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Abstract 
 
Background: Medication management in the intensive care unit (ICU) is causally linked to both 
treatment success and potential adverse drug events (ADEs), often associated with deleterious  
consequences. Patients with higher severity of illness tend to require more management. The 
purpose of this evaluation was to explore the effect of comprehensive medication management 
(CMM) on mortality in critically ill patients.  
 
Methods: In this retrospective cohort study of adult ICU patients, CMM was measured by 
critical care pharmacist (CCP) medication interventions. Propensity score matching was 
performed to generate a balanced 1:1 matched cohort, and logistic regression was applied for 
estimating propensity scores. The primary outcome was the odds of hospital mortality. Hospital 
and ICU length of stay were also assessed.  
 
Results: In a cohort of 10,441 ICU patients, the unadjusted mortality rate was 11% with a mean 
APACHE II score of 9.54 ± 4.18 and Medication Regimen Complexity-Intensive Care Unit 
(MRC-ICU) score of 5.78 ± 4.09. Compared with CCP interventions less than 3, more CCP 
interventions was associated with a significantly reduced risk of mortality (estimate -0.04, 95% 
confidence interval -0.06 - -0.03, p < 0.01) and shorter length of ICU stay (estimate -2.77, 95% 
CI -2.98 - - 2.56, p < 0.01).  
 
Conclusions: The degree by which CCPs deliver CMM in the ICU is directly associated with 
reduced hospital mortality independent of patient characteristics and medication regimen 
complexity.  
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Introduction 
 
The participation of critical care pharmacists (CCPs) on multiprofessional intensive care unit 
(ICU) rounds are associated with a nearly 70% reduction in adverse drug events (ADEs) and a 
22% reduction in mortality.1-3 These benefits are thought to be conferred by the cognitively-
intense direct patient care CCPs provide during the comprehensive medication management 
(CMM) process.4 CMM has been defined as “a patient-centered approach to optimizing 
medication use and improving patient health outcomes that is delivered by a clinical pharmacist 
working in collaboration with the patient and other healthcare providers.”5 
 

The most common strategies to measure CMM services in the ICU include the number of  
patients being provided with CMM and the number of CCP interventions made.6 Another 
approach is to quantify the complexity of the medication regimen of each individual patient, as a 
proxy towards the cognitive load required by the CCP to adequately assess, monitor, and effect 
change upon those medication regimens through interventions. The Medication Regimen 
Complexity-Intensive Care Unit (MRC-ICU) score has been associated with patient-centered 
outcomes (mortality, length of stay), ICU complications (drug-drug interactions, prolonged 
duration of mechanical ventilation, fluid overload), and pharmacist workload (interventions, 
orders verified).7-17 Current research suggests medication regimen complexity parallels illness 
severity and that an increasing MRC-ICU is associated with higher rates of mortality and other 
worsening outcomes as well as a higher CCP workload. These assumptions may give the 
potentially false impression that greater CMM is associated with worse patient outcome(s). 
However, in all likelihood, a causal pathway may exist connecting ICU patient characteristics 
(including severity of illness),  medication regimen complexity, the scope of CMM delivered, 
and patient outcome(s). A causal framework for this proposed pathway is summarized in Figure 
1.  

The purpose of this study is to formally evaluate this potential causal pathway in an effort to 
better evaluate the effect of CCP-delivered CMM on patient-centered outcomes, including 
hospital mortality. We hypothesized that patients who received more CMM services, as measured 
by CCP interventions, would have lower mortality compared to patients receiving fewer CMM 
services but with similar baseline characteristics and medication regimen intensities.  
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Methods 
 
Study Design. This evaluation was a retrospective, observational cohort study that employed 
propensity score matching to evaluate the potential causal role of CCP medication interventions 
during the CMM process on hospital mortality (primary outcome), ICU length of stay, and 
hospital length of stay. The independent variable of interest was the total medication intervention 
count as logged in Epic® as i-Vents by a CCP during the patient’s ICU hospitalization. 
Interventions were totaled for both days spent in the ICU and non-ICU hospital settings.  
 
