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12 Abstract. 

13 Background: Chronic Kidney Disease (CKD) is a significant complication in people with diabetes, 

14 leading to serious adverse health outcomes and increased healthcare costs globally individually 

15 and on healthcare systems. This problem become more complicated when it is in Low and 

16 middle in countries including Rwanda when access to early diagnostic services is limited. Early 

17 prediction and intervention can improve patient outcomes and reduce the burden on 

18 healthcare systems.

19 Objective: This study aimed to develop and evaluate a machine learning model for predicting 

20 CKD in diabetic patients, tailored to the Rwandan population, using Electronic Medical record 

21 Data. 

22 Methodology:  Secondary data were extracted from OpenClinic, an electronic medical record 

23 (EMR) system used at Kigali University Hospital, covering a period of 10 years from 2013 to 

24 2023. The final cleaned dataset was used to train four machine-learning models: Logistic 

25 Regression (LR), Random Forest (RF), Decision Tree (DT), and Extra Gradient Boosting Machine 
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26 (XGBoost). XGboost was noted as the best performer with the AUC score of 0.98 and accuracy 

27 of 95.67%.

28 Results: The findings revealed that XGBoost was highly effective in predicting chronic kidney 

29 disease, achieving an accuracy of 95.76% and an AUC score of 0.98. Given that the dataset was 

30 collected from the local population, this study confirms that machine learning algorithms can 

31 assist clinicians in Rwanda in diagnosing chronic kidney disease in its early stages. 

32 Conclusion:  This study demonstrates the potential of machine learning models in predicting 

33 chronic kidney disease (CKD) in diabetic patients, highlighting the importance of local datasets 

34 for optimizing model performance in specific populations. These findings suggest that machine 

35 learning can effectively assist existing medical techniques in the early diagnosis of CKD in 

36 Rwanda.

37 Keywords: Chronic Kidney diseases; Diabetes; Machine learning; XGBoost 

38
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39 Author summary.

40 In this study, we trained machine learning model to predict the risk of chronic kidney disease 

41 (CKD) in patients with diabetes, using a dataset collected in Rwanda. Early detection of CKD is 

42 crucial, as it allows healthcare providers to intervene sooner, improving patient outcomes, 

43 potentially reducing financial, and health burden on the patients. We processed the data, by 

44 handling different available data issues and statistically created new features such as anemia 

45 status and length of hospital stay to improve the model’s predictions. The final model, XGBoost 

46 provides insights that it can help health providers to identify high-risk patients and plan 

47 personalized care more effectively.

48 This study highlights how data-driven solutions can support healthcare delivery in resource-

49 limited settings, by enhancing early diagnosis especially at primary healthcare level. By 

50 integrating this predictive tool into routine clinical workflows of Electronic Medical Record, 

51 healthcare institutions can make better clinical decisions that improve patient care and 

52 outcomes. This project contributes to the growing field of health informatics in Africa and 

53 shows the potential of applying advanced analytics to solve local health challenges.

54 Introduction.

55 While increasing attention is paid to the rising prevalence of chronic diseases in Africa, there is 

56 little focus on chronic kidney disease (CKD) though it directly resulted in an estimated 1.23 

57 million deaths worldwide in 2017 and 1046 Deaths in Rwanda in the same year with an 

58 estimated prevalence of 10% of adults aged more that 18years old (1) (2).  According to the 
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59 International society of nephrology (ISN), worldwide in 2020 about 850Million People were 

60 suffering chronic kidney disease at different stages, and its prevalence has a rising trend (3). 

61 CKD is one of the leading causes of cardiovascular diseases, which are then the most common 

62 cause of death worldwide (4). 

63 CKD is a progressive health condition where the kidneys gradually lose their ability to perform 

64 its functions properly. It affects people of all ages and all backgrounds but it is most common in 

65 older people and those with underlying medical conditions like diabetes and/or hypertension. 

66 For the people who has CKD, there is a decline in overall kidney function leading to losing the 

67 ability to filter out waste products and maintaining fluid and acid balance (5) . 

68 As kidney progresses, it leads to more serious complications that needs critical medical 

69 attention and these complications affect multiple organ systems and significantly affect the 

70 overall status of health. CKD often causes or worsen blood pressure which further the damage 

71 on the kidneys and increase the risk of heart diseases like heart failure, coronary artery diseases 

72 and stroke (6). 

