
1 
 

Genetic Risk for High Body Mass Index 
Before and Amidst the Obesity Epidemic: 

Cross-Cohort Analysis of Four British 
Birth Cohort Studies 

 
Liam Wright 1 *, Neil M Davies 2,3,4, Gemma Shireby 1, Dylan M Williams 5, Tim T Morris 1, David 

Bann 1 

 

1 Centre for Longitudinal Studies, University College London, London, WC1E 0NU, UK. 

2 Division of Psychiatry, University College London, London, WC1E 6BT, UK. 

3 Department of Statistical Science, University College London, London, WC1E 6BT, UK. 

4 K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, 

Norwegian University of Science and Technology, Norway. 

5 MRC Unit for Lifelong Health & Ageing at UCL, University College London, London, WC1E 7HB, 

UK 

 

* Corresponding author: Liam Wright, 55-59 Gordon Square, London, WC1H 0NT, 

liam.wright@ucl.ac.uk 

 

 

 

 

 

 

 

Word Count: 4,436 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 25, 2024. ; https://doi.org/10.1101/2024.10.24.24315860doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.10.24.24315860
http://creativecommons.org/licenses/by/4.0/


2 
 

Abstract 

Obesity is a highly heritable trait, but rising obesity rates over the past five decades suggest 

environmental change is also of profound importance. We conducted a cross-cohort analysis to 

examine how associations between genetic risk for high BMI and observed BMI differed in four 

British birth cohorts born before and amidst the obesity epidemic (1946, 1958, 1970 and ~2001, 

respectively; N = 19,379). BMI (kg/m2) was measured at multiple time points between ages 3 and 69 

years. We used polygenic indices (PGI) derived from GWAS of adulthood and childhood BMI, 

respectively, with mixed effects models used to estimate associations with mean BMI and quantile 

regression used to assess associations across the distribution of BMI. We further used Genomic 

Relatedness Restricted Maximum Likelihood (GREML) to calculate SNP-heritability (SNP-h2) at 

each age. Adulthood BMI PGI was associated with BMI in all cohorts and ages but was more strongly 

associated with BMI in more recently born generations. For example, at age 16y, a 1 SD increase in 

the adulthood PGI was associated with 0.43 kg/m2 (0.34, 0.51) higher BMI in the 1946c and 0.90 

kg/m2 (0.83, 0.97) higher BMI in the 2001c. Cross-cohort differences widened with age and were 

larger at the upper end of the BMI distribution, indicating disproportionate increases in obesity in 

more recent generations for those with higher PGIs. Differences were also observed when using the 

childhood PGI, but there were no clear, consistent differences in SNP-h2. Findings highlight how the 

environment can modify genetic influence; genetic effects on BMI differed by birth cohort, age, and 

outcome centile.  

 

Keywords: comparative research; gene-environment interaction; GxE; polygenic indices; body mass 

index; obesity; childhood obesity  
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Introduction 

Obesity is a leading cause of morbidity and premature mortality worldwide [1], with the global 

economic cost of overweight and obesity estimated to exceed $2tn per annum [2]. More than one in 

four adults and one in five 11-year-olds in England is obese [3]. The strong tracking of body mass 

index (BMI) across the life course [4] raises the possibility that current generations will spend more 

time obese [5], increasing the risk of public health problems in years to come [6]. 

It was not always thus. The prevalence of obesity has increased dramatically in industrialised nations 

over the past five decades, though the timing and extent of this increase has differed markedly across 

countries [7]. In England, obesity rates among children and adults have more than tripled since the 

mid-1970s [8–11]. The precipitous increase in obesity, faster than any plausible genetic change at a 

population level, suggests an important role of the environment in determining body weight. 

Obesity is likely proximally caused by an imbalance between energy consumed and energy expended. 

Multiple societal changes have occurred alongside the obesity epidemic that are thought to have 

negatively influenced energy balance, though the relative contribution of changes in energy 

consumption and expenditure remains debated [10, 12–15]. Technological, economic and social 

developments have progressively ‘engineered’ physical effort out of many people’s lives [16], for 

instance, through the introduction of labour-saving devices in the home and in the workplace, the 

growth of sedentary leisure activities, such as television and video games, and the decline in manual 

employment [17]. Food, especially sugary and fatty food, has also become cheaper [16], the relative 

share of food expenditure on processed foodstuffs has increased [18], and fast-food outlets have 

expanded in number [19]. 

