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Abstract 
 
Background: Critically ill patients are managed with complex medication regimens that require 
medication management to optimize safety and efficacy. When performed by a critical care 
pharmacist (CCP), discrete medication management activities are termed medication 
interventions. The ability to define CCP workflow and intervention timeliness depends on the 
ability to predict the medication management needs of individual intensive care unit (ICU) 
patients. The purpose of this study was to develop prediction models for the number and 
intensity of medication interventions in critically ill patients. 
 
Methods: This was a retrospective, observational cohort study of adult patients admitted to an 
ICU between June 1, 2020 and June 7, 2023. Models to predict number of pharmacist 
interventions using both patient and medication related predictor variables collected at either 
baseline or in the first 24 hours of ICU stay were created. Both regression and supervised 
machine learning models (Random Forest, Support Vector Machine, XGBoost) were developed. 
Root mean square derivation (RMSE), mean absolute error (MAE), and symmetric mean 
absolute percentage error (sMAPE) were calculated.  
 
Results: In a cohort of 13,373 patients, the average number of interventions was 4.7 (standard 
deviation (SD) 7.1) and intervention intensity was 24.0 (40.3). Among the ML models, the 
Random Forest model had the lowest RMSE (9.26) while Support Vector Machine had the 
lowest MAE (4.71). All machine learning models performed similarly to the stepwise logistic 
regression model, and these performed better than a base model combining severity of illness 
with medication regimen complexity scores. 
 
Conclusions: Intervention quantity can be predicted using patient-specific factors. While inter-
institutional variation in intervention documentation precludes external validation, our results 
provide a framework workload modeling at any institution.  
 
Keywords: Medication regimen complexity, medication safety, critical care, pharmacist  
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Introduction 
 
Medication therapy in the intensive care unit (ICU) is notoriously complex and high-risk 
requiring nuanced oversight and management.1-6 It has been shown that one in six ICU 
medication errors require intervention by a critical care pharmacist (CCP).7 Tailored medication 
interventions in the context of comprehensive medication management (CMM) performed by 
CCPs reduce preventable adverse drug events (ADEs) by 70%.8-11 However, staffing constraints 
and shortages combined with unpredictable and sometimes surging patient volumes may result in 
ICU patients receiving inconsistent CCP care.12, 13 Thus, predicting and prioritizing those patients 
with the highest need for CCP medication intervention(s) has important ramifications for 
workload justification and redesign at the administrative level and patient triage at the clinician 
level.1 
 
The medication regimen complexity-intensive care unit (MRC-ICU) score was designed to 
quantify the complexity of a critically ill patient’s medication regimen in a way that reflects the 
cognitive services provided by CCPs. This score has been related to both patient-centered 
outcomes, including mortality,14 length of stay15, ICU complications (e.g., fluid overload16-18), 
duration of mechanical ventilation, and drug-drug interactions, and pharmacist workload, 
including intervention quantity and intensity. 19-25 Moreover, application of machine learning 
approaches in the context of MRC-ICU have revealed new insights in how medications relate to 
patient outcomes.26, 27 Finally, this score showed a stronger relationship to medication 
interventions as compared to traditional severity of illness indicators.28 
 

However, the predictive capability of medication complexity scores like MRC-ICU for CCP 
interventions that considers mediating factors like patient severity of illness has never been 
evaluated. The purpose of this study was to develop prediction methods for total medication 
interventions during a patient’s ICU stay. We hypothesized that higher MRC-ICU scores and 
higher severity of illness would be predictive for greater CCP medication interventions.  
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Methods 
 
Study Population. This was a retrospective, observational study that was reviewed by the 
University of Georgia (UGA) Institutional Review Board (IRB) and determined to be exempt 
from IRB oversight (Project00001541). All methods were performed in accordance with the 
ethical standards of the UGA IRB and the Helsinki Declaration of 1975. Patient data were 
obtained via the Oregon Clinical and Translational Research Institute, which houses Epic® 
electronic health record (EHR) data from Oregon Health and Science University (OHSU) 
Hospital. OHSU is a 576 bed academic medical center with cardiothoracic, trauma/surgery, 
neurocritical care, and medical intensive care units. Pharmacists are integrated into the medical 
teams to provide CMM, including presence on multiprofessional rounds. A total of 13,373 
patients aged 18 years or older were identified between June 1, 2020 and June 7, 2023. Data 
from the first ICU admission per each patient were included. Patients were excluded if it was not 
their index ICU admission, the ICU stay was less than 24 hours, or if the patient was placed on 
comfort care within the first 24 hours of their ICU stay.  
 
Variables. The primary outcome was total medication interventions logged in Epic® as i-Vents by 
a critical care pharmacist (CCP) during the patient’s ICU stay. The EHR was queried for relevant 
patient demographic information, medication information, and patient outcomes. Baseline 
characteristics including age, sex, race, ICU type, admission diagnosis, APACHE II score at 24 
hours, and SOFA score at 24 hours, 48 hours, and 72 hours were collected. The MRC-ICU score 
was calculated at 24 hours, 48 hours, and 72 hours of the ICU stay. The MRC-ICU consists of 35 
discrete medication categories with each category assigned a weighted value and then summed to 
create a score for a patient’s regimen at the given time point.29 For a patient prescribed 
vancomycin, norepinephrine, and docusate, they would be given 3 points for vancomycin, 1 
point for norepinephrine, and 1 point for docusate for a total score of 5.  
 
Interventions are logged by CCPs as part of routine care. The general expectation is that CCPs 
log interventions performed and categorize them using a standard categorization system that 
consists of 49 distinct categories.20 These categories are provided in Supplemental Table 1. 
Additionally, these interventions were categorized into low, moderate, and high intensity 
intervention categories using a previously validated rating system to calculate intervention 
intensity.13 The composite score was equal to: (the number of low-intensity interventions) + 
5*(the number of moderate-intensity interventions) + 25*(the number of high-intensity 
interventions). The weights were chosen for the three intensities of intervention to minimize an 
overlap of scores for different compositions of number of interventions.13 
 
Following a literature review of pharmacist interventions in the ICU, potential predictor 
variables were identified by investigator consensus to include in each regression model. These 
variables included the following: baseline characteristics (age, sex, body mass index, ICU type, 
and admission diagnosis category) and 24-hour variables (sequential organ failure assessment 
(SOFA) at 24 hours, Acute Physiology and Chronic Health Evaluation II (APACHE II) at 24 
hours, MRC-ICU at 24 hours, presence of delirium as indicated by positive confusion assessment 
method for the ICU (CAM-ICU) score.  
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Analysis. Due to the hypothesis-generating nature of this study, no attempt was made to estimate 
the sample size. All eligible patients from the available database were included to maximize 
statistical power of the predictive models developed. Descriptive statistics were performed for 
relevant variables. Continuous variables were summarized by the mean and standard deviation, 
and categorical variables reported count and proportion of the total population. Clinical 
characteristics between patients with high and low interventions (defined as ≤ 5 (median) or not) 
were compared using either Student’s t-test or Chi-square test, as appropriate. Univariate analysis 
was performed on baseline variables to detect potential important variables for predicting 
intervention quantity and intensity. A two-sided p-value less than 0.05 was used to determine 
statistical significance for all outcomes. All analyses were performed using R (version 4.1.2). 
 
