functions of 

150 temperature and precipitation, respectively; 𝑠(𝑡) denotes the smooth seasonals trend of time; 𝛿𝑖,𝑇 indicates long-

151 term trend using indicator variables for each year T in each location i; and νi expresses unstructured random 

152 effects for each location.
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153 Sensitivity analysis
154 Multiple sensitivity analyses were carried out to assess the robustness of the results. We first examined the 

155 optimal exposure-response relationship in the cross-basis function by varying the df and placement of the knots, 

156 using natural cubic spline with two equally space internal knot, two knots at 25th and 75th percentile, and one 

157 knot at 50th percentile. We further applied a varying function of seasonality including smoothing spline with 3df, 

158 4df, cyclic cubic spline, and one pair of Fourier term. Maximum lags were also varied by 3 months, 5 months, 

159 and 6 months, respectively. We repeated the analysis with adjustment relative humidity and population density 

160 in the model to account for additional confounding effects. Analyses using the data from 1998 to 2019 were also 

161 conducted to determine the potential impact of the COVID-19 pandemic on our results. Various heatwave 

162 definitions were investigated including: (i) four or more days exceeding the 95th percentile, (ii) two or more days 

163 exceeding the 97th percentile, (iii) two or more days exceeding the 99th percentile, (iv) four or more days 

164 exceeding the 97th percentile, and (v) four or more days exceeding the 99th percentile. 

165 Results

166 Descriptive statistics
167 Table 1 shows the summary statistics of dengue cases and meteorological factors in each country. A total of 

168 7,016,624 dengue cases was included in this study. The Philippines reported the highest mean annual dengue 

169 cases (196,719 cases), followed by Vietnam (121,822 cases) and Indonesia (112,156 cases). The monthly mean 

170 temperature, monthly total precipitation, mean annual heatwave days, and monthly scPDSI index at the country 

171 level ranged between 24·1°C and 26·8°C, 138mm and 254mm, 14·2 days and 17·2 days, and –0·3 and 0·3, 

172 respectively. State of Selangor in Malaysia showed the highest monthly dengue incidence per 100,000 people 

173 followed by Khah Hoa in Vietnam (Figures 1A). The lower mean annual number of heatwave days was observed 

174 in south-eastern locations (Figures 1B). Eastern Philippines and Northern of Vietnam and Cambodia indicate 

175 wetter conditions (Figures 1C). Additional descriptive results of each climate variable and dengue incidence for 

176 each location are shown in Table S3.
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177 Table 1: Summary statistics of dengue cases, monthly temperature, total precipitation, heatwave days and scPDSI index in eight 

178 countries.

179 scPDSI stands for self-calibrated Palmer drought severity index; SD is standard deviation.
180 a: Location specific mean climate variable (SD) 
181 b: 95th percentile for 2 consecutive days

Period No of 
locations

Total dengue 
case

Mean annual 
dengue case

Monthly mean 
temperaturea 
[mean (SD)]

Monthly total 
precipitationa 
[mean (SD)]

Annual 
number of 
heatwave 

daysa,b

[mean (SD)]

Monthly 
scPDSIa

[mean (SD)]

Cambodia 1998–2010 23 152,058 11,697 26·8 (0·9) 151 (37) 17·2 (2·4) 0·3 (0·8)

Indonesia 2010–2020 33 1,233,718 112,156 24·7 (1·2) 254 (51) 14·2 (4) 0·1 (0·6)

Lao PDR 2005–2021 2 63,391 3,729 25·1 (0·6) 158 (14) 17·1 (2·6) 0·1 (0·6)

Malaysia 2010–2017 14 545,479 68,185 25·5 (0·8) 222 (31) 15·3 (5·9) −0·3 (0·7)

Philippines 2010–2020 79 2,163,905 196,719 25·1 (1·4) 230 (36) 16·5 (4) 0·8 (0·9)

Singapore 2012–2019 1 91,463 11,433 26·9 (0·6) 207 (89) 14·6 (2·9) 0·8 (2·0)

Thailand 2003–2021 76 1,426,568 75,083 26·1 (1·2) 138 (32) 17 (2·3) 0 (0·4)

