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Abstract

The polygenic risk score (PRS) is an important method for assessing genetic
susceptibility to diseases, however, itsclinical utility islimited by alack of interpretability tools.
To address this problem, we introduce eXplainable PRS (XPRS), an interpretation and
visualization tool that decomposes PRSs into genes/regions and single nucleotide polymorphism
(SNP) contribution scores via Shapley additive explanations (SHAPs), which provide insights
into specific genes and SNPs that significantly contribute to the PRS of an individual. This
software features a multilevel visualization approach, including Manhattan plots, LocusZoom-
like plots and tables at the population and individual levels, to highlight important genes and
SNPs. By implementing with a user-friendly web interface, XPRS allows for straightforward
datainput and interpretation. By bridging the gap between complex genetic data and actionable

clinical insghts, XPRS can improve communication between clinicians and patients.
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I ntroduction

The polygenic risk score (PRS) summarizes the genetic contribution to complex traits by
calculating a weighted sum of risk aleles that an individual possesses. The PRS has recently
emerged as a promising tool for improving human health by providing insights into the
susceptibility of an individual to various diseases[1-4]. Numerous PRS construction methods,
including P+T[5], LDPred[6], PRS-CY[7], BayesR[8] and MegaPRY[ 9], have been developed.
Additionally, recent advancements in cross-ancestry methods[10][11][12] and pseudo-R-based
evaluation approacheq 13] have further improved the utility of PRSs.

Explainability is crucial for the application of machine learning models, and this should
be equally true for PRSs. Explaining which factors contribute to the predicted risk can increase
the reliability of the predictions and help users trust the machine learning system[14-16]. In
addition, this approach can facilitate communication between key stakeholders, including
clinicians and patients. In this context, explainable artificial intelligence (XAl) methods have
been extensively developed. However, no specific methods or tools are designed for the PRS,
which can limit its application in clinical settings. The development of XAl tools tailored for
PRSsis essential to increase their effectiveness.

We introduce eXplainable PRS (XPRS), a software designed to increase the
explainability of PRSs by decomposing them into genes/regions and variant contribution scores.
Although the PRS modd istypically built as alinear model, in which the weights for each
genetic variant are known, interpreting PRSs remains challenging owing to the involvement of
hundreds of thousands or even millions of genetic variants. The challenge is further compounded
by the notion that the functions of most genetic variants remain unknown, making variant-level

interpretation particularly difficult. XPRS addresses this by mapping variants to genes or regions.
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Since genes are fundamental biological units, this gene-level approach increases the
interpretability of PRSs. XPRS calculates the attributed value of each gene or region via Shapley
additive explanations (SHAPs), offering detailed insights into which genes significantly
contribute to the PRS of an individual. Additionally, our approach assesses the contribution of
each gene at the population level, further aiding in the overal interpretation of the PRS model.
Visualization isacritical component of explainability. XPRS incorporates a multilevel
visualization approach. At the population level, Manhattan plots and tables highlight important
genesin the PRS on the basis of the highest variance in gene contribution scores. At the
individual level, XPRS visualizes attributed values of genes to pinpoint risk genes that drive the
PRS value for a given individual. Additionally, XPRS employs LocusZoom-like plots to show
which genetic variant influences these genes, providing a detailed view of the genetic factors

contributing to an individual's risk profile.

M ethods

Figure 1 shows an overview of XPRS, which consists of mandatory inputs and three

main processes.

Inputs

Our software, XPRS, requires the upload of three mandatory input files: a genotypefile, a
PRS scoring file, and a GWAS association file. The genotype file must be in binary PLINK
format. The PRS scoring file, which is necessary for calculating the gene and single nucleotide
polymorphism (SNP) contribution scores, contains information on SNPs, including SNP IDs,

effect alleles, and beta coefficients corresponding to specific diseases. Thefileis available for
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download from the PGS catalog (https.//www.pgscatalog.org/) or can be generated via GWAS

summary statistics and reference files with various PRS construction methods. If users generate
the PRS scoring file via PRS construction methods, they can optionally use GWAS summary
statistics to incorporate GWAS p values for more accurate mapping information.

