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Abstract 

We developed a novel machine-learning artificial intelligence (AI) approach to predict general health and food-

intake parameters named Transcriptome-driven Health-status Transversal-predictor Analysis (THTA) with 

relevance for diabesity markers based on a mathematics-driven and non-transcriptomic biomarker driven 

approach. The prediction was based on values from food consumption, dietary lipids and their bioactive 

metabolites, peripheral blood mononuclear cells (PBMC) mRNA-based transcriptome signatures, magnetic 

resonance imaging (MRI), energy metabolism measurements, microbiome analyses, and baseline clinical 

parameters in a cohort of 72 subjects. Our novel machine learning approach included transcriptome data from 

PBMCs as a “one-method” approach to predict 77 general health-status markers for broad stratification of the 

diabesity phenotype, which are usually necessitating measurements using 16 different methods. The PBMC 

transcriptome was used to determine these selected 77 basic and background health-status markers in a 

transversal-predictor establishment group with very high accuracy (Pearson correlations are r = 0,94 ranging 

from 0,88 to 0,98). These collected variables offer a valuable indication to identify which individual factor(s) are 

mainly targeting diabesity. Based on the “establishment group“ prediction approach a further “confirmation 

group” prediction approach was performed with a predictive potential for these 77 variables of r = 0,62 

(ranging from 0,30 to 0,99). This “one-method” approach allows monitoring of a large number of health-status 

variables with relevance for diabesity simultaneously and may enable monitoring of therapeutic and preventive 

strategies. In summary, this novel technique based on PBMC transcriptomics from human blood offers 

prediction of a large range of health-related markers, which independently would be obtained in different 

clinical / research centres at a much higher price. 

 

Key words: diabesity, transcriptomic, lipidomics, metabolomics, predictors, machine learning, regression 

models, artificial intelligence. 
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Introduction 

Diabesity is a multifaceted disease often developing from obesity towards a diabetic-obesity phenotype (Farag 

and Gaballa 2011; M. I. Schmidt and Duncan 2003). Many simultaneous lifestyle factors may cause the 

transition to diabesity like a general unhealthy lifestyle including tobacco smoking, poor sleep habits, high 

alcohol consumption, low physical activity, and an unhealthy diet (Altobelli et al. 2020; Mozaffarian et al. 2009), 

with further contributions from a hereditary component which predisposes to diabesity (Goyal et al. 2023). 

Many dysfunctions in this condition are related to signalling in the glucose, insulin and fatty acids pathways as 

well as in the inflammation / immune system (Aronoff et al. 2004; M. I. Schmidt and Duncan 2003). 

 

Machine learning artificial intelligence (AI) has been developed to monitor, classify, and predict diabetes 

(Oikonomou and Khera 2023). These predictive models can be used to study risk factors of type 2 diabetes 

(Schwarz et al. 2009; Yu et al. 2010; Naz and Ahuja 2020; Heikes et al. 2008) or predict diabetes (Razavian et al. 

2015; Zou et al. 2018; Nguyen et al. 2019). However, small sample sizes and biased selection of risk factors may 

lead to predictive models which perform poorly (Lai et al. 2019). Some models use the PBMC transcriptome, in 

addition to other analytical methods, though most research focuses on a ‘yes/no’ answer for diabetes based on 

a set threshold of clinical diabetes markers (Tonyan et al. 2022). Other approaches for diabesity prediction 

employ polymorphisms of selected diabesity-relevant genes to indicate increased diabesity prevalence (Witka 

et al. 2019).  

 

The main recommendation to reduce the burden of diabesity is lifestyle change, with various strategies 

(Knowler et al. 2002) and methods to both monitor and optimize lifestyle choices. However, long-term lifestyle 

alterations can be challenging and compliance can be poor (Aladhab and Alabbood 2019), while unfortunately 

quick and easy drug treatment is often preferred (Garedow et al. 2023). Lifestyle interventions often include an 

“all-at-once-interventions-strategy”, which are perceived as quite drastic, uncomfortable and non-preferred by 

patients and high-risk individuals (S. K. Schmidt et al. 2020). A more detailed evaluation of which selective 

lifestyle intervention should be altered while having an acceptable modified lifestyle of high-risk individuals will 

probably result in higher compliance and better outcomes. Selected lifestyle interventions should be chosen 

when many variables are evaluated at once and can be offered as a “one-method” predictor approach.  
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A potential approach to identifying clinical and health-status markers is based on the PBMC transcriptome 

(Costa et al. 2021; Elliott et al. 2014). Previous metabolic phenotyping have shown that the PBMC 

transcriptome can reflect environmental stress (Reynés et al. 2015) or the effect of specific diets (Bouwens, 

Afman, and Müller 2007; Caimari et al. 2010; Oliver et al. 2013; de Mello et al. 2012). For clinical diagnostics 

the PBMC transcriptome can reflect various pathologies (Baine et al. 2011; Chang et al. 2013), and identify 

biomarkers of obesity (Caimari et al. 2010; Oliver et al. 2013; Manoel-Caetano et al. 2012). It was previously 

shown that transcriptomic data from PBMCs (Rodney A. Rhoades PhD 2017) reflect the current metabolic and 

physiological state (Burczynski and Dorner 2006; Liew et al. 2006). 