73 Currently, in Rwanda to diagnose Chronic Kidney diseases, a urine examination is a must 

74 irrespective the level of the healthcare institution with the aim of dipstick test, microspic 

75 analysis and identifying the quantity of protein that the kidney is able to excrete (7). In 

76 microscopic analysis, the target to look for the presence of essential blood cells in the urine. 

77 The presence of Red Blood Cells (RBC) in the urine, known as hematuria, suggest glomerular 

78 damage, hence the cells leak in urine (8). 
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79 Instead of dipstick, Albumin – to- creatinine ratio (ACR), a more accurate technique is used in 

80 some cases as it is considered to be the best measure of proteinuria levels (9). It gives 

81 standardized measure of proteinuria making it easier to compare results across different 

82 settings with different equipment’s. It is also believed to be more sensitive than dipstick in 

83 detecting micro albuminuria which is an early sign of CKD (10).  However, ACR can be 

84 influenced by the flow rate which result to not always accurately reflect proteinuria. Also, in 

85 cases with severe proteinuria, ACR is prone to failing to accurately reflect the total protein 

86 excretion (11). 

87 eGFR is another test kidney functioning test. it is actually a measure to know how the kidney is 

88 able to filter waste from the blood in the process of making urine though it can be slightly 

89 affected by other conditions like dehydration or existing acid-base disorders (12). It is calculated 

90 based on blood creatinine levels, age, gender and in some cases race (13). High eGFR, >90ml, 

91 indicate well-functioning kidneys while low eGFR indicates severely damaged kidneys; when it 

92 is <15ml/kg the suffering patient have to depend only on renal replacement therapy like dialysis 

93 for lifetime or surgical kidney transplant (14).

94 While the mentioned tests are valuable for evaluating kidney function, they often fail to detect 

95 chronic kidney disease (CKD) in its early stages, when the kidneys are only minimally damaged. 

96 In these initial stages, the kidneys may still compensate for damage, leading to subtle changes 

97 in laboratory results that might not be apparent to measurement equipment (15). Additionally, 

98 factors such as age and gender can influence the interpretation of these results, increasing the 

99 risk of missed diagnoses (16).
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100 With the rapid advancement of technology, clinical researchers, healthcare professionals, and 

101 ICT engineers are collaborating to explore the use of machine learning algorithms in healthcare 

102 settings, particularly for diagnosing non-communicable diseases including CKD, which often 

103 presents with no clinical symptoms at its early stage. Availability of electronic medical record 

104 (EMR) data is a great asset for not only healthcare administrators to help in administrative 

105 decision making, but also the health informaticians benefit this data for training ML algorithms 

106 that are able to assist in clinical decision making including early diagnoses (17). 

107 Machine learning was proven as an important, evolving tool for accurately predicting the risk of 

108 CKD in patients with Diabetes, Hypertension, or other non-communicable diseases (18) (19). 

109 With relevant, well-prepared data, ML algorithms are able to learn relationships between risk 

110 factors of a disease so that it can forecast a trend for unseen data. For CKD, the main factors 

111 associated are age, hypertension, diabetes, Glycated Hemoglobin (Hb1Ac), serum creatinine 

112 levels, proteinuria, and Estimated Glomerular Filtration Late (eGFR), and others, from that, ML 

113 can predict CKD risk in new patients based on individual characteristics (20). 

114 Machine learning has been widely used to predict CKD progression using algorithms like 

115 Random fore, support vector machines, and neural networks. A systematic review comparing 

116 these models demonstrated that RF and Gradient boosting to have excellent performance 

117 metrics results in handling non-linear data like eGFR and albuminuria levels (21) (22). 

118 Also ML models have proven effectiveness in risk stratification of CKD patients which is crucial 

119 for interventions targeted on specific group. The study used XGBoost, Logistic Regression and 

120 decision trees to classify patients based on both clinical and demographic data. Here, XGBoost 
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121 provided best performance with an accuracy of 92% and precision of 90% outperforming other 

122 models in identifying patients at risk of CKD (23). 

123 A study applied SVM and RF to clinical datasets, using clinical features like Blood pressure, 

124 diabetes status and serum creatinine levels. RF achieved a promising highest accuracy of 93%. It 

125 was able to achieve this because of strength in managing high dimensional data, and proved its 

126 potential use in routine clinical practice (24). 