The GWAS association files contain a curated list of genes that have shown significant
associations with specific diseases in published GWASs. Using the GWAS association file
enables our analysis to focus selectively on significant genes, thereby streamlining the
interpretative process by filtering out genes that do not meet established significance thresholds.
At the population level of visualization, the GWAS association file ensures that only significant
genes are shown, instead of all genesin aregion, providing a clearer representation of risk genes.
The concept of 'regions will be explained in the subsequent steps of our methodology. Thisfile

can be downloaded from the GWAS Catalog (https://www.ebi.ac.uk/gwas/).

Parameters

XPRS allows the modification of three key parameters to optimize computational efficiency

and accuracy:

e CPU nodes: Users can adjust the number of CPU nodes, with a default setting of 8. When
SNPs are mapped to genes, we use the parallel packagein R for parallel computing to
achieve faster computation.

e Top SNP heritability percentage: Users can specify that the percentage of SNPs with the
highest heritability should be included in the analysis. This selection is crucial for
computational efficiency and noise reduction. By default, if the number of SNPsisless

than 100,000, all the SNPs are included. If it exceeds this number, users can determine
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the optimal percentage of top SNPsto include, whereas the default is 50% inclusion. If
the default 50% inclusion resultsin fewer than 100,000 SNPs, XPRS automatically
includes a minimum of 100,000 SNPs to ensure sufficient coverage.
e Window size: The default genomic window sizeis 200 kb, which is used when SNPs are
mapped to genes through positional mapping on the basis of an annotation file.
These parameters increase the flexibility and performance of XPRS, allowing for efficient

computation and improved interpretation of risk genes and SNPs.

Three main processes

XPRS consists of three main steps (Figure 1). The first step includes aligning SNPs
across data sources, mapping them to corresponding genes, standardizing the PRS, and adjusting
beta coefficients accordingly. The second step involves calculating the gene contribution score,
the attributed value of genes, and the SNIP contribution score to accurately determine which
genes or SNPs contribute to an increased PRS. The final step involves visualization to elucidate

disease susceptibility at both the individual level and population level.

Step 1: Preprocessing and Variant Mapping

Initial preprocessing involves SNP alignment between the genotype file and the PRS
scoring file to ensure the correct inclusion of variants in the PRS. This process includes making
all beta values positive and correspondingly switching the A1 and A2 allele positions to ensure
that the effect sizes are consistently oriented. The raw PRSis calculated as a weighted sum of
risk alleles via positive beta coefficients. The PRS is then standardized to achieve a mean of zero

and a standard deviation of one. The beta coefficients are subsequently adjusted on the basis of
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the standardized PRS to ensure that the contribution scores derived in subsequent steps
accurately reflect the standardized risk contributions. This step is followed by a three-phase gene
mapping protocol:

1. Positional mapping: We mapped SNPs to genes on the basis of their genomic position

via refGene annotation (https://hgdownl oad.soe.ucsc.edu/gol denPath/hg38/database/). In cases

where a gene exhibits multiple start and end positions owing to alternative splicing or isoforms,
distinct start Jend coordinates are denoted with asterisks (e.g., Gene*, Gene**, and Gene***).
2. Combining SNP-to-Gene (cS2G) mapping[17]: Thisemploys several linkage
methodologies, including expression quantitative trait loci (eQTL) analysis, enhancer Igene
interactions, and promoter capture Hi-C (PCHI-C) techniques, to map SNPsto genes. The cS2G

file used for this step was downloaded from https://zenodo.org/records/6354007.

3. GWASp value or SNP heritability-based mapping: For SNPs not mapped in the
previous two steps, we use GWAS p value significance or SNP heritability estimates. When
GWAS summary statigtics are provided, we identify the index SNP with the lowest p valuefirg,
assigning neighboring SNPs to theindex SNP to form a region within a predefined genomic
window, typically 500 kb, and continue this process until all SNPs are mapped. If GWAS
summary statistics are not available, we calculate SNP heritability via the equation
heritability = B? X MAF x (1 — MAF), where B is the effect size from the PRS model and
MAF isthe minor allele frequency. The SNPs with the highest heritability are mapped first,
following the same regional assignment process until all the SNPs are mapped.

