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Abstract 
 
Advancements in artificial intelligence (AI) offer promising solutions for enhancing clinical 
workflows and patient care, potentially revolutionizing healthcare delivery. However, the 
traditional paradigm of AI integration in healthcare is limited by models that rely on single input 
modalities during training and require extensive labeled data, failing to capture the multimodal 
nature of medical practice. Multimodal foundation models, particularly Large Vision Language 
Models (VLMs), have the potential to overcome these limitations by processing diverse data types 
and learning from large-scale unlabeled datasets or natural pairs of different modalities, thereby 
significantly contributing to the development of more robust and versatile AI systems in 
healthcare. In this review, we establish a unified terminology for multimodal foundation models 
for medical imaging applications and provide a systematic analysis of papers published between 
2012 and 2024. In total, we screened 1,144 papers from medical and AI domains and extracted 
data from 97 included studies. Our comprehensive effort aggregates the collective knowledge of 
prior work, evaluates the current state of multimodal AI in healthcare, and delineates both 
prevailing limitations and potential growth areas. We provide implementation guidelines and 
actionable recommendations for various stakeholders, including model developers, clinicians, 
policymakers, and dataset curators.  
 

1. Introduction 
Artificial Intelligence (AI) in healthcare presents significant opportunities to transform clinical 
workflows and patient care, ultimately improving patient outcomes. Despite numerous attempts 
to leverage AI models for healthcare, a significant gap remains between AI’s potential and its 
currently usefulness in clinical practice1–4. For instance, most contemporary healthcare AI models 
are constrained by a reliance on single input modalities during training, failing to capture the 
multimodal nature of medical practice5. This contrasts with real-world clinical practice, where 
physicians rely on diverse data sources to form a holistic view of patient health6,7. Moreover, the 
prevalent use of supervised learning requires extensive, clinical specialist-curated labels, a 
process that is neither scalable nor cost-effective, leading to models that excel in narrow tasks 
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without broader applicability8. To bridge this gap and fully realize AI's potential in healthcare, a 
paradigm shift is imperative: there is a need for AI models that are capable of processing 
multimodal inputs during training and learning from vast amounts of unlabeled data or natural 
pairs of different modalities, such as medical images and their corresponding reports. These 
approaches can enhance the performance and usefulness of AI in medical settings, heralding a 
new era of AI-driven healthcare innovations.  
 
Recently, the AI field has witnessed a leap in capabilities driven by advanced Foundation Models9 
such as GPT10 and Llama11. Unlike previous generations of specialized models, these Foundation 
Models can perform a wide variety of tasks using a single model trained on vast amounts of data9, 
typically through a training strategy called self-supervised learning (see Terminologies and 
Strategies section). Subsequently, these models exhibit emergent capabilities on tasks for which 
they were not explicitly trained9. Examples of emergent properties include zero-shot learning, 
where a model can identify e.g. a disease it was not explicitly trained to classify. While many 
pioneering Foundation Models are trained with text, which offers a direct semantic interface for 
humans to intuitively interact with the Foundation Models, these models are not restricted to text 
only. In fact, several recent research efforts have focused on multimodal foundation models that 
can integrate additional modalities, such as GPT-4V(ision)12, LLaVA13, and Gemini14. Multimodal 
models have a large potential for clinical use since patient data often include several modalities. 
 
While these models show great promise, they are still in their nascent stages in healthcare. The 
pathway to developing clinically useful tools remains challenging, requiring advancements in 
accuracy, safety, and workflow integration. The potential to effect positive changes in healthcare 
and improve patient outcomes hinges not only on the abilities of model developers but also 
requires a concerted effort from clinicians, policymakers, and dataset curators4. Clinicians play a 
pivotal role in identifying genuine clinical needs and determining the essential modalities for 
specific medical tasks. Policymakers are instrumental in updating their policies to consider the 
nuances of multimodal foundation models and striking a balance between streamlining the 
approval process and keeping a high standard for safety. Dataset curators must prioritize the 
collection of diverse, representative and multimodal data while maintaining high quality and 
clinical relevance. Interdisciplinary collaboration, guided by a shared language and understanding 
of these complex issues, is crucial to address current challenges and guide future model 
development.  
 
The objective of this review is threefold: i) to establish and unify the terminology critical to the 
intersection of AI and healthcare, with an emphasis on multimodal SSL training (see 
Terminologies and Strategies); ii) to conduct a systematic review of the new field of multimodal 
Foundation Models for medical imaging applications, extracting key insights and evaluating their 
current state (see Results); and iii) to highlight the prevailing limitations and actionable future 
strategies for a broad array of stakeholders, including model developers, clinicians, policymakers, 
and dataset curators (See Discussion and Guidelines). We focused on multimodality involving 
medical images, such as radiology image and pathology slides, since medical imaging is an 
essential part of the diagnostic and treatment workflow across various medical specialties. 
Although recent trends in medical imaging AI literature increasingly focus on utilizing multimodal 
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foundation models (see Figure. 1), with a handful of narrative reviews available15–18, there are 
currently no systematic reviews. By adhering to the PRISMA19 guidelines, we methodically gather 
and consolidate the latest contributions of multimodal Foundation Models for medical imaging 
applications, providing a comprehensive snapshot of the existing landscape. In total, we screened 
1,144 papers and extracted data from 97 papers for this systematic review. Our investigation 
identifies both challenges and their potential solutions for the deployment of multimodal 
Foundation Models, with a focus on advancing their usefulness in healthcare.  
 

 
 

Figure 1: Timeline showing growth in publications on deep learning for medical imaging, 
based on search criteria applied to PubMed and Scopus. The figure illustrates that 

multimodal self-supervised learning represents a small but rapidly growing subset of 
medical deep learning literature. Publication counts were aggregated using keyword 

groups. For example, "Medical AI" combines the "Deep Learning" and "Medical Imaging" 
groups, while "Medical AI + Self-supervised Learning" includes the prior two groups plus 
the "Self-supervised Learning" group. Specific keywords for each group are detailed in 

the Methodology section and Appendix. Y-axis is in log scale. 
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2. Terminology and strategies 
The development of foundation models typically involves a two-stage training process: pretraining 
and fine-tuning. During the pretraining stage, the vast majority of foundation models employ self-
supervised strategies - a process that utilizes large volumes of unlabeled or naturally paired data 
to learn general, transferable, and label-efficient representations. Subsequently, in the fine-tuning 
stage, the pretrained model is adapted to specific downstream tasks. Owing to the knowledge 
acquired during pretraining, fine-tuning often necessitate minimal labeled data, and in some 
cases, can be accomplished without task-specific labels. 
 
In this section, we provide definitions for different categories of multimodal self-supervised 
pretraining strategies: contrastive, self-prediction, generative, and generative Vision-Language 
Models (VLMs) (Figure 2). Additionally, we illustrate various approaches for adapting pretrained 
models to downstream tasks through fine-tuning (Figure 3).  
 

 
 

Figure 2:  Illustration of multimodal self-supervised learning pretraining strategies.  
During the pre-training stage of multimodal Foundation Models, one or more of the 

following self-supervised strategies are typically used: (a) Contrastive Learning forms 
positive pairs between matching data with shared semantic content, e.g. X-ray images 

and reports for the same medical examination, and minimizes the representational 
distance in a common latent space of positive samples (b) Self-prediction masks out 

random parts of the inputs and seeks to reconstruct the masked out regions by utilizing 
complimentary information across the input modalities (c) Generative SSL learns the 
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distribution of the training data by generating one or several modalities from another, 
e.g. generating a report from an X-ray or vice versa (d) Generative VLM is a special case 
of Generative SSL, where an input instruction (“prompt”) can be used to steer the output 

generated by the model. 
 