 

The purpose of our study was to develop models as a “one-method” machine-learning approach for 

determining basic and background variables like food intake and general health-status markers relevant for 

diabesity. Our strategy does not start by using known transcriptomic biomarkers / target genes, which are 

known to be involved in diabesity, but instead focusing on the categorization of the human organism as a 

“simple” holistic mathematical matrix. We performed a full PBMC transcriptome analysis in 72 volunteers from 

the EU FP7 NUTRITECH cohort, providing the largest known number of variables per person of any known 

performed clinical intervention study with additional 10,522 analysed gene transcripts detected in PBMCs 

being over quantification limit. In total 780 variables were measured by 16 different techniques, including food 

consumption, nutritional lipids, and their bioactive metabolites, magnetic resonance imaging (MRI), energy 

metabolism measures, microbiome analyses, and clinical biochemistry (Rundle et al. 2023) in the Nutritech 

study, while from these 780 measurements 77 variables as the most diabesity-relevant markers were selected 

for further analysis.  

 

 

Materials and methods 

The Nutritech project encompasses comprehensive phenotyping, which includes measurements related to diet, 

physical activity, body composition, blood biomarkers, and metabolomics, yielding 780 measurements per 

individual.  
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Selection of diabesity-related health-status variables for further predictor analysis 

To facilitate initial testing of our predictive capabilities, we had to pare this down to a more manageable 

number of variables, a step taken prior to any machine learning. Our goal was to select a variety of variables 

linked to the development of a diabesity phenotype. We also attempted to predict variables representative of 

the wide range of phenotyping methods employed in the Nutritech protocol, including routinely collected 

physical and clinical biochemical measures, to more sophisticated and expensive analyses, including MRI, 

microbiome analyses, and multiple lipidomic analyses for a larger range of lipids. In total 28 self-reported 

dietary intake measures were included relating to plant or animal-sources, sweets/snacks and alcohol (details 

for categorization added in supplementary material). Moreover, we included routine health assessment 

measures like blood pressure and physical body measurements based on MRI (fat mass and liver fat), 

calorimetry, and gut microbiome analyses. Further out of total 780 variables, 77 selected variables per person 

were chosen with major diabesity-relevance for further targeted analysis, measured by 16 different techniques, 

including simple methods (eg. body weight and blood pressure; methods 9 and 15). Some variables required 

advanced and expensive techniques, and are available only at specialized health care facilities or a handful of 

service laboratories worldwide (methods 2—6; 11-14). 

 

Dataset 

Data from the EU FP7 NUTRITECH study (Rundle et al. 2023) were used to develop regression models. The EU 

FP7 NUTRITECH dataset includes a human cohort of 72 subjects for whom 77 different variables out of 780 

available variables and additional PBMC transcriptome data of 10,522 individually expressed genes were 

determined as described previously (Rundle et al. 2023; Fiamoncini et al. 2018). The cohort was divided in two 

groups: 32 subjects in the control group and 40 subjects in the intervention group. Data was collected before 

intervention as well as 13 weeks later after intervention in all participants. The data from the “before 

intervention group” were used for the “establishment group” model development and evaluation, while the 

data from the “after intervention group” were used for the “confirmation group” approach. 

 

Modelling and evaluation 
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A) “Establishment group” (EST) for a transversal prediction analysis 

A transversal prediction analysis usually describes the analysis of a larger range of variables which can be 

predicted based on using one broader, more complex set of variables originating from one method, which is 

usually a transcriptome analysis. This prediction analysis towards obtaining transversal predictors from one 

variable is usually done in a group of individuals at the same time in an “establishment group”. 

 

We developed different regression models like the Random Forest (Liaw and Wiener 2002), Elastic Net 

(Friedman, Hastie, and Tibshirani 2010), and multiple Linear Regression (Hebbali 2024) to evaluate the best 

prediction model for a broader range of variables using the PBMC transcriptomic data. For each regression 

analysis, an individual model was developed for each of the 77 variables using data from the “establishment 

group”.  

 

The following procedure was applied for each regression method: Thirty separate models were developed for 

each variable. For each model, the data set was randomly split into training and validation sets. The training 

data set included data from two-thirds of the subjects, and one-third was used for validation. Spearman 

correlation coefficients were used to select predictors from the training data set. Of the 10,522 transcriptomic 

variables, a maximum of 50 transcripts were allowed to select predictors. mRNAs with the highest absolute 

correlation coefficient were selected. Regression was used to create the model. Training of the model with the 

Elastic Net was performed with cross-validation (with ten convolutions) and optimization of the 

hyperparameters. No cross-validation and optimization were performed for Random Forest and multiple Linear 

Regression. Multiple Linear Regression models were built by the stepwise regression function in the R package 

‘olsrr’ (Hebbali 2024). The model's root mean square error and the Pearson correlation coefficient (R) were 

used as evaluation metrics. After training, models were evaluated using the data from the “establishment 

group”. Performance of the models on the training data and the whole dataset were determined using the 

Pearson correlation coefficient. Data analyses and model development were performed in R (version 4.2.2) and 

the R package 'caret' (version 6.0-94) (Kuhn 2008). Random forest models in the R package ‘randomForest’ 

(version 4.7.1.1) (Liaw and Wiener 2002), Elastic net models applied the R package 'glmnet' (version 4.1.8) 

(Friedman, Hastie, and Tibshirani 2010) and multiple linear regression in the R package ‘olsrr’ (version 0.6.0) 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 24, 2024. ; https://doi.org/10.1101/2024.10.24.24316039doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.24.24316039


7 

 

(Hebbali 2024). Visualisation of the results was done with the R package 'ggplot2' (version 4.1.8) (Wickham 

2016). 

