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Abstract 
 

The polygenic risk score (PRS) is an important method for assessing genetic 

susceptibility to diseases; however, its clinical utility is limited by a lack of interpretability tools. 

To address this problem, we introduce eXplainable PRS (XPRS), an interpretation and 

visualization tool that decomposes PRSs into genes/regions and single nucleotide polymorphism 

(SNP) contribution scores via Shapley additive explanations (SHAPs), which provide insights 

into specific genes and SNPs that significantly contribute to the PRS of an individual. This 

software features a multilevel visualization approach, including Manhattan plots, LocusZoom-

like plots and tables at the population and individual levels, to highlight important genes and 

SNPs. By implementing with a user-friendly web interface, XPRS allows for straightforward 

data input and interpretation. By bridging the gap between complex genetic data and actionable 

clinical insights, XPRS can improve communication between clinicians and patients. 
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Introduction 

 The polygenic risk score (PRS) summarizes the genetic contribution to complex traits by 

calculating a weighted sum of risk alleles that an individual possesses. The PRS has recently 

emerged as a promising tool for improving human health by providing insights into the 

susceptibility of an individual to various diseases[1-4]. Numerous PRS construction methods, 

including P+T[5], LDPred[6], PRS-CS[7], BayesR[8] and MegaPRS[9], have been developed. 

Additionally, recent advancements in cross-ancestry methods[10],[11],[12] and pseudo-R-based 

evaluation approaches[13] have further improved the utility of PRSs. 

Explainability is crucial for the application of machine learning models, and this should 

be equally true for PRSs. Explaining which factors contribute to the predicted risk can increase 

the reliability of the predictions and help users trust the machine learning system[14-16]. In 

addition, this approach can facilitate communication between key stakeholders, including 

clinicians and patients. In this context, explainable artificial intelligence (XAI) methods have 

been extensively developed. However, no specific methods or tools are designed for the PRS, 

which can limit its application in clinical settings. The development of XAI tools tailored for 

PRSs is essential to increase their effectiveness. 

We introduce eXplainable PRS (XPRS), a software designed to increase the 

explainability of PRSs by decomposing them into genes/regions and variant contribution scores. 

Although the PRS model is typically built as a linear model, in which the weights for each 

genetic variant are known, interpreting PRSs remains challenging owing to the involvement of 

hundreds of thousands or even millions of genetic variants. The challenge is further compounded 

by the notion that the functions of most genetic variants remain unknown, making variant-level 

interpretation particularly difficult. XPRS addresses this by mapping variants to genes or regions. 
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Since genes are fundamental biological units, this gene-level approach increases the 

interpretability of PRSs. XPRS calculates the attributed value of each gene or region via Shapley 

additive explanations (SHAPs), offering detailed insights into which genes significantly 

contribute to the PRS of an individual. Additionally, our approach assesses the contribution of 

each gene at the population level, further aiding in the overall interpretation of the PRS model. 

Visualization is a critical component of explainability. XPRS incorporates a multilevel 

visualization approach. At the population level, Manhattan plots and tables highlight important 

genes in the PRS on the basis of the highest variance in gene contribution scores. At the 

individual level, XPRS visualizes attributed values of genes to pinpoint risk genes that drive the 

PRS value for a given individual. Additionally, XPRS employs LocusZoom-like plots to show 

which genetic variant influences these genes, providing a detailed view of the genetic factors 

contributing to an individual's risk profile. 

 

Methods 

Figure 1 shows an overview of XPRS, which consists of mandatory inputs and three 

main processes. 

 

Inputs 

Our software, XPRS, requires the upload of three mandatory input files: a genotype file, a 

PRS scoring file, and a GWAS association file. The genotype file must be in binary PLINK 

format. The PRS scoring file, which is necessary for calculating the gene and single nucleotide 

polymorphism (SNP) contribution scores, contains information on SNPs, including SNP IDs, 

effect alleles, and beta coefficients corresponding to specific diseases. The file is available for 
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download from the PGS catalog (https://www.pgscatalog.org/) or can be generated via GWAS 

summary statistics and reference files with various PRS construction methods. If users generate 

the PRS scoring file via PRS construction methods, they can optionally use GWAS summary 

statistics to incorporate GWAS p values for more accurate mapping information. 

The GWAS association files contain a curated list of genes that have shown significant 

associations with specific diseases in published GWASs. Using the GWAS association file 

enables our analysis to focus selectively on significant genes, thereby streamlining the 

interpretative process by filtering out genes that do not meet established significance thresholds. 

At the population level of visualization, the GWAS association file ensures that only significant 

genes are shown, instead of all genes in a region, providing a clearer representation of risk genes. 