 

2.1 Contrastive  

Contrastive self-supervised learning paradigms presuppose that semantically similar input pairs, 
termed 'positive pairs,' should exhibit closer alignment in feature space compared to disparate 
inputs, or 'negative pairs'. Pioneering methodologies, exemplified by SimCLR20 and MoCo21, 
predominantly focused on unimodal data—specifically images. The core objective underpinning 
these models is the dual process of minimizing the distance between embeddings of positive pairs 
and maximizing that between negative pairs. Multiple approaches can be used to form positive 
and negative pairs, where the most common are various augmentations of the same inputs to 
constitute semantically similar positive pairs, while augmentations across distinct inputs from 
negative pairs. 

Progressing beyond unimodal frameworks, Contrastive Language-Image Pre-Training (CLIP22) 
integrates contrastive learning across image and textual domains. The key difference to its 
unimodal predecessors is that CLIP delineates positive pairs as images and their corresponding 
captions, seeking to co-locate image and textual descriptions within a unified multimodal 
representation space. This approach has paved the way for further explorations into multimodal 
contrastive learning, yielding diverse strategies for generating localized positive pairs between 
images and text, hence discovering more fine grained image-text associations23–25. Notably, the 
scope of modalities encompassed by recent advancements is not confined to images and text but 
extends to other modalities such as acoustic signals, electronic health records, or sensor data, 
provided the paired modalities convey shared semantic content. 

2.2 Self-prediction  

Self-prediction SSL involves the process of masking parts of the input data and subsequently 
attempting to reconstruct the original, unmodified input (Figure 2B). Self-prediction first emerged 
in the natural language processing (NLP) domain, where state-of-the-art models were initially 
trained through a process called Masked Language Modeling (MLM), which involves predicting 
the masked words from a sentence26. Inspired by this success in NLP, initial experiments in 
computer vision also adopted this method by obscuring or altering random patches of images and 
training Convolutional Neural Networks (CNNs) to fill in the gaps as a pre-training method27,28. 
More recently, the advent of Vision Transformers (ViT)29 enabled adopting transformer-based 
architectures that have shown considerable success in NLP research. Techniques such as BERT 
Pre-Training of Image Transformers (BEiT)30 and Masked Autoencoders (MAE)31 that utilize self-
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prediction in conjunction with ViT have demonstrated superior performance after fine-tuning on 
various natural image benchmarks compared to their CNN based predecessors.  

In a multi-modal setting, one or several of the modalities can be masked out, before the 
reconstruction step32. This approach allows the model to leverage the complementary information 
across multiple modalities when reconstructing the masked segments, thereby facilitating 
enhanced understanding of the complex associations between the modalities. Often 
corresponding text and images are used, such as X-rays and radiology reports, where e.g. parts 
of the image or text are masked out, and the information from both modalities is used concurrently 
to reconstruct the input33. However, self-prediction may be extended to any other modalities, such 
as genetics, blood panels, sensor data, or other medical data.  

2.3 Generative  

Generative models have been developed to learn the distribution of training data, which allows 
them to either reconstruct original inputs or generate new, synthetic data. Unlike self-prediction 
SSL methods that focus solely on masking parts of the input and uses the rest of the unmodified 
input to guide the reconstruction process, generative SSL methods modify the entire input and 
aim to reconstruct it as a whole. Hence, while self-prediction can only fill in removed information, 
generative approaches can generate new data. 
 
Pioneering work on generative models utilized autoencoders34. Here, an encoder transforms high-
dimensional inputs into a lower-dimensional compressed version (latent representation), followed 
by a decoder that uses the latent representation to reconstruct the original high-dimensional input. 
In a multi-modal setting, an encoder would take one modality as input and the decoder would 
generate another modality35 (Figure 2C). For instance, an encoder can take in medical images as 
inputs, and the decoder's task is to generate the corresponding reports36,37.  
 
Following autoencoders, Generative Adversarial Networks (GANs)38 and diffusion models39 have 
achieved notable success and popularity, particularly for image generation tasks. GANs use a 
generative model to generate a high quality output followed by a discriminator network trying to 
distinguish whether the generated output hails from the original data distribution or is a synthetic 
output. Diffusion models are trained by progressively adding small amounts of artificial noise to 
an input, with the goal of learning to reverse this process and iteratively denoising the input with 
the added noise. Successively adding even small amounts of noise to an input eventually fully 
converts it to noise. This can be leveraged during inference since the model has been trained to 
denoise inputs. At test time, pure noise can be progressively denoised to end up with an input 
that resembles the original data distribution.  
 
In multimodal settings, both GANs and diffusion models can incorporate other modalities to 
condition the generation process. A popular approach is using text prompts to guide the 
generation. For instance, instead of generating random medical images, these models can be 
prompted to generate specific types of medical images (e.g., chest X-rays with abnormalities) by 
incorporating text embeddings from clinical descriptions into the generation process.  
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2.4 Generative VLM  

More recently, a new type of multimodal generative model has emerged as a popular way to train 
foundation models40. Here, the encoder takes in an image and an instruction text prompt, and the 
decoder generates a desired output such as a summary or a detailed description of part of the 
image (Figure 2D)13,41. Typically, this type of generative models can leverage pretrained large 
language models (LLMs) for both text encoding and decoding which already possess rich 
semantic understanding, enabling an intuitive input and output language interface for the user. 
While the majority of these types of Generative VLMs utilize only text and images, these models 
may also incorporate other modalities such as genetic data, wearable sensors, and other medical 
data. 
 

2.5 Combined Pretraining Approaches  
While we have distilled the most common multi-modal pretraining approaches into distinct major 
categories above, many recent studies combine multiple pretraining approaches, for potentially 
enriching the model's pretraining phase by allowing it to leverage the benefits of each approach. 
The combination of multiple approaches is often achieved by directly optimizing the loss functions 
of each method or weighting sum of each of the losses. This amalgamation has been empirically 
demonstrated to enhance performance across various downstream tasks, surpassing models 
pretrained with a singular pretraining strategy. 
 
An illustrative example of such a combined approach is the Contrastive Captioner (CoCa) 
model42. CoCa integrates two pretraining strategies: generative pretraining, where the model 
learns to generate text descriptions (captions) for given images using a VLM decoder, and 
contrastive learning, where it learns to match images with their corresponding text descriptions 
using CLIP. By combining these strategies, CoCa learns both to describe images in detail and to 
understand the relationship between images and text at a broader level. This dual approach 
allows the model to develop a more comprehensive understanding of the connection between 
visual and textual information. 
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Figure 3:  Illustration of strategies for adapting pretrained models to downstream 
tasks. During the fine-tuning stage of a pretrained multimodal multimodal Foundation 
Model, one or several of the following strategies can be used to adapt the model to a 

given downstream task: (a) The entire or parts of the pretrained model is finetuned for 
the downstream task via supervised learning (b) The encoder is frozen and used only as 
a feature extractor, while a task-specific model is trained to utilize these features for the 

downstream task using supervised learning. (c) Pre-trained model embedding text 
prompts describing potential classes alongside the image and predicting the class 

whose text embedding is closest to the image embedding in the shared latent space 
without additional training. (d) The model, typically a VLM, is fine-tuned using pairs of 

instructions and expected outputs for the downstream task. 
 

