
1 

 

Hippocampal subfield volume in relation to cerebrospinal fluid Amyloid-ß 

in early Alzheimer’s disease: Diagnostic Utility of 7T MRI 

Oluwatobi F Adeyemia, c, Penny Gowlanda, Richard Bowtella, Olivier Mougina and Akram 

A. Hosseinia,b 

(a) Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United 

Kingdom. NG7 2RD  

(b) Department of Academic Neurology, Nottingham University Hospitals NHS Trust, 

Queen’s Medical Centre, Nottingham, United Kingdom. NG7 2UH. 

(c)  Department of Physics, University of Abuja, Gwagwalada, Abuja Nigeria. 902101 

Corresponding author: 

Akram A. Hosseini 

Department of Academic Neurology, Nottingham University Hospitals NHS Trust, Queen’s 

Medical Centre, Nottingham, United Kingdom. NG7 2UH. 

Email: ahosseini@doctors.org.uk  

Telephone: +44 (0) 115 924 9924 (extension 86815) 

ABSTRACT 

INTRODUCTION: Alzheimer's disease (AD) is a neurodegenerative condition characterised 

by amyloid plaque accumulation and neurofibrillary tangles.  

Early detection is essential for effective intervention, but current diagnostic methods that 

enable early diagnosis in clinical practice rely on invasive or costly biomarker scanning. 

This study aimed to explore the utility of 7T MRI in assessing hippocampal subfield volumes 

and their correlation with cerebrospinal fluid (CSF) biomarkers in prodromal AD.  

METHODS: Fifty-six participants, including AD patients and healthy controls, underwent 7T 

MRI scanning. Automated segmentation delineated hippocampal subfield volumes, with 

subsequent normalization to whole brain volume. 
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RESULTS: Significant differences in hippocampal and subfield volumes were observed in 

prodromal AD patients, even when they did not exhibit high MTA scores on 3T MRI or show 

any whole brain volume loss. Additionally, the volume of the entorhinal cortex (ERC) 

correlated significantly with CSF amyloid-β levels, suggesting ERC's potential as a proxy 

CSF amyloid-ß measurement. Conversely, no significant associations were found between 

CSF 181-phospho-tau or total tau levels and any hippocampal subfield volumes.  

DISCUSSION: These findings show the potential use of 7T MRI, particularly in ERC 

assessment, as a biomarker for early AD identification. Further validation studies are 

warranted to confirm these results and elucidate the relationship of ERC volume with CSF 

biomarkers. 

KEY WORDS: Alzheimer’s disease, Automatic Segmentation of Hippocampus Subfield 

(ASHS), 7 Tesla MRI, CSF amyloid-β, hippocampal subfields, entorhinal cortex (ERC).  
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BACKGROUND 

Alzheimer's disease (AD) is the leading cause of dementia. It is a multifactorial condition 

influenced by various genetic, environmental, and molecular factors 1,2. AD is a progressive 

neurodegenerative disease that is accompanied by the presence of neurofibrillary tangles and 

the accumulation of amyloid plaques 3, for which the main constituent is the amyloid-ß  (Aß) 

protein. Aß is first deposited in the neocortex, and then spreads into the hippocampus, 

amygdala, and cingulate gyrus 4. However, neurofibrillary tangles occur in trans-entorhinal 

and entorhinal cortex before invading the subiculum, Cornus Ammonis CA1, and then CA2 

and CA3 hippocampal subfields, and finally neocortex 5,6. Post-mortem examination of brain 

tissue is the gold standard for the diagnosis of AD, and clinical diagnosis based on cognitive 

symptoms provides suboptimal sensitivity and specificity7.  