Yet, while obesity rates have increased, the underlying change in the distribution of body mass index 

(BMI) has not been uniform. Instead, the population distribution of BMI has become more variable 

and more skewed – levels of underweight are almost unchanged, while the increase in median BMI 

has been small relative to the growth in obesity rates [5, 8, 9, 20]. This change in the distribution of 

BMI suggests that individuals differ in their susceptibility to the obesogenic environment. One source 

of these differences may be genetics. BMI is highly heritable, with estimates from twin studies 

ranging 47-90% [21], and genetic variants that increase the risk of obesity can operate through the 

environment [22]. For instance, variants of the FTO gene strongly related to obesity risk [23] are also 

associated with multiple behavioural and psychological dispositions related to eating, such as 

increased hunger and lower satiety [24]. These dispositions may be more likely to translate into higher 

BMI in conditions where energy-dense food is cheap, salient, and widely available and where 

individuals are unlikely to compensate by increasing physical activity – hallmarks of the obesity 

epidemic [22, 25]. 
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Several gene-environment interaction (GxE) studies have investigated whether heritability and 

genotypic penetrance – defined as the association between genotype and the level of a trait (in this 

case, BMI) – have increased alongside the obesity epidemic. These proxy for exposure to the obesity 

epidemic by birth year or year of assessment [26–34], prevalence of obesity or mean BMI in the 

sample studied [35, 36]. These studies show that, while average BMI has increased regardless of 

genotype [26], genetic penetrance has grown alongside the obesity epidemic, while heritability has 

stayed relatively stable; between-person differences in BMI according to genotype are now increased, 

but the proportion of variation in BMI explained is largely unchanged. 

However, a limitation of these studies is that they have almost exclusively used data from adults – 

particularly older adults from the US – rather than children or adolescents. This is important as there 

are distinct genetic effects at different developmental stages [37]; two PGIs trained on adult and 

childhood BMI, respectively, are only correlated at r ~ 0.4 [38]. Further, the environments people 

encounter that are relevant for obesity change as individuals develop in ways that could influence 

genetic effects. For instance, young children are generally given less agency over the food they 

consume and have very different physical activity levels than adults. It is therefore unclear to what 

extent previous results generalize to younger age groups. Further, most use regional rather than 

national samples.  

Previous studies have also focused on changes in the association of genetics and mean BMI or 

obesity, specifically, rather than investigating changing associations across the full distribution of 

BMI. As noted, the obesity epidemic is marked by increasing skewness in BMI [8, 20]. Previous 

research has shown that an adult BMI PGI is particularly associated with high levels of BMI (e.g., 

Class II obesity) [38], but this has not been examined comparing cohorts differentially exposed to the 

obesity epidemic. 

The British Birth Cohort Studies [39], which follow cohorts of individuals born in 1946, 1958, 1970, 

and 2000/02, offer a unique window into changing obesity rates. The cohorts have recently been 

genotyped and have multiple measurements of BMI across life, collectively spanning pre- and post-

obesity epidemic periods. The oldest cohort grew up in a uniquely relatively uniform food 

environment and were eight years old when post-World War II food rationing ended in the UK [40, 

41], while the youngest cohort had obesity rates of 20% by age 11y, four times the rate of similarly 

aged children twenty years prior [42]. 

Thus, in this study, we used data from the four British birth cohort studies to investigate how genetic 

penetrance upon childhood and adulthood BMI has changed over the obesity epidemic in the UK. We 

compared genotype-phenotype associations for two PGI derived from GWAS of adulthood and 

childhood BMI, respectively, as well as using genome-wide (i.e., SNP-heritability) and single gene 

(e.g., FTO) approaches. We further examined whether changes in the magnitudes of genetic effects 
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have occurred across the entire distribution of population BMI. We hypothesised that changes in 

genetic penetrance would track cross-cohort differences in BMI: genetic effects would be stronger, at 

a given age, in each successive cohort, driven by stronger associations at upper centiles of the BMI 

distribution. 