A histogram for intervention count was plotted (see Supplemental Figure 1). MRC-ICU score 
was plotted by ICU day (see Supplemental Figure 2 and 3). High and low interventions were 
differentiated based on median and visual analysis. Mortality and intervention total were plotted 
by MRC-ICU decile (see Supplemental Figure 4 and 5, respectively). A composite score of 
severity of illness (as described by SOFA or APACHE II) and medication regimen complexity (as 
described by MRC-ICU) was plotted against interventions (see Supplemental Figure 6).  
 
A total of six different prediction models were developed to predict the primary outcome 
(number of interventions during hospital stay) and secondary outcome (intensity score for 
interventions during hospital stay). These models included traditional regression (negative 
binomial regression with full predictors, stepwise selected predictors, and a simple model of two 
key predictors (MRC-ICU and SOFA score only)), and three machine learning models including 
Random Forest, Support Vector Machine (SVM), and XGBoost. Collinearity assessment was 
conducted via the variance inflation factor (VIF) or correlation matrix (see Supplemental Table 
2).  
 
Multiple imputation with 10 imputations per variable was applied for all missing data. Each 
model was trained on 10 imputed training datasets, and predictions were made on the 
corresponding 10 imputed testing datasets. The results from the 10 sub-models were pooled 
together based on Rubin’s rule. Univariate and multivariate analysis on full variables were 
performed on the 10 different imputed datasets. For each model, 80% of the observations were 
used as training data, and 20% were reserved as testing data.  

Traditional regression models. Multivariable generalized linear models (GLM) were developed 
to evaluate the relationship of MRC-ICU on ICU day 1 with total interventions. Both GLM with 
Poisson distribution and negative binomial distribution were explored (see Supplemental 
Appendix A). For variable selection, to ensure a narrower and more precise selection, model 
selection using Bayesian information criterion (BIC) with the additional option k=log(n) in a 
stepwise algorithm for each imputed dataset was performed. In the case of different variables 
being selected across the imputed datasets, the frequency of each variable being selected was 
recorded followed by the Wald test to determine whether each variable should remain in the final 
model in a stepwise process. A temporal analysis was conducted for changes in SOFA and MRC-
ICU score (see Appendix B).  
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Supervised machine learning models. During the model training for Random Forest, SVM and 
XGBoost, 5-fold cross validation was used to select hyperparameters. With those optimal 
hyperparameters, the trained model was fitted again on the whole training set. For Random 
Forest, number of trees and number of variables randomly sampled as candidates at each split 
were tuned. For SVM, linear kernel and cost of constraints violation were tuned. For XGBoost, 
maximum depth of a tree and maximum number of boosting iterations were tuned. Feature 
importance plots for Random Forest, SVM and XGBoost were plotted. Because ten different 
models were used on each imputed dataset, ten different feature importance lists were generated 
for each. 
 
Model evaluation. RMSE, MAE, and sMAPE were calculated for each set of predictions, and the 
results were pooled together. To mitigate the influence of outliers and skewed error distributions 
on performance metrics, the 95% quantile Root Mean Squared Error (RMSE), mean absolute 
error (MAE), and symmetric mean absolute percentage error (sMAPE) were calculated to 
provide a more robust assessment. Rate ratios (RR=eβ, β is the estimated coefficient from the 
regression model) for the simple and stepwise model were calculated after variable selection and 
were reported for predictors of interest along with 95% confidence intervals (CI). The 95% 
quantile for both RMSE and MAE refer to the values below which 95% of the error values fall 
(with the remaining 5% as extreme errors), with lower values indicating better performance.  
 
SHAP (SHapley Additive exPlanations) is a method based on game theory for explaining 
individual predictions from machine learning models.30 SHAP assigns a value to each feature, 
representing its impact on the prediction when that feature is included in the model compared to 
its absence, and thus provides a means to understand the contribution of each feature to the 
model's prediction for a particular instance. SHAP values were calculated for each individual 
prediction, and SHAP bee swarm charts were used to visualize the feature impact.31, 32 Given that 
the feature importance plots and associated predictions were highly uniform across imputed 
datasets, the bee swarm chart were plotted based on on-fold of imputed dataset with the lowest 
RMSE for concise interpretation.  
 

Subgroup Analysis and Error Distribution. A subgroup analysis was conducted by categorizing 
interventions into high, medium, or low groups to evaluate the performance of prediction models 
across different subgroups. This approach was chosen because despite similar overall 
performance metrics found for each model, the distribution of predicted values varied 
significantly. We hypothesized that model performance might vary across intervention groups 
(e.g., one model might perform well in the low intervention group but poorly in the high 
intervention group whereas another model might show the opposite performance trend, resulting 
in similar overall performance metrics despite differing subgroup performance). To explore these 
differences, we analyzed the error distribution for each model. For models with comparable 
overall Root Mean Squared Error (RMSE), we conducted detailed subgroup analyses and plotted 
the error distributions for each model. Additional details are available in Appendix C. 
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Results 

 
A total of 13,373 patients were included in the analysis.  The average age was 59.8 ± 17.4 years 
with an APACHE II score of 9.1 ± 4.1 at 24 hours and MRC-ICU score of 5.3 ± 3.9 at 24 hours. 
The overall mortality rate was 10.2% with 55.8% undergoing mechanical ventilation at 24 hours. 
Population characteristics are summarized in Table 1. The mean number of pharmacist 
interventions during the ICU stay was 4.7 ± 7.1 (see Table 2). Additionally, Supplemental Table 3 
provides a characterization of medication interventions by type and intensity level with 
discontinuation of clinically unwarranted medications (13.4%) and dosage adjustments (12.1%) 
being the top two categories. 
 
Following multivariable analysis, it was observed that for every one point increase in the MRC-
ICU, SOFA, and APACHE II score, there was approximately 10% more interventions made for 
the patient (see Table 3). Supplemental Table 4 reports the final regression model for prediction 
of total interventions with a total of 12 variables, and Supplemental Table 5 provides the model 
for a simple model of SOFA and MRC-ICU.  
 
 A total of 6 models were developed: a base model of MRC-ICU and APACHE II, full and 
stepwise regression, and three supervised machine learning models (see Table 4). All models 
performed similarly, while the Support Vector Machine and XGBoost models performed most 
consistently across all three metrics. The Random Forest model had the lowest RMSE (9.26) 
while Support Vector Machine had the lowest MAE (4.71). Notably, the best performing models 
all outperformed a parsimonious model combining severity of illness with medication regimen 
complexity, although these metrics do seem to give some indication as to projected CMM needs. 
Figure 1 depicts bee swarm plots with SHApley Additive exPlanations (SHAP) to depict the 
relative feature importance for the models. Regression models (see Supplemental Tables 6-7) 
and machine learning models (see Table 3) were also developed for intervention intensity. 
 