This study was reviewed by the University of Georgia (UGA) Institutional Review Board (IRB) 
and determined to be exempt from IRB oversight (Project00001541). All methods were 
performed in accordance with the ethical standards of the UGA IRB and the Helsinki Declaration 
of 1975. 
 
Study Population. Data were obtained by the Oregon Clinical and Translational Research 
Institute, which manages Epic® electronic health record (EHR) data from Oregon Health and 
Science University (OHSU) Hospital. Data extraction included a total of 13,500 patients aged 18 
years or older who were admitted to an ICU between June 1, 2020 and June 7, 2023. Data from 
only the index ICU admission for each patient were included. Patients were excluded if the ICU 
stay was less than 24 hours or if the patient was placed on comfort care based on Epic© order-sets 
validated by a local clinician within the first 24 hours of the ICU stay.  
 
Variables. The EHR was queried for patient demographic information, medication information, 
and patient outcomes. Patient characteristics included age, sex, race, ICU type, admission 
diagnosis, APACHE II score 24 hours after ICU admission, SOFA score 24 hours after ICU 
admission, and the MRC-ICU score 24 hours, 48 hours, and 72 hours after ICU admission. The 
MRC-ICU consists of 35 discrete medication categories with each category assigned a weighted 
value that is then summed to create a score for a patient’s regimen at the given time point. For 
instance, if a patient was prescribed vancomycin, norepinephrine, and insulin, they would be 
given 3 points for vancomycin, 1 point for norepinephrine, and 1 point for insulin for a total 
score of 5. The MRC-ICU score has been previously built into the EHR at OHSU.16,17 Patient 
outcomes included hospital mortality, ICU length of stay, and hospital length of stay.  
 
Pre-processing. Supplemental Figure 1 provides a CONSORT diagram for the data included in 
this analysis. One-hot encodings for the categorical variables such as ICU type and ICU 
admission diagnosis were created, representing these variables as numerical values for further 
analysis.  

Propensity score matching. To reduce the treatment assignment bias and mimic randomization, 
propensity score matching was applied. This method is intended to reduce the effects of 
confounding variables in observational studies by creating two comparable groups of subjects 
between the treated (e.g., high intervention exposure) and control (low intervention exposure) 
groups.18   
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The treatment variable was the total medication intervention count during the patient’s ICU stay 
and during the entire hospital stay. These were explored at a threshold of 3 interventions for the 
ICU stay and 3 and 5 interventions for hospital stay (see Supplemental Figure 2). A patient 
exceeding these thresholds was assigned to the treatment group and under these thresholds was 
assigned to the control group. A secondary analysis that evaluated total hospital interventions for 
an ICU patient during their hospitalization used the same threshold (3 and 5 were again used) for 
assignment to the treatment and control groups.  

 

 

Figure 1. Directed acyclic graph for the causal pathway relating comprehensive medication 
management to medications that patients receive and patient outcomes.  

Logistic regression was used for estimating propensity scores, where the binary target of the 
probability was whether the case received treatment (i.e., exceeded high CCP intervention 
threshold) or not (i.e., below high CCP intervention threshold), and the predictors were the 
covariates (i.e., admission variables, 24-hour variables) on which the cases were to be matched. 
Each patient in the treated group was matched 1:1 with a patient in the control group. The 
matching process ensured that each case from the non-treatment cohort had its closest 
counterpart in the treatment group based on the calculated propensity score using the K-Nearest 
Neighbors (K-NN) algorithm.  