Methods 

Participants 

The MRC National Survey of Health and Development (hereafter, 1946c) follows a sample of 

individuals born in mainland Britain (England, Scotland, or Wales) during a single week of March 

1946. Cohort members were recruited by sampling singleton births, with individuals from non-manual 

households oversampled. The National Child Development Study (hereafter, 1958c) and the British 

Cohort Study (hereafter, 1970c) track all individuals born in mainland Britain in single weeks of 

March 1958 and April 1970, respectively. Immigrants to the UK born in these weeks were later added 

to 1958c and 1970c using school enrolment information. The Millennium Cohort Study (hereafter, 

2001c) follows a sample of individuals from across the UK born between 2000/02. Participants were 

recruited using a two-stage stratified sampling design and sampled from selected postcode areas. 

Individuals from Northern Ireland, Scotland and Wales, ethnic minority backgrounds, or 

disadvantaged areas were oversampled. Given differences in cohort eligibility and increasing ethnic 

diversity within the UK, we restricted our analysis in each cohort to singletons of White ethnicity born 

in England, Scotland, or Wales. 

The 1946c, 1958c and 1970c were genotyped using whole blood samples collected at ages 53y, 44y, 

and 46y, respectively, while the 2001c were genotyped using saliva samples collected at 14y. The 

procedures used to genotype participants, as well as steps used to quality control (QC) and impute 

genetic data, are described further in the Supplementary Information. Procedures differed between 

each cohort. 2,731 (50.9%) eligible participants in the 1946c had genetic data. Corresponding figures 

were 5,989 (37.0%) for the 1958c, 5,170 (31.5%) for the 1970c and 5,489 (41.1%) for the 2001c. 

Each cohort and survey sweep has received ethical approval and obtained appropriate consent 

according to guidance in place at data collection. Further details on each study are available in cohort 

profiles [43–48]. 

Measures 

Body Mass Index 

Height and weight were obtained at the following ages: 

• 1946c: ages 4y, 6y, 7y, 11y, 15y, 20y, 26y, 36y, 43y, 53y, 63y, and 69y 

• 1958c: ages 7y, 11y, 16y, 23y, 33y, 42y, 44y, 50y, and 55y 
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• 1970c: ages 10y, 16y, 26y, 29y, 34y, 42y, and 46y 

• 2001c: ages 3y, 5y, 7y, 11y, 14y and 17y 

Height and weight were collected via direct measurement by interviewers, health visitors, doctors, or 

nurses except in the following sweeps where self-report was used: ages 20y and 26y in the 1946c; 

ages 23y, 42y, 50y and 55y in the 1958c; and ages 26y to 42y in the 1970c. Self-report was 

additionally used in a small number of cases where it was not possible to obtain a valid measurement 

from participants (e.g., where the participant refused).  

We converted height and weight to BMI using standard formula (kg/m2). We excluded outlier values 

beyond +/- 3 SD of the sample mean (calculated in each cohort follow-up, separately), and from age 

20+ used previous or succeeding measurements of adult height, where missing. 

Polygenic Indices for Body Mass Index 

In main analyses, we used two polygenic indices (PGIs) for adult BMI and child BMI, respectively, 

derived from genome-wide association studies (GWAS) of UK Biobank (UKB) data, a sample of 

approximately 500,000 British adults aged 39-73 year old at recruitment in 2006 -2010 [49]; the use 

of UKB avoided sample overlap with our data. Adulthood BMI was measured objectively at baseline 

assessment in UKB [50], while childhood weight was captured by retrospective self-report with 

participants asked whether at age ten they were “thinner, plumper, or about average” relative to others 

[51]. Previous work using the 1946c shows this PGI relates similarly to BMI as a PGI derived from a 

GWAS of prospectively measured child-adolescent BMI, but which used the 1958c in its discovery 

sample [52].  

We calculated each PGI using PRSice-2 [53] limiting to clumped genome-wide significant hits (p < 

5e-8, R2 < 0.01, 1,000 kb window) and disregarding ambiguous alleles, assuming additive genetic 

effects and, for comparability between cohorts, subsetting to single nucleotide polymorphisms (SNPs) 

genotyped or imputed in each cohort. For interpretability, we standardised the PGIs to have a mean of 

zero and a standard deviation of one across the combined sample. The final PGI scores were based on 

505 (adulthood BMI) and 227 (childhood BMI) SNPs, respectively. 

As BMI does not distinguish between fat and lean mass and height has increased over time [54],  in 

sensitivity analysis, we alternatively used a PGI for adult fat mass percentage, specifically, again 

based on a GWAS of UKB data [50; 461 SNPs]. We additionally used a variable capturing the count 

of effect alleles for a variant within the FTO gene (rs1558902) that is related to fat mass and eating 

behaviour [55, 56]. 