Adapting to Downstream Tasks (Fine-tuning)  

Following the label-free pretraining approaches described above, models are typically adapted to 
specific downstream tasks using labeled data (Figure 3). A common method for doing so involves 
appending a task-specific head to the pretrained image encoder and fine-tuning the model with a 
conventional supervised learning regime. This process can be performed in two distinct manners: 
firstly, by training the entire or parts of the image encoder end-to-end with the task-specific head, 
as depicted in Figure 3a; alternatively, by freezing the encoder and utilizing it solely as a feature 
extractor for the task-specific head, thereby leaving encoder’s weights unchanged (Figure 3b). 
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In the absence of labeled training data, models trained with contrastive learning with images and 
text can be used to perform zero-shot classification — image classification without the need for 
any additional training data or labels (Figure 3c). The method poses a class label as text 
statements, e.g. “a CT scan with ascites present” and “a healthy CT scan”, and both text prompts 
are then embedded as text embeddings. The proximity of the text embeddings with that of the 
embedding of the original image is then used to decide what prompt best represents the image22.  

Alternatively, prompting is a versatile strategy for tasks requiring text generation, such as image 
captioning, summarization or question answering. In this approach, VLMs are given a textual input 
(the prompt) that instructs them to output the desired output (Figure 3d). However, the 
effectiveness of prompting can vary significantly based on the model's initial pretraining 
objectives, potentially yielding outputs that diverge from expectations. Addressing this challenge, 
“instruction tuning” has emerged as a novel training paradigm. This method involves further 
training of models using explicit pairs of instructions and expected answers tailored to specific 
downstream tasks. Instruction tuning enhances the model's ability to follow diverse task-specific 
prompts and generate text outputs more aligned with the intended task43. Some studies have also 
shown that instruction tuning can enable VLMs to perform a wide range of tasks beyond text 
generation. For instance, the VLM can be used for classification by instruction tuning it to output 
classification label as text.44,45 

Results 

Our systematic search initially identified 1,144 studies. After removing duplicates and applying 
our selection criteria to the titles and abstracts (detailed in the Methods section), 233 studies 
qualified for full-text evaluation. Ultimately, 97 studies met our eligibility requirements and were 
selected for detailed systematic review and data extraction. Out of the 97 studies, 48 studies were 
multimodal between image and non-image modalities, while 49 used multiple imaging modalities.  
Figure 4 illustrates the study selection and screening process as a flowchart. The extracted data 
for included studies that combine medical images with non-image modalities are listed in Table 1 
and Supplementary Table 1, while the extracted data for studies with image-only multimodality is 
listed in Table 2. Figure 5 provides a summary of the statistical analysis of the data. 
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Figure 4:  PRISMA flowchart of the study selection process. 
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Figure 5: Summary of extracted data from studies in our systematic review. (a) 

Percentage improvement in downstream task performance using multimodal training 
compared to single modality approaches. (b) Pairing combinations of image and non-

image data during pretraining. (c) Pairing combinations of different imaging modalities 
during pretraining. (d) Prevalence of imaging modalities across various pretraining 
types. (e) Prevalence of non-imaging modalities across various pretraining types. 

 
 

Authors Year Medical Domain Image Modality Other Modalities 
Pretraining 
Strategy 

Jong Hak 
Moon46 2022 Radiology X-ray Reports Combined 

Matthew 
Coleman47 2022 Radiology X-ray Reports Combined 

Hong-Yu Zhou48 2023 Radiology X-ray Reports Combined 

Jinpeng Hu49 2023 Radiology X-ray Reports Combined 

Ke Zhang50 2023 Radiology X-ray Reports Combined 

Pengfei Li51 2023 Many Many VQA Combined 

Sangjoon 
Park52 2023 Radiology CT Reports Combined 

Louis 
Blankemeier54 2024 Radiology CT 

Reports, ICD 
Codes Combined 

Jianbo Jiao55 2020 Radiology Ultrasound Audio Contrastive 

Mark Endo56 2021 Radiology X-ray Reports Contrastive 

Tristan 
Sylvain57 2021 Radiology X-ray Reports Contrastive 

Zhanghexuan 
Ji23 2021 Radiology X-ray Reports Contrastive 

Abdullah-Al-
Zubaer Imran58 2022 Radiology CT 

Patient Size 
Profile Contrastive 

Aiham Taleb59 2022 Optomology Fundus Image Genetics Contrastive 

Benedikt 
Boecking24 2022 Radiology X-ray Reports Contrastive 

Fuying Wang60 2022 Radiology X-ray Reports Contrastive 

Giorgio 
Leonardi61 2022 Radiology X-ray Reports Contrastive 

Gongbo Liang62 2022 Radiology X-ray Reports Contrastive 
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Yuhao Zhang63 2022 Radiology X-ray Reports Contrastive 

Hind Dadoun64 2023 Radiology Ultrasound Reports Contrastive 

Kangshun Li65 2023 Radiology CT and MRI Clinical Data Contrastive 

Nathan 
Hadjiyski66 2023 Radiology X-ray Reports Contrastive 

Samiksha 
Pachade67 2023 Radiology X-ray Reports Contrastive 

Sheng Zhang68 2023 Many Many 
Pubmed Image 
Captions Contrastive 

Shih-Cheng 
Huang25 2023 Radiology X-ray Reports Contrastive 

Shruthi 
Bannur69 2023 Radiology X-ray Reports Contrastive 

Xing Wu36 2023 Radiology X-ray Reports Contrastive 

Zhi Huang70 2023 Pathology Pathology Slides 
Text from Twitter 
Posts Contrastive 

Zudi Lin71 2023 Radiology X-ray Reports Contrastive 

Yuan Xue72 2019 Radiology X-ray Reports Generative 

Changhwan 
Lee73 2020 Radiology X-ray Reports Generative 

Xing Jia37 2021 Radiology X-ray Reports Generative 

Keegan 
Quigley76 2022 Radiology X-ray Reports Generative 

Pierre 
Chambon87 2022 Radiology X-ray Reports Generative 

Pierre 
Chambon88 2022 Radiology X-ray Reports Generative 

Yu Gu89 2023 Radiology X-ray Reports Generative 

Gangwoo Kim78 2023 Radiology X-ray Reports, Prompts Generative VLM 

Zhihong Chen82 2024 Radiology X-ray Reports Generative VLM 

Juan Manuel 
Zambrano 
Chaves80 2024 Radiology X-ray Reports Generative VLM 

Khaled Saab81 2024 Many Many VQA Generative VLM 
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Tao Tu81 2024 Many Many VQA Generative VLM 

Chunyuan Li77 2023 Many Many 
Pubmed Image 
Captions Generative VLM 

Michael Moor79 2023 Many Many 

Text From 
Medical 
Publications and 
Books Generative VLM 

Hong-Yu Zhou84 2024 Many Many Medical Text Generative VLM 

Shruthi 
Bannur86 2024 Radiology X-ray Reports Generative VLM 

Stephanie 
Hyland85 2024 Radiology X-ray Reports Generative VLM 

Yash Khare33 2021 Many Many VQA Self-prediction 

Zhihong Chen53 2023 Radiology CT and X-ray Reports Self-prediction 
 

Table 1: Overview of image to non-imaging multimodal self-supervised studies included in the 
systematic review. 

 

Contrastive 

Contrastive SSL was utilized in 21 out of 48 studies (Table 1). For imaging modalities used in 
these studies, X-rays were the most prevalent, featured in 14 studies23–25,36,56,57,60–63,66,67,69,71. 
Ultrasound was used in 2 studies55,64, CT images in 1 study58, and a combination of CT and MRI 
in another65. Additionally, fundus images59, pathology slides70, and medical images from pubmed 
papers68 were each employed in 1 study. For the corresponding non-imaging modalities, radiology 
reports were the most common, appearing in 15 studies23–25,36,56,57,60–64,66,67,69,71, while 2 studies 
used other text sources, specifically PubMed image captions68 and text from Twitter posts70. 
Genetic data59, patient size profiles58, clinical data, and speech55 were each used once in separate 
studies. 