127 Deep learning (DL) techniques like convolutional neural networks (CNN) and recurrent neural 

128 networks (RNN) are also great in disease diagnosis. These models were applied on a large a 

129 clinical dataset including time-series la results and showed better performance compared to 

130 previous studies which used standard ML algorithms. There was improvement of 5-10% 

131 improvement over standard algorithms (25).

132 Methodology.

133 In this research study, we utilized a comprehensive dataset extracted from the OpenClinic 

134 system of the University Teaching Hospital of Kigali. This dataset specifically focuses on patients 

135 diagnosed with diabetes who were managed at this facility. A range of clinical data, 

136 demographic information, and laboratory results were collected. The study retrospectively 

137 covers a period of ten years, from 2013 to 2023.

138 To train the model, the dataset was split in a 75:25 ratio, meaning that 75% of the entire dataset 

139 was used for model training, while the remaining 25% was reserved for model testing. Four 

140 machine learning classifiers—Random Forest, Extra Gradient Boosting (XGBoost), Decision Tree, 
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141 and Logistic Regression—were trained and evaluated based on the Accuracy and Area Under the 

142 Curve (AUC) of the Receiver Operating Characteristic (ROC). 

143 Dataset Description. 

144 At the end of data collection, we compiled a dataset containing 6,900 instances and 29 features. Among 

145 these, 10 were numerical variables and 19 were categorical variables. To enhance the comprehensiveness 

146 of the dataset, five additional features were statistically engineered: anemia status, derived from 

147 hemoglobin levels; days of stay, representing the number of days the patient spent in the hospital; and 

148 medical insurance status, indicating whether the patient had insurance coverage. Additionally, 10 features 

149 that were not relevant to the model's training were excluded, resulting in 24 features being retained. Each 

150 individual feature is illustrated in Figure 1.

151 Table 1. Description of the dataset

Description Values

Data source Kigali University teaching Hospital

Period 2013 to 2023

No of instances 2670

Number of features 26

Have CKD 446

Do not have CKD 2204

152

153 The dataset was thoroughly examined for data quality issues. No duplicates were identified, and 

154 no feature exhibited missing data exceeding 35%. To address the remaining missing values, the 
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155 K-Nearest Neighbors (KNN) imputation method was employed, ensuring appropriate data filling. 

156 Additionally, proper data formatting was conducted to ensure correct interpretation by Python. 

157 An assessment for multicollinearity indicated there was minimal correlation issue, as illustrated 

158 in Figure 3. Grid Search was used to select and tune the best hyperparameters.

159 Figure 1. Correlational matrix of numerical features. 

160

161

162 Machine learning classifiers. 

163 Logistic regression. 
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164 Logistic regression function is a function that was initially developed by Pierre Francois Verihulst, 

165 a Belgian Medical Doctor and Mathematician, in 1840s based on research on modelling 

166 population growth (26). Many subsequent researchers continued to work on it improving it until 

167 1960 where it become how we see it today. Logistic regression is applied in different fields from 

168 social sciences, public health and medicine, to machine learning. This function is also used in 

169 engineering to predict the success or failure of a system or model (27). 

170 Logistic regression models the probability of a binary outcome by mapping input variables to a 

171 value between 0 and 1 using the logistic (sigmoid) function. Its counterpart, linear regression 

172 predicts a continuous dependent variable based on a linear relationship between independent 

173 variables (27). 

174 Mathematically Logistic regression for P: R → (0,1) can be represented as follows: 

175 𝒑 =
𝟏

𝟏 + 𝒆(𝜷𝟎+ 𝜷𝟏𝒙𝟏+ 𝜷𝟐𝒙𝟐+ 𝜷𝟑𝒙𝟑+…+𝜷𝒏𝑿𝒏) 

176 Random Forest.

177 Random forest also known as a random decision forest is used mostly in classification and 

178 regression tasks that are built on combining different decision trees through out training time. 

179 For classification tasks like this study, the output of decision tree is the class that have been 

180 selected most times (28).  