Covariates and Auxiliary Variables  

We included several variables as covariates. Depending on the model, these were the cohort 

member’s sex, verbal reasoning ability at age 10/11, maternal age at birth, mother’s years of 
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education, family socioeconomic class, mother’s BMI, and cohort member’s first ten genetic principal 

components (PCs). Further detail on these variables is provided in the Supplementary Information. 

Statistical Analysis 

To investigate changes in polygenic penetrance on (mean) BMI across cohorts, we regressed BMI 

values at each age upon the PGI, repeated separately for each PGI and cohort. As BMI was measured 

repeatedly, we used mixed effects modelling, with person-specific random intercepts added to models 

(observations nested within individuals). Given previous evidence that associations between PGI and 

BMI vary non-linearly over the life course [38], we interacted the PGI and age, with age modelled 

with two natural splines [57]. In our primary analysis, we adjusted for sex, a dummy variable for BMI 

measurement type (direct or self-report), and the first ten genetic principal components (PCs), the 

latter to account for population stratification [58]. From these regressions, we calculated marginal 

effects across the range follow-ups in a given cohort (i.e., ages 3y, 4y, …,17y in the 2001c) and then, 

for a given age in a pair of cohorts, calculated z-scores for differences in these marginal effects. We 

repeated each analysis, including additional adjustment for (a) family socioeconomic class, mother’s 

years of education and childhood cognitive ability and (b) mother’s age and BMI. Each of these were 

regarded as background factors that may explain changing associations. 

To examine changes in the polygenic penetrance on the distribution of BMI across cohorts, we used 

quantile regression, estimating separate quantile regressions for each decile of BMI (10th, 20th, …, 90th 

centiles), repeated for each PGI, age of follow-up, and cohort, and adjusting for sex, self-report 

dummy, (linear) age and the first ten genetic PCs.  Estimates were then plotted and visually compared 

for each cohort, age, and outcome decile. 

We performed two separate analyses to explore changes in the heritability of BMI across cohorts. 

First, we estimated ‘PGI-heritability’ by calculating incremental variance explained by each PGI. This 

was calculated by extracting R2 values from OLS regressions of BMI upon the PGI plus covariates 

(age, sex, and 10 PCs) and comparing these against R2 values obtained when not adjusting for the 

PGI. We repeated this for each PGI, cohort, and follow-up age separately and estimated 95% 

confidence intervals using bootstrapping (500 bootstraps, percentile method). 

Second, we estimated SNP-heritability (SNP-h2) at each follow-up using Genomic Relatedness 

Restricted Maximum Likelihood (GREML), as implemented in the software GCTA [59]. This method 

exploits variation in genetic relatedness between sampled, not closely related individuals to calculate 

the proportion of phenotypic variance that can be explained (additively) by measured genetic variants 

[60]. The benefit of this approach is it does not rely on PGI weights, which here were based on the 

GWAS of an older population (i.e., UKB) and could, if causal genetic signals differ by cohort, be 

biased for younger cohorts. 
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We carried out all regression analyses using R version 4.3.1 [61]. Given the 1946c and 2001c used 

stratified study designs, we used study-specific probability (recruitment) weights in analyses, except 

for the GREML analysis, the software for which did not allow for the inclusion of weights. We used 

(regression-specific) complete case data. Sample sizes therefore differed across analyses due to 

missing data for PGI, BMI or covariates, loss to follow-up, death, and emigration. In sensitivity 

analyses, we created bespoke inverse probability weights to account for selection into the genotyped 

sample and combined this with multiple imputation to address remaining item missingness. The 

procedure we used is described further in the Supplementary Information. 

Results 

Descriptive Statistics 

The mean and variance of BMI were higher at a given age in each successive cohort, though 

differences between the 1946c, 1958c, and 1970c only arose during early adulthood (Figure 1). The 

increase in variance was driven by increases at higher centiles of the BMI distribution – there was 

little difference between cohorts in the prevalence of underweight or median BMI, while differences 

at the 90th centile were substantial. Mean BMI increased as each cohort aged, but the rate of increase 

was greater in younger cohorts. 