Eight studies used traditional image-text contrastive learning similar to CLIP36,56,62–64,67,68,70, 7 
studies employed global and local contrastive learning23–25,57,60,61,66, 1 study adopted a strategy 
akin to SimSiam65, 1 study explored local, global and temporal correspondence69 and 4 studies 
developed novel strategies55,58,59,71. The reported average improvement of multimodality over 
single modality, where available, was: 0.050 AUROC (10 studies23–25,55,57,59,60,63,67,71), 0.201 
accuracy (1 study65), 0.362 Precision@5 (2 studies63,71), 0.023 BLEU 2 (1 study56), 0.103 F1-
score (2 studies56,64), 0.028 Dice (3 studies59,60,69), and 0.092 mAP (1 study60) 

While most studies apply contrastive learning between text and images, two studies applied 
contrastive learning to other combinations of modalities. Taleb et al. was the only study across all 
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categories that combined images and genetic data59. They utilized fundus images in conjunction 
with Single Nucleotide Polymorphisms (SNP) and Polygenic Risk Scores from the UK Biobank to 
create positive pairs within each patient, using other patients as negative pairs. Their findings 
demonstrate that this method can enhance fundus pathology detection and facilitate the 
identification of genetic associations with fundus diseases. Jiao et al. utilized paired ultrasound 
images and audio of a clinician describing findings during the ultrasound55. They created positive 
pairs between speech and ultrasound at the same time points, while later time points served as 
negative pairs, and audio sections with background noise were used as hard negatives. 
 
Two studies chose non-traditional approaches for collecting paired images and text68,70. Rather 
than using medical images and radiology reports, Zhang et. al. scraped PubMed for papers with 
medical images and their corresponding captions, yielding a dataset of over 15 million image-
caption pairs68. The authors used CLIP style training to train BiomedCLIP, which outcompeted 
several benchmarks in VQA, image classification and retrieval. Similarly, instead of relying on 
publicly released datasets or proprietary hospital data, Huang et. al. used Twitter posts of 
pathology slices with their corresponding text to curate a public dataset70.  
 

Self-prediction  

Two of the 48 studies utilized self-prediction as a pre-training method (Table 1). Khare et al. 
presented MMBERT33, which used masked language modeling to train a Visual Question 
Answering (VQA) model by masking out words and restoring the original caption, jointly utilizing 
both language and image features. They trained their model on the ROCO dataset, which 
contains various types of radiology images with corresponding question-answer pairs. They did 
not report single modality performance33. Chen et al. employed cross-attention between encoders 
in masked language modeling and masked image modeling to restore both text and images53. 
They demonstrated their methods on X-rays and CT scans, using radiology reports as their 
second modality. Their work reported an increase of 0.147 in accuracy and 0.075 in AUROC for 
multimodal over single-modality approaches. 

Generative  

Generative approach was used in 7 out of 48 studies (Table 1). All generative papers used X-ray 
images as their imaging modality and radiology reports for their corresponding modality. Four out 
of the 7 papers pretrained their models based on radiology report findings generation37,72,73,76. The 
reported average improvement of multimodality over single modality was 0.002 AUROC (3 
studies37,72,76) and  0.053 F1 score (1 study73). Notably, Quigley et al. reported a higher AUROC 
for their unimodal text-based model when using 100% of the training data for fine-tuning, but a 
higher AUROC for their multimodal approach when only a subset of the training data were used.  

The remaining 3 pretrained their models by generating synthetic chest X-ray based on radiology 
reports or text prompts87–89. Chambon et al. demonstrated successful adaptation of a general 
domain image generation model, Stable Diffusion, to generate synthetic chest X-ray images88. 
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RoentGen further validated the utility of synthetic images by showing a 5% points improvement 
in classifier performance when trained jointly on synthetic and real images87. BiomedJourney 
showcased the capability to edit chest X-ray images using natural language instructions, enabling 
the creation of counterfactual images89. For instance, the model can generate specific 
abnormalities on a healthy patient's chest X-ray using prompts, effectively transforming normal 
images into ones displaying requested pathologies. 

Generative VLM 
 
Ten out of 48 studies77–84 leveraged existing text-based foundation models (LLMs) to develop 
VLMs using generative pretraining (Table 1). Out of the 10 studies, 5 studies specifically 
focused on X-ray as their imaging modality78,80,82,85,86, while the remaining 5 were capable of 
analyzing several different imaging modalities. In terms of the corresponding modality, 3 studies 
used the corresponding radiology reports78,80,82,85,86 while 2 uses questions from VQA 
datasets81,83. Three studies found creative ways to source corresponding text, including Pubmed 
image captions77 and text from publications and medical textbooks79,84. Of these studies, 1 
reported an improvement of 1.45 ROUGE from multimodal training over single modality 
training78. The remaining studies did not perform this comparison.  
 
Some notable work includes Med-PaLM Multimodal83, which emerged as a model capable of 
encoding and interpreting a wide array of biomedical data, including clinical language, imaging, 
and genomics, all with the same set of model weights. Med-Gemini81 further improves upon Med-
PaLM's capabilities by leveraging the capabilities of the large VLM Gemini14. In addition, Med-
Gemini incorporated self-training and web search integration, enhancing the model's ability to 
verify its outputs and improve reliability. MedVersa84 introduced an innovative approach using an 
orchestrator powered by a LLM to independently assess whether to execute tasks on its own or 
integrate visual modeling modules, potentially improving efficiency and accuracy in medical image 
analysis. 
 
Several studies demonstrated that generative VLMs need not be proprietary; instead, smaller, 
open-source VLMs can rival the performance of their larger, closed-source 
counterparts77,80,82,85,86,90. LLaVA-Med77, demonstrated that the open-sourced model,  LLaVA13, 
could be successfully adapted to the medical domain in less than a day of training using open-
sourced model LLaVA13. LLaVA-Rad extends on LLaVA-Med to focus on the task of report 
generation, and further introduced a more clinically relevant metric, CheXprompt, which showed 
no statistically significant difference from human radiologist evaluations. Similar to LLaVA-Rad, 
MAIRA-2 is a small yet effective report generation model. Furthermore, MAIRA-2 demonstrated 
that generated reports can be grounded by associating generated text with bounding boxes, 
providing an easier way for physicians to verify the generated report based on visual signals in 
the image86.  
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 23, 2024. ; https://doi.org/10.1101/2024.10.23.24316003doi: medRxiv preprint 

https://paperpile.com/c/vbVQ2L/Jx4M
https://paperpile.com/c/vbVQ2L/hF27
https://paperpile.com/c/vbVQ2L/dxVg+AWae+Giuq+nMOe+4sTP+KGNv+e6v9+kivS
https://paperpile.com/c/vbVQ2L/dxVg+KGNv+nMOe+SMMr+kqQu
https://paperpile.com/c/vbVQ2L/dxVg+KGNv+nMOe+SMMr+kqQu
https://paperpile.com/c/vbVQ2L/4sTP+e6v9
https://paperpile.com/c/vbVQ2L/AWae
https://paperpile.com/c/vbVQ2L/Giuq+kivS
https://paperpile.com/c/vbVQ2L/dxVg
https://paperpile.com/c/vbVQ2L/e6v9
https://paperpile.com/c/vbVQ2L/4sTP
https://paperpile.com/c/vbVQ2L/Evuf
https://paperpile.com/c/vbVQ2L/kivS
https://paperpile.com/c/vbVQ2L/AWae+nMOe+KGNv+SMMr+yudL+kqQu
https://paperpile.com/c/vbVQ2L/AWae
https://paperpile.com/c/vbVQ2L/oCJ7
https://paperpile.com/c/vbVQ2L/oCJ7
https://paperpile.com/c/vbVQ2L/SMMr
https://doi.org/10.1101/2024.10.23.24316003
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Combined  

A combined SSL approach was employed in 8 out of the 48 studies (Table 1). Among these 
studies, 5 used X-rays as the imaging modality46–50, 2  used CT scans52,54, and 1 used multiple 
types of radiology images51. Regarding the non-imaging modality, 6 studies used radiology 
reports46–50,52, while 1 study used text from VQA51, and 1 used both report and ICD codes54. 
Contrastive learning emerged as the most frequently method in a combined pretraining strategy, 
being utilized in 6 out of the 8 studies that used a combined SSL approach48–52,54. In 3 of these 6 
studies50–52, contrastive learning was combined with masked modeling, while in the remaining 2 
studies48,49 it was combined with a generative task and 1 pretrained the model with a pretext task91 
before contrastive learning54. One study employed masked language modeling and image-report 
matching together46, while another study utilized a diverse set of approaches47. Overall, an 
increase in AUROC of 0.098 (1 studies47) and 20.8 in ROUGE-L (1 study49) was reported for 
multimodality over single modality. 