The concept of 'regions' will be explained in the subsequent steps of our methodology. This file 

can be downloaded from the GWAS Catalog (https://www.ebi.ac.uk/gwas/). 

 

Parameters 

XPRS allows the modification of three key parameters to optimize computational efficiency 

and accuracy: 

• CPU nodes: Users can adjust the number of CPU nodes, with a default setting of 8. When 

SNPs are mapped to genes, we use the parallel package in R for parallel computing to 

achieve faster computation. 

• Top SNP heritability percentage: Users can specify that the percentage of SNPs with the 

highest heritability should be included in the analysis. This selection is crucial for 

computational efficiency and noise reduction. By default, if the number of SNPs is less 

than 100,000, all the SNPs are included. If it exceeds this number, users can determine 
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the optimal percentage of top SNPs to include, whereas the default is 50% inclusion. If 

the default 50% inclusion results in fewer than 100,000 SNPs, XPRS automatically 

includes a minimum of 100,000 SNPs to ensure sufficient coverage. 

• Window size: The default genomic window size is 200 kb, which is used when SNPs are 

mapped to genes through positional mapping on the basis of an annotation file. 

These parameters increase the flexibility and performance of XPRS, allowing for efficient 

computation and improved interpretation of risk genes and SNPs. 

 

Three main processes 

XPRS consists of three main steps (Figure 1). The first step includes aligning SNPs 

across data sources, mapping them to corresponding genes, standardizing the PRS, and adjusting 

beta coefficients accordingly. The second step involves calculating the gene contribution score, 

the attributed value of genes, and the SNP contribution score to accurately determine which 

genes or SNPs contribute to an increased PRS. The final step involves visualization to elucidate 

disease susceptibility at both the individual level and population level. 

 

Step 1: Preprocessing and Variant Mapping 

 Initial preprocessing involves SNP alignment between the genotype file and the PRS 

scoring file to ensure the correct inclusion of variants in the PRS. This process includes making 

all beta values positive and correspondingly switching the A1 and A2 allele positions to ensure 

that the effect sizes are consistently oriented. The raw PRS is calculated as a weighted sum of 

risk alleles via positive beta coefficients. The PRS is then standardized to achieve a mean of zero 

and a standard deviation of one. The beta coefficients are subsequently adjusted on the basis of 
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the standardized PRS to ensure that the contribution scores derived in subsequent steps 

accurately reflect the standardized risk contributions. This step is followed by a three-phase gene 

mapping protocol: 

1. Positional mapping: We mapped SNPs to genes on the basis of their genomic position 

via refGene annotation (https://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/). In cases 

where a gene exhibits multiple start and end positions owing to alternative splicing or isoforms, 

distinct start�end coordinates are denoted with asterisks (e.g., Gene*, Gene**, and Gene***). 

2. Combining SNP-to-Gene (cS2G) mapping[17]: This employs several linkage 

methodologies, including expression quantitative trait loci (eQTL) analysis, enhancer�gene 

interactions, and promoter capture Hi-C (PCHI-C) techniques, to map SNPs to genes. The cS2G 

file used for this step was downloaded from https://zenodo.org/records/6354007. 

3. GWAS p value or SNP heritability-based mapping: For SNPs not mapped in the 

previous two steps, we use GWAS p value significance or SNP heritability estimates. When 

GWAS summary statistics are provided, we identify the index SNP with the lowest p value first, 

assigning neighboring SNPs to the index SNP to form a region within a predefined genomic 

window, typically 500 kb, and continue this process until all SNPs are mapped. If GWAS 

summary statistics are not available, we calculate SNP heritability via the equation 

�����������	 
  ��  ���  �1 � ����, where β is the effect size from the PRS model and 

MAF is the minor allele frequency. The SNPs with the highest heritability are mapped first, 

following the same regional assignment process until all the SNPs are mapped. 

 Following the mapping protocol, the analysis incorporates a 'regionizing' step to increase 

computational efficiency and focus on significant risk genes. This process consolidates genes 

with overlapping SNP profiles into distinct regions on the basis of shared SNP content. For 
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example, genes with identical SNP compositions are combined and calculated as single entities. 

In cases in which genes share a significant proportion of SNPs (e.g., two-thirds overlap), they are 

grouped into the same region. Within each region, we identified the gene with the highest 

variance in the gene contribution score to represent the risk gene. This clustering allows us to 

highlight the most influential genes, ensuring a more accurate and specific risk assessment by 

reducing redundancy and focusing on the top risk genes. 