An exploratory analysis was conducted to evaluate the role of outliers in intervention quantity, 
given that reporting of interventions is dependent on a healthcare professional in the context of 
daily practice. With a 95% quantile that excluded extreme outliers, all sMAPE values were 
reduced, with Support Vector Machine and XGBoost performing the best at predicting 
interventions in the normal range and most errors due to more extreme outliers (see Table 4). 
The full regression, selected regression, and Random Forest performed better with the extreme 
values in their predictions (see Appendix C). 
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Discussion 

Using a specifically curated large dataset of CMM activities in critically ill patients, a series of 
machine learning based models were developed and found to successfully predict CMM 
activities, as quantified by pharmacist intervention quantity and intensity. The use of patient-
specific data including traditional severity of illness scores plus CMM-oriented scores in the 
form of the MRC-ICU and granular pharmacist CMM activity in a large cohort marks this paper 
to be the first evaluation of its kind and may be useful for institutions looking to predict 
pharmacist workload. Performance between a stepwise regression and machine learning based 
models did not differ substantially; however, Random Forest and Support Vector Machine had 
the best performance when measured by RMSE and MAE, respectively.  
 
The model results were reasonable, and the relationships among the covariates and outcomes 
were clear. Given the skewness of the intervention distributions, models showed reduced 
accuracy for the patients at the tail ends of intervention counts. Generally, this study suggests 
that severity of illness (in the form of SOFA score) and medication regimen complexity are 
strongly associated with critical care pharmacist interventions; however, more sophisticated 
models are likely necessary for improving predictive power. The similar performance between 
supervised machine learning methods and traditional regression has been observed in other 
medication related evaluations.33, 34 This may be due to the relatively small sample size given the 
heterogeneity of critically ill patients and medication use in the ICU, but also serves as an 
important reminder that AI based evaluations should be benchmarked against existing clinical 
standards and more interpretable models.  
 
Workload optimization is important for patient and healthcare worker outcomes.25, 35  While 
cognitive overload is well known to reduce the quality of work across a variety of domains, 
higher patient care burdens are associated with worse patient outcomes such that standards exists 
for ICU physicians and nurses.11, 25, 35-37  The potential for additional personnel on an ‘as needed’ 
basis or back-up teams to be accessed for high patient care burden days in an objective and 
reproducible manner may be an important  quality improvement strategy. CMM is a cognitive 
service performed with the goal to optimize medication therapy; however, a challenge to tracking 
such services is the lack of physical intervention.2, 38, 39 Reviewing a medication therapy in the 
context of the patient’s disease course and clinical status and comparing against current 
guidelines and emerging evidence is decidedly ephemeral compared to the more tangible 
services of central lines placed or procedures completed.40 Intervention tracking as a metric of 
CMM has been critiqued because it does not capture the cognitive labor of the process.40 
Intervention intensity is intended to striate between lower and higher levels of such cognitive 
labor, but again, fails to capture times when ultimately no intervention was made, even after 
some amount of cognitive effort, and importantly times when a CCP made a recommendation 
that was not ultimately accepted by the ICU team.29 As such, prediction models that track 
intervention quantity or intensity cannot capture this element. However, they do have the 
potential to serve as markers of workload or potentially unsafe care processes that require 
improvement. For example, repeated interventions related to the use of neuromuscular blockers  
may open a discussion among ICU clinicians/leaders regarding standardized order set 
development.   
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Limitations of our evaluation include that it is a retrospective and single center study, precluding 
causal assessment and external validation. However, high quality, granular datasets with both 
CMM data, medication data, and patient data are not widely available, and this evaluation 
provides a novel foundation for future curation of these valuable datasets. While external 
validation is a gold standard for model building and testing, there is a high rate of practice 
variation in how institutions record pharmacist CMM activity such that readily comparable 
datasets are not available. However, steps were taken to increase the generalizability our results,  
notably through the re-coding of intervention categories into previously published categories 
supported by a systematic review and a previously used intensity scoring system. This 
methodology supports future investigations into external validation.  
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Conclusion 
 
Pharmacist interventions have a direct relationship with patient severity of illness and medication 
regimen complexity and may be predicted using machine learning approaches. Workload 
prediction has the potential to improve patient outcomes following the appropriate 
implementation and evaluations of such models. 
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Table 1. Population characteristics and outcomes.  

 Total Cohort, 
n=13,373 

High Interventions, 
n=5,757 

Low Interventions, 
n=7,616 

p-value 

Admission Demographics 

Age 59.8 (17.4) 58.5 (16.7) 60.8 (17.9) <0.001 

Sex - Male 7965 (59.6) 3498 (60.8) 4467 (58.7) 0.01 

BMI 29.4 (5.4) 29.4 (8.5) 29.5 (7.3) 0.86 

ICU Type 

Cardiac 4458 (33.3) 1914 (33.2) 2544 (33.4) <0.001 

Surgical/Trauma 3807 (28.4) 1686 (29.2) 2121 (27.8) 

Neurosciences 2915 (21.8) 1122 (19.4) 1793 (23.5) 

Medical 2193 (16.4) 1035 (17.9) 1158 (15.2) 

Admission Diagnosis 

Cardiovascular 2897 (21.6) 1134 (19.7) 1763 (23.1) <0.001 

Gastrointestinal 717 (5.3) 348 (6.0) 369 (4.8) 

Hematologic 277 (2.0) 145 (2.5) 132 (1.7) 

Hepatic 228 (1.7) 148 (2.5) 80 (1.0) 

Infection 616 (4.6) 445 (7.7) 171 (2.2) 

Neoplasm 772 (5.7) 285 (4.9) 487 (6.3) 

Respiratory 204 (1.5) 65 (1.1) 139 (1.8) 

Sepsis 377 (2.8) 215 (3.7) 162 (2.1) 

Shock 227 (1.7) 153 (2.6) 74 (0.9) 

Trauma 843 (6.3) 327 (5.6) 516 (6.7) 

   Other 6215 (46.4) 1635 (28.4) 3723 (48.8) 

24 hour variables 

MRC-ICU at 24 hours 5.3 (3.9) 7.0 (4.3) 4.1 (3.0) <0.001 

MRC-ICU at 48 hours 5.0 (3.9) 6.9 (4.3) 3.5 (2.7) <0.001 

MRC-ICU at 72 hours 4.9 (3.8) 6.6 (4.2) 3.3 (2.5) <0.001 

SOFA at 24 hours 3.3 (3.0) 4.3 (3.1) 2.5 (2.7) <0.001 

SOFA at 48 hours 2.3 (2.8) 3.4 (3.1) 1.5 (2.2) <0.001 

SOFA at 72 hours 2.0 (2.6) 2.9 (2.9) 1.2 (1.9) <0.001 

APACHE II at 24 
hours 

9.1 (4.1) 10.6 (4.3) 7.9 (3.5) <0.001 

Invasive mechanical 
ventilation in 24 hours 

7469 (55.8) 4320 (75.0) 3149 (41.3) <0.001 

CAM-ICU in 24 hours 10907 (81.5) 5250 (91.1) 5657 (74.2) <0.001 

CRRT in 24 hours 659 (4.9) 573 (9.9) 86 (1.1) <0.001 

Outcomes 

Hospital mortality 1376 (10.2) 878 (15.2) 498 (6.5) <0.001 
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Hospital length of stay 
(days) 

12.79 (15.8) 12.74 (15.5) 12.82 (16.1) 0.77 

ICU length of stay 
(days) 

4.6 (5.8) 7.0 (7.8) 2.8 (2.1) <0.001 

Data are presented as n (%) or mean (standard deviation) unless otherwise designated.  