Notably, Sangjoon Park et al. introduced artificial errors in radiology reports and trained a model 
to detect these by combining CLIP-style contrastive learning, multi-modal masked modeling and 
momentum updating of a teacher model akin to DINO training52. Pengfei Li et al. 2023 combined 
contrastive learning, masked language modeling, and image text matching to pretrain on multiple 
large open medical image datasets, followed by fine tuning on VQA-RAD, PathVQA, SLAKE 
where their method exceed state-of-the-art on VQA51. Lastly, Blankemeier et al. used a creative 
approach of training a CT foundation model, Merlin, by first utilizing a pretext task91 of predicting 
ICD codes from CT scans and subsequently continue the training of the model with a CLIP-style 
contrastive objective between CTs and reports, allowing their model to achieve state-of-the-art 
performance on numerous tasks54. Notably, this study stands out as one of the few that focuses 
on ingesting and processing full CT scans, expanding the application of foundation models 
beyond the more commonly studied 2D modalities such as X-rays and addressing the unique 
challenges and opportunities presented by three-dimensional imaging data. 
 

Authors Year Medical Domain 
Pretraining 
Strategy Modalities 

Hong Liu92 2023 Radiology Combined MRI (T1, T1-C, T2, FLAIR) 

Redha Touati93 2023 Radiology Combined MRI (T1, T2, T1ce, FLAIR) 

Alex Fedorov94 2021 Radiology Contrastive MRI (T1, fALFF) 

Ruobing Huang95 2021 Radiology Contrastive 
Ultrasound, B-mode, SWE, SE, 
Doppler 

Yanbei Liu96 2021 Radiology Contrastive MRI, PET 

Alex Fedorov97 2023 Radiology Contrastive MRI (T1, fALF) 

Zheling Meng98 2023 Radiology Contrastive 

B-mode, Ultrasound elastography, 
Dynamic contrast-enhanced 
ultrasound 
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M. Jorge Cardoso99 2015 Radiology Generative MRI, CT 

Yawen Huang100 2016 Radiology Generative MRI (T2, proton density) 

Yawen Huang101 2018 Radiology Generative MRI (T1, T2, proton density) 

Yongsheng Pan102 2018 Radiology Generative MRI, PET 

Bo Peng103 2019 Radiology Generative MRI, Ultrasound 

Wei wei104 2019 Radiology Generative MRI, PET 

Aman Rana105 2020 Pathology Generative 
Deparafinated slice, HE stained 
slice 

Anmol Sharma106 2020 Radiology Generative MRI (T1, T2) 

Haoyu Lan107 2020 Radiology Generative MRI, PET 

Jaya Chandra 
Raju108 2020 Radiology Generative MRI (T2, T1(Gd), T2, Flair) 

Jianbo Jiao109 2020 Radiology Generative Ultrasound, MRI 

Jose Morano110 2020 Ophthalmology Generative Retinography, angiography 

Xianjin Dai111 2020 Radiology Generative MRI (T1, T2, FLAIR) 

Yongsheng Pan112 2020 Radiology Generative MRI, PET 

Bo Zhan113 2021 Radiology Generative MRI (T1, T1c, T2, FLAIR) 

Haohui Liu114 2021 Radiology Generative MRI (T1, FLAIR), PET 

Lipei Zhang115 2021 Radiology Generative MRI, Low count PET, PET 

Wanyun Lin116 2021 Radiology Generative MRI, PET 

Yuchen Fei117 2021 Radiology Generative MRI (T1, T1c, T2, FLAIR) 

Álvaro S. 
Hervella118 2022 Ophthalmology Generative 

Retinography, fluorescein 
angiography 

Chao Fan119 2022 Radiology Generative MRI, CT, PET, SPECT 

Hongfei Sun120 2022 Radiology Generative CBCT, CT, MRI 

Jin Zhang121 2022 Radiology Generative MRI, PET 

Jitao Li122 2022 Radiology Generative PET, CT, MRI 

Lu Tang123 2022 Radiology Generative MRI, PET 

Nahed Tawfik124 2022 Radiology Generative CT, MRI (T2), PET, MRA, SPECT 

Onat Dalmaz125 2022 Radiology Generative 
MRI (T1, T2, FLAIR, proton 
density), CT 

Shangwang Liu126 2022 Radiology Generative MRI, PET, SPECT 
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Sureerat 
Reaungamornrat127 2022 Radiology Generative CT, MRI 

Suzhe Wang128 2022 Radiology Generative CT, perfusion CT 

Wang A129 2022 Radiology Generative MRI, CT, PET 

Xiofeng Liu130 2022 Radiology Generative Cine MRI, spectrogram 

Bing Cao131 2023 Radiology Generative MRI (T1, T1-C, T2, FLAIR) 

Jiaojiao Zhang132 2023 Radiology Generative 
CT, PET, MRI (T1CE, T2, FLAIR, 
T1) 

Redha Touati133 2023 Radiology Generative MRI (T2, T1ce, FLAIR) 

Weisheng Li134 2023 Radiology Generative MRI, CT, PET, SPECT 

Xinyu Xie135 2023 Radiology Generative MRI, CT, PET, SPECT 

Aiham Taleb136 2021 Radiology Pretext Task 
CT, MRI (T1, T1Gd, T2, FLAIR, 
ADC) 

Zhuo Xiang137 2022 Radiology Pretext Task SWE, ultrasound, CDUS 

Gijs van Tulder138 2023 Radiology Pretext Task 
MRI (T1, T1c, T2, FLAIR, Normal 
vs fat-suppressed) 

Qingfan Hou139 2023 Radiology Pretext Task MRI (T1, T2, T1Gd, FLAIR) 

Qian Zhou140 2022 Radiology Self-prediction MRI (T1, T2, FLAIR) 
 

Table 2: Overview of image to image multimodal studies included in the systematic review. 

