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Abbreviations: 

ACP5 Tartrate-resistant acid phosphatase type 5 
ACRV1 Acrosomal protein SP-10 
ALPP ALPP alkaline phosphatase, placental 
BMI Body mass index 
CDHR2 Cadherin-related family member 2 
CGA Glycoprotein hormones alpha chain 
CHI3L1 Chitinase-3-like protein 1 
CHRDL2 Chordin-like 2 
CKB China Kadoorie Biobank 
CK-BB Brain-type creatine kinase also known as creatine kinase B-type 
CRISP2 Cysteine-rich secretory protein 2 
CSF3 Granulocyte colony-stimulating factor receptor 
CTSV Cathepsin V 
CVD Cardiovascular disease 
CXCL17 C-X-C motif chemokine 17 
DPP4 Dipeptidyl peptidase-4 
DPT Dermatopontin 
EDA2R Tumor necrosis factor receptor superfamily member 27 
EDDM3B Epididymal secretory protein E3-beta 
EGFR Epidermal growth factor receptor 
ELN Elastin 
Exhaled CO Exhaled carbon monoxide 
FABP4  Fatty acid-binding protein, adipocyte 
FGF5 Fibroblast growth factor 5 
FSHB Follitropin subunit beta 
GDF15 Growth/differentiation factor 15 
GGT1 Glutathione hydrolase 1 proenzyme 
GIP Gastric inhibitory polypeptide 
HbA1c Hemoglobin A1c 
HBsAg Hepatitis B virus surface antigen 
HSPB6 Heat shock protein beta-6 
IGFBP2 Insulin-like growth factor-binding protein 2 
IGFBP3 Insulin-like growth factor-binding protein 3 
IGSF9 Protein turtle homolog A 
IHD Ischaemic heart disease 
IL17D Interleukin-17D 
IL1RN Interleukin-1 receptor antagonist 
INSL3 Insulin-like 3 
ITGB5 Integrin beta-5 
ITIH4 Inter-alpha-trypsin inhibitor heavy chain H4 
LAMP3 Lysosome-associated membrane glycoprotein 3 
LEP Leptin 
LPL Lipoprotein lipase 
LRP1 Low-density lipoprotein receptor-related protein 1 
LTBP2 Latent-transforming growth factor beta-binding protein 2 
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MAMDC4 MAM domain-containing 4 
MELTF Melanotransferrin 
NPX Normalized Protein eXpression 
PAEP Glycodelin 
PLAT Plasminogen activator, tissue type 
PON2 Serum paraoxonase/arylesterase 2 
pQTLs Protein quantitative trait locus 
QC Quality control 
REN Renin 
RPG Random plasma glucose 
SBP Systolic blood pressure 
SD Standard deviation 
SDK2 Protein sidekick-2 
SHBG Sex hormone-binding globulin 
SNED1 Sushi, nidogen and EGF-like domain-containing protein 1 
SPINK 6 Serine protease inhibitor Kazal-type 6 
TEX101 Testis-expressed protein 101 
TIMP4 Metalloproteinase inhibitor 4 
VWA1 Von Willebrand factor A domain containing 1 
XG Glycoprotein Xg 
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Abstract (word count 250/250)  

Background: Previous studies in European populations have identified a large number of 

genetic variants affecting plasma levels of Olink proteins, but little is known about the non-

genetic factors influencing plasma levels of proteins, particularly in Chinese populations. 

Methods: We measured plasma levels of 2,923 proteins, using Olink Explore platform, in 

2,006 participants in the China Kadoorie Biobank. Linear regression analyses were used 

to assess the cross-sectional associations of individual proteins with 37 exposures across 

multiple domains (e.g. socio-demographic, lifestyle, environmental, sample processing, 

reproductive factors, clinical measurements, and health-related indices), adjusted for 

potential confounders and multiple testing. These were further replicated and compared 

with similar analyses in Europeans. 

Results: Overall 31 exposures were associated with at least one protein, with age 

(n=1,154), sex (n=827), BMI (n=869) showing the highest number of associations, 

followed by frailty index (n=597), SBP (n=479), RPG (n=387), ambient temperature 

(n=292), and HBsAg-positivity (n=282), with diet and physical activity showing little 

associations. Likewise, of the 2,923 proteins examined, 65% were associated with at least 

one exposure, with three proteins (CDHR2, CKB, and PLAT) showing the largest number 

of associations with baseline characteristics (n=14).  The patterns of associations differed 

by sex, chiefly due to differences in lifestyle and reproductive factors. Over 90% of 

proteomic associations with key exposures in the current study were replicated in the UK 

Biobank. 