Average treatment effect. After propensity score matching, the average treatment effect (ATE) of 
the two treatments on each outcome were calculated. The ATE, often used to measure the 
average effect of an intervention or treatment across a population, quantifies the difference in the 
expected outcomes if all individuals in the study population were treated versus if all individuals 
were not treated.19 A positive ATE value indicates that the treatment has a beneficial effect on the 
outcome, a negative ATE value indicates that the treatment has a detrimental effect on the 
outcome, and zero ATE indicates that the treatment has no effect on the outcome. The changes in 
these effects before and after matching were visualized to help confirm whether the matching 
process effectively balanced the differences between the treatment and control groups, thereby 
making subsequent analyses more reliable.  
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Analysis. Descriptive statistics were performed for relevant variables. Continuous variables were 
summarized by the mean and standard deviation, and categorical variables reported count and 
proportion of the total population. The t-test was adopted, and a two-sided p-value less than 0.05 
was used to determine statistical significance for all outcomes. All analyses were performed 
using R (version 4.1.2). 
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Results 
 
The initial cohort was 13,500 ICU patients with 3,059 excluded due to incomplete relevant data 
for a total of 10,441 patients (see Supplemental Table 1). The average age was 59.3 ± 17.6 years 
with a 24-hour APACHE II score of 9.54 ± 4.18 and MRC-ICU score of 5.78 ± 4.09. The rate of 
mortality was 11% with an average length of ICU stay of 5.19 ± 6.43. Patient information is 
provided in Table 1.  
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
For ICU interventions at a threshold of 3, there were 4,029 pairs of rows matched. The 
propensity score matching process improved the balance between the treatment and control 
groups, as evidenced by the substantial reduction (below 0.1) in effect sizes for nearly all 
covariates (Figure 2). Initially, the ATE of mortality, ICU length of stay, and hospital length of 
stay were +0.08, +3.82, and -0.44, indicating that mortality and ICU length of stay in the 
treatment groups were higher than those in the control groups. However, after matching, the ATE 

Table 1. Patient information and outcomes   
Admission variables  Mean (SD) 
Age (years) 59.3 ± 17.5 
Male sex 59.3% 
ICU Type  
  Cardiac  32.5% 
  Medical 16.4% 
  Neurology 22.0% 
  Other 0.7% 
  Trauma/surgery  28.5% 
24 hour admission diagnosis category  

Cardiovascular 21.2% 
Gastrointestinal 8.4% 
Hematologic 2.1% 
Neoplasm 5.6% 
Neurology 22.0% 
Other 14.9% 
Pulmonary 5.2% 
Renal 2.5% 
Sepsis/Infection 10.6% 
Toxicology 1.1% 
Trauma 6.2% 

24 hour variables  
APACHE II Score at 24 hours 9.5 ± 4.1 
MRC-ICU Score at 24 hours 5.7 ± 4.0 
Outcomes, mean (SD) 
Total ICU iVents  5.8 ± 7.5 
Total hospital iVents  8.6 ± 10.2 
Hospital mortality  11.3% 
ICU length of stay (days) 5.1 ± 6.4 
Hospital length of stay (days) 12.7 ± 15.4 
SD: standard deviation; ICU: intensive care unit; APACHE: Acute Physiology and 
Chronic Health Evaluation; MRC-ICU: Medication Regimen Complexity Intensive 
Care Unit  
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of mortality and ICU length of stay fell below zero (-0.04 and -2.77), while hospital length of 
stay increased above zero (0.49). These are summarized in Figure 3.  
 
Figure 2. Standardized mean differences across variables before and after matching for ICU 
intervention with threshold 3. 

 

 

 
Figure 3a. ATE values before (left) and after (right) matching for ICU intervention with 
threshold 3. Figure 3b. ATE values before (left) and after (right) matching for hospital 
intervention with threshold 3.  
 