Following the mapping protocol, the analysis incorporates a'regionizing' step to increase
computational efficiency and focus on significant risk genes. This process consolidates genes

with overlapping SNP profilesinto distinct regions on the basis of shared SNP content. For
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example, genes with identical SNP compositions are combined and calculated as single entities.
In cases in which genes share a significant proportion of SNPs (e.g., two-thirds overlap), they are
grouped into the same region. Within each region, we identified the gene with the highest
variance in the gene contribution score to represent the risk gene. This clustering allows us to
highlight the most influential genes, ensuring a more accurate and specific risk assessment by

reducing redundancy and focusing on the top risk genes.

Step 2: Calculation of the contribution score and attributed value

In step 2, we decompose the PRS into finer components for increased interpretability:
gene contribution scores (€S, ), SNP contribution scores (CSgyp), and the attributed values of
genes.
Gene Contribution Scor e (CSyene) and its variance: This score quantifies how much each gene
contributes to increasing the individual PRS and is calculated by summing the weighted risk

alleles mapped to genes.

CSgenej = z Bstd,i X Gl, (1)

i€gene;

where G} = G; — p;
where Bstd,i isthe standardized effect size (i.e., weight) of SNP, G; isthe individual genotype
for SNP1, and p; isthe allele frequency of SNPi. Since the adjusted beta coefficients are used,
the genotype data are recalculated by subtracting the allele frequency. The gene contribution
score reflects how much each gene contributes to the overall PRS, providing a measure of the

effect of each gene on diseaserisk. Additionally, we calculate the variance of CSg.;,; across the
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population to identify genes that significantly contribute to the PRS among the population. Note

that the variance of CSgene]. is equivalent to the heritability due to genej.

Attributed Value of Genes (Agene): This value identifies genes that increase disease risk by

comparing the contribution score of a gene to the average contribution score in the population:

Agene; = CSyene; — Cgene, (2)
where m is the mean contribution score of (,‘Sgenej across al individuals in the population.
The attributed value highlights genes with higher-than-average contributions to the PRS,
revealing those that significantly elevate disease risk within individuals. We note that Agenej IS

the SHAP valuein alinear modedl.

SNP Contribution Score (CSsy): This score quantifies the contribution of each SNP to the PRS
of anindividual. It is calculated by multiplying the effect size (3,.) and the number of risk alleles

(X)) that an individual carries for an SNP:

CSszvpl— = »éstd,i Gi, 3)
These calculations provide a detailed understanding of the PRS model. The gene contribution
score quantifies the overall impact of each gene on the PRS, whereas the attributed value
distinguishes genes with significant contributions compared with the population average, and the

SNP contribution score breaks down the gene impact into specific SNP effects.

Step 3: Visualization
The derived metrics from the PRS calculations are presented through a multilevel

visualization approach, including both the population level and the individual level. At the
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population level, Manhattan plots and tables are used to identify important genes on the basis of
the highest variance of CSg,.., Which highlights which genes or regions drive the PRS model.
At theindividual level, visualization includes Manhattan and LocusZoom-like plots, which show

which regions and SNPs drive high or low values of the PRS score of an individual.

I mplementation

The XPRS software is designed to be both user friendly and efficient. We developed a
web interface using Flask, enabling users to input data easily through a web page. The gene
contribution scores are calculated using C++ for optimal performance, whereas R is employed
for data preprocessing and visualization. This integrated approach ensures accessible and

efficient handling of complex computational tasks.

Execution

The XPRS platform was developed via a web interface with Fask, a lightweight WSGI
web application framework in Python. To start the XPRS platform, the following environment
variables need to be set:

export FLASK_APP=app
export FLASK _ENV=devel opment
export FLASK_DEBUG=1
flask run -p 5000

After executing these commands, a web browser will automatically open, launching the XPRS
interface, allowing users to interact with the platform easily, similar to any standard web

application.