 

B) Applying predictors from the “establishment group” (EST) for a “confirmation group” prediction (CON) 

analysis 

After developing the regression models in the “establishment group” (EST), the models for predicting the 

outcome were applied to data of a group analysed not at the same time point, named here the “confirmation 

group”. Predictive performance was measured using the root mean square error and the Pearson correlation 

coefficient. Of the 30 models established for each variable, the model with the best performance on the 

“confirmation group” was selected as the final model. Predictive performance of the final models was 

visualized by comparing the observed values with predicted values and by comparing the overall predictive 

performance between the three regression methods of Random Forest, Elastic Net, and multiple Linear 

Regression models. 

 

 

Results 

Predictive models are based on machine-learning offer an alternative to existing methods for determining 

variables with relevance for general health, food intake and targeted in our case for diabesity. One application 

of this transversal-prediction model is for monitoring individual health-status variables with a novel 

methodology using one blood sample, followed by a simple highly standardized transcriptomic analysis and a 

mathematical evaluation instead of using several different complex methodologies.  

 

The first step was the transfer predictor analysis in the “establishment group” starting from the PBMC-

transcriptome with 10,522 analysed mRNA transcripts detected, which were analysed being over the 

quantification limit (van Bussel et al. 2019), using 77 out of 780 variables including food intake and health-

related variables for 72 volunteers.  
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Three different mathematical methods for prediction of 77 variables in the “establishment group” approach 

were used starting with the Radom Forest-based model (RF) resulting in an average of r = 0,94 ranging from 

0,88 to 0,98. For prediction of the food diary data (Table 1, variables 1-28) in the transversal prediction 

approach predictor correlations were in the range of r = 0,92 - 0,97 (EST-RF) offering the first indirect 

calculation of food diary data. Especially summarising data like animal-based food (r = 0,94), plant-based food 

(r = 0,94), snacks / sweets (r = 0,96), general healthy food (r = 95) and general non-healthy food (r = 0,97), offer 

a precise predictor calculation (Figure 1). These predictor correlations are highly relevant to evaluate newly but 

also already existing large scale databases with PBMC transcriptomic data included but without additional food 

diary data collection.  

 

The second sets of parameters to be determined were blood lipids (Table 1, variables 29 – 42). The models 

performed well for variables like the sum of carotenoids (sCARO-sum, variable 33) r = 0,96, sum of saturated 

fatty acids (s-sum SAFAs) r = 0,94, sum of monounsaturated fatty acids (s-sum MAFAs) r = 0,93, sum of n3-

polyunsaturated fatty acids (s-sum n3-PUFAs) r = 0,93 and sum of n6-polyunsaturated fatty acids (s-sum n6-

PUFAs) r = 0,94, sum of pro-inflammatory lipid-mediators (s-sum pro-infl.-lipid mediators) r = 0,93 and sum of 

pro-resolving lipid-mediators (s-sum pro-res.-lipid mediators) r = 0,88 are precise predictor calculations of an 

indirect quantification of the individual lipid levels. These predictor calculations are highly relevant to evaluate 

newly but also already existing large scale databases with PBMC transcriptomic included to further predict 

these specific lipids in individuals which are usually are just available using expensive and highly laborious 

blood lipid analyses. 

 

The third set of new variables (Table 1, variables 43 – 47), which indicates transcriptome-based nuclear 

hormone selective signalling pathways including RXR- (r = 0,98), RAR- (r = 0,97), PPAR- (r = 0,97), VDR- (r = 0,97) 

and NURR1 / NR4A2-signalling pathways (r = 0,96), indicating which nuclear hormone signalling pathway is 

currently relatively up- or down-regulated. 

 

All health variables including basic clinical chemistry-, basic health-, body composition, and microbiome 

parameters (Table 1, variables 48 – 77) commonly used to determine individual health-status relevant for 
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diabesity, were analysed. Of special interest were body composition parameters from MRI analyses including 

subcutaneous adipose tissue (SAT, r = 0,93), intra-abdominal adipose tissue (IAAT, r = 0,93), and intrahepatic 

cellular lipid (indicating liver fat, IHCL, r = 0,96). The model was also able to predict microbiome analysis 

including Firmicutes (r = 0,95) and Bifidobacterium (r = 0,93).  

 

Other transfer predictor regression models like the Elastic Net (EN) and the Linear Regression model (LR) were 

tested. Predictor correlations suggested that the Random Forest model performed best with an average of r = 

0,94, followed by the Elastic Net model r = 0,80 and the Linear Regression model r = 0,77 (table 2, 

supplementary tables 2 and 3 and figure 2). Applying all the methodologies and calculating a “best of” 

predictor analysis offer correlation coefficients of r = 0,94. Thus, the Random Forest model always offered the 

best values for the “establishment group”. 