Image-Image 
 
Our review also identified 49 papers that employ multimodal self-supervised pretraining between 
two imaging modalities (Table 2). Among the imaging modalities used in these studies, MRI was 
the most frequently employed (42/49)92–94,96,97,99–104,106–109,111–117,119–127,129–136,138–140), followed by 
PET (16/49 studies96,102,104,107,112,116,119,121–124,126,129,132,134,135), CT (13/49 studies)99,119,120,122,124–
129,132,134,135, and ultrasound (5/49 studies95,98,103,109,137) Which modalities were combined in each 
study can be seen in Figure 5. The majority of these studies (37/49) adopted a generative 
approach to synthesize one imaging modality from another. One used self-prediction140, 5 used 
contrastive methods94–98, 2 used a combined approach92,93, and the remaining 4 used other 
approaches such as modality prediction136–139. In terms of medical specialty, neuroimaging is the 
most prominent area for image-image self-supervised pretraining, with 35 out of 49 studies 
focusing on this field. In the remaining studies92,93,96,97,99–102,104,106–109,111–114,116,117,119,121–126,128,129,131–
135,139,140, 11 focused on radiology94,95,98,103,115,120,127,130,136–138, 2 on ophthalmology110,118, and 1 on 
pathology105. For many of these studies with downstream tasks, the main applications are 
Alzheimer's disease diagnosis (5 studies94,96,97,102,116) and brain tumor segmentation (5 
studies92,93,132,136,139).  
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Discussion 
 
The purpose of this systematic review is to synthesize the current state of knowledge on the 
application of multimodal foundation models for medical imaging. We propose a unified 
terminology for multimodal self-supervised methods and a taxonomy for prior work based on their 
pretraining strategies. We screened 1,144 papers from medical and AI domains and extracted 
data from 97 included studies. Based on our review, we found that multimodal self-supervised 
pretraining generally improves downstream task performance compared to single modality 
pretraining, with gains ranging up to 439% across studies (Figure. 5). The nascent nature of the 
multi-modal deep learning field and the heterogeneity in experimental setups currently precludes 
definitive conclusions about the superiority of specific multimodal self-supervised learning 
strategies across all medical imaging domains and modalities. Despite these limitations, our 
findings suggest that multimodal self-supervised pretraining is a promising approach for 
enhancing medical image models, and we encourage researchers to explore these techniques in 
future work. 
 
Our systematic review reveals an emerging trend towards generative VLMs that leverage the 
advanced capabilities of LLMs for medical tasks. These large models, typically many billions of 
parameters, demonstrate extensive versatility in handling diverse modalities and performing a 
wide array of downstream tasks. For instance, Med-PaLM multimodal83 showcases the ability to 
process and interpret biomedical data spanning clinical language, imaging, and genomics, all 
within a unified model architecture. The trend towards these comprehensive generative models 
is not only driven by their performance and generalizability but also by their natural language 
interactive interfaces. These chat-like features enable nuanced physician-AI collaboration and 
discussion for diagnosis, moving beyond simple reliance on AI outputs to potentially improve 
patient outcomes. 
 
It is crucial to acknowledge that the sheer scale and computational demands of these models can 
preclude their deployment within hospital firewalls, raising legitimate concerns about the privacy 
and security of patient health records when transmitted to external model providers. Addressing 
this challenge, foundation models such as LLaVA-Rad80 and CheXagent82, which are smaller and 
open-source, rival the capabilities of their larger counterparts, making local deployment more 
feasible. Furthermore, advances in foundation model development must be coupled with some 
challenges such as their tendency to hallucinate, which could lead to potentially harmful 
misdiagnoses in healthcare settings. The approach taken by models like Med-Gemini81, which 
incorporates online search capabilities to verify its outputs, sets a valuable precedent for 
enhancing the reliability and safety of AI-assisted medical decision-making. These considerations 
underscore the importance of balancing model capability, deployability, and safety as we continue 
to develop and refine foundation models for healthcare applications. 
 
Training these foundation models typically requires vast amounts of unlabeled data. This 
substantial data volume and diverse dataset not only contributes to the model's emerging 
properties but has also been shown to improve the model's resilience to distribution shift141. Such 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 23, 2024. ; https://doi.org/10.1101/2024.10.23.24316003doi: medRxiv preprint 

https://paperpile.com/c/vbVQ2L/e6v9
https://paperpile.com/c/vbVQ2L/nMOe
https://paperpile.com/c/vbVQ2L/KGNv
https://paperpile.com/c/vbVQ2L/4sTP
https://paperpile.com/c/vbVQ2L/oCwF
https://doi.org/10.1101/2024.10.23.24316003
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

robustness is crucial for deployment in hospital settings, where variations in imaging equipment 
or patient populations can lead to significant distributional changes. However, patient privacy 
concerns often restrict access to large-scale medical data, creating a significant hurdle in the 
development process. The largest publicly accessible medical datasets142–145 pale in comparison 
to the internet-scale data used to train general domain foundation models. In response to this 
challenge, several studies in our review have identified innovative approaches to data sourcing, 
such as leveraging PubMed images and captions68, extracting interleaved text and images from 
medical textbooks79, and even mining relevant posts from social media platforms like Twitter70. 
As we move forward in developing more powerful and generalizable medical AI models, these 
innovative data collection and pairing techniques will likely play an increasingly crucial role in 
overcoming limitations posed by data scarcity and privacy concerns. However, developers must 
also be aware that while large-scale datasets from public sources can provide valuable training 
data, they may not always meet the rigorous standards required for clinical applications. 
Therefore, future model development must carefully navigate the tradeoff between data quantity 
and quality, balancing the benefits of large-scale datasets with the need for high-quality, clinically 
relevant information to ensure both powerful and reliable AI models for real-world medical 
applications. 
 
While many of the papers in our review focused on developing multimodal foundation models 
using medical images and text, it is crucial to emphasize that these models should expand beyond 
natural languages to better align with the multifaceted nature of healthcare. Our review identified 
several studies that incorporated unique modalities during self-supervised pretraining, including 
genetic data59, clinical data65, ICD codes54, speech55, and patient size profiles58. The inclusion of 
these diverse modalities provides the model with a more comprehensive view of the patient, 
mirroring the approach taken by physicians in clinical practice. This multi-modal approach not 
only enhances the model's diagnostic and prognostic capabilities but also opens new avenues for 
discovering complex associations between different modalities. For instance, the ability to 
correlate genetic data with pathology slides could uncover intricate relationships that might be 
challenging for human experts to identify independently. Such capabilities have the potential to 
significantly create new opportunities for research in fields such as biology and treatment 
development. As the field of medical AI continues to advance, it is imperative to develop truly 
comprehensive multimodal models that can integrate and analyze the full spectrum of patient data 
available in modern healthcare settings.  
 
Our systematic review also identified 49 studies that utilize multimodal self-supervised pretraining 
between two imaging modalities (Table 2). While these methods demonstrate utility in specific 
medical applications, such as image registration, denoising, and reconstruction, it is important to 
note their limitations. Notably, less than half of these studies (23/49) rigorously evaluate the 
effectiveness of their learned multimodal representations on downstream tasks, which raises 
questions about their generalizability and label efficiency. More critically, the focus on image-to-
image modalities alone may be limiting the potential of these models. As mentioned above, recent 
advancements in vision foundation models have demonstrated that their capabilities are 
significantly enhanced when paired with text or other non-imaging modalities. This suggests that 
while image-to-image multimodal learning has its place in specific medical imaging tasks, the 
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future of medical AI likely lies in more comprehensive multimodal approaches that incorporate 
diverse data types.  
 

  
Guidelines 
 
Our systematic review demonstrates the significant potential of multimodal self-supervised 
pretraining in enhancing medical imaging AI models across various domains, modalities, and 
downstream tasks. However, we also observe that the clinical adoption of these advanced models 
remains limited. Several factors contribute to this gap between technological capability and 
practical implementation, including potential biases in model predictions, insufficient 
demonstration of clinical utility, and inadequate consideration of implementation challenges. To 
bridge this divide and facilitate the responsible integration of these powerful AI tools into 
healthcare, a collaborative effort among all stakeholders is crucial. Model developers, clinicians, 
policymakers, and dataset curators must work in concert to address the multifaceted challenges 
identified in our review. Recognizing the critical importance of this interdisciplinary collaboration, 
we provide targeted guidelines for each of these key players below. These recommendations aim 
to foster a cohesive approach to developing AI systems that are not only technically sophisticated 
but also clinically relevant, ethically sound, and practically implementable in real-world healthcare 
settings.  
 