10
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Computational Resour ces

When the XPRS platform runs on an AMD EPY C 7542 CPU with 8 cores, it takes
approximately 5.72 minutes to visualize the contribution of genes to the PRSs for 503 samples
with 80,855,722 variantsin a population-level analysis. The visualization of the impact of genes

and SNPsfor an individual is completed in approximately 2.54 seconds.

Results

Web Interface

XPRS comprises three main sections accessible from the left panel: Home, Tutorial, and
Run. The "Home" section provides a brief introduction to XPRS. The "Tutorial" section offers an
overview of the software and the input format to ensure that users can easily understand the
required data formats. In the "Run" section, there are four tabs for different genotype data input
Cases.

Case 1 considers a scenario in which users have alarge cohort genotype file, which can
be used for both population reference genotypes and genotypes of each individual for PRS
prediction. With the cohort genotype file, XPRS highlights risk genes in the population. Users
can conduct individual-level analysis by entering the individual ID (iid). The population-level
results are saved as ‘datards’, enabling usersto rerun analyses via previously processed data by
selecting Case 1-1 and uploading ‘ data.rds’, which reduces the time required for analysis.

For users without a cohort genotype file for reference but with individual genotype

filesonly, Case 2 allows the use of reference files from projects such as the 1000 Genomes

11
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Project. This setup allows individuals to upload their genotype data and obtain personalized
results and explanations. Like Case 1-1, Case 2-1 also allows users to upload the ‘data.rds’ file

from theinitial analysis, which is saved in the output file, to rerun the analysis efficiently.

Visualizing the contribution of genes or regionsto the PRSin the population

To identify which genes contribute the most to the PRS in a population, we visualized the
variance in the gene contribution scores. The input data for this analysis included genotype files
from the 1000 Genomes Project[ 18], with 503 samples and 80,855,722 variants from the East
Asian population. The PRS scoring file was obtained from the study by Kim et al. (2024), which
evaluated the PRS for type 2 diabetes mellitus in the Korean population[19]. Additionally, the

GWAS association file was obtained from the GWAS Catalog (https.//www.ebi.ac.uk/gwas/) for

type 2 diabetes.

Figure 2 presents a Manhattan plot and a table based on the analysis. The Manhattan plot
highlights the importance of risk genes associated with type 2 diabetes, where each point
represents a gene and its variance in gene contribution score—higher variance indicates greater
importance as arisk factor. The accompanying table lists significant genes, the number of
mapped SNPs per gene, and their respective variances. Notably, KCNQ1 and KCNQ1OT1 show

the greatest variances, underscoring their significant role in susceptibility to type 2 diabetes.

Visualizing theimpact of genesand SNPsin an individual
To trust the PRS results and effectively communicate with patients, it is crucial to
pinpoint which specific genes and SNPs contribute to the PRS of an individual. By visualizing

the attributed values of gene and SNP contribution scores for each individual, we to increase the

12
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explainability of the PRS score. The example individual, HG00464, is obtained from the 1000
Genomes Project. Figure 3 shows the individual PRS within the population via a density plot,
which shows the position of an individual relative to high or low genetic risk for type 2 diabetes.
Thisindividual has ahigh PRS, which isin thetop 2 percent of the population.

The figure includes a Manhattan plot and two tables to highlight specific genes that
elevate or reduce the PRS. For example, the CDKAL1 gene, a well-known T2D-associated
geneg[20], had the highest attributed value. If thisindividual had the population average
contribution value, the PRS score would be lower by 0.028. Additionally, the LocusZoom-like
plot displays the detailed visualization of SNP contributions within the gene. For example,
individual HG00464 carries 208 allelesin CDKAL1, which increases its PRS value. These
figures enable the explanation of the PRS of an individual at both the gene level and SNP level,
facilitating effective communication about their genetic risk.