SOFA: sequential organ failure assessment, APACHE II: Acute Physiology and Chronic Health 
Evaluation; ICU: intensive care unit 

High interventions were defined as ≥ 5 (median) and low as < 5. 
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Table 2. CCP intervention data 
 
 Total Cohort, 

n=13,373 
High Interventions, 

n=5,757 
Low Interventions, 

n=7,616 
p-value 

CCP intervention data 

Total interventions per 
ICU stay 

4.7 (7.1) 9.0 (9.0) 1.5 (1.4) <0.001 

Total interventions per 
hospital stay 

7.4 (9.6) 14.0 (11.7) 2.4 (1.6) <0.001 

Day 1 interventions 2.8 (2.3) 3.7 (2.8) 1.7 (0.9) <0.001 

Day 2 interventions 2.0 (1.7) 2.4 (2.0) 1.3 (0.6) <0.001 

Day 3 interventions 2.1 (1.7) 2.3 (1.8) 1.2 (0.5) <0.001 

Day 4 interventions 2.0 (1.6) 2.1 (1.7) 1.2 (0.5) <0.001 

Day 5 interventions 2.0 (1.6) 2.1 (1.6) 1.2 (0.5) <0.001 

Day 6 interventions 2.0 (1.6) 2.1 (1.7) 1.1 (0.4) <0.001 

Day 7 interventions 2.0 (1.7) 2.0 (1.7) 1.2 (0.5) <0.001 

Intervention intensity 
over ICU stay 

24.0 (40.3) 45.2 (52.7) 8.1 (12.7) <0.001 

Day 1 intervention 
intensity 

15.5 (20.4) 20.8 (24.1) 9.8 (12.9) <0.001 

Day 2 intervention 
intensity 

10.0 (15.1) 11.8 (17.0) 6.4 (9.2) <0.001 

Day 3 intervention 
intensity 

10.4 (15.2) 11.7 (16.5) 6.1 (8.4) <0.001 

Day 4 intervention 
intensity 

9.5 (13.9) 10.4 (14.8) 5.7 (8.1) <0.001 

Day 5 intervention 
intensity 

9.1 (12.5) 9.5 (13.0) 5.7 (7.8) <0.001 

Day 6 intervention 
intensity 

9.4 (13.1) 9.9 (13.5) 4.7 (6.4) <0.001 

Day 7 intervention 
intensity 

9.3 (13.4) 9.6 (13.5) 5.6 (11.2) 0.01 

Data are presented as n (%) or mean (standard deviation) unless otherwise designated.  

SOFA: sequential organ failure assessment, APACHE II: Acute Physiology and Chronic Health 
Evaluation; ICU: intensive care unit 

High interventions were defined as ≥ 5 (median) and low as < 5. 
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Table 3. Univariate and multivariable analysis of MRC-ICU as a predictor of total interventions  
 

 
  

 Univariate Multiple Variable 
 Rate 

Ratio 
95% CI p-value Rate 

Ratio 
95% CI p-value 

Age 0.99 0.99, 0.99 <0.01 0.99 0.99, 1.00 0.36 
Sex - Male 1.10 1.07, 1.15 <0.01 1.03 0.99, 1.06 0.06 
BMI 1.00 0.99, 1.00 0.73 0.99 0.99, 1.00 0.51 
ICU Type - Cardio 0.92 0.87, 0.97 <0.01 1.08 1.02, 1.143 <0.01 
ICU Type -Neurosciences 0.73 0.69, 0.77 <0.01 1.13 1.06, 1.20 <0.01 
ICU Type - Surgical/Trauma 0.93 0.88, 0.98 <0.01 1.21 1.15, 1.28 <0.01 
Admission Diagnosis  
Cardiovascular 0.96 0.92, 1.01 0.13 1.06 1.00, 1.12 0.02 
Gastrointestinal 1.13 1.04, 1.22 <0.01 1.04 0.96, 1.12 0.29 
Hematologic 1.19 1.05, 1.35 <0.01 1.05 0.94, 1.17 0.33 
Hepatic 1.37 1.20, 1.57 <0.01 0.90 0.80, 1.02 0.12 
Infection 1.90 1.75, 2.07 <0.01 1.40 1.29, 1.51 <0.01 
Neoplasm 0.80 0.74, 0.87 <0.01 0.87 0.81, 0.93 <0.01 
Respiratory 1.12 1.02, 1.22 0.01 1.07 0.99, 1.17 <0.01 
Sepsis 1.25 1.12, 1.39 <0.01 1.22 1.11, 1.35 <0.01 
Shock 1.81 1.58, 2.07 <0.01 1.53 1.36, 1.72 <0.01 
Trauma 0.90 0.84, 0.97 <0.01 0.97 0.90, 1.04 <0.01 
MRC-ICU at 24 hours 1.10 1.10, 1.10 <0.01 1.04 1.03, 1.04 <0.01 
SOFA at 24 hours 1.12 1.11, 1.12 <0.01 1.02 1.01, 1.02 <0.01 
APACHE II at 24 hours 1.08 1.08, 1.09 <0.01 1.01 1.00, 1.01 <0.01 
Mechanical Ventilation in 24 hours 2.59 2.50, 2.67 <0.01 1.75 1.68, 1.82 <0.01 
CAM-ICU in 24 hours 2.16 2.07, 2.27 <0.01 1.31 1.25, 1.37 <0.01 
CRRT in 24 hours 3.13 2.90, 3.38 <0.01 1.91 1.78, 2.06 <0.01 
SOFA: sequential organ failure assessment 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 24, 2024. ; https://doi.org/10.1101/2024.10.23.24316001doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.23.24316001
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Table 4. Prediction models for pharmacist interventions 

 RMSE 
(Test) 

RMSE (95% 
Quantile) 

MAE 
(Test) 

MAE (95% 
Quantile) 

sMAPE 
(%) 

sMAPE (%, 
95% 

Quantile) 
Intervention Quantity  

All variables 9.78 4.97 5.19 3.88 36.53 31.25 
Stepwise 
Selected 

Regression 

9.81 4.97 5.20 3.88 36.54 31.26 

SOFA-MRC 
Model 

10.19 5.19 5.47 4.10 37.86 32.19 

Random 
Forest 

9.26 5.03 5.09 3.87 36.19 30.76 

Support Vector 
Machine 

9.75 4.51 4.71 3.33 35.90 30.57 

XGBoost 9.62 4.59 4.87 3.58 35.75 30.52 
Intervention Intensity  

All variables 50.67 29.54 30.29 23.43 44.87 40.24 

Stepwise 
Selected 

Regression 

50.71 29.55 30.32 23.45 44.91 40.29 

SOFA-MRC 
Model 

52.33 30.82 32.00 25.07 46.43 41.38 

Random 
Forest 

49.46 30.10 30.44 23.83 44.90 40.28 

Support Vector 
Machine 

51.99 27.94 27.96 20.38 45.33 40.69 

XGBoost 51.89 29.47 30.08 22.83 46.32 41.32 

RMSE: root mean square derivation, MAE: mean absolute error, sMAPE: symmetric Mean Absolute 
Percentage Error on 0-100% range 
95% Quantile evaluation removes extreme outliers 

Simple model: MRC-ICU at 24 hours, SOFA at 24 hours 
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Figure 1. Bee Swarm Plot with SHapley Additive exPlanations (SHAP) as values for machine 
learning models 
A. Random Forest 

 
B. Support Vector Machine  

 
C. XGBoost 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 24, 2024. ; https://doi.org/10.1101/2024.10.23.24316001doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.23.24316001
http://creativecommons.org/licenses/by-nc-nd/4.0/


References 
 
1.  A S. Critical Care Pharmacists: A Focus on Horizons. Critical Care Clinics 2023;3:503-27. 

2.  Newsome AS, Murray B, Smith SE, et al. Optimization of critical care pharmacy clinical 

services: A gap analysis approach. Am J Health Syst Pharm 2021;22:2077-85. 