 
 

For hospital interventions at a threshold of 3, there were 2,103 patients matched (Supplemental 
Figure 3). Before matching, the ATE of mortality, ICU length of stay, and hospital length of stay
were 0.07, 3.15 and 0.34. After propensity score matching, the ATE of mortality was -0.03, ICU 
length of stay was -2.23, and hospital length of stay was -0.36 (Figure 4). Thresholds of 5 were 

ay 
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also explored, but the persistence of large effect sizes (exceeding 0.2) for some covariates post-
matching indicates that residual confounding remains (Supplemental Figures 4-5).  

Table 2 summarizes the propensity-matched analysis for CCP interventions. After conducting 
propensity score matching at a ICU intervention threshold of 3, patients receiving more CCP 
interventions in the ICU exhibited reduced mortality compared to non-receivers (ATE = -0.04; 
CI, -0.06 to -0.03; P < 0.05). Additionally, those receiving more ICU interventions had a shorter 
ICU length of stay (ATE = -2.77; CI, -2.98 to -2.56; P < 0.05) while hospital length of stay 
showed no significant difference (ATE = 0.49; CI, -0.19 to 1.17; P = 0.16). Similar trends where 
the ATE was reversed were observed for hospital interventions at thresholds of 3 and 5.  
 
Table 2. Results of propensity-matched analysis 
Pharmacist interventions >3 during the ICU stay (n = 4,029) 

 ATE p-value 95% Confidence 
Interval 

Mortality -0.04 <0.01 -0.06 to -0.03 
ICU length of stay -2.77 <0.01 -2.98 to -2.56 

Hospital length of stay 0.49 0.16 -0.19 to 1.17 
Pharmacist interventions during the hospital stay >3 (n = 2,103) 

Mortality -0.03 <0.01 -0.04 to -0.01 
ICU length of stay -2.23 <0.01 -2.51 to -1.95 

Hospital length of stay -0.36 0.44 -1.28 to 0.55 
Pharmacist interventions during the hospital stay >5 (n = 4,260) 

Mortality -0.04 <0.01 -0.05 to -0.03 
ICU length of stay -2.99 <0.01 -3.19 to -2.79 

Hospital length of stay -0.08 0.81 -0.75 to 0.58 
 
Discussion 
 
After applying rigorous causal inference methods to critical care pharmacist delivery of 
comprehensive medication management, we observed patients receiving more pharmacist 
medication interventions had lower rates of mortality and reduced length of ICU stay after 
controlling for multiple patient factors, including severity of illness, and the intensity of the 
medication regimen on the first three ICU days. The results represent a reversal of the 
directionality of the relationship between CCP interventions and patient outcomes observed in 
prior analyses (add refs) where an increased number of CCP interventions appeared to be 
associated with increased rates of mortality and longer ICU length of stay. 
 
While it can be postulated that patients with higher severity of illness require more intervention 
(both in the form of medications as well as surgeries, supportive care devices, etc.), these patients 
are also at a higher absolute risk of dying regardless of those interventions. Medications, which 
are independent risk factors for adverse outcomes, also constitute a significant realm of potential 
interventions in the management of critical illness and represent potentially life-saving 
treatments.4 This can paradoxically create an observed association in which it appears that higher 
medication regimen complexity and potentially higher amounts of medication interventions as 
performed by CCPs confer a higher risk of mortality.  
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The directed acyclic graph presented in Figure 1 is based on a number of observational studies 
and previous conceptual frameworks.4,20,21 In particular, the value of CCPs and common ICU 
medication interventions on patient outcomes has been well documented. In 1999, the landmark 
trial by Leape et al. observed that pharmacists participating on multidisciplinary rounds were 
associated with a nearly 70% reduction in ADEs.2 In 2019, Lee et al. conducted a systematic 
review and meta-analysis and observed that pharmacists participating on multidisciplinary 
rounds were associated with substantial reductions in ADEs as well as reduced length of ICU 
stay (by approximately 1.2 days) and reduced odds of mortality (by approximately 20%).3 In 
2018, Leguelinel-Blache et al. observed that a quality improvement oriented bundle that targeted 
a number of common interventions including antibiotic stewardship and sedation management 
was associated with reductions in hospital and ICU length of stay, duration of mechanical 
ventilation, as well as costs.22  
 