PGI distributions were similar in each cohort (Supplementary Figure S1). Adulthood and childhood 

PGIs were positively correlated in each cohort; correlations ranged 0.34 – 0.36. The adulthood PGI 

was related to several covariates (Table 1), including positive correlations with mother’s (ρ = 0.08 – 

0.14) and father’s BMI (ρ = 0.06 – 0.10) and negative correlations with verbal cognitive ability scores 

(ρ = -0.07 – -0.04). The adulthood PGI was also (negatively) related to parents’ education and 

maternal age. The childhood PGI was related to the mother’s and father’s BMI (ρ = 0.08 – 0.12 and 

0.05 – 0.09, respectively; Supplementary Table S1). Associations with other covariates, including 

verbal cognitive ability scores, were weaker in size and close to the null. 

There was evidence of selection bias in the genotyped samples. In each cohort, compared with other 

cohort members, genotyped individuals were more likely to be from advantaged socioeconomic 

backgrounds (as measured by family socioeconomic class and parental education) and had higher 

cognitive ability, on average (Supplementary Table S2). Higher BMI and PGI values were related to a 

greater likelihood of dropping out of each survey in later sweeps (Supplementary Figures S2 and S3). 

Changing Polygenic Penetrance on (Mean) BMI 

The adult PGI was positively associated with BMI in each cohort in childhood, adolescence and 

adulthood (left panel, Figure 2). Associations strengthened as participants aged. These associations 

were stronger in successively younger cohorts – especially the 2001c – but the age at which 

differences between cohorts appeared grew earlier over time (top panels, Supplementary Figure S4). 
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For instance, associations between the adulthood PGI and BMI were consistently stronger in the 

1958c than the 1946c only in mid-adulthood (~ age 40+). In comparison, differences between the 

2001c and earlier cohorts appeared from childhood. At age 16y, a 1 SD increase in the PGI was 

associated with a 0.90 kg/m2 (0.83, 0.97) higher BMI in the 2001c, over double the 0.43 kg/m2 (0.34, 

0.51) difference estimated in the 1946c. Corresponding figures for the 1958c and 1970c were 0.40 

kg/m2 (0.33, 0.48) and 0.47 kg/m2 (0.38, 0.56), respectively. At age 42y, a 1 SD increase in the PGI 

was associated with a higher BMI of 0.77 kg/m2 (0.68, 0.85) in the 1946c, 0.81 kg/m2 (0.73, 0.88) 

higher BMI in the 1958c, and a 0.96 kg/m2 (0.86, 1.05) higher BMI in the 1970c. Note, these are of 

comparable size to the associations as early as age 16y in the 2001c (for contour plot, see 

Supplementary Figure S5).  

The childhood PGI was also positively associated with BMI in each cohort in childhood, adolescence 

and adulthood (right panel, Figure 2). Associations had an inverted-U shaped relationship with age, 

growing stronger into mid-adulthood but weaker thereafter. Associations were again stronger in 

successively younger cohorts, and notably larger in the 2001c (bottom panels, Supplementary Figure 

S4, and Supplementary Figure S6). However, there was little consistent difference between the 1946c 

and 1958c. At age 16y, a 1 SD increase in the PGI was associated with a higher BMI of 0.47 

kg/m2 (0.38, 0.55) in the 1946c, 0.48 kg/m2 (0.41, 0.55) in the 1958c, 0.52 kg/m2 (0.42, 0.61) in the 

1970c, and 1.01 kg/m2 (0.94, 1.09) in the 2001c. 

Changing Polygenic Penetrance on the Distribution of BMI 

The association between the adulthood PGI and BMI was stronger at higher centiles of BMI in each 

cohort, indicating greater variance and skewness in BMI among those with higher PGI values 

(selected results shown in Figure 3; full results shown in Supplementary Figures S7-S8). Differences 

between the 2001c and the earlier cohorts in the association between the adulthood PGI and BMI 

were more pronounced at higher centiles of the distribution. At age 10/11, at the 10th centile of the 

BMI distribution, a 1 SD increase in the adulthood PGI was associated with 0.17 kg/m2 (0.06, 0.28) 

higher BMI in the 1946c, 0.10 kg/m2 (0.06, 0.15) in the 1958c, 0.18 kg/m2 (0.11, 0.25) in the 1970c 

and 0.25 kg/m2 (0.18, 0.31) in the 2001c. Corresponding figures at the same age for the 90th centile 

were 0.62 kg/m2 (0.36, 0.88), 0.77 kg/m2 (0.61, 0.92), 0.50 kg/m2 (0.34, 0.66),and 1.20 kg/m2 (0.99, 

1.40), respectively. Differences in association in adulthood between the oldest three cohorts were less 

pronounced. Stronger associations at higher centiles, particularly for the 2001c, were generally also 

observed when examining the association between the childhood PGI and BMI scores 

(Supplementary Figures S8-S9). 