Vietnam 2011–2021 63 1,340,042 121,822 24·1 (2·3) 173 (26) 15·2 (2·9) 0 (0·8)

Total 291 7,016,624
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182 Heatwave-dengue association
183 Figure 2A presents the pooled cumulative (lag 0 to 4 months) association between the total number of heatwave 

184 days per month and dengue relative to month without any heatwave day. The association between the monthly 

185 number of heatwave days and dengue was non-linear and showed a significant positive association for months 

186 with less than 12 heatwave days and a negative association between months with 12 and 27 heatwave days. The 

187 dengue risk leveled off at months with 7 heatwave days (RR=1·28; 95%CI: 1·19,1·38) and reached the 

188 minimum dengue risk at month with 21 heatwave days (RR=0·49; 95%CI: 0·42, 0·57). The lag-response 

189 association of month with 7 and 21 heatwave days show dengue risk increase after lag 1 and 3 months, 

190 respectively (Figure 2B). The lag-response association showed a negative association across all numbers of 

191 heatwave days per month within a lag of two months (Figure 2C). However, the dengue risk increases mostly 

192 after the lag of two months.  

193 scPDSI-dengue association
194 Figure 3A shows the overall cumulative (lag 0 to 4 months) association between monthly scPDSI and dengue, 

195 compared to a value zero of scPDSI. The association between monthly scPDSI and dengue was non-linear and 

196 followed a reverse J-shaped curve association with minor upward tail and the minimum dengue risk observed at 

197 2·5 scPDSI value (RR=0·89; 95%CI: 0·87,0·91). Drought conditions (i.e. scPDSI values equal to or lower than 

198 –4) show a significant positive association with dengue incidence (RR=1·85; 95%CI: 1·73,1·99). In contrast, the 

199 extremely wet conditions show a significant negative association with dengue risk (RR=0·92; 95%CI: 

200 0·87,0·96) at scPDSI value between 4 and 5·8. An increase in dengue risk is observed when scPDSI is greater 

201 than 5·8, though the result is not significant. 

202 The lag-response association of drought conditions shows both immediate and delayed positive association on 

203 dengue risk within lag 0 and after two months lag (Figure 3B). The lag pattern of extremely wet conditions 

204 shows a positive effect three months lag, suggesting a delayed positive effect on dengue risk (Figure 3B). When 

205 the scPDSI exceeds 5·8, there is an increased relative risk observed at a 1 month and after a 3-month lag (Figure 

206 3C).
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207 Sensitivity analysis 
208 The pooled effect estimates for each EWE on dengue incidence were generally robust, amidst varying 

209 adjustments for seasonality, maximum lag, as well as inclusion of relative humidity and population density 

210 (Figures S8, S9, S10). Changing the df for the cross-basis function did not change the direction nor the intensity 

211 of the association between scPDSI and dengue but did change it for heatwaves (Figure S7). For the heatwave 

212 model, result shows a reduction in dengue relative risk regardless of the monthly number of heatwave days when 

213 two internal knots were used at the 25th and 75th percentile or one internal knot at the 50th percentile (Figure S7). 

214 Analyses using the data from 1998 to 2019 shows no impact of the COVID-19 pandemic on our results (Figure 

215 S11).

216 Using various heatwave definitions in the sensitivity analysis did not change the direction of the association, 

217 except for heatwave with the 99th percentile for 2 and 4 consecutive days (Figure S12). With the definition of 

218 99th percentile for 2 and 4 consecutive days, there was a negative association between zero to 16 heatwave days 

219 per month and dengue. This was likely because of significantly fewer counts of months with heatwave days 

220 when the strictest heatwave definition was used. 

221 Discussion
222 We examined the associations between several EWEs including heatwave, drought, and extremely wet 

223 conditions on dengue incidence in the SEA region. Months with fewer than 12 heatwave days showed increased 

224 dengue risks with a delayed effect observed after two months lag. This may partially be explained by the role of 

225 temperature on vector population since mosquitoes can survive even under continuous exposure to extreme heat 

226 amidst these heatwave durations [8]. In addition, heatwave event potentially facilitates vector population growth 

227 in the early development phase leading to an increased dengue transmission in the latter phase [8]. Also, the 

228 number of heatwave days may associated with a faster rate of viral replication within the vector and with a 

229 shorter extrinsic incubation period— the time required for dengue virus to become transmissible to another host 

230 after initial infection of a mosquito [2]. However, during the intense duration of heatwaves, adult mosquito 
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231 survival rates and feeding activities start to decline, explaining our result of a reduction in dengue risk at month 

232 with more than 12 heatwave days [2].