Early identification of AD is key for consideration of Disease-Modifying-Treatments that are 

in the final stages of investigation 8–10. Pathological changes in Aß and tau can occur more 

than a decade before the onset of dementia 11,12.  Aß measurements in the cerebrospinal fluid 

(CSF) are known to correlate positively with cognitive scores whereas Phosphorylated-Tau 

and total Tau levels in the CSF correlate negatively with Mini-Mental State Examination 

(MMSE) scores 13. The presence of Aß with or without tau proteins, combined with 

radiological topography of neurodegeneration, currently provides the best accuracy for the 

diagnosis of AD in patients who present with subjective cognitive impairment 14–17.  Aß, tau-

pathology and neurodegeneration (ATN categories) are diagnostic markers to identify AD at 

the early stages 18,19. Aß pathology can be detected using an Amyloid PET scan, or by 

obtaining CSF through a diagnostic lumbar puncture to test for Aß and tau levels. While both 

methods are highly accurate for detecting AD, they are invasive, or expensive, or both. 

Furthermore, diagnostic CSF biomarker assessments does not provide the topographic 

information about specific brain regions affected. 
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Medial Temporal Atrophy (MTA) scores, which characterise the atrophy of the whole 

hippocampus on structural MRI, form an established neuroimaging biomarker for AD in 

clinical practice 20. However the atrophy of the whole hippocampus, that can be identified 

using clinical MRI at 1.5 or 3T, is a late marker of neurodegeneration in AD when the disease 

is advanced 21. 

Ultrahigh field 7T MRI offers a non-invasive technique that is free of ionizing radiation 

which can produce images of high contrast and high spatial resolution. Further, MRI at 7T 

can provide a direct measure of local neurodegeneration 22,23, and validated pathological 

confirmation of hippocampal volume 24, whereas the CSF pathological state of Aβ and tau do 

not provide information on focal neuronal loss. Structural MRI at 7T has been shown to be 

reproducible across multiple sites 25 and can be used to measure the volume of hippocampal 

subfields 26,27. 

We have previously demonstrated that 7T MRI has the ability to measure differences in 

hippocampal subfield volume compared to healthy controls in patients with early AD who do 

not exhibit diagnostic high MTA scores on 3T MRI 28. Further, we observed a reduction in 

hippocampal subfield volume in these patients with early AD, even without a loss of total 

brain volume, which correlated with their clinical amnestic impairment 28. Here, we aim to 

utilise 7T MRI to precisely measure the volume of each hippocampal subfield in the early 

stages of AD and to correlate these measurements with Aβ and tau levels in CSF, as well as 

with levels of cognitive decline. Our study investigates whether 7T MRI can enhance 

diagnostic accuracy for AD in its early stages, as defined by the ATN criteria, before 

hippocampal atrophy is evident on clinical MRI. 

We hypothesise that lower subfield volume will correspond to more abnormal levels of 

amyloid/tau status in the CSF and/or worse performance on the cognitive assessments. 

METHODS 
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Participants 

Fifty-six participants (31 AD patients and 25 healthy participants), aged between 40 and 79 

years, were enrolled through prospective recruitment. The participants with AD fulfilled the 

A+T+ or A+T- criteria on ATN framework for the AD diagnosis, confirmed by the presence 

of Aß, with or without tau, in the CSF of symptomatic patients who had mild cognitive 

impairment 29. Participants with clear evidence of hippocampal atrophy (i.e. MTA scale > 2) 

on their clinical MRI at 3T were considered to have advanced neurodegeneration and were 

excluded from the 7T MRI study. The CSF Aß/tau measurement cut off values were based on 

the reference values (Aß42 range 627 – 1322 pg/ml; total tau range 146 -595 pg/ml; and 

Thr181-phosphorylated-tau range below 68 pg/ml)30 as previously reported 31. The time 

between CSF sampling and 7T MRI was less than 3 months. Three individuals were also 

scanned where the interval ranged from 23 to 51 months, but they were excluded from further 

analysis because of the significant separation in time of the two different measurements. 