On the other hand, in Supplementary Figure 1, the example individual, HG01816, has a
significantly lower PRS than the popul ation average does, indicating alower genetic
predisposition to type 2 diabetes. This figure also includes a Manhattan plot and table to
emphasi ze specific genes that contribute minimally or even reduce the PRS. For example,
KCNQL1, known as a diabetes-related gene] 21], had the lowest attributed value. Additionally, the
KCNQ1-AS1 gene, another gene associated with type 2 diabetes, had the second lowest

attributed value, further contributing to the reduced PRS of the individual.

Discussion

13


https://doi.org/10.1101/2024.10.24.24316050
http://creativecommons.org/licenses/by-nc/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2024.10.24.24316050; this version posted October 24, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC 4.0 International license .

The XPRS tool enhances the interpretability of PRS by providing detailed contribution
scores for individual genes and SNPs. By breaking down the PRS into its granular components,
XPRS improves the explainability of these scores. Notably, identifying which factors contribute
to genetic risk increases the reliability of predictions and strengthens user trust in the system.
Furthermore, this approach will aid in effectively communicating genetic risk factorsto key
stakeholders, including clinicians and patients, ensuring that complex genetic information is
more accessible and actionable in aclinical setting.

XPRS uses several visualization tools, including Manhattan plots and LocusZoom-like
plots. At the population level, Manhattan plots were used to identify key genes contributing to
disease susceptibility. For individual-level analysis, Manhattan plots show which genes
contribute to risk, and LocusZoom-like plots provide a detailed view of specific SNPs that
influence those genes. This visualization can effectively convey which SNPs or genes
specifically influence the PRS of an individual.

While numerous models, such as P+T, LDPred, PRS-CS, BayesR, and MegaPRS, focus
on congtructing PRS by aggregating genetic variantsto predict disease risk, the XPRStool is
distinct in its objective and functionality. Rather than constructing a PRS, XPRS is designed to
interpret and explain existing PRS models. This allows XPRS to be applied across various PRS
models, utilizing their scoring files to deliver insights at both the individual and population levels.
By elucidating the underlying genetic factors contributing to the PRS of an individual, XPRS
facilitates a more comprehensive understanding of genetic risk.

Despiteits strengths, XPRS has certain limitations. Although XPRS is a web-based tool,
privacy concerns require users to download and run the program on their own servers to ensure

data security and compliance with privacy regulations. This requirement, while crucial for
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safeguarding senditive information, may reduce the accessibility of the software. Additionally,
since PRS relies on SNP-leve predictions and X PRS interprets these predictions at the gene
level, accurate SNP-to-gene mapping is essential for tool effectiveness. To increase the accuracy
of SNP-to-gene mapping, we employed multiple strategies, including positional mapping,
combined SNP-to-gene approaches, and methods based on GWAS p values or SNP heritability.
However, SNP-to-gene mapping remains a complex and evolving field of research, which poses
ongoing challenges for the accurate interpretation of genetic risk.

Explanation is crucial for the successful deployment of prediction models, yet currently,
no explanation tools specifically designed for PRSs are available. Our research addresses this
gap, facilitating the broader adoption of PRSsin clinical settings by providing the necessary

interpretative tools to support informed decision-making.

Key Points

e Enhanced PRS Interpretability: XPRS decomposes polygenic risk scores into
genelregion and SNP contribution scores via Shapley additive explanations (SHAPS),
providing clear insghts into genetic factors influencing disease risk.

e Comprehensive Visualization Tools. The software offers multilevel visualizations,
including Manhattan plots and LocusZoom-like plots, for population and individual
analyses, facilitating effective communication between clinicians and patients.

e Integration with Genomic Resour ces. XPRS leverages genomic annotations such as
ref Gene and ¢S2G mapping to ensure precise mapping of SNPs to their corresponding

genes, increasing the reliability of PRS interpretations.
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e User-Friendly Platform: Featuring an accessible cloud-based web interface, XPRS

enables straightforward data input and interpretation.
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SNPs are mapped to genes based on their genomic positions using the RefGene annotation from

the UCSC Genome Browser (https://hgdownl oad.soe.ucsc.edu/gol denPath/hg38/database/). The

cS2G file utilized in this process was obtained from Zenodo

(https://zenodo.org/records/6354007).
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Figure Legends

Figure 1 Overview of eXplainable PRS (XPRS). This figure provides an overview of XPRS.