 
Guidelines for Model Developers 
 
Model developers should leverage the recent advances in multimodal self-supervised learning 
techniques from the general domain when building medical imaging AI models. However, it is 
crucial to consider the unique properties and differences between general domain images and 
medical images when applying these methods91. One key difference is that, unlike natural images 
where class-defining features often occupy a significant portion of the image, medical images 
typically have more localized and subtle class-defining features, such as abnormalities. 
Consequently, popular multimodal self-supervised methods like CLIP22, which rely on learning 
joint representations between global image and text features, may have limitations in capturing 
these subtle, localized features in medical images. To address this challenge, innovative 
approaches have been proposed to adapt methods from the general domain to the specific 
characteristics of medical images. For example, GLoRIA25, ViLLA146, and BioViL147 demonstrate 
a promising approach to modify self-supervised learning techniques to better suit the unique 
properties of medical imaging data. Future developers should also consider introducing technical 
innovations to adapt general domain methods to meet the specific challenges and characteristics 
of medical images. 
 
In addition to developing medical imaging-specific methods, developers should also consider 
using evaluation metrics tailored to specific medical tasks. For instance, in radiology report 
generation, two common types of metrics are used: (1) lexical similarity-based metrics (i.e. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 23, 2024. ; https://doi.org/10.1101/2024.10.23.24316003doi: medRxiv preprint 

https://paperpile.com/c/vbVQ2L/LjSw
https://paperpile.com/c/vbVQ2L/c9Vx
https://paperpile.com/c/vbVQ2L/nHGk
https://paperpile.com/c/vbVQ2L/juzm
https://paperpile.com/c/vbVQ2L/7Evd
https://doi.org/10.1101/2024.10.23.24316003
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

BLUE148, ROUGE149), which assess whether the model's outputs are contextually and stylistically 
aligned with human-written reports, and (2) factual correctness metrics  (i.e. F1-CheXpert143, F1-
RadGraph150,151), which evaluate the extent to which the generated reports accurately reflect the 
imaging findings. While both coherence and factual accuracy are essential for high-quality 
radiology reports, studies have found that these metrics have limited correlation with manual error 
scoring performed by radiologists, which is more clinically useful152. To address this discrepancy, 
researchers have proposed novel approaches to automatically evaluate radiology report 
generation models. For example, the LLaVA-Rad80 introduced a method that uses GPT-4 to 
analyze the error types in the generated reports automatically. The resulting metric, CheXpromt, 
has been shown to have no statistically significant difference compared to human radiologist 
evaluations, suggesting that it could be used as a substitute for manual radiologist assessment 
when evaluating the clinical utility of these models. Furthermore, methods like GREEN153 have 
shown that GPT-4's knowledge can be distilled into smaller, open-source models for report 
evaluation, eliminating the need for API calls and enhancing accessibility and efficiency for 
researchers and developers. Moving forward, future work should prioritize the development and 
adoption of metrics that are more closely aligned with clinical relevance and utility. 
 
Guidelines for Clinicians 
 
Building clinically useful medical AI models is not solely the responsibility of model developers; 
clinicians play a crucial role and should actively collaborate with AI teams4. Often, models are 
developed based on the availability of datasets rather than addressing a genuine clinical need. 
Consequently, even if these models achieve high evaluation metrics, their utility may be limited in 
the absence of a clear clinical application. To ensure the development of clinically relevant AI 
models, it is essential for clinicians to identify true needs in healthcare settings that can be fulfilled 
or enhanced by AI. Once a clinical need is identified, clinicians should also identify the modalities 
that are required to complete the task. Lastly, physicians should determine a specific "action" to 
pair with the machine learning model's output to address this need effectively. By defining a 
"decision-action" pair154, AI developers can evaluate the model's utility based on the estimated 
net benefit in the context of the clinical need. Identifying a genuine clinical need, the modalities 
required to address this need, and defining an appropriate decision-action pair are instrumental 
in creating useful and deployable medical AI models, underscoring the importance of clinician 
involvement throughout the entire AI model development and deployment process.  
 
Once AI models are deployed in clinical settings, it is imperative for clinicians and healthcare 
providers to maintain a critical and vigilant approach to their utilization. While these foundation 
models demonstrate impressive capabilities and are continuously improving, they are not yet 
sufficiently advanced to operate autonomously in healthcare environments. Clinicians should 
remain acutely aware of the models' limitations, including their propensity for hallucination and 
susceptibility to performance degradation due to distribution shifts. It is crucial for healthcare 
professionals to actively monitor the models' outputs, identifying and documenting any errors or 
inconsistencies observed during clinical use. Establishing a robust feedback loop between 
clinicians and model developers is essential for the continuous improvement and refinement of 
these AI systems. In this context, the emergence of VLMs with interactive chat interfaces presents 
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a valuable opportunity for more nuanced clinician-AI collaboration in diagnostic processes. These 
interfaces enable healthcare providers to engage in detailed discussions with the AI, potentially 
uncovering insights or limitations that might not be apparent in more rigid, output-only systems. 
By fostering this type of interactive and critical engagement with AI tools, clinicians can play a 
pivotal role in enhancing the reliability, safety, and effectiveness of AI in healthcare, ultimately 
ensuring that these advanced technologies serve as powerful adjuncts to, rather than 
replacements for, human clinical expertise. 
 
 
Guidelines for Policy Makers 

Policy makers play a crucial role in shaping the development and deployment of medical imaging 
AI, particularly in the context of multimodal foundation models. To enable responsible innovation 
while ensuring patient safety, policy interventions should focus on several key areas. First, policy 
makers should consider establishing an expedited approval pathway for approved multimodal 
foundation models adapting to unapproved clinical tasks, similar to the FDA's 510(k) process, to 
facilitate efficient deployment while maintaining stringent safety standards. This approach is 
warranted by the demonstrated capacity of foundation models to generalize to novel tasks with 
minimal additional training data. The approval process should distinguish between models 
utilizing previously approved modalities for inference and those incorporating entirely new 
modalities, with the latter necessitating more comprehensive evaluation. Secondly, policies 
should mandate sensitivity analyses on combinations of input modalities to ensure developers 
thoroughly assess model performance across various modality combinations and sources, 
addressing potential performance variability. This requirement is critical as model behavior may 
fluctuate based on available input modalities, and not all modalities may be present in real-world 
clinical scenarios. For example, a newly admitted patient might lack sufficient clinical history or a 
specific medical imaging modality that a particular foundation model was trained on. 
Understanding model behavior in these cases is crucial to prevent unexpected or potentially 
harmful predictions. Lastly, as generative AI models become increasingly prevalent in medical 
imaging applications, policy makers should develop comprehensive evaluation guidelines for 
tasks generative tasks, such as clinical report generation or summarization. As mentioned in the 
“Guidelines for Model Developers” section, traditional lexical similarity or factual correctness NLP 
metrics may be inadequate for evaluating generated medical text. This could involve establishing 
standards for human expert evaluation of generated reports or incorporating AI-assisted judgment 
systems, as demonstrated to be feasible in studies like LLaVA-Rad (Chaves et al., 2024). A two-
tiered evaluation system, involving both human physicians and AI, with a mechanism for resolving 
discrepancies, could enhance the reliability, clinical relevance and feasibility of these 
assessments. By addressing these areas, policy makers can foster an environment that promotes 
the responsible development and implementation of advanced AI models in medical imaging, 
ultimately leading to improved patient care and outcomes. 