 

Step 2: Calculation of the contribution score and attributed value 

In step 2, we decompose the PRS into finer components for increased interpretability: 

gene contribution scores (������), SNP contribution scores (�����), and the attributed values of 

genes. 

Gene Contribution Score (CSgene) and its variance: This score quantifies how much each gene 

contributes to increasing the individual PRS and is calculated by summing the weighted risk 

alleles mapped to genes: 

�������

  � ���	
,�

 � ������

  ��
�           �1� 

�����  ��
� 
 �� � ��  

where ���	
,�  is the standardized effect size (i.e., weight) of SNP i, ��  is the individual genotype 

for SNP i, and ��  is the allele frequency of SNP i. Since the adjusted beta coefficients are used, 

the genotype data are recalculated by subtracting the allele frequency. The gene contribution 

score reflects how much each gene contributes to the overall PRS, providing a measure of the 

effect of each gene on disease risk. Additionally, we calculate the variance of �������
 across the 
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population to identify genes that significantly contribute to the PRS among the population. Note 

that the variance of �������
 is equivalent to the heritability due to gene j. 

Attributed Value of Genes (Agene): This value identifies genes that increase disease risk by 

comparing the contribution score of a gene to the average contribution score in the population: 

     ������

 �������

� �������
���������               �2�   

where �������
��������� is the mean contribution score of �������

 across all individuals in the population. 

The attributed value highlights genes with higher-than-average contributions to the PRS, 

revealing those that significantly elevate disease risk within individuals. We note that ������
 is 

the SHAP value in a linear model. 

SNP Contribution Score (CSsnp): This score quantifies the contribution of each SNP to the PRS 

of an individual. It is calculated by multiplying the effect size (���) and the number of risk alleles 

(��) that an individual carries for an SNP: 

       ������

  ���	
,�   ��

�               �3� 

These calculations provide a detailed understanding of the PRS model. The gene contribution 

score quantifies the overall impact of each gene on the PRS, whereas the attributed value 

distinguishes genes with significant contributions compared with the population average, and the 

SNP contribution score breaks down the gene impact into specific SNP effects. 

 

Step 3: Visualization 

The derived metrics from the PRS calculations are presented through a multilevel 

visualization approach, including both the population level and the individual level. At the 
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population level, Manhattan plots and tables are used to identify important genes on the basis of 

the highest variance of ������., which highlights which genes or regions drive the PRS model. 

At the individual level, visualization includes Manhattan and LocusZoom-like plots, which show 

which regions and SNPs drive high or low values of the PRS score of an individual. 

 

Implementation 

The XPRS software is designed to be both user friendly and efficient. We developed a 

web interface using Flask, enabling users to input data easily through a web page. The gene 

contribution scores are calculated using C++ for optimal performance, whereas R is employed 

for data preprocessing and visualization. This integrated approach ensures accessible and 

efficient handling of complex computational tasks. 

 

Execution 

The XPRS platform was developed via a web interface with Flask, a lightweight WSGI 

web application framework in Python. To start the XPRS platform, the following environment 

variables need to be set: 

export FLASK_APP=app 

export FLASK_ENV=development 

export FLASK_DEBUG=1 

flask run -p 5000 

After executing these commands, a web browser will automatically open, launching the XPRS 

interface, allowing users to interact with the platform easily, similar to any standard web 

application. 
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Computational Resources 

When the XPRS platform runs on an AMD EPYC 7542 CPU with 8 cores, it takes 

approximately 5.72 minutes to visualize the contribution of genes to the PRSs for 503 samples 

with 80,855,722 variants in a population-level analysis. The visualization of the impact of genes 

and SNPs for an individual is completed in approximately 2.54 seconds. 

 

 

Results 

Web Interface 

XPRS comprises three main sections accessible from the left panel: Home, Tutorial, and 

Run. The "Home" section provides a brief introduction to XPRS. The "Tutorial" section offers an 

overview of the software and the input format to ensure that users can easily understand the 

required data formats. In the "Run" section, there are four tabs for different genotype data input 

cases. 

Case 1 considers a scenario in which users have a large cohort genotype file, which can 

be used for both population reference genotypes and genotypes of each individual for PRS 

prediction. With the cohort genotype file, XPRS highlights risk genes in the population. Users 

can conduct individual-level analysis by entering the individual ID (iid). The population-level 

results are saved as ‘data.rds’, enabling users to rerun analyses via previously processed data by 

selecting Case 1-1 and uploading ‘data.rds’, which reduces the time required for analysis. 