233 Our lag-exposure association result showed heatwaves more likely to increase dengue risk after a lag of two 

234 months. Comparing this finding with previous studies has its own limitations due to differences in heatwave 

235 definitions and statistical approaches used. However, a study in Hanoi, Vietnam, showed that heatwaves have an 

236 overall inhibitive effect at a shorter lag but were associated with increased magnitude of outbreaks at later lags 

237 [5]. In China, similar findings whereby heatwaves increase the risk of dengue outbreaks after six weeks were 

238 also observed [18]. This could be attributed to diapause behavior in mosquitoes, which is the inactive state where 

239 the dengue vectors halt their development and hatch to withstand harsh climatic conditions such as extreme heat 

240 or dry conditions [27]. The subsequent drops in temperature and increased humidity create favorable conditions 

241 for the continuation of the reproduction cycle of dengue vectors, ultimately leading to an increase in the dengue 

242 vector population [28]. The lags in mosquito outbreaks after a heatwave could result from the influence of 

243 climatic fluctuations on mosquito biology, serving as an adaptation mechanism to cope with unfavorable climate 

244 conditions [28]. 

245 Additionally, the association may be related to the change in human activities during and after heatwaves. 

246 During the heatwave, people tend to stay indoors in air conditioned environment, which limits vector-host 

247 contact [5]. However, lower temperatures after heatwaves encourage people to spend more time outside, 

248 increasing the likelihood of being bitten by mosquitoes. Another explanation might be an impairment of the host 

249 immunological response after exposure to certain sustained high temperature during heatwave [29]. Prolonged 

250 heat stress can reduce the ability of human body to mount an effective immune response, potentially making it 

251 easier for the dengue virus to be viable as an infection [29].

252 scPDSI index and dengue has a non-linear association with drought conditions showing an increase in dengue 

253 risk and extremely wet conditions showing a reduction in dengue risk. The similar association was reported in 

254 other studies in Brazil and China [7,30]. We noted that drought was positively associated with dengue risk at 

255 lags 0 and two months. This is likely because severe dry conditions increased water storage in artificial 
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256 containers, contributing to an increase in reproduction sites and the proliferation of mosquitoes [9]. Changes in 

257 water storage behavior may enhance the abundance of aquatic habitat for mosquitoes, given that their eggs can 

258 survive for up to 120 days in a drought environment [9]. The lag observed between a period of extreme drought 

259 and an uptick in dengue risk may be attributable to the incremental changes in domestic water storage habits as 

260 households adapt to the scarcity of water. This change might prompt individuals to adopt measures such as 

261 storing water in makeshift containers around the home during periods of water shortage. This finding indicates 

262 the importance of ongoing monitoring of drought conditions and the prompt implementation of emergency 

263 measures to reduce preventable negative effects of dry conditions on dengue risk.

264 We found that extremely wet conditions showed a reduction in dengue risk, which is in line with a study in 

265 Singapore, where a significant reduction in dengue outbreak risk followed the flushing effect of precipitation 

266 [10]. Non-standing water could flush away the mosquito eggs and shelter, consequently decreasing the dengue 

267 risk [6]. However, our results showed that severely wet conditions increase dengue risk, which could potentially 

268 be due to stagnant waters amidst severe wet conditions favoring development and reproduction of mosquitoes 

269 [6]. Moreover, severely wet conditions may also contribute to hydrological natural disasters, including floods or 

270 tropical cyclones, leading to significant deterioration of infrastructure or electricity, increasing the risk of close 

271 contact between dengue vectors and humans [6]. However, the impact of severely wet conditions needs further 

272 investigation to understand this phenomenon. 