Conclusions: In Chinese adults, the exposome-wide assessment of Olink proteins 

identified a large number of associations with a wide range of exposures, which could 

inform future research priorities and analytic strategies.  

 

Keywords: Exposure, Sex, Age, Frailty, Lifestyle, Proteomics, Biobank, Chinese  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 28, 2024. ; https://doi.org/10.1101/2024.10.23.24315975doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.23.24315975
http://creativecommons.org/licenses/by/4.0/


5 

 

Introduction 

Deciphering the human proteome could enhance our understanding of human health and 

disease.1 Plasma levels of proteins, which are secreted or leaked from cells or organs, 

may be affected by various genetic and non-genetic factors relevant to human health.2 

Investigating the relationships between plasma proteins and different exposures could 

improve our understanding of human biology and inform research strategies. 

Traditionally, mass spectrometry has been used to measure plasma protein levels,3-5 but 

studies using this method are typically constrained by their small sample sizes and low 

breadth of coverage.2 In contrast, advances in affinity-based technologies (e.g. Olink and 

SomaScan) have made it possible to leverage proteomics in large-scale population and 

clinical studies, thus allowing for a more comprehensive investigation of plasma proteins 

and their relationships with a variety of factors and health conditions.2,6,7 In particular, the 

Olink platform which utilises antibodies as reagents to bind target proteins, has been 

widely used in epidemiological research due to its high sample throughput and assay 

specificity.6 Recently, the Olink Explore 3072 platform was used to measure 2,923 plasma 

proteins in 54,219 participants in the UK Biobank,8 leading to many novel findings linking 

protein abundance with a range of demographic and clinical exposures and genetic 

factors.8 It also replicated some well-established associations, such as the associations 

between sex and LEP, and between age and GDF15.6-11 Another affinity-based platform, 

SomaScan,7 has also been used by other studies,12,13 but analysis of such studies focused 

mainly on genetic analyses. 

Most previous proteomics studies investigated only a few pre-selected exposures, without 

simultaneously considering a broader range of factors that might be associated with the 

plasma proteome. Moreover, few studies have investigated associations of plasma 

proteins with composite indices (e.g. frailty) derived from various measures that may 
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reflect general lifestyle and health,14-17 which could be useful for population-level screening 

and disease prevention. Furthermore, previous studies typically focused on the discovery 

of protein quantitative trait loci (pQTLs).8,12,13 While useful for downstream analyses such 

as Mendelian Randomisation to inform drug development,2 they do not contribute 

important insights into the roles of non-genetic factors in influencing levels of circulating 

proteins. Finally, there is evidence that protein concentrations can vary across different 

populations,18 which could further affect their associations with exposures. However, the 

lack of diversity remains an issue in proteomics, as the majority of proteomic studies in 

large-scale population-based cohorts have been conducted in European populations. Our 

previous study in the China Kadoorie Biobank (CKB) identified 27 proteins associated with 

body mass index (BMI), but this was conducted in a small sample of 628 participants and 

with an older Olink panel covering 92 proteins.19 

To fill the evidence gap, the present study aims to use an “exposome-wide” approach to (1) 

comprehensively explore the exposure profiles of ~3,000 Olink proteins in 2,000 Chinese 

adults in the CKB; (2) assess the consistency of proteomic associations between the 

Chinese and European populations; and (3) identify priorities for future research. We also 

conducted parallel analyses in the accompanied report on ~7,000 proteins measured by 

the SomaScan platform in the same sample.20 

Methods 

Study population and design 

The CKB is a prospective cohort study of >512,000 adults who were recruited from 2004 

to 2008 in 10 geographically diverse areas.21,22 At baseline, detailed information was 

collected from all participants using laptop-based questionnaires, including socio-

demographic characteristics, medical history, and lifestyle habits, in addition to physical 
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measurements including body composition and blood pressure. Non-fasting (with time 

since the last meal recorded) blood samples were also collected, processed, aliquoted, 

and then stored in liquid nitrogen for future unspecified research use. All participants 

provided written informed consent.  