Changes in the Heritability of BMI 

Though associations between the adulthood PGI and BMI increased as participants aged (top left 

panel, Figure 4), the variance in BMI explained by the adulthood PGI (i.e., PGI-heritability) stayed 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 25, 2024. ; https://doi.org/10.1101/2024.10.24.24315860doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.24.24315860
http://creativecommons.org/licenses/by/4.0/


10 
 

largely constant across adulthood (middle left panel, Figure 4; also see Supplementary Table S3) 

reflecting the increasing variance in BMI at older ages. The adulthood PGI explained at most 4.1% of 

the variance in BMI in the 1946c (43y; 95% CI = 2.5%, 5.9%), 3.7% in the 1958c (50y; 95% CI = 

2.7%, 4.6%), 3.9% in the 1970c (29y; 95% CI = 2.9%, 5.0%), and 4.3% in the 2001c (17y; 95% CI = 

3.2%, 5.5%). There were no clear, consistent cohort differences in PGI-heritability using the 

adulthood PGI. 

The proportion of variance in BMI explained by the childhood PGI increased into adolescence but 

declined thereafter (middle right panel, Figure 4; also see Supplementary Table S3). The childhood 

PGI explained at most 5.1% of the variance in BMI in the 1946c (11y; 95% CI = 3.1%, 7.2%), 3.8% 

in the 1958c (16y; 95% CI = 2.8%, 4.9%), 5.0% in the 1970c (10y; 95% CI = 3.7%, 6.3%), and 5.3% 

in the 2001c (7y; 95% CI = 4.0%, 6.8%) Again, there were no clear and consistent cohort differences 

in PGI-heritability using the childhood PGI. 

SNP-h2 estimates estimated with GREML were larger than PGI-heritability estimates and ranged 

14.5% (53y) to 49.5% (36y) in the 1946c, 14.5% (50y) to 35.1% (11y) in the 1958c, 19.3% (34y) to 

35.6% (26y) in the 1970c, and 28.6% (5y) to 42.7% (14y) in the 2001c (bottom panel, Figure 4; also 

see Table S3). SNP-h2 was greatest in the 1946c, but at each follow-up and in each cohort, confidence 

intervals were wide. Given the lack of precision in the estimates, there was no clear trend in SNP-h2 

by age. 

Sensitivity Analyses 

Results for the associations between each PGI and mean BMI (kg/m2) were qualitatively similar when 

additionally controlling for family socioeconomic position and childhood cognitive ability or maternal 

BMI and maternal age at birth (Supplementary Figure S10). Results were also qualitatively similar 

when using weighting to account for selection into the genotyped sample, though cohort differences in 

later adulthood were less pronounced (Supplementary Figure S11). Mixed effects model results were 

partly replicated when using the PGI for adult fat mass rather than a PGI for adult BMI, specifically: 

the PGI had the strongest association in the youngest cohort (bottom left panel, Supplementary Figure 

S12). This was also the case when using the rs1558902 FTO variant, though confidence intervals 

overlapped owing to the lower predictive power of the variable (bottom right panel, Supplementary 

Figure S12). 

Discussion 

Summary of Results 

Using multiple national birth cohorts with data spanning 1950 to 2018, we found considerable cross-

cohort differences in associations of genetics with BMI. In each cohort, the adulthood PGI-BMI 

association increased as individuals aged, but the relationship was strongest in the most recent-born 
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cohort (2001c). Differences in the strength of association of the adulthood PGI between the 1946c, 

1958c and 1970c arose during adulthood, tracking the development of cross-cohort differences in 

BMI among these cohorts. Associations between the adulthood PGI and BMI were stronger at higher 

centiles of BMI in each cohort, consistent with genetic effects disproportionately impacting obesity 

rates. Cross-cohort differences in the effects were also typically larger at higher centiles of the BMI 

distribution. Again, this tracked the nature of cross-cohort differences in BMI which were driven by 

increases in obesity, in particular. Cross-cohort differences were also observed using PGI for 

childhood BMI and adult fat mass. 