 

Further, we evaluated the robustness of this methodology by the “establishment group” predictor calculations 

for variables all determined “at the same day” with variables obtained weeks later in the same person; half of 

the group maintained their initial lifestyle, and the second group underwent a lifestyle intervention with 

increased physical activity, an energy-restricted and more balanced diet (Rundle et al. 2023; Fiamoncini et al. 

2018). In this second group, the “confirmation group” prediction (CON) approach, we did not dissect these two 

groups for further calculations but this will be done under future evaluation of the 77 selected health-status 

parameters for a detailed evaluation of success of a lifestyle change on diabesity. 

 

In these confirmation predictions, the Elastic Net model (r = 0,63) provided the best predictive potential, 

followed by the Random Forest model (r = 0,62) and by the Linear Regression model r = 0,57 (Table 2 and 

supplementary tables 2 and 3). Applying all actual methodologies and calculating a “best of” predictor analysis 

offer values of r = 0,65. Consequently, the “best of” predictor calculation offered the best values for the 

confirmation group mainly based on the Random Forest and Elastic Net models (Figure 3). 
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Discussion 

Machine-learning approaches for health-status monitoring relevant for diabesity (Agliata et al. 2023; Wee et al. 

2024) have been developed recently, and many of the existing machine-learning models use common 

biomarkers / risk factors and variables mainly associated with diabetes (Okada et al. 2022). These prediction 

models are mainly targeting single variables and are based on preselected known biomarkers (Jangili et al. 

2023). Until now, no broader health-status marker array analyses have been performed with a focus on 

diabesity. 

 

We used data from the EU FP7-NUTRITECH consortium including 72 individuals with 780 analysed individual 

clinical and lifestyle parameters and additional 10,522 parameters from PBMC transcriptome analyses. For our 

transfer-predictor analysis we used these 10,522 transcriptomic variables from mRNA transcripts only based on 

mathematical-relevance and not based on known biomarker functions, which is a new approach. This novel 

design simply applies data from the PBMC transcriptomics as a “simple” holistic and complex mathematical 

matrix (Figure 4). 

 

These data from PBMC can easily be obtained from blood samples. A previous study has shown that individual 

PBMC transcriptomes can reflect obesity-related inflammation (Bories et al. 2012) and lipid metabolism in 

obesity-associated organs (Konieczna et al. 2015). Our approach determined that our “single method” 

predictor analysis could predict many individual lifestyle parameters such as food intake, basal and advanced 

health-status markers that were measured in the NUTRITECH cohort. In addition, as it is a “clean” 

mathematical methodology where we just focussed on the 77 most relevant health–status variables from a 

total of 780 parameters measured in the NUTRITECH cohort at one time point. We also selectively tested the 

possibility that alternative parameters of these 780 parameters can be calculated with similar accuracy using 

our transversal-predictor analysis (data not shown). 

 

Diabetes mellitus is a multifactorial chronic disease, which can be triggered by many genetic and/or 

environmental factors (Sun, Yu, and Hu 2014; Kaul and Ali 2016). The number of adults living with diabetes 

globally has almost quadrupled since 1980 to 422 million and is projected to increase to 693 million by 2045 
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(Cho et al. 2018). Lifestyle interventions can be very effective in preventing and treating diabetes (Knowler et 

al. 2002), whereas they often are not well tolerated by participants (S. K. Schmidt et al. 2020). The inclusion of 

multiple diabetes-related variables may allow the development of targeted, more selective, and potentially 

more acceptable lifestyle interventions (Zhang et al. 2020). A cost-effective method would allow monitoring to 

be performed more frequently. In our novel machine-learning approach, we have developed regression models 

that can be used as low-cost models with good predictive power for continuous monitoring and evaluation of 

lifestyle interventions. 

 

Furthermore, our approach provides a novel methodology for analysing and monitoring personal health status. 

Most current approaches use predictive models to distinguish between groups of individuals (e. g. healthy 

versus diabetic) through classification and use of common risk factors or health-related variables for model 

development. Our approach does not require the separation of individuals beforehand and uses PBMC 

transcriptome and a mathematical approach to evaluate many health-status markers concerning individual 

metabolic and physiological status. 

 

The ability to robustly predict dietary intake, without necessitating the collection and analysis of food intake 

diaries is an exciting advancement. In the NUTRITECH studies these food dairy data can now easily be used for 

further correlations with clinical chemistry and this transversal-prediction approach. Especially summarised 

food groups like healthy or unhealthy dietary patterns, snacks / sweets, animal-based foods, or plant-based 

foods can be precisely predicted with high accuracy (r = 0,94 – 0,97) (Table 2). 