181 Decision Tree classifier.

182 A decision tree is a visual and intuitive model used for both classification and regression tasks in 

183 machine learning. It represents decisions and their possible consequences in a tree-like 
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184 structure, where each internal node signifies a feature or attribute, each branch represents a 

185 decision rule, and each leaf node represents an outcome or final decision. The model splits the 

186 dataset into subsets based on feature values, aiming to improve prediction accuracy with each 

187 split. Decision trees are favored for their simplicity, ease of interpretation, and ability to handle 

188 both numerical and categorical data (29).

189 Gini impurity is calculated for each split to evaluate the impurity of the resulting subsets:

190 𝐺𝑖𝑛𝑖 (𝐷) = 1 ―
𝑐

𝑖=1
(𝜌𝑖)2

191 Entropy measures the uncertainty in the dataset and is another criterion used to evaluate 

192 splits:

193

194 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 =  
𝑐

𝑖=1
―pi.log(𝜌𝑖)

195

196  XGBoost

197 XGBoost (Extreme Gradient Boosting) is an advanced implementation of gradient boosting 

198 designed for speed and performance in machine learning tasks, particularly for classification and 

199 regression. It builds an ensemble of decision trees in a sequential manner, where each new tree 

200 corrects errors made by the previously built trees. The model minimizes a loss function, such as 
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201 mean squared error for regression, and incorporates regularization to prevent overfitting. The 

202 core of XGBoost optimization process can be captured by its objective function:

203

204 Results and discussion. 

205 In this study, data issues were handled, hyperparameters tuned and 4 machine learning 

206 classifiers trained. Each algorithm used was described in methodology part, above. 

207 To evaluate the performance of each model, a confusion matrix was generated. A confusion 

208 matrix is a structure like a table which is outputted to show the key performance metrics like: 

209 accuracy, Recall, Precision, F1-score and specificity. 

210 Table 2. Confusion matrix metrics with formulas.

Evaluation Metric Formula

Precision Precision = TP / TP + FP

Recall Recall = TP / TP + FN

F1 Score F = (Precision*recall / precision*recall)*2

Accuracy Accuracy = TP + TN / TP + FP + TN + FN

(30), 

(31)

211

212 In this study, True Positives (TP) refer to instances where the model correctly predicts the 

213 presence CKD. True Negatives (TN) indicate when the model accurately predicts its absence. 

214 False Positives (FP) occur when the model incorrectly identifies CKD when it is not present, 
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215 potentially causing unnecessary anxiety. False Negatives (FN) happen when the model fails to 

216 detect CKD when it is actually present, risking untreated conditions (26). 

217 To obtain the classification report, various constituent variables are used to calculate the 

218 parameters essential for determining the accuracy score. Recall, or True Positive Rate, 

219 commonly referred to as sensitivity in epidemiology, is calculated using the formula provided in 

220 Table 1. The precision/positive predictive value (PPV) is calculated using the formula in Table1, 

221 while F1 score also known as tradition f-measure is the balance mean between the sensitivity 

222 and precision (26). The detailed description of classification report got by this study from all 

223 trained models is described in Table 2.

224 Table 3. Classification results achieved by this study.

Algorithm AUC 

score

Precision Recall F1-Score Accuracy 

achieved 

Random Forest 0.94 0.98 0.95    0.96  0.96

XGboost 0.98 0.96 0.96 0.96 0.95

Decision tree 0.89 0.84 0.84 0.84 0.83

Logistic regression 0.98 0.95 0.95 0.95 0.95

225

226 To further evaluate our models' performance, we plotted the ROC curves and calculated the 

227 AUC scores, as shown in Figure 1. The results indicate that XGBoost and Logistic Regression 

228 achieved the highest AUC score of 0.98, while the Decision Tree model had the lowest AUC 

229 score of 0.89.
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230 Upon comparing model performance, both Logistic Regression (LR) and XGBoost achieved the 

231 same AUC and accuracy scores. However, they differed in their F1 scores, with LR scoring 0.95 

232 and XGBoost scoring 0.96. Given these results, XGBoost was selected as the best model due to 

233 its superior F1 score, indicating better balance between precision and recall.

234 Figure 2. comparison of achieved AUC ROC results.

235

236  

237

238

239

240 Table 4. comparison of our results with previous studies
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Author Model Accuracy AUC

Wang et al. Random forest 87.50% 0.92

Liu et al. XGBoost 92.30% 0.96

Yashfi et al. Random Forest 97.12% 0.98

Zhang et al. Random Forest 89.4% 0.93

This current study XGBoost 95.76% 0.98

241

242 The results of our study demonstrate the efficacy of the XGBoost model in predicting chronic 

243 kidney disease, achieving an accuracy of 95.76% and an AUC of 0.98. These findings position our 

244 model competitively within the existing literature.