 

Guidelines for Dataset Curators 
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Many existing publicly available medical image datasets are sourced primarily from developed 
countries, which can lead to biases that disproportionately affect model performance when 
deployed in developing countries or among minority groups in developed regions, where data 
representation may be inadequate155–157. To mitigate these biases, dataset curators need to 
prioritize the collection and inclusion of data from diverse populations. They should make a 
concerted effort to curate data from a wide range of demographics, ensuring that the dataset is 
representative of the global population. Furthermore, dataset curators should include patient 
demographic information in the dataset to enable model developers to evaluate the fairness and 
generalizability of their developed models across different subgroups. By taking these steps to 
curate diverse and inclusive datasets, we can help ensure that medical AI models are trained and 
evaluated on representative data and can provide equitable benefits to patients across different 
regions and demographics. This approach will help ensure that the benefits of AI-driven 
healthcare are distributed equitably across different populations and regions.  

Conclusions 

In conclusion, our systematic review highlights the significant potential of multimodal foundation 
models in advancing medical imaging and healthcare AI. These models, particularly those 
leveraging vision and language capabilities, demonstrate promising improvements in 
performance and generalizability across various medical tasks. However, their development and 
deployment face challenges, including data scarcity, privacy concerns, and the need for 
interpretability and safety in clinical settings. Moving forward, we advocate for research that 
focuses on: (1) developing smaller, privacy-preserving, and deployable models without 
compromising performance; (2) innovative data collection strategies that respect patient privacy; 
(3) incorporation of diverse non-imaging modalities to better reflect the complexity of healthcare; 
and (4) rigorous evaluation of these models on clinically relevant downstream tasks. As the field 
progresses, we anticipate that multimodal foundation models will play an increasingly crucial role 
in healthcare, potentially revolutionizing diagnosis, treatment planning, and patient care. 
However, their successful integration into clinical practice will require continued collaboration 
between AI researchers, healthcare professionals, and policymakers to ensure these powerful 
tools are developed and used responsibly, effectively, and ethically. 
 

Limitations 

A notable constraint arises from the inherent publication bias within the extant literature, which 
predominantly features studies reporting positive outcomes. Such bias may inadvertently lead to 
an inflated perception of the efficacy associated with multi-modal self-supervised learning 
techniques. Our examination was deliberately confined to literature published subsequent to the 
year 2012, thereby excluding works that predate the advent of deep learning in the realm of 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 23, 2024. ; https://doi.org/10.1101/2024.10.23.24316003doi: medRxiv preprint 

https://paperpile.com/c/vbVQ2L/sDU5+9YMm+UPLk
https://doi.org/10.1101/2024.10.23.24316003
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

computer vision. The heterogeneity presented in the methodologies of the reviewed studies, 
encompassing diverse imaging modalities, varied performance metrics, and distinct research 
objectives, precludes a comprehensive quantitative synthesis or direct comparison of the relative 
benefits conferred by different learning strategies. Moreover, the classification of multimodal self-
supervised learning approaches within each analyzed study was subject to a certain level of 
subjectivity, especially in instances involving innovative, non-traditional, or hybrid methodologies. 
Furthermore, the selection criteria for studies were specifically tailored to the domain of medical 
images. This focus inherently limits the breadth of our review, overlooking the versatility of self-
supervised pretrained models, which hold significant promise across a spectrum of other 
modalities. This delineation of limitations underscores the nuanced challenges encountered in 
synthesizing the current landscape of multi-modal self-supervised learning within medical 
imaging, and it delineates a clear avenue for future research endeavors. 
 

Data Availibility 
The authors affirm that all data underpinning the conclusions of this research are accessible within 
the manuscript and its Supplementary Information. 

Methods 
This systematic review was conducted based on the PRISMA guidelines158. 

Search Strategy 

A systematic literature search was conducted in the two literature databases: PubMed and 
Scopus. For potentially eligible studies cited by articles already included in this review, additional 
targeted free-text searches were conducted on Google Scholar if they did not appear in Scopus 
or PubMed. The key search terms were based on a combination of three major themes: “self-
supervised learning”, “medical imaging modalities” and “other medical modalities / multimodal”. 
Search terms for medical imaging were not limited to radiological imaging but were also broadly 
defined to include imaging from all medical fields, i.e., fundus photography, whole slide imaging, 
endoscopy, echocardiography. The search encompassed papers published between January 
2012 and January 2024. The start date was considered appropriate due to the rising popularity of 
deep learning for computer vision since the 2012 ImageNet challenge. The complete search string 
for all three databases is provided in Supplementary Methods. 
 
We included all research papers in English that used multi-modal self-supervision techniques to 
develop models for medical imaging tasks. We excluded studies that used non-human medical 
imaging data (i.e., veterinarian medical images). Studies that rely on derived imaging 
characteristics, including biomarkers and radiomic features, as opposed to utilizing raw images 
directly, are also excluded from consideration. Conference abstracts, review articles, letters to the 
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editor, and any submissions not constituting original research were also excluded. Additionally, 
studies not centered on medical imaging, not employing self-supervision techniques, or not 
incorporating multimodal approaches were not considered. Papers focusing solely on image 
registration were also outside the scope of this review. 
 
For papers that leverage medical images with another non-imaging modality (Table 1), we further 
constrained our inclusion criteria to studies that applied the self-supervised pretrained models to 
a downstream medical image task. In other words, it was not sufficient for the study to have merely 
developed a multimodal self-supervised pretrained model; the model had to be evaluated on a 
clinically relevant task using medical images. We defined a clinically relevant task as one that 
directly relates to a clinical application or has the potential to inform clinical decision-making. For 
example, the downstream task of classifying the frame number in a temporal sequence of frames 
from echocardiography was not considered a clinically relevant task, as it does not provide 
meaningful information to a clinician or patient that can be used in patient care. 

Study Selection 

The Covidence software (www.covidence.org) was used for screening and study selection. After 
removing duplicates, studies were screened based on title and abstract. Subsequently, full texts 
were obtained and assessed for inclusion and data extraction. Study selection was performed 
by two independent researchers (S.-C.H., M.E.K.J.), and disagreements were resolved through 
discussion. In cases where consensus could not be achieved a third arbitrating researcher was 
consulted (A.S.C.). 

Data extraction  
For benchmarking the existing imaging & non-imaging approaches (Table 1) we extracted the 
following data from each of the selected articles: (a) first author, (b) year of publication, (c) medical 
domain, (d) imaging modalities, (e) other non-image modalities,  (f) pretraining strategy. We 
classified the specific multi-model self-supervised learning strategy based on the definitions in the 
“Terminology and Strategies” section.  
 
For benchmarking the existing imaging & imaging approaches (Table 2) we extracted the 
following data from each of the selected articles: (a) first author, (b) year of publication, (c) medical 
domain, (e) pretraining strategy, (f) input modalities. We classified the pretraining strategies for 
these studies based on the definitions in the “Terminology and Strategies” section.  
 
We extracted AUROC whenever this metric was reported, otherwise, we prioritized F1 score over 
accuracy and sensitivity. For NLP tasks, we prioritize longer subsequences (i.e. ROUGE-2 over 
ROUGE-11, ROUGE-L over ROUGE-2, etc.). We used ROUGE over BLEU due to its recall-
oriented nature, which is crucial for capturing all relevant medical information. When the article 
contained results from multiple models (i.e., ResNet and Vision Transformer) on the same task, 
metrics from the experiment with the best-performing model were extracted. When the authors 
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presented results on multiple clinical tasks, we extracted metrics for each of the downstream 
tasks. In instances where a particular clinical task was evaluated across several datasets, we 
selected the highest performance from among the datasets. Single-modality baseline 
performance, model architecture, pre-training dataset, and initialization were extracted when 
available in the experiments.  
 
We provide in Supplementary Table 1 all data extracted for imaging & non-imaging approaches, 
including full paper title, pretraining dataset, dataset size, image encoder, other modalities 
encoder, imaging model weight initialization, and other modalities model weight initialization. We 
provide in Supplementary Table 2 all data extracted for imaging & imaging approaches including 
full paper title and downstream task. 
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