The present study was based on a case-subcohort study of IHD involving 1951 cases and 

2026 subcohort participants who had no prior history of cardiovascular disease and no 

reported use of lipid-lowering medications.23 The subcohort participants were randomly 

selected from a population subset of 69,353 genotyped participants who were unrelated to 

each other. 

Proteomic assays 

The plasma samples of all 3,977 participants collected at baseline were assayed by the 

Olink Explore 3072 platform that targets 2,923 unique proteins in four separate panels. 

The samples were retrieved from liquid nitrogen, thawed, and aliquoted into 96-well plates 

(including 8 wells per plate for external QC samples). They were then shipped separately 

to Olink laboratories in Uppsala, Sweden (first batch; 1,472 proteins) and Boston, USA 

(second batch; 1,469 proteins) for proteomic profiling. The final measurements of protein 

levels were provided in the arbitrary Normalized Protein eXpression (NPX) unit on a log2 

scale. Six proteins were replicated in four panels and showed high correlations across 

panels (r>0.8), so only one measure was kept for each replicated protein. Details of 

individual proteins are shown in eTable 1. Further details on proteomic assays in CKB 

have been previously described.23,24 

Selected baseline characteristics 

We selected 37 exposures across 6 broad categories (eTable 2), covering demographics 

(e.g., age, sex, study area), lifestyle habits (e.g., alcohol, smoking, diet, physical activity), 
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environmental factors (e.g., outdoor temperature, fasting time), health and wellbeing (e.g., 

prior disease and mental health), clinical measures (e.g., BMI, SBP, RPG) and female 

reproductive factors (e.g., age at menarche, age at menopause, parity). We also derived a 

healthy lifestyle index (ranging from 0 to 5, with a higher score indicating a healthier 

lifestyle) based on smoking, alcohol intake, physical activity, dietary habits, and body 

shape.15-17 Similarly, a frailty index based on an accumulation of age-related deficits was 

computed considering medical conditions (based on self-reports of diagnosis by a doctor 

or physical measurements), symptoms, signs, and physical measurements, of which the 

procedure is described in a previous publication.14,25 

Statistical analyses 

The main analyses were conducted in 2006 subcohort participants only (after excluding 20 

participants with missing data on outdoor temperature) and separately by sex. 

The prevalence or mean values of selected baseline variables were standardised to the 

age (5-year groups), sex, and study area. Plasma protein levels were standardized (i.e. 

values divided by their SD) and analysed as continuous variables. Linear regression was 

used to examine the associations of different baseline characteristics with protein 

biomarkers, adjusting for age, age2, sex, study area, fasting time, fasting time2, outdoor 

temperature, outdoor temperature2, and plate ID.  

As many proteins and exposures are correlated with each other, we followed the approach 

by Gadd et al. (2023) to correct for multiple testing.26 We performed principal component 

analysis for 2,923 unique proteins and found 834 components explaining 90% of the 

cumulative variance (eFigure 1 and eTable 3). Similarly, we performed principal 

component analysis for 32 exposures measured in both females and males and found 21 

components explaining 90% of the cumulative variance. Taking into account 834 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 28, 2024. ; https://doi.org/10.1101/2024.10.23.24315975doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.23.24315975
http://creativecommons.org/licenses/by/4.0/


9 

 

components for proteins and 26 components for exposures (21 + 5 reproductive factors 

measured only in females), we derived a Bonferroni-adjusted p-value threshold: 

0.05/(834�×�26)�=�2.305�×�10−6. This adjustment was applied across all linear 

regression models. 

We also undertook separate analyses of the same 2923 Olink proteins in approximately 

35,000 white participants from the UK Biobank to replicate the main study findings in CKB, 

with the exclusion of participants with prior CVD or use of cholesterol-lowering 

medication.8  

All statistical analyses were performed using R version 4.1.227 and packages ‘tidyverse’, 

and ‘ggplot2’.  

Results 

Among the 2,006 participants, the mean baseline age was 50.8 (SD 10.5) years, 62% of 

participants were female and the mean BMI was 23.9 (3.4) kg/m2 (Table 1). Overall, 15% 

of participants were regular alcohol drinkers (men: 37%; women 3%) and 25% (men: 63%; 

women: 2%) were current smokers. The prevalence of prior diseases was similar in males 

and females, with 8% of participants having respiratory disease, 2% having kidney/liver 

disease or tested sero-positive for HBsAg, and 6% having diabetes (self-reported or 

screen-detected). 