245 When comparing our results to those of previous studies, we note that Yashfi et al. reported a 

246 remarkable accuracy of 97.12% with a Random Forest model and an AUC of 0.98 (27) . While 

247 our accuracy is slightly lower, the high AUC indicates that both models are similarly effective in 

248 distinguishing between classes. Liu et al. also achieved a commendable accuracy of 92.30% with 

249 XGBoost and an AUC of 0.96, reinforcing the strength of this algorithm in this context (28).

250 In contrast, Wang et al. and Zhang et al. reported lower accuracy rates of 87.50% and 89.4%, 

251 with corresponding AUC values of 0.92 and 0.93, respectively (29) (30). These findings suggest 

252 that while Random Forest can be effective, our XGBoost model outperforms these earlier 

253 results, demonstrating enhanced predictive capability. 

254 The consistent high performance of XGBoost across studies highlights its robustness as a 

255 machine learning tool for medical predictions, particularly for chronic kidney disease. 
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256 Additionally, the lack of statistically significant differences in accuracy between our results and 

257 those of Yashfi et al. underscores the reliability of our findings and their potential applicability 

258 in clinical settings.

259 The promising results of this study proves the transformative potential of machine learning in 

260 the diagnosis of chronic kidney diseases. As healthcare currently adopting advanced analytics, 

261 this developed model, XGBoost can significantly enhance early diagnostic accuracy and 

262 efficiency when it is deployed in EMR systems. This capability not only helps in early stages 

263 diseases detection but also supports personalized treatment strategies prescribed to individual 

264 patient profiles. The scalability of XGBoost further facilitates its implementation in diverse 

265 clinical settings, improving patient outcomes and optimizing resource allocation in healthcare 

266 systems. Using ML in CKD diagnosis presents an opportunity to revolutionize patient care, 

267 making it more proactive and data-driven.

268 Limitations. 

269 This study was limited by its failure to identify and analyze chemical biomarkers in the blood of 

270 CKD patients. Research has consistently demonstrated the significance of these biomarkers in 

271 understanding disease progression and developing targeted treatments. Additionally, the study 

272 did not investigate genetic predisposition, which also play role in developing CKD.

273 Conclusion.

274 In this study, we utilized a dataset from the University Teaching Hospital of Kigali’s electronic 

275 medical records (EMR), which included a range of demographic and clinical variables. The 

276 dataset comprised various data types, including categorical variables. From this data, we 
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277 developed a predictive model for chronic kidney disease using four machine learning 

278 algorithms: Random Forest, XGBoost, Decision Tree, and Logistic Regression.

279 To evaluate the models' performance on unseen data, we generated a classification report and 

280 calculated the AUC. These metrics allowed us to assess the accuracy, precision, recall, and 

281 overall effectiveness of each model in predicting chronic kidney disease. XGBoost was noted as 

282 the best performing model with AUC, accuracy, F1score of 0.98, 0.95, 0.96 respectively. In 

283 contrast, the Decision Tree model exhibited lower performance, with an AUC of 0.89, an 

284 accuracy of 0.83, and an F1 score of 0.84. These results highlight the superiority of XGBoost in 

285 effectively predicting chronic kidney disease compared to the other algorithms tested. By 

286 applying this in clinical settings, it can positively impact patients’ health and assist medical 

287 practitioners to diagnose chronic kidney diseases in its early stages. 

288 Recommendations. 

289 To enhance the predictive power of the models developed in this study, it is recommended to 

290 increase the number of clinical features included in the analysis. By incorporating additional 

291 relevant variables—such as biochemical markers of CKD, and lifestyle factors—the model's 

292 ability to capture the complexity of chronic kidney disease. 

293 Additionally, exploring ensemble techniques could further boost model performance. 

294 Combining predictions from multiple algorithms, such as Random Forest and XGBoost, could 

295 leverage the strengths of each approach and mitigate individual model weaknesses. Future 

296 studies should focus on this point, which are crucial to improve predictive modelling in 

297 healthcare. 
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