 

Our methodology offers a straightforward and cost-effective approach to predicting and monitoring 77 most 

relevant health-status markers. In our analysis, the predictive models demonstrated excellent accuracy within 

the “establishment group” but showed moderate accuracy in the “confirmation group”. The predictive power 

in the “confirmation group” is influenced mainly by the availability of parameters with a larger distribution 

pattern and reduces accuracy.  
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Larger cohort studies are needed to further validate and improve the robustness of our approach. A potential 

limitation of these studies is their typically more shallow approach to phenotyping, which may lack the 

comprehensive range of parameters available in studies such as NUTRITECH (Rundle et al. 2023; Fiamoncini et 

al. 2018). This difference could impact the depth and accuracy of this transversal-predictor analysis when 

applied to broader datasets. However, these studies would enable the inclusion of additional parameters, such 

as sex, hormone levels, medication use, disease status, age, and ethnicity, which could enhance the models' 

predictive power. They would also support the development of specialized models for specific subgroups, 

including pregnant women, children, athletes, individuals with unique genetic profiles, older adults, and those 

with specific diseases. These expansions would optimize the methodology, increase predictive accuracy, and 

broaden its applicability across diverse populations, allowing for more personalized health monitoring and 

prediction.  

 

In summary, we have developed a novel, “one-method” machine-learning approach for transversal-prediction 

in an “establishment group”, termed “Transcriptome-driven Health-status Transversal-predictor Analysis” 

(THAP). This method was further validated in a "confirmation group" consisting of 72 individuals, leveraging 

PBMC transcriptome data and mathematical processing to predict 77 of the most relevant health-status 

variables from an original set of 780 variables. This method introduces a novel predictive model that offers a 

cost-effective approach for monitoring health status markers, aimed at optimizing lifestyle choices and 

understanding their impact on the development and progression of health conditions, particularly diabesity. 

Our approach demonstrates that leveraging the individual PBMC transcriptome as a holistic mathematical 

matrix serves as a robust source for personalized health predictions. This model may also represent a simple 

yet innovative approach to clinical diagnosis and the management of dietary interventions and 

pharmacotherapy. 
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Table 1 

 Variable category method subjects EST-RF R  subjects CON-RF R 
         
1 Alcohol food intake 1 65 0,95  60 0,75 
  measures       
2 red-meat “ 1 62 0,93  60 0,65 
3 meat products “ 1 68 0,93  63 0,52 
4 red meat dishes  “ 1 62 0,94  59 0,45 
5 poultry  “ 1 64 0,93  62 0,56 
6 poultry dishes “ 1 66 0,94  60 0,62 
7 Cheeses “ 1 64 0,92  63 0,45 
8 Butter “ 1 66 0,89  61 0,52 
9 whole milk “ 1 63 0,92  61 0,44 
10 milk beverages “ 1 66 0,94  57 0,64 
11 Egg “ 1 63 0,94  61 0,58 
12 low fat milk “ 1 65 0,95  62 0,66 
13 yoghurt “ 1 68 0,96  63 0,58 
14 fish “ 1 68 0,94  62 0,52 
15 animal-based food “ 1 67 0,94  63 0,63 
         
16 fruit “ 1 64 0,92  60 0,56 
17 fruit juices “ 1 63 0,92  62 0,63 
18 soups “ 1 63 0,92  60 0,46 
19 vegetables “ 1 63 0,93  60 0,66 
20 plant-based food  “ 1 62 0,94  58 0,63 
         
21 biscuits “ 1 60 0,96  63 0,53 
22 confect “ 1 65 0,88  60 0,63 
23 high-energy drinks “ 1 62 0,94  57 0,55 
24 ice creams “ 1 69 0,92  64 0,55 
25 salty snacks “ 1 66 0,94  61 0,57 
26 snacks / sweets  “ 1 66 0,96  61 0,60 
         
27 general healthy food “ 1 62 0,95  58 0,50 
28 general non-healthy food “ 1 65 0,97  60 0,53 
         
29 sLUT blood lipids 2 66 0,95  65 0,73 
30 sATBC analysis 2 64 0,96  63 0,67 
31 s9CBC “ 2 65 0,93  64 0,62 
32 sAT-LYC “ 2 63 0,92  65 0,65 
33 sCARO-sum “ 2 66 0,96  64 0,65 
         
34 s-sum-SAFAs “ 3 66 0,94  66 0,60 
35 s-sum-MUFAs “ 3 66 0,93  67 0,40 
36 s-sum-n3-PUFAs “ 3 60 0,93  62 0,58 
37 s-sum-n6-PUFAs “ 3 69 0,94  69 0,63 
         
38 sROL “ 4 68 0,94  65 0,51 
39 sATRA “ 4 64 0,93  62 0,57 
40 s9CDHRA “ 4 65 0,95  59 0,65 
         
41 s-sum pro-infl. lipid-mediators “ 5 67 0,93  61 0,38 
42 s-sum pro-res. lipid-mediators “ 5 62 0,88  57 0,62 
         
43 RXR-signalling pathway transcriptomic  6 69 0,98  66 0,94 
44 RAR-signalling pathway signatures 6 71 0,97  69 0,87 
45 PPAR-signalling pathway  “ 6 71 0,97  71 0,86 
46 VDR-signalling pathway “ 6 70 0,97  72 0,89 
47 NURR1-signalling pathways “ 6 69 0,96  68 0,83 
         
48 total-Chol. basic clinical- 7 65 0,96  64 0,55 
49 HDL-Chol. chemistry 7 67 0,95  67 0,63 
50 LDL-Chol. “ 7 66 0,95  66 0,69 
         