Among 37 baseline characteristics examined, 31 were associated with at least one protein 

at the Bonferroni-adjusted threshold (Table 1, Figure 1). The three baseline 

characteristics that showed the largest number of associations with proteins were age 

(n=1154), sex (n=827) and BMI (n=869). Likewise, of the 2,923 proteins examined, 1900 

(65%) were associated with at least one exposure, with three proteins (CDHR2, CK-BB, 

and PLAT) showing the largest number of associations with baseline characteristics 
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(n=14), involving primarily demographic factors and clinical measurements (Figure 2, 

eFigure 2).  

Of the 827 sex-related proteins (higher levels in females for 259 and in males for 568 

proteins), the strongest associations were observed for LEP, XG and FSHB in females and 

for ACRV1, EDDMEB and INSL3 in males (Figure 3 I.a). Among the top 50 sex-related 

proteins, most were also associated with other exposures, chiefly age (e.g., FSHB, CGA, 

XG) and BMI (e.g., LEP, FABP4, CDHR2; Figure 3 I.b). Additionally, 77 sex-related 

proteins were not associated with any other exposures examined, of which 27 were 

uniquely associated with female sex (e.g., CSF3, MELTF, ITIH4) and 50 with male sex 

(e.g., EDDM3B, TEX101 and CRISP2; eTable 4).  

Of the 1,154 age-related proteins, the strongest positive associations were observed with 

EDA2R, ELN and LTBP2, and the strongest negative associations were with PAEP, CTSV 

and SDK2 (Figure 3 II.a). Among the top 50 age-related proteins, most were also 

associated with other exposures examined, chiefly sex (e.g., FSHB, CGA, PAEP) and BMI 

(e.g., DPT, HSPB6, FGF5; Figure 3 II.b). Additionally, 168 age-related proteins (e.g., 

ITGB5, IL17D, and TIMP4) were not associated with any other exposures (eTable 4). In 

sex-specific analyses, age was associated with 1,133 and 612 proteins in males and 

females, respectively (Table 1; eFigure 3 I.a & II.b). Among the 524 overlapping proteins 

in both sexes, nearly all (>95%) of the associations were directionally consistent, but the 

associations appeared stronger in females (r=0.62; eFigure 4). Among females, FSHB, 

ELN and EDA2R showed the strongest positive associations with age, while PAEP, SDK2 

and CTSV showed the strongest negative associations (eFigure 3 I.a). Among males, 

EDA2R, ELN and LTBP2 showed the strongest positive associations, and EGFR, INSL3 

and IGFBP3 showed the strongest negative associations (eFigure 3 II.a). Among females 

the top age-related proteins were predominantly associated with menopause, while among 
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males they were mainly associated with clinical measurements (i.e., BMI, SBP, and RPG), 

exhaled CO and current smoking status in males (eFigure 3 I.b & 3 II.b). Additionally, 394 

and 352 age-related proteins in females and males, respectively, were not associated with 

any other exposures examined (eTable 4). 

In overall analyses, regular alcohol consumption and current smoking were associated 

with 75 and 53 proteins (4 overlapping), respectively, with MAMDC4, CHI3L1 and VWA1 

most strongly associated with alcohol drinking and CXCL17, LAMP3 and ALPP most 

strongly associated with smoking (Table 1, eFigure 5). In separate analyses among men, 

most of these protein associations with alcohol (n=53) and smoking (n=47) were significant 

(eFigure 6). Overall, outdoor temperature was associated with 292 proteins (e.g., SNED1, 

SPINK6 and LRP1), reducing to 174 and 57 in female- and male-specific analyses, 

respectively (eFigure 5 and 6).  

Among clinical measurements, BMI was associated with the largest number of proteins 

(869) followed by SBP (n=479) and RPG (n=387; with 274 overlapping with prevalent 

diabetes; Table 1). For BMI, the strongest associations were observed for LEP, FABPA 

and IGFBP2 (eFigure 7a). In sex-specific analyses, BMI was associated with 576 proteins 

in females and with 353 proteins in males, with similar strength of associations among the 

300 overlapping proteins (r=0.97; Table 1 and eFigure 4b). The leading BMI-related 

proteins demonstrated similar exposure profiles, with >90% of them also associated with 

age, sex, prevalent diabetes, and other clinical measurements in both overall and sex-

specific analyses (eFigure 7b, eFigure 8 I.b & II.b).  