Explanation of Results 

The finding of larger associations between PGI and BMI in cohorts more affected by the obesity 

epidemic is consistent with previous studies in adults and twins [26–36, 62]. We extend these results 

by examining data across life in multiple national cohorts and undertaking a range of analyses from 

distributional modelling to PGI, genome-wide, and specific gene approaches to inference. Changes in 

genetic penetrance appear to have tracked the obesity epidemic – specifically, the timing at which 

differences in phenotypic BMI across cohorts has arisen and the disproportionate effects on obesity 

rates. 

Why the adulthood and childhood PGIs have stronger associations with BMI in more recent born 

cohorts is unclear. While birth year is arguably an exogenous source of environmental variation, it 

does not distinguish which aspects of the environment have led to the changes we observed. Previous 

studies have shown weaker effects of PGI on BMI among physically active individuals [63] and those 

living in deprived neighbourhoods [64] or in greater proximity to fast-food restaurants [65, though 

also see 66]. As the environment has changed, it may have enabled greater expression of genetic 

liability towards higher calorie consumption and, thus, higher BMI.  

Factors that predict increasing genetic penetrance over time may also explain the stronger effects we 

observed at the upper centiles of the BMI distribution. In the 2001c, for example, proximity to fast 

food outlets varies considerably between cohort members and across time [67]. If genetic effects are 

of greater importance where calorific food is more readily available, we would, therefore, expect 

heterogeneous genetic effects. This would be reflected as greater variation and skewness in the 

distribution of BMI over time, as observed here. Further, some, but not all, individuals may offset 

greater genetic risk through higher physical activity or other changes in behaviour [63], which may 

again lead to greater variation in BMI among those with high PGI values. 

Cohort differences may also be driven by genetically-influenced nurture. Recent work suggests that 

maternal BMI-related genetic variants that are not directly inherited influence offspring BMI [68–70]. 

Parents make choices on children’s behalf, and children may also model parent behaviour. Given 

changes in adult eating and exercise habits over time, this could explain some of the change in genetic 
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effects in the 2001c relative to earlier cohorts. An extension of this work would be to investigate how 

much of the effects on mean and variance are due to direct versus indirect genetic effects. 

Strengths and Limitations 

Strengths include using BMI data collected from nationally representative samples at multiple ages in 

each cohort, particularly measurements from early childhood and adolescence. BMI was also 

measured objectively on most measurement occasions and the cohorts we used spanned a wide period 

of recent history, including before the obesity epidemic in the UK. Data collection also overlapped 

with a period of post-war food rationing for the 1946c.  

Limitations include the high degree of attrition (>50%) reflected in the genotyped samples. 

Individuals with higher BMI had higher rates of drop-out in each cohort, which may have biased 

results. However, similar results were obtained when accounting for selection into the genotyped 

sample with inverse probability weighting. Our study relied upon GWAS of an older cohort that did 

not span all age ranges or birth years used here. However, arguably this should bias towards finding 

larger effects in older cohorts, the opposite of what we found here. While the procedures used to QC 

and impute genetic data were harmonised across each cohort, different genotypic chips were used, 

which may have biased results. 

Conclusions 

Identical genetic variation appears to have had more pronounced consequences for BMI in cohorts 

born later in the obesity epidemic. Genetic associations were stronger at highest BMI centiles – the 

part of the distribution that has changed most in recent decades. Findings suggest that the effects of 

genes on BMI are, to some extent, modifiable. Future research should identify aspects of the 

environment that can temper genetic predisposition. 
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Figures 

 