51 sGLUC “ 7 66 0,95  65 0,73 
52 sINS “ 7 68 0,95  65 0,71 
53 sNEFAs “ 7 69 0,91  68 0,61 
54 sTRI “ 7 66 0,95  65 0,55 
55 sVitD “ 7 64 0,96  64 0,65 
56 sVITK2 “ 7 67 0,95  66 0,52 
         
57 eADIQ ELISA 8 68 0,91  67 0,63 
58 eIL18 “ 8 66 0,95  62 0,64 
         
59 BP-dia basic health 9 68 0,96  67 0,68 
60 BP-sys -parameters 9 69 0,94  64 0,63 
         
61 eosinophils basic clinical 10 65 0,95  63 0,64 
62 monocytes chemistry 10 67 0,91  64 0,66 
         
63 HOMA2-IR diabesity marker 11 68 0,95  67 0,72 
64 SAT MRI 12  61 0,93  62 0,68 
65 IAAT “ 12 65 0,93  65 0,63 
66 IHCL “ 12 61 0,96  63 0,30 
         
67 indir. calorimetry energy 13 67 0,94  65 0,76 
68 RQ -metabolism 14 64 0,88  62 0,73 
         
69 sex basic health 15 68 0,98  69 0,99 
70 BW -parameters 15 68 0,92  66 0,70 
71 BMI “ 15 65 0,92  66 0,72 
72 HC “ 15 66 0,92  63 0,72 
73 WC “ 15 64 0,91  66 0,68 
74 WHIPR “ 15 69 0,94  68 0,67 
75 HR “ 15 64 0,95  62 0,58 
         
76 Firmicutes microbiome  16 55 0,95  59 0,52 
77 Bifidobacterium -analysis  16 57 0,93  60 0,43 
         
 Mean    0,94   0,62 
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Prediction of variables using Random Forest-based model. Variables were predicted in the “establishment 

group” (EST) for a transversal prediction starting from the PBMC transcriptome towards the 77 listed variables 

using the Random Forest-based (RF) regression models and in addition a “confirmation group” prediction 

(CON) was performed using the same methodology in the same group of volunteers after intervention using 

the 72 PBMC transcriptomic data of these volunteers. For each variable the following is reported: the number 

of individual transcriptomics included in the datasets, the number of mRNAs the model is based on, the 

Pearson correlation coefficient (R) between observed and predicted values, and the experimental method used 

to determine the variables.  

Abbreviations: For food intake measures please check the materials and methods; s – serum; e – ELISA; adj. - 

adjusted; sLUT – serum lutein; sATBC – serum all-trans-β-carotene, s9CBC – serum 9-cis-β-carotene; sATLYC – 

serum all-trans-lycopene; CAROsum – sum of total carotenoids in serum; SAFA – saturated fatty acids; MUFA – 

mono-unsaturated fatty acids; PUFAs – polyunsaturated fatty acids; sROL – retinol; sATRA – serum all-trans-

retinoic acid; s9CDHRA – serum 9-cis 13,14-dihydroretinoic acid; pro-inf. – proinflammatory; pro-res. pro-

resolving; RXR – retinoid X receptor; RAR – retinoic acid receptor; PPAR – peroxisome proliferator-activated 

receptor; LXR – liver X receptor; VDR – vitamin D receptor; NURR1 - nuclear receptor related 1 protein/ NR4A2-

receptor; Chol – cholesterol; HDL – high density lipoprotein; LDL – low density lipoprotein; GLUC – glucose; INS – 

insulin; NEFAS – non-esterified fatty acids; TRI – triglycerides; VitD – 25-Hydroxyvitamin D3, VitK2 – vitamin K2, 

ADIQ – adiponectin, IL18 – interleukin 18, BP-dia – diastolic blood pressure; BP-sys – systolic blood pressure; 

HOMA2-IR – homeostasis model assessment index; SAT – subcutaneous adipose tissue; IAAT – intraabdominal 

adipose tissue; IHCL – intrahepatic cellular lipid index; indir calorimetry – indirect calorimetry; RQ – respiratory 

coefficient; BW – body weight; BMI – body weight index; HC – hip circumcision; WC – waist circumcision; WHIPR 

– waist hip ratio; HR – heart rate. 
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Table 2 

 variable EST-RF R EST-EN R EST-LR R EST-BO R  CON-RF R CON-EN R CON-LR R CON-BO R 
           
1 alcohol 0,95 0,75 0,78 0,95  0,75 0,70 0,57 0,75 
           
2 red-meat 0,93 0,79 0,77 0,93  0,65 0,64 0,62 0,65 
3 meat products 0,93 0,84 0,79 0,93  0,52 0,45 0,50 0,52 
4 red meat dishes  0,94 0,75 0,73 0,94  0,45 0,40 0,32 0,45 
5 poultry  0,93 0,82 0,84 0,93  0,56 0,58 0,44 0,58 
6 poultry dishes 0,94 0,89 0,81 0,94  0,62 0,66 0,59 0,66 
7 cheeses 0,92 0,67 0,63 0,92  0,45 0,34 0,29 0,45 
8 butter 0,89 0,73 0,51 0,89  0,52 0,36 0,41 0,52 
9 whole milk 0,92 0,68 0,72 0,92  0,44 0,47 0,33 0,47 
10 milk beverages 0,94 0,90 0,83 0,94  0,64 0,56 0,55 0,64 
11 egg 0,94 0,72 0,75 0,94  0,58 0,62 0,56 0,62 
12 low fat milk 0,95 0,75 0,72 0,95  0,66 0,74 0,66 0,74 
13 yoghurt 0,96 0,82 0,77 0,96  0,58 0,68 0,60 0,68 
14 fish 0,94 0,83 0,77 0,94  0,52 0,61 0,45 0,61 
15 animal-based food 0,94 0,81 0,74 0,94  0,63 0,60 0,50 0,63 
           