Overall prevalent diabetes and HBsAg positivity were associated with 340 and 282 

proteins, respectively (Table 1), with more associations in women than in men (217 vs. 39 

and 198 vs. 45, respectively; Table 1 and eFigure 6h). Other health-related measures, 

including self-rated health and prior cancer, were associated with fewer than three 
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proteins. For females,  post-menopause was associated with 181 proteins, with the 

strongest positive association being with FSHB, CGA and DPP4 and the strongest inverse 

association with PAEP, CHRDL2 and SDK2 (eFigure 9a). Additionally, the top 

menopause-related proteins were predominantly associated with age (eFigure 9b). 

Healthy lifestyle index was associated with 342 proteins (e.g., IGSF9, VWA1 and LEP) in 

overall analyses, and with 126 and 99 proteins in male- and female-specific analyses 

(Table 1, Figure 4 I.a, eFigure 10 I.a & 10 II.a). Most of these proteins were also 

associated with the individual components of the index, particularly age, sex and clinical 

measurements, with alcohol and smoking being particularly notable among males (Figure 

4 I.b, eFigure 10 I.b & 10 II.b).  

Overall the frailty index was associated with 597 proteins (e.g., IGSF9, CDHR2 and 

IL1RN), with 300 (50%) proteins overlapping with the lifestyle index, albeit in opposite 

directions in their associations (r=-0.91; Table 1, Figure 4c II.a). In sex-specific analyses, 

102 and 279 proteins were associated with frailty index in females and males, respectively 

(eFigure 12 I.a & 12 II.a). Many of the frailty index-related proteins were also associated 

with individual components of the index, including age, sex, clinical measurements, and 

prior diseases, with similar association patterns in men and women (Figure 4 II.b, eFigure 

11 I.b & 11 II.b). 

In UKB participants (mean age 57 [SD 8.1], 55% female), a total of 1,871 proteins were 

significantly associated with sex, 1,659 with age, 2,144 with BMI, 1,658 with SBP, 702 with 

RPG, and 1,302 with prevalent diabetes (Figure 5). Over 90% of the significant 

associations in CKB were replicated in UKB, with the exception of RPG, which had a lower 

(~80%) replication rate. However, >95% of RPG associations in CKB were replicated in 

UKB using HbA1c (eFigure 12). Moreover, for the overlapping significant proteins in CKB 

and UKB, there were high correlations (r>0.80) in effect sizes, with over 95% being 
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directionally consistent. In sex-specific analyses, there were similar patterns and 

replication rates between the two populations (eFigure 13).  

Discussion 

In this exposome-wide analysis of Olink proteins in Chinese adults, we identified a large 

number of associations between various exposures and levels of ~3,000 proteins. In 

particular, age, sex and BMI each showed significant associations with plasma levels 

of >800 proteins. A range of other exposures including, socio-demographic, environmental 

factors, clinical measurements, health-related traits, and composite lifestyle and health 

indices, were also associated with levels of modest numbers of proteins. Many proteins 

were associated with multiple exposures, with CDHR2, CK-BB, and PLAT showing the 

largest number of associations with the exposures examined. We also observed 

differences in proteomic-exposure associations between females and males, and 

replicated >90% of proteomic associations with key exposures in the European 

populations. 

Among all exposures investigated, age yielded the largest number of significant 

associations with plasma protein levels. The single protein most strongly and positively 

associated with age was EDA2R, a member of the tumour necrosis factor receptor 

superfamily.28 EDA2R is a known marker for ageing, and its gene expression has been 

previously reported to be associated with ageing in plasma, muscle, and lung tissues.29-31 

Moreover, we found that older age was associated with higher levels of ELN, a protein 

making up elastic fibres in various human organs, including the skin, heart, and blood 

vessels.32-35 Consistent with this finding, we also found a positive association between 

older age and higher levels of LTBP2, a component of micro-fibrils that interact with ELN.36 

Finally, many age-related proteins were also significantly associated with other exposures. 
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For example, higher levels of CXCL17, a protein involved in respiratory diseases,37,38 were 

associated with older age, smoking, and amount of exhaled CO in our study. 