3.  Halpern NA, Goldman DA, Tan KS, Pastores SM. Trends in Critical Care Beds and Use Among 

Population Groups and Medicare and Medicaid Beneficiaries in the United States: 2000-2010. 

Crit Care Med 2016;8:1490-9. 

4.  Cullen DJ, Sweitzer BJ, Bates DW, Burdick E, Edmondson A, Leape LL. Preventable adverse 

drug events in hospitalized patients: a comparative study of intensive care and general care 

units. Crit Care Med 1997;8:1289-97. 

5.  Practices IoSM. High Alert Medications Available from 

https://www.ismp.org/sites/default/files/attachments/2018-08/highAlert2018-Acute-Final.pdf.  

6.  Maslove DM, Lamontagne F, Marshall JC, Heyland DK. A path to precision in the ICU. Crit Care 

2017;1:79. 

7.  Shulman R, McKenzie CA, Landa J, et al. Pharmacist's review and outcomes: Treatment-

enhancing contributions tallied, evaluated, and documented (PROTECTED-UK). J Crit Care 

2015;4:808-13. 

8.  Lee H, Ryu K, Sohn Y, Kim J, Suh GY, Kim E. Impact on Patient Outcomes of Pharmacist 

Participation in Multidisciplinary Critical Care Teams: A Systematic Review and Meta-Analysis. 

Crit Care Med 2019;9:1243-50. 

9.  Leape LL, Cullen DJ, Clapp MD, et al. Pharmacist participation on physician rounds and 

adverse drug events in the intensive care unit. JAMA 1999;3:267-70. 

10.  MacLaren R, Roberts RJ, Dzierba AL, Buckley M, Lat I, Lam SW. Characterizing Critical Care 

Pharmacy Services Across the United States. Crit Care Explor 2021;1:e0323. 

11.  Newsome AS, Smith SE, Jones TW, Taylor A, Van Berkel MA, Rabinovich M. A survey of 

critical care pharmacists to patient ratios and practice characteristics in intensive care units. 

JACCP: JOURNAL OF THE AMERICAN COLLEGE OF CLINICAL PHARMACY 2020;1:68-74. 

12.  Smetana KS, Flannery AH, Gurnani PK, et al. PHarmacist avoidance or reductions in medical 

costs in CRITically ill adults rounding with one SERVICE compared to two or more services: 

PHARM-CRIT-SERVICE. JACCP: JOURNAL OF THE AMERICAN COLLEGE OF CLINICAL PHARMACY 

n/a. 

13.  Sikora A, Ayyala D, Rech MA, et al. Impact of Pharmacists to Improve Patient Care in the 

Critically Ill: A Large Multicenter Analysis Using Meaningful Metrics With the Medication 

Regimen Complexity-ICU (MRC-ICU). Crit Care Med 2022. 

14.  Sikora A, Devlin JW, Yu M, et al. Evaluation of medication regimen complexity as a predictor 

for mortality. Sci Rep 2023;1:10784. 

15.  Gwynn ME, Poisson MO, Waller JL, Newsome AS. Development and validation of a 

medication regimen complexity scoring tool for critically ill patients. Am J Health Syst Pharm 

2019;Supplement_2:S34-S40. 

16.  Olney WJ, Chase AM, Hannah SA, Smith SE, Newsome AS. Medication Regimen Complexity 

Score as an Indicator of Fluid Balance in Critically Ill Patients. J Pharm Pract 2022;4:573-79. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 24, 2024. ; https://doi.org/10.1101/2024.10.23.24316001doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.23.24316001
http://creativecommons.org/licenses/by-nc-nd/4.0/


17.  Rafiei A, Rad MG, Sikora A, Kamaleswaran R. Improving irregular temporal modeling by 

integrating synthetic data to the electronic medical record using conditional GANs: a case study 

of fluid overload prediction in the intensive care unit. medRxiv 2023;2023.06.20.23291680. 

18.  Sikora A, Zhang T, Murphy DJ, et al. Machine learning vs. traditional regression analysis for 

fluid overload prediction in the ICU. medRxiv 2023;2023.06.16.23291493. 

19.  Murray B, Zhao B, Kong Y, Shen Y, Sikora A. 935: PREDICTING DURATION OF MECHANICAL 

VENTILATION WITH MEDICATION REGIMEN COMPLEXITY VARIABLES. Critical Care Medicine 

2023;1:460. 

20.  Webb AJ, Rowe S, Sikora Newsome A. A descriptive report of the rapid implementation of 

automated MRC-ICU calculations in the EMR of an academic medical center. Am J Health Syst 

Pharm 2022. 

21.  Sikora A, Rafiei A, Rad MG, et al. Pharmacophenotype identification of intensive care unit 

medications using unsupervised cluster analysis of the ICURx common data model. Crit Care 

2023;1:167. 

22.  Chase A AH, Forehand C, Keats K, Taylor A, Wu S, Blotske K, Sikora A. An evaluation of 

medication regimen complexity’s relationship to medication errors in critically ill patients. 

Hospital Pharmacy 2023. 

23.  Al-Mamun MA, Brothers T, Newsome AS. Development of Machine Learning Models to 

Validate a Medication Regimen Complexity Scoring Tool for Critically Ill Patients. Ann 

Pharmacother 2021;4:421-29. 

24.  Newsome AS, Anderson D, Gwynn ME, Waller JL. Characterization of changes in medication 

complexity using a modified scoring tool. Am J Health Syst Pharm 2019;Supplement_4:S92-S95. 

25.  Sikora A, Ayyala D, Rech MA, et al. Impact of Pharmacists to Improve Patient Care in the 

Critically Ill: A Large Multicenter Analysis Using Meaningful Metrics With the Medication 

Regimen Complexity-ICU (MRC-ICU) Score. Crit Care Med 2022;9:1318-28. 

26.  Sikora A, Rafiei A, Rad MG, et al. Pharmacophenotype identification of intensive care unit 

medications using unsupervised cluster analysis of the ICURx common data model. Crit Care 

2023;1:167. 

27.  Sikora A JH, Yu M, Chen X, Murray B, Kamaleswaran R. Cluster analysis driven by 

unsupervised latent feature learning of 

intensive care unit medications to identify novel pharmacophenotypes of critically ill patients. 

Research Square 2022. 

28.  Smith SE, Shelley R, Newsome AS. Medication regimen complexity vs patient acuity for 

predicting critical care pharmacist interventions. Am J Health Syst Pharm 2021. 

29.  Sikora A, Ayyala D, Rech MA, et al. Impact of Pharmacists to Improve Patient Care in the 

Critically Ill: A Large Multicenter Analysis Using Meaningful Metrics With the Medication 

Regimen Complexity-ICU (MRC-ICU) Score. Crit Care Med 2022;9:1318-28. 

30.  Lundberg S, Su-In Lee. . A Unified Approach to Interpreting Model Predictions. Neural 

Information Processing Systems 2017. 