 For users without a cohort genotype file for reference but with individual genotype 

files only, Case 2 allows the use of reference files from projects such as the 1000 Genomes 
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Project. This setup allows individuals to upload their genotype data and obtain personalized 

results and explanations. Like Case 1-1, Case 2-1 also allows users to upload the ‘data.rds’ file 

from the initial analysis, which is saved in the output file, to rerun the analysis efficiently. 

 

Visualizing the contribution of genes or regions to the PRS in the population 
 

To identify which genes contribute the most to the PRS in a population, we visualized the 

variance in the gene contribution scores. The input data for this analysis included genotype files 

from the 1000 Genomes Project[18], with 503 samples and 80,855,722 variants from the East 

Asian population. The PRS scoring file was obtained from the study by Kim et al. (2024), which 

evaluated the PRS for type 2 diabetes mellitus in the Korean population[19]. Additionally, the 

GWAS association file was obtained from the GWAS Catalog (https://www.ebi.ac.uk/gwas/) for 

type 2 diabetes. 

Figure 2 presents a Manhattan plot and a table based on the analysis. The Manhattan plot 

highlights the importance of risk genes associated with type 2 diabetes, where each point 

represents a gene and its variance in gene contribution score—higher variance indicates greater 

importance as a risk factor. The accompanying table lists significant genes, the number of 

mapped SNPs per gene, and their respective variances. Notably, KCNQ1 and KCNQ1OT1 show 

the greatest variances, underscoring their significant role in susceptibility to type 2 diabetes. 

 

Visualizing the impact of genes and SNPs in an individual   

To trust the PRS results and effectively communicate with patients, it is crucial to 

pinpoint which specific genes and SNPs contribute to the PRS of an individual. By visualizing 

the attributed values of gene and SNP contribution scores for each individual, we to increase the 
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explainability of the PRS score. The example individual, HG00464, is obtained from the 1000 

Genomes Project. Figure 3 shows the individual PRS within the population via a density plot, 

which shows the position of an individual relative to high or low genetic risk for type 2 diabetes. 

This individual has a high PRS, which is in the top 2 percent of the population. 

The figure includes a Manhattan plot and two tables to highlight specific genes that 

elevate or reduce the PRS. For example, the CDKAL1 gene, a well-known T2D-associated 

gene[20], had the highest attributed value. If this individual had the population average 

contribution value, the PRS score would be lower by 0.028. Additionally, the LocusZoom-like 

plot displays the detailed visualization of SNP contributions within the gene. For example, 

individual HG00464 carries 208 alleles in CDKAL1, which increases its PRS value. These 

figures enable the explanation of the PRS of an individual at both the gene level and SNP level, 

facilitating effective communication about their genetic risk. 

On the other hand, in Supplementary Figure 1, the example individual, HG01816, has a 

significantly lower PRS than the population average does, indicating a lower genetic 

predisposition to type 2 diabetes. This figure also includes a Manhattan plot and table to 

emphasize specific genes that contribute minimally or even reduce the PRS. For example, 

KCNQ1, known as a diabetes-related gene[21], had the lowest attributed value. Additionally, the 

KCNQ1-AS1 gene, another gene associated with type 2 diabetes, had the second lowest 

attributed value, further contributing to the reduced PRS of the individual. 

 

 

Discussion 
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The XPRS tool enhances the interpretability of PRS by providing detailed contribution 

scores for individual genes and SNPs. By breaking down the PRS into its granular components, 

XPRS improves the explainability of these scores. Notably, identifying which factors contribute 

to genetic risk increases the reliability of predictions and strengthens user trust in the system. 

Furthermore, this approach will aid in effectively communicating genetic risk factors to key 

stakeholders, including clinicians and patients, ensuring that complex genetic information is 

more accessible and actionable in a clinical setting. 

XPRS uses several visualization tools, including Manhattan plots and LocusZoom-like 

plots. At the population level, Manhattan plots were used to identify key genes contributing to 

disease susceptibility. For individual-level analysis, Manhattan plots show which genes 

contribute to risk, and LocusZoom-like plots provide a detailed view of specific SNPs that 

influence those genes. This visualization can effectively convey which SNPs or genes 

specifically influence the PRS of an individual. 

While numerous models, such as P+T, LDPred, PRS-CS, BayesR, and MegaPRS, focus 

on constructing PRS by aggregating genetic variants to predict disease risk, the XPRS tool is 

distinct in its objective and functionality. Rather than constructing a PRS, XPRS is designed to 

interpret and explain existing PRS models. This allows XPRS to be applied across various PRS 

models, utilizing their scoring files to deliver insights at both the individual and population levels. 

By elucidating the underlying genetic factors contributing to the PRS of an individual, XPRS 

facilitates a more comprehensive understanding of genetic risk. 