Our analysis demonstrated marked sex differences in plasma levels of many proteins. 

These included proteins that are known to be involved in human reproductive processes, 

such as FSHB which regulates follicular growth in females,39,40 as well as ACRV1, 

EDDM3B, and TEX101, which are involved in spermatogenesis in males.41-43 We 

replicated the well-known finding of elevated LEP levels in females, a protein released by 

adipocytes and related to sex differences in body fat percentage/distribution.8,10,11 

Moreover, we found elevated levels of the XG protein in females, an antigen that defines 

the Xg blood group.44,45 Historically, the Xg blood group has received less research 

attention than other blood groups. However, given its strong associations with sex, age, 

and BMI in our study, more research is needed to re-evaluate the role of XG in health and 

disease aetiology. Many of the sex-associated proteins were also independently 

associated with other exposures, including FSHB, which was also associated with age. 

Additional analysis revealed that the association between FSHB and age was primarily 

driven by female sex, since elevated FSHB levels are an indicator of menopause and are 

commonly observed in post-menopausal women.46,47 

Our analyses also replicated a number of exposure-protein associations previously 

reported in Europeans. For example, we identified associations between BMI and 869 

proteins, including known associations of higher BMI with higher levels of LEP (regulating 

energy balance)48 and FABP4 (lipid transporter in adipocytes).49 Other examples of 

proteomic associations with clinical measurements include higher SBP and lower REN 

levels (part of the renin-angiotensin system)50 and higher RPG and lower LPL levels 

(involved in lipid metabolism).51 Moreover, several behavioural factors may also affect 

plasma levels of specific proteins. For example, smoking was associated with higher 
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CXCL17 levels (involved in immune responses and respiratory diseases),37,38 and alcohol 

drinking was associated with higher CHI3L1 levels (involved in liver diseases).52 

Additionally, factors related to sample collection such as outdoor temperature and fasting 

time (time since last meal) were also significantly associated with 292 and 79 proteins, 

respectively in our study. Those included the associations between higher outdoor 

temperature and higher SPINK6 levels (maintaining skin homeostasis and restricting 

influenza virus activation)53,54 and shorter fasting time and high GIP levels (stimulating 

insulin secretion).55 Such factors related to sample collection could act as potential 

confounders in associations between exposures and proteins. Indeed, we observed 

changes in results before and after including them as covariates in the models 

(Supplementary eTable 5), providing justifications for including them in the main models. 

Given their importance, future studies should also consider collecting such information to 

improve the robustness and reliability of analyses. 

In addition to individual exposures, we also demonstrated novel associations between 

many plasma proteins and two composite measures that reflect general lifestyle and 

health, namely the healthy lifestyle index and frailty index. The two indices showed 

opposing directions of associations with some proteins, including IGSF9, IGFBP2, and 

SHBG. Both IGSF9 and IGFBP2 have been implicated in multiple types of cancers, and 

thus have been considered potential diagnostic/prognostic markers and treatment 

targets.56-61 SHBG is a liver-produced secreted protein that binds sex hormones,62 which is 

associated with metabolic and reproductive system disorders.63-66 As expected, many 

proteins associated with the two indices also showed associations with individual 

exposures, especially BMI, SBP, and RPG. Furthermore, we observed sex differences in 

proteomic associations for the two indices. For example, the healthy lifestyle index showed 

stronger inverse associations with GGT1 (a marker of liver function)67,68 and CXCL17 

(involved in lung function)37,38 in males than females. Such difference may be due to the 
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much higher prevalence of alcohol drinking and smoking in males than females (37.2% vs 

2.6% and 63.3% vs 2.3%, respectively) in CKB and the general Chinese population.69-71 