31.  R. shapr: Prediction Explanation with Dependence-Aware Shapley Values, Available from 

https://cran.r-project.org/web/packages/shapr/index.html. 2024. 

32.  R. SHAPforxgboost: SHAP Plots for 'XGBoost', Available from https://cran.r-

project.org/web/packages/SHAPforxgboost/index.html. 2024. . 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 24, 2024. ; https://doi.org/10.1101/2024.10.23.24316001doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.23.24316001
http://creativecommons.org/licenses/by-nc-nd/4.0/


33.  Sikora A, Zhang T, Murphy DJ, et al. Machine learning vs. traditional regression analysis for 

fluid overload prediction in the ICU. Sci Rep 2023;1:19654. 

34.  Brian Murray TZ, Xianyan Chen, Susan E. Smith, John W. Devlin, David J. Murphy, Andrea 

Sikora, Rishikesan Kamaleswaran the MRC-ICU Investigator Team. Augmenting mortality 

prediction with medication data and machine learning models. arixV 

https://wwwmedrxivorg/content/101101/2024041624305420v1 2024. 

35.  Lat I, Paciullo C, Daley MJ, et al. Position Paper on Critical Care Pharmacy Services: 2020 

Update. Crit Care Med 2020;9:e813-e34. 

36.  Smith SE, Slaughter AA, Butler SA, Buckley MS, MacLaren R, Newsome AS. Examination of 

critical care pharmacist work activities and burnout. JACCP: JOURNAL OF THE AMERICAN 

COLLEGE OF CLINICAL PHARMACY 2021;5:554-69. 

37.  Smith ZR, Palm NM, Smith SE, et al. Critical care pharmacist perspectives on optimal 

practice models and prioritization of professional activities: A cross-sectional survey. Am J 

Health Syst Pharm 2024. 

38.  Sikora A MB, Most A, Martin G. Critical Care Pharmacists Save Lives. ICU Management and 

Practice 2024. 

39.  Sikora A. Critical Care Pharmacists: A Focus on Horizons. Crit Care Clin 2023;3:503-27. 

40.  Murray B, Newsome AS. Avoiding cost avoidance. Am J Health Syst Pharm 2022;2:14-15. 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 24, 2024. ; https://doi.org/10.1101/2024.10.23.24316001doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.23.24316001
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplemental Digital Content 
 
Supplemental Table 1 – Low, medium, and high intensity intervention categories 
 
Supplemental Table 2a-b – Collinearity assessment for key variables  
 
Supplemental Table 3 – Characterization of medication interventions  
 
Supplemental Table 4 – Final regression model for prediction model of total number of 
interventions  
 
Supplemental Table 5 – Simple prediction model for total number of predictions  
 
Supplemental Table 6 – Univariate and multivariable analysis of MRC-ICU as a predictor of 
total interventions and intervention intensity  
 
Supplemental Table 7 – Final regression model for prediction model of total number of 
interventions intensity 
 
Supplemental Figure 1 – Histogram of intervention counts 
 
Supplemental Figure 2 – MRCICU Score by ICU Day 
 
Supplemental Figure 3 – MRC-ICU changes over ICU day 
 
Supplemental Figure 4 – Mortality rate by MRC-ICU decile 
 
Supplemental Figure 5 – Interventions by MRC-ICU decile 
 
Supplemental Figure 6 – Composite severity of illness and medication data with pharmacist 
interventions 
 
Appendix A. Model Selection 
 
Appendix B. Temporal Analysis – Mixed Model of Daily Effect 

Appendix C. Subgroup analysis 

 
 
 
 
 
 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 24, 2024. ; https://doi.org/10.1101/2024.10.23.24316001doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.23.24316001
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplemental Table 1. Low, medium, and high intensity intervention categories 
Low Intensity 
Concentration or diluent change 
Therapeutic interchange/Formulary alternative 
Initiation of venous thromboembolism prophylaxis  
Medication formulation change 
Medication reconciliation with no adverse drug event prevention 
Medication route change 
Intravenous to oral conversion 
Medication route for hypotension management  
Missing information on allergies 
Missing information on medication indication 
Missing information on height and weight 
Antineoplastic medication monitoring 
Monitored medication review 
Patient own medication evaluation 
PRN indication violation 
Range order violation 
REMS medication 
Route change 
Schedule change 
Discontinuation of clinically unwarranted medications 
Medium Intensity 
Anticoagulant therapy management 
Antimicrobial pharmacokinetic evaluation 
Antimicrobial stewardship 
Antimicrobial therapy initiation and streamlining 
Code white participation 
Emergency code blue participation 
Dosage adjusted by pharmacist 
Duplicate medication 
Immunization management 
Initial dose recommendation 
Medication education to healthcare professional 
Medication teaching or discharge education 
Minor adverse drug event prevention 
Parenteral nutrition management 
Recommend alternative medication 
Recommend medication addition 
Drug shortage 
STEMI code participation 
Prostacyclin management 
High Intensity 
Bedside monitoring 
Blood factor stewardship and emergency anticoagulation reversal  
Drug information consultation  
Emergency Code Stroke participation 
Emergency procedural sedation and rapid sequence intubation participation 
Initiation or recommendation to initiate a non-antimicrobial therapy  
Major adverse drug event prevention 
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Medication reconciliation with major adverse drug event prevention 
Recommend laboratory monitoring  
Trauma team participation 
Categorization is based from an established ranking system.29  
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Supplemental Table 2a. – Collinearity assessment for key variables  
 VIF 
Day 1 MRC-ICU 1.626 
Day 1 SOFA 1.581 
Day 1 APACHE II 1.686 
Mechanical ventilation 1.499 
CAM-ICU positive 1.153 
Continuous renal replacement therapy  1.153 
 

Supplemental Table 2b. – Correlation Matrix 
 
 Day I MRC-ICU Day 1 SOFA Day 1 APACHE II 
Day I MRC-ICU 1.000 0.451 0.549 
Day 1 SOFA 0.451 1.000 0.466 
Day 1 APACHE II 0.549 0.466 1.000 
 

Co-linearity via variance inflation factor (VIF) or correlation matrix was assessed for suspected 
variables of interest (e.g., CRRT, mechanical ventilation, MRC-ICU, SOFA, and APACHE II 
score). VIF: Values above 5 indicate significant collinearity. 1 < VIF ≤ 5: Indicates moderate 
multicollinearity. Generally considered acceptable. VIF > 5: Indicates high multicollinearity. 
This suggests that the predictor variable is highly correlated with other predictors. The VIF for 
CRRT, Mechanical Ventilation, MRC-ICU, SOFA, APACHE all <2, which means each variable 
are not highly correlated with other predictors. Correlation Matrix (for continuous variables 
only) look for pairs of predictors with high correlation coefficients (e.g., above 0.8 or below -
0.8). For the correlation matrix of the three continuous scores, their coefficients are all < 0.6, 
indicating minimal co-linearity.  
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Table 3. Characterization of medication interventions  
Intervention Type N = 98,988  
Low intensity  
Concentration or diluent change 1073 (1.0) 
Therapeutic interchange/Formulary alternative 399 (0.4) 
Initiation of venous thromboembolism 
prophylaxis  

1092 (1.1) 