273 Strength and limitations
274 This research possesses a few strengths. First, this is the first study investigating of the EWEs-dengue 

275 association in the SEA region. This study was carried out in numerous subnational locations across most of the 

276 SEA region, representing different ranges of exposure levels and socio-demographic characteristics. By using a 

277 pooled design approach, this study provided strong evidence of the relationship between EWEs and dengue at 

278 the regional scale. Second, We used GAMM and DLNM that captures the complex non-linear and delayed 

279 relationships between climate variables and dengue incidence [24,25]. The use of GAMM enables the 
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280 consideration of both spatial and temporal variations, which means the model can account for differences across 

281 locations and over time—factors that are critical when studying a vector-borne disease like dengue [24]. 

282 However, some limitations need to be acknowledged. First, a significant limitation is the use of a single set of 

283 modeling parameters across all the locations, which may heavily impact location/country-specific estimations. 

284 Specifically, the chosen modeling may not fit the data well in certain locations, even if it results in the best 

285 overall fit. However, the robustness of the results to various modeling choices and selections was assessed by 

286 exploring different model specifications for exposure and lag. Additionally, dengue case reporting can vary due 

287 to regional and temporal differences in diagnosis approaches, leading to over- or under-reporting of dengue cases 

288 (Table S1). These variations may complicate accurate assessments of dengue risk, potentially skewing 

289 understanding of the climate true impact on dengue. Moreover, utilizing monthly data to study dengue risks may 

290 not capture short-term climate effects and dengue incubation periods. Also, relying on monthly total heatwave 

291 days might overlook the nuances of individual heatwave episode impacts on dengue transmission. The potential 

292 influence of serotype information on the climate-dengue association is acknowledged. Due to data availability 

293 limitations, the analysis could not be stratified by dengue serotypes, highlighting the need for future research in 

294 this aspect. 

295 Conclusions
296 Given the anticipated rise in the number and intensity of EWEs, this research offers insights into estimating the 

297 dengue risk associated with heatwave, drought, and extremely wet conditions introduced by the global climate in 

298 a real-world setting. Our study showed that delayed heatwaves and drought effects contribute to increased 

299 dengue risk. These findings provide health managers and policymakers a better understanding of the contribution 

300 and importance of EWEs on dengue risks, and likewise serves as a groundwork in developing parallel strategies 

301 and interventions targeting both EWE adaptation and dengue response suited to the regional SEA context.  
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402
403 Figure 1:  Map of dengue case, heatwave, and scPDSI in each location of this study. 
404 (A) Median monthly dengue incidence per 100,000 population in each location. (B) Mean annual number 
405 of heatwave days in each location. (C) Median monthly scPDSI index in each location. Grey areas have 
406 no data. scPDSI stands for self-calibrated Palmer drought severity index.
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407 Figure 2: Association between the number of heatwave days per month and dengue incidence in 291 
408 locations across the eight countries, relative to month with no heatwaves.
409 (A) Cumulative exposure–response associations (with 95%CI, shaded grey), (B) lag-response 
410 association curves of specific monthly number of heatwave days (with 95% CI, shaded grey), (C) 
411 Contour plot of the association between monthly number of heatwave days and dengue. The 
412 deeper the shade of red, the greater the increase in the RR of dengue, and the deeper the shade of 
413 blue, the greater the decrease in the RR of dengue. CI indicates the confidence intervals; HW 
414 stands for number of heatwave days per month; RR is the relative risk.
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415 Figure 3: Association between scPDSI and dengue incidence in 291 locations across the 
416 eight countries, relative to a scPDSI value of zero. 
417 (A) Cumulative exposure–response associations (with 95%CI, shaded grey), with related PDSI 
418 distribution. Two vertical lines indicate the cut-off value for drought as a dotted line in red, and cut-off 
419 blue for extremely wet conditions as a dash-dotted line in blue. (B) lag-response association curves of 
420 specific scPDSI (with 95%CI, shaded grey). (C) Contour plot of the association between scPDSI and 
421 dengue. The deeper the shade of red, the greater the increase in the RR of dengue, and the deeper the 
422 shade of blue, the greater the decrease in the RR of dengue. CI indicates the confidence intervals; RR is 
423 the relative risk; scPDSI stands for self-calibrated Palmer drought severity index
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