Inclusion criteria for the healthy control group included cognitive performance within 1.5 SD 

of normal in all cognitive tests 32. As described previously, participants were assessed 

cognitively using the Uniform Data set (UDSNB3.0) which includes the MoCA (Montreal 

Cognitive Assessment ) test 28. The exclusion criteria included contraindications to Ultrahigh 

Field MRI, dementia (defined as loss of at least one functional ability according to the DSM-

5 Criteria 29,33) and incompetency to consent. 

This project received favourable opinion from the East Midlands-Nottingham 2 research 

Ethics committee (reference: 20/EM/0023) and the UK Health Research Authority 

(IRAS:276174). The committee is constituted in accordance with the Governance 

Arrangement for research Ethics committee and complies fully with the Standard Operating  

Procedures for Research Ethics Committee in the UK.31 (www.ClinicalTrials.gov 

ID NCT04992975). 
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IMAGING PROTOCOL 

The participants were scanned on a Philips Achieva 7T system using a Nova Medical 

(Wilmington MA, USA) single-channel transmit, 32-channel receive (1Tx32Rx) head coil at 

the Sir Peter Mansfield Imaging Centre at the University of Nottingham. 

A whole-head, T1-weighted PSIR data set was acquired first with inversion times of 725/2150 

ms; TE= 3.1 ms; TR= 6.9 ms; Field of view (FOV) 192 × 183 × 157 mm3; voxel size 0.55 × 

0.55 ×0.55 mm3; receiver bandwidth of 300 Hz; total scan time 12:25 minutes. 

T2-weighted images spanning the hippocampus were acquired using a TSE sequence: TE = 

117 ms; TR = 5900ms; FOV 224 × 224 × 64 mm3; voxel size 0.38 × 0.39 ×1.5 mm3; receiver 

bandwidth 155 Hz; total scan time 04:43 minutes. The slice orientation was chosen so that the 

slices ran orthogonal to the longest axis of the hippocampus.  

IMAGE PROCESSING AND ANALYSIS 

Automatic Segmentation of Hippocampus Subfield (ASHS) was used to segment the 

hippocampus from the PSIR and T2-weighted images 34 using an atlas created by the UMC 

Utrecht group (ashs_atlas_umcutrecht_7t_20170810) and provided by the NeuroImaging 

Tools and Resources Collaboratory (NITRC))27. In this atlas, as shown in Figure 1, the 

hippocampus is segmented into eight subfield ROIs: the Cornu Ammonis (CA) areas: CA1, 

CA2 and CA3, the hippocampal tail (TAIL), the Dentate Gyrus (DG), the Subiculum (SUB), 

the cyst and the Entorhinal Cortex (ERC). The cyst volume was omitted because this volume 

was very small or not detected in all participants. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 24, 2024. ; https://doi.org/10.1101/2024.10.24.24315913doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.24.24315913
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 1: Segmentation of the hippocampus overlaid on the T2-weighted image for (A) Coronal view 
and (B) Axial view in one representative subject. 
 

PERCENTAGE VOLUME OF THE HIPPOCAMPAL SUBFIELDS 

The volume of the whole brain differs between participants (with significant differences 

between male and female individuals), but we are interested in specific atrophy of the 

hippocampus. Therefore, we normalised the volume of the hippocampus to the volume of the 

whole brain. The whole brain volume (including the CSF and cerebellum) was extracted from 

the PSIR image data. 

STATISTICAL ANALYSIS 

Statistical analysis was carried out using T-test and regression analysis for comparison 

between AD and age-matched healthy participants. The volumes of the left and right 

hippocampal subfields were combined to provide increased sensitivity. We conducted a 

statistical analysis to compare the volumes of the right and left hippocampus across the 

different subfields and the whole hippocampus in both the HC and AD groups. Our results 

revealed no significant difference between the two hemispheres for the entorhinal cortex 

(ERC), Cornu Ammonis regions 1-3 (CA1-3), dentate gyrus (DG), and the whole 

hippocampus, with p-values ranging from 0.194 to 0.99. However, a significant difference 

was observed in the hippocampal tail, with a p-value of 0.001.  

The statistical differences in subfield volumes (CA1, CA2, CA3, ERC, TAIL, DG, and SUB) 

between the AD and HC groups were evaluated using SPSS (version 27) and adjusted for 
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multiple comparisons using the Bonferroni correction across the seven hippocampal subfields 

analysed in this study. The analysis of the correlation between CSF measures and sub-field 

volumes was also subjected to Bonferroni correction to account for multiple comparisons. 