Medication formulation change 2979 (3.0) 
Medication reconciliation with no adverse drug 
event prevention 

1877 (1.9) 

Medication route change 22 (0.1) 
Medication formulation change  
Medication reconciliation with no adverse drug 
event prevention 

4284 (4.3) 

Missing information on allergies 650 (0.6) 
Missing information on medication indication 1065 (1.0) 
Missing information on height and weight 520 (0.5) 
Antineoplastic medication monitoring 179 (0.1) 
Monitored medication review 2643 (2.6) 
Patient own medication evaluation 777 (0.7) 
PRN indication violation 280 (0.2) 
Range order violation 1035 (1.0) 
REMS medication 32 (0.0) 
Route change 9570 (0.6) 
Schedule change 7344 (7.4) 
Discontinuation of clinically unwarranted 
medications 

13270 (13.4) 

Moderate intensity  
Anticoagulant therapy management 4691 (4.7) 
Antimicrobial pharmacokinetic evaluation 4778 (4.8) 
Antimicrobial stewardship 44 (0.0) 
Antimicrobial therapy initiation and streamlining 1319 (1.3) 
Code white participation 63 (0.1) 
Emergency code blue participation 111 (0.1) 
Dosage adjusted by pharmacist 11985 (12.1) 
Duplicate medication 5045 (5.1) 
Immunization management 274 (0.2) 
Initial dose recommendation 2377 (2.4) 
Medication education to healthcare professional 2983 (3.0) 
Medication teaching or discharge education 1567 (1.5) 
Minor adverse drug event prevention 783 (0.7) 
Parenteral nutrition management 677 (0.6) 
Recommend alternative medication 2156 (2.1) 
Recommend medication addition 592 (0.6) 
Drug shortage 103 (0.1) 
STEMI code participation 15 (0.1) 
Prostacyclin management 18 (0.1) 
High intensity  
Bedside monitoring 37 (0.1) 
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Blood factor stewardship and emergency 
anticoagulation reversal  

61 (0.1) 

Drug information consultation  594 (0.6) 
Emergency Code Stroke participation 43 (0.1) 
Emergency procedural sedation and rapid 
sequence intubation participation 

28 (0.1) 

Initiation or recommendation to initiate a non-
antimicrobial therapy  

5960 (6.0) 

Major adverse drug event prevention 93 (0.9) 
Medication reconciliation with major adverse 
drug event prevention 

1228 (1.2) 

Recommend laboratory monitoring  2058 (2.0) 
Trauma team participation 224 (0.2) 
Data are presented as n(%) unless otherwise marked.  
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Supplemental Table 4. Final regression model for prediction model of total number of 
interventions  
Variable Estimate Standard Error p-value 
Intercept 0.829 0.025 < 0.001 
Medical ICU -0.980 0.023 < 0.001 
Surgical/Trauma ICU 0.075 0.018 < 0.001 
Infection 0.322 0.037 < 0.001 
Neoplasm -0.144 0.034 < 0.001 
Sepsis 0.184 0.047 < 0.001 
Shock 0.404 0.058 < 0.001 
MRC-ICU at 24 hours 0.042 0.002 < 0.001 
SOFA at 24 hours 0.019 0.003 < 0.001 
APACHE II at 24 hours 0.015 0.002 < 0.001 
Mechanical ventilation in 24 hours 0.564 0.019 < 0.001 
CAM-ICU in 24 hours 0.268 0.022 < 0.001 
CRRT in 24 hours 0.674 0.036 < 0.001 
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Supplemental Table 5. Simple prediction model for total number of interventions  
Variable Estimate  

(Standard Error) 
Rate Ratio (95% 
Confidence Interval) 

p-value 

Intercept 1.240 (1.211) - < 0.001 
MRC-ICU at 24 hours 0.079 (0.075) 1.083 (0.075) < 0.001 
SOFA at 24 hours 0.072 (0.066) 1.075 (0.066) < 0.001 
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Supplemental Table 6. Univariate and multivariable analysis of MRC-ICU as a predictor of 
intervention intensity  

 
  

 Univariate Multiple Variable 
 Rate 

Ratio 
95% CI p-value Rate 

Ratio 
95% CI p-value 

Age 0.99 0.99, 0.99 <0.01 1.0007 0.99, 1.00 0.22 
Sex - Male 1.16 1.11, 1.22 <0.01 1.0571 1.01, 1.10 <0.01 
BMI 0.99 0.99, 1.00 0.77 0.99 0.99, 1.00 0.27 
ICU Type - Cardio 1.01 0.95, 1.08 0.66 1.11 1.04, 1.19 <0.01 
ICU Type -Neurosciences 0.65 0.61, 0.70 <0.01 0.97 0.89, 1.05 0.49 
ICU Type - Surgical/Trauma 1.09 0.02, 1.17 <0.01 1.40 1.30, 1.50 <0.01 
Admission Diagnosis 

Cardiovascular 1.05 1.00, 1.11 0.03 1.13 1.05, 1.21 <0.01 
Gastrointestinal 1.09 0.99, 1.20 0.07 0.92 0.84, 1.02 0.13 
Hematologic 1.10 0.94, 1.28 0.21 0.99 0.85, 1.14 0.91 
Hepatic 1.24 1.05, 1.47 0.00 0.79 0.67, 0.92 <0.01 
Infection 1.77 1.59, 1.96 <0.01 1.33 1.20, 1.48 <0.01 
Neoplasm 0.72 0.66, 0.79 <0.01 0.74 0.67, 0.81 <0.01 
Respiratory 1.00 0.90, 1.12 0.87 0.99 0.89, 1.11 0.94 
Sepsis 1.22 1.07, 1.39 <0.01 1.20 1.06, 1.37 <0.01 
Shock 1.77 1.50, 2.10 <0.01 1.50 1.27, 1.76 <0.01 
Trauma 1.08 0.99, 1.18 0.08 1.02 0.92, 1.12 0.67 

MRC-ICU at 24 hours 1.09 1.08, 1.10 <0.01 1.03 1.02, 1.04 <0.01 
SOFA at 24 hours 1.10 1.10, 1.11 <0.01 1.01 1.00, 1.02 <0.01 
APACHE II at 24 hours 1.08 1.07, 1.08 <0.01 1.01 1.01, 1.02 <0.01 
Mechanical Ventilation in 24 hours 2.36 2.26, 2.46 <0.01 1.66 1.58, 1.75 <0.01 
CAM-ICU in 24 hours 2.06 1.95, 2.17 <0.01 1.33 1.26, 1.41 <0.01 
CRRT in 24 hours 2.98 2.70,3.29 <0.01 1.87 1.69,2.07 <0.01 
SOFA: sequential organ failure assessment 
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Supplemental Table 7 – Final regression model for prediction model for interventions intensity 
Variable Estimate Standard Error p-value 
Intercept 2.495 0.040 <0.001 
ICU type - Medical -0.125 0.035 <0.001 
ICU type - Neuroscience -0.167 0.035 <0.001 
ICU type - Surgical/Trauma 0.224 0.032 <0.001 
Cardiovascular 0.152 0.033 <0.001 
Infection 0.321 0.051 <0.001 
Neoplasm -0.268 0.045 <0.001 
Sepsis 0.212 0.064 <0.001 
Shock 0.431 0.081 <0.001 
MRC-ICU at 24 hours 0.035 0.003 <0.001 
SOFA at 24 hours 0.014 0.004 <0.001 
APACHE II at 24 hours 0.016 0.003 <0.001 
Mechanical Ventilation in 24 hours 0.510 0.025 <0.001 
CAM-ICU in 24 hours 0.290 0.029 <0.001 
CRRT in 24 hours 0.610 0.050 <0.001 
 