Despite its strengths, XPRS has certain limitations. Although XPRS is a web-based tool, 

privacy concerns require users to download and run the program on their own servers to ensure 

data security and compliance with privacy regulations. This requirement, while crucial for 
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safeguarding sensitive information, may reduce the accessibility of the software. Additionally, 

since PRS relies on SNP-level predictions and XPRS interprets these predictions at the gene 

level, accurate SNP-to-gene mapping is essential for tool effectiveness. To increase the accuracy 

of SNP-to-gene mapping, we employed multiple strategies, including positional mapping, 

combined SNP-to-gene approaches, and methods based on GWAS p values or SNP heritability. 

However, SNP-to-gene mapping remains a complex and evolving field of research, which poses 

ongoing challenges for the accurate interpretation of genetic risk. 

Explanation is crucial for the successful deployment of prediction models, yet currently, 

no explanation tools specifically designed for PRSs are available. Our research addresses this 

gap, facilitating the broader adoption of PRSs in clinical settings by providing the necessary 

interpretative tools to support informed decision-making. 

 

Key Points 

• Enhanced PRS Interpretability: XPRS decomposes polygenic risk scores into 

gene/region and SNP contribution scores via Shapley additive explanations (SHAPs), 

providing clear insights into genetic factors influencing disease risk. 

• Comprehensive Visualization Tools: The software offers multilevel visualizations, 

including Manhattan plots and LocusZoom-like plots, for population and individual 

analyses, facilitating effective communication between clinicians and patients. 

• Integration with Genomic Resources: XPRS leverages genomic annotations such as 

refGene and cS2G mapping to ensure precise mapping of SNPs to their corresponding 

genes, increasing the reliability of PRS interpretations. 
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• User-Friendly Platform: Featuring an accessible cloud-based web interface, XPRS 

enables straightforward data input and interpretation. 
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SNPs are mapped to genes based on their genomic positions using the RefGene annotation from 

the UCSC Genome Browser (https://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/). The 

cS2G file utilized in this process was obtained from Zenodo 

(https://zenodo.org/records/6354007). 
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Figure Legends 
 
Figure 1 Overview of eXplainable PRS (XPRS). This figure provides an overview of XPRS. 
Input: Genotype files, PRS scoring files, and GWAS association files. Step 1: Preprocessing 
and variant mapping: SNPs are aligned and mapped to genes via positional mapping, combined 
with SNP-to-gene mapping, and GWAS p value- or SNP heritability-based mapping. Step 2: 
Calculation: After mapping, the polygenic risk score (PRS), gene contribution score (CSgene), 
variance of the gene contribution score, attributed value of the gene (Agene), and SNP 
contribution score (CSSNP) are computed in this regionizing step. Step 3: Visualization. 
Population Level: Manhattan plot of significant risk genes on the basis of variance in gene 
contribution scores. Individual Level: Density plots, gene-based Manhattan plots, and 
LocusZoom-like plots of the PRSs of individuals and their specific genetic contributions. 
 
Figure 2. Contribution of genes to Type 2 Diabetes PRS in the Asian population from the 1000 
Genomes Project. Manhattan plot: Variance in gene contribution scores across chromosomes. 
Higher variance indicates greater significance as a risk factor, with notable genes highlighted. 
Table: Significant genes, including chromosomes (chr), gene names, start and end positions, 
number of SNPs included in mapped genes, and variance in gene contribution scores. 

 

Figure 3. Effect of gene and SNP on an individual PRS from the 1000 Genome Project for type 
2 diabetes. High PRS sample IID: HG00464. Density plot: PRS of the individual within the 
population distribution, indicating their genetic risk position. Table: Top 10 risk genes and 
bottom 10 nonrisk genes within the individual. Manhattan plot: Significant genes contributing 
to the PRS of the individual, with higher points representing greater impact. LocusZoom-like 
plot: Detailed SNP contributions for the top 10 risk genes and bottom 10 nonrisk genes 
 
Supplementary Information 
 
Supplementary Figure 1. Effect of gene and SNP in an individual PRS from the 1000 Genome 
Project for type 2 diabetes. Low PRS sample IID: HG01816. Density plot: PRS of the individual 
within the population distribution, indicating their genetic risk position. Table: Top 10 risk 
genes and bottom 10 nonrisk genes within the individual. Manhattan plot: Significant genes 
contributing to the PRS of the individual, with higher points representing greater impact. 
LocusZoom-like plot: Detailed SNP contributions for the top 10 risk genes and bottom 10 
nonrisk genes 
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