Figure 1: Descriptive statistics (+ 95% CIs) for BMI (kg/m2) by cohort and age at follow-up among genotyped participants.  Estimates are weighted using recruitment weights and account for 
complex survey design.
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Figure 2: Association between PGI and BMI (kg/m2) by cohort, age, and PGI (adulthood or childhood). Derived from separate linear mixed effects models with association between PGI and 
BMI allowed to vary by age (two natural splines). Adjustment for age (two natural splines), sex, first 10 genetic principal components, and a person-specific random intercept. Estimates were 
weighted using recruitment weights.  
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Figure 3: Association between adulthood PGI and BMI (kg/m2) by BMI decile, cohort, age of follow-up. Derived from separate quantile regressions adjusting for age (linear term), sex and first 
10 genetic principal components. Estimates were weighted using recruitment weights. Each panels displays associations for a particular, selected decile of BMI (10th, 50th, 90th). Results show 
how the (conditional) centiles of BMI vary according to 1 SD increases in the adulthood PGI.  Full results (10th, 20th, …, 90th deciles) are displayed in Supplementary Figure S6.
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Figure 4: Heritability of BMI and association between adulthood and childhood PGI and BMI by cohort and follow-up. Top 
Panels: Regression of BMI (kg/m2) upon PGI by cohort, age of follow-up, and PGI (adulthood or childhood). Derived from 
separate OLS regressions adjusting for age, sex and first 10 genetic principal components. Estimates were weighted using 
recruitment weights and account for complex survey design. Marginal effect of 1 SD higher PGI on BMI (kg/m2). Middle 
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Panels: incremental proportion of variance explained by (adulthood or childhood) PGI calculated by comparing R2 with 
regression of BMI on age, sex and first 10 genetic principal components, with and without further adjustment for the PGI. 
Confidence intervals estimated using bootstrapping (500 bootstraps, percentile method). Bottom Panel: SNP-heritability of 
BMI calculated with GCTA, adjusting for sex, age and first 10 genetic principal components. Survey weights were not 
incorporated in the GCTA analysis.
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Tables 
Table 1: Association between adulthood PGI and covariates 

 Variable 1946c 1958c 1970c 2001c 

Sex 
Male 

-0.01 
(1.01) 

-0.02 
(1.01) 

0.01 
(1.00) 

0.00 
(1.01) 

Female 
0.00 

(1.00) 
-0.03 
(0.98) 

0.03 
(0.99) 

0.02 
(1.01) 

 

Verbal Score @ Age 
10/11 

-0.04 
(-0.09, 
0.01) 

-0.04* 
(-0.06, -

0.01) 

-0.04* 
(-0.07, -

0.01) 

-0.07* 
(-0.10, -

0.04) 

Mother's BMI 
0.14* 

(0.09, 0.19) 
0.09* 

(0.06, 0.12) 
0.12* 

(0.09, 0.15) 
0.09* 

(0.06, 0.12) 

Father's BMI 
0.06* 

(0.01, 0.12) 
0.07* 

(0.04, 0.10) 
0.09* 

(0.06, 0.13) 
0.10* 

(0.07, 0.14) 

Mother's Age 
-0.06* 

(-0.11, -
0.01) 

-0.02 
(-0.04, 
0.01) 

-0.01 
(-0.04, 
0.01) 

-0.08* 
(-0.11, -

0.05) 

Mother's Education 
(Years) 

-0.03 
(-0.08, 
0.02) 

-0.01 
(-0.04, 
0.02) 

-0.05* 
(-0.08, -

0.02) 

-0.10* 
(-0.13, -

0.07) 

Father's Education 
(Years) 

-0.03 
(-0.07, 
0.01) 

-0.04* 
(-0.07, -

0.02) 

-0.06* 
(-0.09, -

0.03) 

-0.08* 
(-0.12, -

0.05) 

Family Class (Registrar 
General) 

I Professional 
-0.31 
(1.10) 

-0.15 
(1.03) 

-0.14 
(0.96) 

-0.22 
(1.00) 

II Intermediate 
-0.06 
(1.02) 

-0.09 
(0.99) 

0.00 
(1.00) 

-0.03 
(1.00) 

III Skilled Non-
Manual 

-0.11 
(0.99) 

-0.08 
(0.98) 

0.02 
(1.01) 

0.01 
(1.00) 

III Skilled Manual 
0.07 

(1.00) 
-0.01 
(0.99) 

0.07 
(0.98) 

0.14 
(1.01) 

IV Semi-Skilled -0.02 
(0.96) 

0.00 
(1.00) 

0.03 
(1.02) 

0.11 
(1.02) 

V Unskilled 
-0.01 
(0.99) 

0.16 
(0.93) 

0.05 
(0.93) 

0.01 
(1.07) 

Not Working    
0.16 

(1.03) 
Cells show the mean (SD) PGI levels for categorical covariates, and Pearson’s correlation (+ 95% CIs) with 
the PGI for continuous covariates. 
* indicates variable is a statistically significant predictor of the PGI (Wald test, p < 0.05).  
Estimates were weighted using recruitment weights and account for complex survey design. Row-wise 
complete case data. 
Full definitions for each variable are provided in the Supplementary Information. 
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