16 fruit 0,92 0,68 0,68 0,92  0,56 0,59 0,39 0,59 
17 fruit juices 0,92 0,75 0,72 0,92  0,63 0,48 0,41 0,63 
18 soups 0,92 0,76 0,69 0,92  0,46 0,39 0,41 0,46 
19 vegetables 0,93 0,80 0,86 0,93  0,66 0,66 0,54 0,66 
20 plant-based food  0,94 0,80 0,80 0,94  0,63 0,62 0,54 0,63 
           
21 biscuits 0,96 0,81 0,79 0,96  0,53 0,51 0,49 0,53 
22 confect 0,88 0,70 0,73 0,88  0,63 0,59 0,58 0,63 
23 high-energy drinks 0,94 0,74 0,74 0,94  0,55 0,64 0,55 0,64 
24 ice creams 0,92 0,72 0,69 0,92  0,55 0,51 0,51 0,55 
25 salty snacks 0,94 0,76 0,72 0,94  0,57 0,59 0,51 0,59 
26 snacks / sweets  0,96 0,86 0,81 0,96  0,60 0,69 0,61 0,69 
           
27 general healthy food 0,95 0,85 0,86 0,95  0,50 0,51 0,31 0,51 
28 general non-healthy food 0,97 0,88 0,83 0,97  0,53 0,63 0,59 0,63 
           
29 sLUT 0,95 0,80 0,74 0,95  0,73 0,78 0,65 0,78 
30 sATBC 0,96 0,73 0,74 0,96  0,67 0,74 0,69 0,74 
31 s9CBC 0,93 0,88 0,77 0,93  0,62 0,62 0,63 0,63 
32 sAT-LYC 0,92 0,85 0,87 0,92  0,65 0,67 0,56 0,67 
33 sCARO-sum 0,96 0,88 0,81 0,96  0,65 0,66 0,58 0,66 
           
34 s-sum-SAFAs 0,94 0,81 0,68 0,94  0,60 0,62 0,63 0,63 
35 s-sum-MUFAs 0,93 0,73 0,62 0,93  0,40 0,50 0,43 0,50 
36 s-sum-n3-PUFAs 0,93 0,89 0,83 0,93  0,58 0,72 0,60 0,72 
37 s-sum-n6-PUFAs 0,94 0,84 0,83 0,94  0,63 0,70 0,63 0,70 
           
38 sROL 0,94 0,78 0,71 0,94  0,51 0,48 0,44 0,51 
39 sATRA 0,93 0,78 0,72 0,93  0,57 0,38 0,45 0,57 
40 s9CDHRA 0,95 0,87 0,83 0,95  0,65 0,72 0,71 0,72 
           
41 s-sum pro-infl. lipid-mediators 0,93 0,75 0,75 0,93  0,38 0,41 0,20 0,41 
42 s-sum pro-res. lipid-mediators 0,88 0,75 0,71 0,88  0,62 0,64 0,49 0,64 
           
43 RXR-signalling pathway 0,98 0,96 0,96 0,98  0,94 0,96 0,96 0,96 
44 RAR-signalling pathway 0,97 0,96 0,96 0,97  0,87 0,95 0,95 0,95 
45 PPAR-signalling pathway  0,97 0,91 0,91 0,97  0,86 0,87 0,85 0,87 
46 VDR-signalling pathway 0,97 0,94 0,92 0,97  0,89 0,91 0,88 0,91 
47 NURR1-signalling pathways 0,96 0,94 0,94 0,96  0,83 0,90 0,89 0,90 
           
48 total-Chol. 0,96 0,76 0,74 0,96  0,55 0,65 0,59 0,65 
49 HDL-Chol. 0,95 0,80 0,76 0,95  0,63 0,68 0,63 0,68 
50 LDL-Chol. 0,95 0,86 0,82 0,95  0,69 0,71 0,63 0,71 
           
51 sGLUC 0,95 0,83 0,76 0,95  0,73 0,76 0,59 0,76 
52 sINS 0,95 0,82 0,75 0,95  0,71 0,69 0,63 0,71 
53 sNEFAs 0,91 0,67 0,59 0,91  0,61 0,61 0,57 0,61 
54 sTRI 0,95 0,78 0,62 0,95  0,55 0,58 0,62 0,62 
55 sVITD 0,96 0,82 0,74 0,96  0,65 0,70 0,69 0,70 
56 sVITK2 0,95 0,82 0,82 0,95  0,52 0,60 0,53 0,60 
           