RESULTS 

In addition to the three participants excluded due to the extended time between CSF 

measurement and MRI, data from three further participants with AD were excluded: one due 

to inability to undergo imaging due to claustrophobia, one due to image degradation related 

to motion artefacts and one participant was excluded because clinical images revealed an 

MTA scale of 3.  Hence, the analysis was performed on data from 25 patients with AD and 

25 age-matched control participants. The participant demographics are shown in Table 1. 

There was no significant difference in risk factors such as smoking and alcohol habits 

between the AD and control participants.  

Table 1: Demographics of the participants with Alzheimer’s disease (AD) and healthy Controls (HC). 

  AD Group HC Group P-value 

 Number  25 25   
Age (Mean, Range) 60 (42-76) 62 (52-79) 0.436 

 
Sex (Male, Female) 33 %, 67% 44%, 56% 0.643 

 
Mean MoCA score  
(Mean, Range) 12 (4-22) 27(23-29) <0.001  
Smoker 5(19%) 9(39%) 0.532  
Alcohol (only mild to 
moderate consumption) 12(44%) 12(52%) 

0.41 
 

Time between CSF sampling 
and MRI (AD) 

      1-51 months 
   

 

Visual examination was employed to assess the accuracy of the automated hippocampal 

segmentation. In instances where segmentation quality was compromised by motion artifacts 

during scanning, participants were offered the opportunity for a repeat scan (N=3). However, 

one participant’s image data showed excessive motion artifacts in both the initial and repeat 

scans, resulting in their exclusion from the study, as previously noted. 
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Figure 2A shows that total brain volume was smaller in the AD group as compared to the 

healthy controls, although this difference was not significant. Figure 2B shows that there was 

a significant reduction in the volume of the whole hippocampus in patients with AD (p < 

0.001).  

 Figure 2: (A)The absolute volume of the whole brain averaged over the Alzheimer’s disease and 
healthy control participant groups. There was no statistical significant between the groups. (B) The 
fractional volume of the whole hippocampus averaged over the Alzheimer’s disease and healthy 
control participant groups. There was a statistically significant reduction in hippocampal volume in 
the AD patients compared to the controls. Error bars indicate inter-subject standard deviation. 
 

Figure 3 shows that there was a significant reduction in the fractional volume of the ERC (p < 

0.001), DG (p < 0.001), CA1 (p=0.016), CA2 (p < 0.001) and Tail (p=0.003) but SUB and 

CA3 subfield did not attain statistical significance in AD patients compared to controls with p 

= 0.516 and 0.235 respectively. These findings are consistent with our previous observations 

reported in 28. However, in this study, we have included a larger sample size, which including 

7 additional HC and 1 more AD participant. Detailed comparisons and the expanded dataset 

can be found in Appendix Table A2. 
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 Figure 3: The volume of the hippocampal subfields as a percentage of whole brain volume averaged 
over the Alzheimer’s disease and healthy control participants. Error bars indicate intersubject 
standard deviation; *indicates significant p-value and ** indicate significance with Bonferroni 
correction.  
 

Figure 4 and Table 2 show the relationship between the fractional volumes of the 

hippocampus subfields and CSF Aβ42 (which was only measured for AD subjects). All 

subfields showed a positive correlation between fractional volume and levels of Aβ42 in the 

CSF (i.e. smaller fractional volume for lower levels of Aβ42), but this only reached 

significance for the ERC (R= 0.596; p=0.002). This relation was still significant after 

Bonferroni correction was carried out. Lower ERC volume was also significantly associated 

with impaired cued memory in the MoCA test. Details of the cognitive assessments in 

relation to volume of hippocampal subfields are shown in the Appendix table A1.  