Previous explorations of medication regimen complexity in the ICU have important causal 
implications. In a 28-center prospective observational study of 3,908 patients, increasing MRC-
ICU was associated with both more pharmacist interventions and higher intervention intensity in 
addition to higher rates of mortality and longer lengths of stay.23 Interestingly, this study also 
found that in situations of higher workload (as measured by more ICU patients per pharmacist), 
there were fewer interventions and lower intervention intensity as well as longer length of stay.  
Although this study was not designed to draw causal conclusions, it suggested a possibility that 
as CCP workload increases, they are less able to do their roles effectively, which could 
potentially result in worse patient outcomes. Although these findings had face validity due to 
observations that CCPs on rounds are beneficial to outcomes, previous evaluations had found 
that higher MRC-ICU scores were linked with both higher CCP interventions as well as worse 
outcomes. Indeed, in most of the original studies of the MRC-ICU, a higher score was related to 
higher mortality and longer lengths of stay,7,8,12,24,25 In the first analysis to account for severity of 
illness, the relationship flipped directions, with higher MRC-ICU being related to lower rates of 
mortality. That analysis opened up the question of if there is a “Goldilocks effect” to medication 
regimen complexity, with sick patients needing “appropriately” complex regimens that balance 
the needs of that disease against the risks of the medication treatment.26  
 
This study fills an important conceptual gap with the finding that in patients matched on MRC-
ICU and severity of illness (i.e., APACHE II), more CCP interventions conferred improved 
outcomes. This finding has important clinical implications by showing that CMM services are an 
important way to improve care quality and safety, which is salient given that 30% of ICUs lack 
CCP/CMM services and many patients do not receive CMM on holidays or weekends.27 
Moreover, high workload may reduce CMM quality, which now has important links to patient 
outcomes.  
 
Limitations of this study include its single center, observational design. The evaluation including 
hospital interventions likely reflects the continuum of care provided by pharmacists (both in the 
ICU and on ward services), beyond just CCPs. Moreover, although interventions capture 
elements of the CCP’s direct patient care activities, it has been acknowledged that there are 
limitations to this singular measure, and future evaluations would ideally capture a more nuanced 
evaluation of CCP cognitive services as encompassed by CMM.4,16,28 However, it is not a 
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common practice for CCPs to regularly document interventions, such that this dataset represents 
a highly unique glimpse into CCM as provided by CCPs. Also, in the future, large language 
models with advanced reasoning capabilities, such as the OpenAI o1 model, could be potentially 
employed to cross-verify the causal pathway and the results described in this paper.    
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Conclusion 

The use of propensity score matching in the context of a causal framework demonstrates the 
intensity of comprehensive medication management services delivered by critical care 
pharmacists is associated with improved patient-centered outcomes, including mortality.  
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Supplemental Figure 1 – CONSORT Diagram 
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Supplemental Figure 2– Histogram of Intervention Thresholds 
 

 

 
 
The top panel indicates ICU interventions, and the bottom two panels indicate total hospital 
interventions. The histograms show the distribution of intervention counts for all patients, with 
the dotted line indicating the treatment threshold, where above this line was considered the active 
treatment group and below the line considered the control group for causal analysis.  
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Supplemental Figure 3 – Standardized mean differences across variables before and after 
matching for hospital intervention with threshold 3. 
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Supplemental Figure 4 – Standardized mean differences across variables before and after 
matching for hospital intervention with threshold 5. 
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Supplemental Figure 5 – ATE values before (left) and after (right) matching for hospital 
intervention with threshold 5 

 

 

 

There were 4,260 pairs of matching patients. The persistence of large effect sizes (exceeding 0.2) 
for some covariates post-matching indicates that residual confounding remains that may attribute 
to observed outcomes.  
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