I nput: Genotype files, PRS scoring files, and GWAS association files. Step 1: Preprocessing
and variant mapping: SNPs are aligned and mapped to genes via positional mapping, combined
with SNP-to-gene mapping, and GWAS p value- or SNP heritability-based mapping. Step 2:
Calculation: After mapping, the polygenic risk score (PRS), gene contribution score (CSyene),
variance of the gene contribution score, attributed value of the gene (Agene), and SNP
contribution score (CSgyp) are computed in this regionizing step. Step 3: Visualization.
Population L evel: Manhattan plot of significant risk genes on the basis of variance in gene
contribution scores. Individual L evel: Density plots, gene-based Manhattan plots, and
LocusZoom-like plots of the PRSs of individuals and their specific genetic contributions.

Figure 2. Contribution of genesto Type 2 Diabetes PRSin the Asian population from the 1000
Genomes Project. Manhattan plot: Variance in gene contribution scores across chromosomes.
Higher variance indicates greater significance as arisk factor, with notable genes highlighted.
Table: Significant genes, including chromosomes (chr), gene names, start and end positions,
number of SNPs included in mapped genes, and variance in gene contribution scores.

Figure 3. Effect of gene and SNP on an individual PRS from the 1000 Genome Project for type
2 diabetes. High PRS sample 11D: HG00464. Density plot: PRS of the individual within the
population distribution, indicating their genetic risk position. Table: Top 10 risk genes and
bottom 10 nonrisk genes within the individual. Manhattan plot: Significant genes contributing
to the PRS of theindividual, with higher points representing greater impact. L ocusZoom-like
plot: Detailed SNP contributions for the top 10 risk genes and bottom 10 nonrisk genes

Supplementary Information

Supplementary Figure 1. Effect of gene and SNPin an individual PRS from the 1000 Genome
Project for type 2 diabetes. Low PRS sample |1 D: HG01816. Density plot: PRS of the individual
within the population distribution, indicating their genetic risk position. Table: Top 10 risk
genes and bottom 10 nonrisk genes within the individual. Manhattan plot: Significant genes
contributing to the PRS of the individual, with higher points representing greater impact.

L ocusZoom-like plot: Detailed SNP contributions for the top 10 risk genes and bottom 10
nonrisk genes
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Population level

Manhattan Plot

The Manhattan plot below shows the risk genes within the population. Red represents top 10 risk genes within the population.
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Table
The table below lists the top 10 risk genes within the population.
chr Genes Start End  # Snps Gene Variance
111 KCNQ1, KCNQ1*, KCNQ1OT1 2445007 2849105 263 3.338947e-04
2 11 NAP1L4,PHLDA2, SLC22A18AS 2840134 2861569 174 3.099982e-04
3 11 CARS1*, CARS1, CARS1-AS1 3000928 3040984 121 3.047988e-04
4 6 CDKAL1 20534456 21232403 208 1.805659e-04
5 9 CDKNZB, CDKN2A-DT 21967138 21967754 52 1.643480e-04
6 9  CDKN2B-AS1, CDKN2B-AS1* 21994790 22121094 94 1.623263e-04
7 6 E2F3, E2F3” 20401878 20493714 115 9.600729e-05
8 GRM8*, GRMB, GRMB**** 126438597 127252941 118 5.513454e-05
9 10 CAMKI1D,CAMK1D* CAMKID** 12349546 12826464 169 5.151204e-05
10 8 SAMD12, SAMD12** 118189467 118621963 43 4.906752e-05

Chr: Chromosome number where the gene is located. Genes: Names of the genes identified as risk genes. Start: Starting position of the
gene on the chromosome. End: Ending position of the gene on the chromosome. #_Snps: Number of SNPs (Single Nucleotide
Polymorphisms) included in the analysis for the gene. Gene_Variance: Variance of the Gene Contribution Score.
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