Table 2: shows the Spearman’s rho correlation analysis for associations between hippocampal 
subfield volumes and abnormal CSF proteins in AD participants. *Indicates significant p-value and 
** indicate significance with Bonferroni correction.  
Correlations 

Subfields  Amyloid-β42 181-
Phosphorylated-
tau 

total tau 

ERC Correlation 
Coefficient 

.596** 0.029 -0.144 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 24, 2024. ; https://doi.org/10.1101/2024.10.24.24315913doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.24.24315913
http://creativecommons.org/licenses/by-nc-nd/4.0/


P-Value 0.002 0.902 0.533 

SUB Correlation 
Coefficient 

0.029 0.110 -0.070 

P-Value 0.894 0.634 0.763 

CA1 Correlation 
Coefficient 

-0.001 -0.034 -0.258 

P-Value 0.995 0.884 0.258 

CA2 Correlation 
Coefficient 

0.014 .518* 0.358 

P-Value 0.950 0.023 0.132 

DG Correlation 
Coefficient 

0.136 0.113 -0.052 

P-Value 0.526 0.626 0.823 

CA3 Correlation 
Coefficient 

0.137 0.039 -0.169 

P-Value 0.523 0.867 0.464 

TAIL Correlation 
Coefficient 

-0.055 -0.131 -0.312 

P-Value 0.799 0.571 0.169 

ERC: entorhinal cortex; SUB: Subiculum; CA1-3: Cornu Ammonis regions 1-3, DG: dentate gyrus. 

Figure 4: Relationship between the fractional volume of some of the hippocampal subfields for AD 
participants and the value of CSF amyloid-β42, with linear trend lines included. 
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After Bonferroni correction, no significant associations were observed between the fractional 

volumes of the hippocampal subfields and the levels of CSF total tau or CSF 181-

Phosphorylated tau, as detailed in Table 2. An initially significant correlation found for 

Phospho-tau in CA2, was no longer significant following the multiple correction analysis. 

DISCUSSION 

In this study, we utilised ultrahigh field, 7T PSIR and T2-Weighted images to measure the 

volume of the hippocampus and its subfields in patients diagnosed with biological amyloid-

status Alzheimer’s disease. These patients were categorised according to the ATN 

classifications as A+T-N- or A+T+N- 29, but they did not meet the AD diagnostic criteria for 

medial temporal atrophy (i.e., MTA scale 2 or above) on their clinical MRI data acquired at 

3T. We compared the measured volumes to the levels of Aβ42 and tau in the CSF in patients 

with AD during the prodromal phase, when standard clinical MRI was not diagnostic.  

In prodromal AD, we observed a significant decrease in the fractional volume of the whole 

hippocampus, as well as fractional reductions in the volumes of the ERC, DG, CA1, CA2 and 

Tail subfields (p<0.001) compared to age-matched controls 28.  

Furthermore, in participants with prodromal AD, the volume of the ERC subfield (as a 

fraction of total brain volume) was positively correlated with the measured value of Aβ42 in 

the CSF (R2= 0.596 and p = 0.002), and this correlation remained significant after Bonferroni 

correction. This correlation reflects the linear relationship between abnormal CSF Aβ42 and 

ERC volume loss. These findings suggest that 7T MRI might serve as a proxy measure of 

CSF Aβ42, potentially offering an additional or alternative non-invasive biomarker with 

diagnostic and monitoring value for AD.  

Previous neuroimaging studies using standard MRI at 3T and 1.5 T have consistently 

reported absolute hippocampal volume loss in AD 34–36. In this study, we examined patients 

with prodromal AD who did not have significant reduction in total brain volume, compared 
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to age-matched healthy controls (p= 0.89; Figure 2B). Despite this, using 7T MRI, we were 

able to identify hippocampal volume loss in these patients. Our findings suggests that 7T 

MRI may outperform standard MRI (at 3 or 1.5T) as a potential marker for early 

identification of atrophy, thus aiding the diagnosis of AD.  