57 eADIQ 0,91 0,85 0,77 0,91  0,63 0,70 0,68 0,70 
58 eIL18 0,95 0,85 0,72 0,95  0,64 0,51 0,56 0,64 
           
59 BP-dia 0,96 0,83 0,76 0,96  0,68 0,70 0,67 0,70 
60 BP-sys 0,94 0,76 0,76 0,94  0,63 0,63 0,53 0,63 
           
61 eosinophils 0,95 0,85 0,82 0,95  0,64 0,61 0,45 0,64 
62 monocytes 0,91 0,70 0,68 0,91  0,66 0,59 0,47 0,66 
           
63 HOMA2-IR 0,95 0,79 0,77 0,95  0,72 0,72 0,64 0,72 
64 SAT 0,93 0,81 0,78 0,93  0,68 0,73 0,69 0,73 
65 IAAT 0,93 0,77 0,76 0,93  0,63 0,69 0,70 0,70 
66 IHCL 0,96 0,82 0,83 0,96  0,30 0,28 0,15 0,30 
           
67 indir. calorimetry 0,94 0,87 0,91 0,94  0,76 0,69 0,64 0,76 
68 RQ 0,88 0,69 0,67 0,88  0,73 0,67 0,44 0,73 
           
69 sex 0,98 0,94 0,93 0,98  0,99 0,97 0,98 0,99 
70 BW 0,92 0,77 0,74 0,92  0,70 0,75 0,73 0,75 
71 BMI 0,92 0,69 0,66 0,92  0,72 0,74 0,61 0,74 
72 HC 0,92 0,80 0,76 0,92  0,72 0,69 0,53 0,72 
73 WC 0,91 0,81 0,78 0,91  0,68 0,74 0,71 0,74 
74 WHIPR 0,94 0,85 0,81 0,94  0,67 0,65 0,58 0,67 
75 HR 0,95 0,78 0,77 0,95  0,58 0,54 0,52 0,58 
           
76 Firmicutes 0,95 0,92 0,89 0,95  0,52 0,55 0,49 0,55 
77 Bifidobacterium 0,93 0,68 0,51 0,93  0,43 0,37 0,39 0,43 
           
 Mean 0,94 0,80 0,77 0,94  0,62 0,63 0,57 0,65 
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Prediction of variables using Random Forest-based (RF) regression model, the Elastic Net (ER) regression 

model or the Liner Regression (LR) model and calculating the “best of” (BO) three methods. Summary of the 

transversal prediction analysis in the “establishment group” (EST) using 77 variables starting from the PBMC 

transcriptome using the Random Forest-based (RF) regression model, the Elastic Net (ER) regression model or 

the Liner Regression (LR) model. A further prediction in a “confirmation group” prediction (CON) was 

performed for the same 77 variables using the same methodology in the same group of volunteers after 

intervention using the 72 PBMC transcriptomic data of these volunteers. For each variable the following is 

reported: the number of individual transcriptomics included in the datasets, the number of mRNAs the model 

is based on, the Pearson correlation coefficient (R) between observed and predicted values, the R-squared (R2) 

of the model, and the experimental method used to determine the variables. For abbreviations check table 1. 
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Figure legends 

 

Figure 1. Comparison of observed and predicted values of dependent variables. For eight regression models 

the observed values of the dependent variable is compared to the model predicted values. Models were 

developed from 72 PBMC original transcriptomics using Random Forest for regression. The regression line is 

calculated from the observed and predicted values from the training data. The 95% confidence interval of the 

prediction model is indicated by the dashed lines. The dots represent the observed and predicted values of the 

measurements before intervention (black) and after intervention (grey). The correlation coefficient R and the 

percentage of measurements with the 95% confidence interval (CI) is provided. The following dependent 

variables are reported: (A) general healthy food; (B) general non-healthy food; (C) serum level of 9-cis-13,14-

dihydroretinoic acid (9CDHRA); (D) serum level of lutein; (E) SAT levels; (F) Firmicutes numbers.  

 

Figure 2. Comparison of the performance of regression methods. For the variable ‘general healthy food’ and 

‘general non-healthy food’ regression models were generated using Random Forest (A and B), Elastic Net (C 

and D), and a standard linear regression method (E and F). Models were developed from 72 PBMC 

transcriptomic data. The regression line is calculated from the observed and predicted values from the training 

data. The 95% confidence interval (CI) of the prediction model is indicated by the dashed lines. The dots 

represent the observed and predicted values of the measurements before intervention (black) and after 

intervention (GREY). The correlation coefficient R and the percentage of measurements with the 95% CI is 

provided. 

 

Figure 3. Summarizing figure of the establishment transversal-prediction analysis (on the left side) ranging from 

the Random Forest, Elastic Net and Linear Regression model prediction analyses as well as “best of” (best) 

summarising prediction models in addition to confirmation predictions (at the right side) based on the Random 

Forest, Elastic Net and Linear Regression model prediction analysis as well as “best of” (best) summarising 

prediction model. 

 

Figure 4. Schematic model of our transversal-predictor analysis  
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Figure 1.  
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Figure 2.  
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Figure 3. 
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Figure 4. 
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