 
 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 24, 2024. ; https://doi.org/10.1101/2024.10.23.24316001doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.23.24316001
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplemental Table 8 – Missing Data 
 

Number of Missing Values 
Age 13 
Female 0 
Race 349
BMI 741
ICU Type 0 
Cardiovascular 0 
Gastrointestinal 0 
Hematologic 0 
Hepatic 0 
Infection 0 
Neoplasm 0 
Neurology 0 
Respiratory 0 
Sepsis 0 
Shock 0 
Trauma 0 
MRC-ICU at 24 hours 683
SOFA at 24 hours 208
APACHE II at 24 hours 13 
Mechnical Ventilation in 24 hours 0 
CAM-ICU in 24 hours 0 
CRRT in 24 hours 0 
Total in-hospital interventions 0 
Overall composite intervention score 0 
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Supplemental Digital Content – Figure 1. Histogram of intervention counts 

 

 
Top panel: Histogram of number of interventions by patient. Bottom panel: Histogram with 
amplified tail for clearer visualization of patients with greater than 20 interventions.  
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Supplemental Digital Content – Figure 2. MRC-ICU Score by ICU Day 
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Supplemental Digital Content – Figure 3. MRC-ICU changes over ICU day 
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Supplemental Digital Content – Figure 4. Mortality rate by MRC-ICU decile  
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Supplemental Digital Content – Figure 5. Interventions by MRC-ICU decile  
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Supplemental Figure 6. Composite severity of illness and medication data with pharmacist 
interventions 
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Supplemental Figure 7. Predicted Intervention VS Observed Interventions for each Models 
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Appendix A. Model Selection 
 
Multivariable generalized linear models (GLM) were developed to evaluate the relationship of 
MRC-ICU on ICU day 1 in relation to total interventions. Both GLM with Poisson distribution 
and negative binomial distribution were explored. Poisson regression is a common approach 
when the response variable is a count like number of interventions. However, it assumes that the 
mean and variance of the count data are equal. This is often not the case in real-world data. 
Overdispersion occurs when the observed variance is greater than the mean. An alternative 
approach to handle overdispersion is a negative binomial model. The negative binomial model 
introduces an additional parameter (the dispersion parameter) to account for the extra variability 
in the data. By accommodating overdispersion, the negative binomial model provides a better fit 
for the data, leading to more reliable estimates and inference. Because the variance of the total 
intervention (93.22) was much greater than its mean (7.40), and the Pearson statistics from full 
multivariate Poisson regression without missing imputation also indicated overdispersion 
(Pearson statistics=95076, df=11676, p-value<0.001), the Negative Binomial regression model 
was selected as a substitute for the Poisson regression. Similarly, because the variance of the 
intervention intensity score (2774.91) was much greater than its mean (37.68), and the Pearson 
statistics from full multivariate Poisson regression without missing imputation also indicated 
overdispersion (Pearson statistics=620060, df=11676, p-value<0.001), the Negative Binomial 
regression model was selected in substitute of the Poisson regression. 
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Appendix B. Temporal Analysis  

Mixed Model on Daily Effect: The daily or temporal time effect of SOFA score and MRC-ICU 
score on the daily number of interventions was analyzed. One unit higher in MRC-ICU score 
was associated with 10.6% increase in number of interventions at baseline. There was no 
significant effect of SOFA score on number of interventions at baseline. Compared with the 
previous day, the effect of MRC score on number of interventions is 0.5% lower, but the effect of 
SOFA score on number of interventions is 1.5% higher. 
 

 

 

Variable Relative Risk 95% Confidence 
Interval 

p-value 

Intercept 0.537 0.490-0.590 0.000 
Age 1.000 0.999-1.001 0.420 
Male sex 1.002 0.969-1.036 0.915 
Medical ICU 0.904 0.861-0.949 0.000 
Trauma/Surgical ICU 1.336 1.287-1.388 0.000 
APACHE at 24 hours 1.014 1.010-1.019 0.000 
Infection 1.002 0.930-1.081 0.949 
Neoplasm 0.900 0.836-0.968 0.005 
Neurology 1.120 1.073-1.169 0.000 
Sepsis 1.091 0.993-1.200 0.071 
Shock 1.317 1.176-1.475 0.000 
SOFA score 0.997 0.985-1.008 0.560 
MRC-ICU day 1 1.106 1.097-1.116 0.000 
Day 0.832 0.815-0.849 0.000 
SOFA Score: Day 1.015 1.011-1.019 0.000 
MRC-ICU: Day 0.995 0.992-0.998 0.002 
 
 

 of 
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Appendix C. Subgroup analysis 
 

 

The overall performance of each model was similar, but the mean and variance for each model 
was quite different (e.g., mean for full regression prediction was 7.58 while mean for SVM  
prediction was 5.47). A subgroup analysis for low, medium, and high intervention groups was 
conducted (Table 1a-b), and distribution of errors were plotted for number of interventions 
(Figure 1a) and intervention intensity score (Figure 1b).  
 
Figure 1a. Error distribution for number of interventions 

Table 1a. Subgroup analysis for number of interventions 

 Predicted Mean 
(SD) 

True Mean 
(SD) 

RMSE for low 
intervention 
group (<5) 

RMSE for 
medium 
intervention 
group (≥ 5, 
<10) 

RMSE for high 
intervention 
group ( ≥ 10) 

Full 
Regression 

7.58 (5.61) 7.49 (10.44) 4.91 4.60 18.26 

Selected 
Regression 

7.59 (5.63) 7.49 (10.44) 4.91 4.60 18.32 

Simple Model 7.62 (4.78) 7.49 (10.44) 5.04 4.72 19.09 

Random 
Forest 

7.72 (5.25) 7.49 (10.44) 5.05 4.91 16.85 

SVM 5.47 (3.49) 7.49 (10.44) 3.15 3.23 19.31 
XGBoost 6.50 (3.15) 7.49 (10.44) 3.95 2.93 18.54 

Table 1b. Subgroup analysis for intervention intensity 

 Predicted Mean 
(SD) 

True Mean 
(SD) 

RMSE for low 
intervention 
intensity score 
group (<30) 

RMSE for 
medium 
intervention 
intensity 
score group 
(>=30, <60) 

RMSE for high 
intervention 
intensity score 
group (>=60) 

Full 
Regression 

38.33 (26.31) 38.57 (54.10) 27.90 24.31 101.20 

Selected 
Regression 

38.30 (26.08) 38.57 (54.10) 27.89 24.56 101.22 

Simple Model 38.40 (20.38) 38.57 (54.10) 28.18 22.58 105.68 
Random 
Forest 

39.80 (26.45) 38.57 (54.10) 29.55 26.32 95.86 

SVM 24.62 (16.31) 38.57 (54.10) 16.34 22.47 112.09 

XGBoost 30.79 (14.04) 38.57 (54.10) 20.51 17.38 107.75 
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Figure 1b. Error distribution for intervention intensity score  
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