It has been previously reported that the level of CSF Aβ42 declines during the preclinical 

stage of AD 37, and correlates with delays in memory tasks in patients with Mild Cognitive 

Impairment (MCI) 38. Our prior research has shown a significant association between the loss 

of hippocampal subfields and impaired memory tasks in patients with amyloid-positive 

prodromal AD 28. Further, we have found significant positive associations between the ERC 

volume and the level of CSF Aβ42, consistent with the notion that CSF Aβ42 decline may 

serve as a marker of volume loss. The interaction between Aβ42 and 181-Phosphorylated-tau 

on hippocampal atrophy 39 and ERC atrophy 40 has previously been reported, and further 

longitudinal investigation indicated that Aβ status was linked to accelerated ERC atrophy in 

non-demented patients with positive 181-Phosphorylated-tau 40. In our study, six participants 

were classified as A+T- (i.e. with evidence of abnormal level of Aβ42, but normal level of 

total tau, and 181-Phosphorylated-tau in the CSF), whereas the remainder of participants 

were classified as A+T+ (i.e. abnormal Aβ42 and tau in the CSF). We investigated the 

correlation between the volume of the ERC and Aβ42 levels in the participants with A+T- and 

found no significant correlation in these 6 AD participants. While this finding could be 

related to a small sample size, there is evidence in the literature supporting that patients with 

abnormal Aβ but normal tau levels in the CSF might be a distinct subgroup within AD 41,42.  

The ERC is known to play crucial roles in memory, navigation, and perception of time 43,44. 

Notably, it is also the region of the brain where the early histopathological changes of AD 

occurs before migrating along the hippocampus 45. The specificity of this correlation in the 

ERC suggests that this region may be particularly sensitive to amyloid-related damage. An 
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early identification of ERC volume loss in the appropriate clinical context holds potential to 

be used as a surrogate measure of CSF Aβ42 along with the other biomarkers. 

The measurement of tau proteins, specifically total tau and phosphorylated-tau, in CSF has 

been extensively studied as a potential biomarker for AD 46–48. Elevated levels of these 

proteins are often associated with neurodegeneration 48. Researchers have hypothesised that 

increased tau levels in CSF may correspond to greater neuronal damage, potentially leading 

to hippocampal atrophy 49,50. 

The finding from our study that there was no significant association between CSF total tau, or 

CSF 181-Phosphorealted-tau, and the volume of hippocampal subfields implies a more 

complex relationship between CSF tau and hippocampal atrophy than previously thought. It 

is possible that the relationship between CSF tau and hippocampal atrophy evolves over time; 

tau pathology may initially lead to increased CSF tau levels, but this relationship may weaken 

as the disease progresses 50,50–52. Furthermore AD is a heterogeneous disease 53, and different 

neurodegenerative disorders such as “tauopathies” may exhibit variations in the type and 

distribution of tau pathology 54.  

To use our findings for clinical translation, a larger sample size should be tested. This study 

was not aimed to assess the causality of hippocampal subfield atrophy in AD and further 

molecular and/or pathological studies are required to explore if there could be a direct 

relationship between the CSF pathological state of AD and hippocampal subfield atrophy. 

Although 7T MRI is less clinically available and more expensive than some other diagnostic 

modalities, the lack of radiation, non-invasiveness and enhanced sensitivity for a direct 

measurement of early structural changes in the brain suggests a potential clinical application 

of this modality which could be valuable as a proxy for amyloid-positive AD during the early 

stages of the disease, when the use of Disease-Modifying-Treatments need to be assessed.  
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By utilising 7T MRI to detect Aβ, clinicians can effectively address two pillars of the ATN 

scores ('A' for amyloid and 'N' for neurodegeneration) during a single imaging session. This 

comprehensive assessment aids in better understanding the disease progression, assisting in 

early diagnosis, and potentially enabling more targeted treatment strategies aimed at 

intervening in the disease process before significant neurodegeneration occurs. 

In conclusion, the association between the volume of ERC and CSF Aβ42 suggests the 

potential for using high field-high resolution MRI as a biomarker for an early identification of 

AD. Larger studies are required to further evaluate the relationship between the ERC and 

Aβ42. 
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Table A1: Spearman’s rho correlation coefficients for associations between hippocampal subfield 
volumes and cognitive scores in AD participants, the P-values, and the Q-values (P-values adjusted 
by Benjamini–Hochberg correction) 

Correlations 

  
MoCA 

total score 

Benson 
Figure 

Immediate Memory Language Attention Executive 
ERC Correlation 

Coefficient 
0.168 0.288 0.095 0.103 -0.020 0.232 

P-Value 0.432 0.172 0.658 0.630 0.928 0.276 

Q-Value 0.504 0.290 0.674 0.679 0.928 0.399 
SUB Correlation 

Coefficient 
0.347 0.342 0.342 0.363 0.240 0.335 

P-Value 0.096 0.102 0.102 0.081 0.258 0.110 

Q-Value 0.270 0.238 0.252 0.261 0.401 0.230 
CA1 Correlation 

Coefficient 
.471* 0.396 .514* .483* .432* .473* 

P-Value 0.020 0.055 0.010 0.017 0.035 0.020 

Q-Value 0.121 0.194 0.143 0.178 0.133 0.137 
CA2 Correlation 

Coefficient 
0.129 0.193 0.126 0.229 0.181 0.310 

P-Value 0.569 0.391 0.577 0.306 0.420 0.160 

Q-Value 0.646 0.482 0.638 0.428 0.504 0.292 
DG Correlation 

Coefficient 
0.335 0.238 .465* 0.356 0.292 .451* 

P-Value 0.110 0.262 0.022 0.088 0.166 0.027 

Q-Value 0.242 0.393 0.116 0.264 0.290 0.125 
CA3 Correlation 

Coefficient 
0.208 0.314 0.103 0.203 0.189 0.342 

P-Value 0.329 0.136 0.631 0.340 0.375 0.102 

Q-Value 0.446 0.259 0.663 0.447 0.478 0.268 
TAIL Correlation 

Coefficient 
.529* 0.317 .535* .441* 0.256 .481* 

P-Value 0.008 0.131 0.007 0.031 0.227 0.017 

Q-Value 0.166 0.262 0.297 0.130 0.367 0.146 
 
Table A2: The results of the t-test comparing the hippocampal subfield volumes between Alzheimer's 
disease (AD) and healthy control (HC) participants. A Bonferroni correction was applied to account 
for multiple comparisons, setting the adjusted p-value threshold at 0.006. 

Independent Samples Test 

  

Levene's Test 
for Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. 
(2-

tailed) 
Mean 

Difference 
Std. Error 
Difference 

95% Confidence 
Interval of the 

Difference 
Lower Upper 
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ERC Equal variances 
assumed 

0.001 0.977 6.023 48 0.000 0.021 0.003 0.014 0.028 

Equal variances 
not assumed 

    6.023 48 0.000 0.021 0.003 0.014 0.028 

SUB Equal variances 
assumed 

0.871 0.355 0.654 48 0.516 0.003 0.004 -0.006 0.011 

Equal variances 
not assumed 

    0.654 47 0.516 0.003 0.004 -0.006 0.011 

CA1 Equal variances 
assumed 

0.250 0.619 2.486 48 0.016 0.025 0.010 0.005 0.046 

Equal variances 
not assumed 

    2.486 46 0.017 0.025 0.010 0.005 0.046 

CA2 Equal variances 
assumed 

0.079 0.780 4.643 46 0.000 0.001 0.000 0.000 0.001 

Equal variances 
not assumed 

    4.650 46 0.000 0.001 0.000 0.000 0.001 

DG Equal variances 
assumed 

0.600 0.442 3.891 48 0.000 0.019 0.005 0.009 0.029 

Equal variances 
not assumed 

    3.891 46 0.000 0.019 0.005 0.009 0.029 

CA3 Equal variances 
assumed 

3.775 0.058 1.203 48 0.235 0.000 0.000 0.000 0.001 

Equal variances 
not assumed 

    1.203 45 0.235 0.000 0.000 0.000 0.001 

TAIL Equal variances 
assumed 

0.372 0.545 3.287 48 0.002 0.003 0.001 0.001 0.005 

Equal variances 
not assumed 

    3.287 47 0.002 0.003 0.001 0.001 0.005 

whole_ 
hippocampus 

Equal variances 
assumed 

0.272 0.605 4.855 48 0.000 0.089 0.018 0.052 0.126 

Equal variances 
not assumed 

    4.855 47 0.000 0.089 0.018 0.052 0.126 
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