Apart from being the first such study in an East Asian population, the main strengths of the 

present study include a large number of proteins assayed and a wide range of exposures 

considered simultaneously in the analyses. Moreover, we also examined potential sex 

differences in the protein-exposure associations, revealing potential novel findings to 

inform future research. Nevertheless, the present study also had limitations. First, although 

our study represented the largest to date amongst proteomics studies in East Asians, it 

lacked the power for more detailed subgroup analyses beyond sex differences. There 

were also fewer males than females in our study, which might explain the smaller number 

of significant associations in males. Second, due to the cross-sectional study design, we 

could not confirm the direction of the observed associations. Third, although we have 

adjusted for key covariates (e.g. age, sex, region, outdoor temperature, and fasting time) 

in our analyses to minimise residual confounding, we could not establish reliably the 

cause-effect nature of the observed associations, which should be assessed in future 

studies using genetic approaches (e.g., Mendelian Randomisation). Finally, due to the lack 

of similar datasets with proteomics data available, we were unable to replicate our findings 

for all exposures in independent cohorts in Chinese or East Asian populations. However, 

since over 90% of the associations with sex, age, BMI, SBP and diabetes-related 

exposures were replicated in UK Biobank, we believe our findings using the same Olink 

platform should be generalisable to other study populations.  

Overall, the present study in Chinese adults demonstrated a large number of proteomic 

associations across a diverse range of exposures, particularly sex, age, adiposity, and 

healthy lifestyle and frailty indices. We also identified sex differences in proteomic 

associations with various exposures, mainly reflecting differences in reproductive 
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processes and lifestyle habits between females and males. Future studies from diverse 

cohorts are required to replicate our findings and confirm the causal relevance of these 

associations. 
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Figure legends 

Figure 1. Exposure profiles with 2923 protein biomarkers in CKB, overall and 
by sex  

Three Miami plots are presented: one for female-specific analysis, one for male-
specific analysis, and one for overall analysis. The x-axis represents baseline 
characteristics grouped by category, while the y-axis shows the negative logarithm of 
the p-value (-log10 p-value) for the association between each exposure and protein 
biomarkers. Each dot represents the -log10 Bonferroni corrected p-value for these 
associations. For visualization purposes, -log10 p-values exceeding 25 are not 
displayed (indicated with arrow). Positive associations are shown in red, negative 
associations in blue, and non-significant associations in grey. Analyses are adjusted 
for age, age2, sex, study area, fasting time, fasting time2, outdoor temperature, 
outdoor temperature2 and plate ID, where appropriate. 
Abbreviations: BMI: Body mass index; CKB: China Kadoorie Biobank; CO: carbon-
monoxide; DBP: Diastolic blood pressure; FEV1/FVC: Forced Expiratory Volume in 1 
second / Forced Vital Capacity; HBsAg+: Hepatitis B virus surface antigen 
seropositive; RPG: random plasma glucose 

Figure 2. Exposure profiles by characteristics type of the top 25 protein 
biomarkers with most associations, overall and by sex  

The bar plots show the number of baseline associated with the 25 most frequently 
associated protein biomarkers based on Bonferroni-corrected p-values. The 
analyses are presented separately for females, males, and overall. The x-axis 
represents the protein biomarkers, while the y-axis indicates the number of baseline 
characteristics associated with each protein. Bars are color-coded to represent 
different baseline characteristic groups. Analyses are adjusted for age, age2, sex, 
study area, fasting time, fasting time2, outdoor temperature, outdoor temperature2 
and plate ID, where appropriate. 

Figure 3. Sex- and age-associated protein biomarkers and their associations 
with other exposures 

Figures a) and c) represent the associations of sex and age, respectively, with 
protein biomarkers. The x-axis represents the effect size of the association between 
sex or age and the protein biomarkers, while the y-axis indicates the –log10 p-value. 
Red dots denote positive Bonferroni corrected associations, blue dots denote 
negative Bonferroni corrected associations, and grey dots denote non-significant 
associations. 
Figures b) and d) illustrate the top sex- and age-associated protein biomarkers, 
respectively, and their associations with other exposures. The width of the ribbons is 
inversely proportional to the p-value, indicating the strength of the association 
(smaller p-values correspond to wider ribbons). The colors of the ribbons represent 
different baseline characteristic groups. The top protein biomarkers that are not 
associated with other exposures are not presented in the figure. 
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Analyses are adjusted for age, age2, sex, study area, fasting time, fasting time2, 
outdoor temperature, outdoor temperature2 and plate ID, where appropriate. 
Abbreviations: BMI: Body mass index; CO: carbon-monoxide; DBP: Diastolic blood 
pressure; HBsAg+: Hepatitis B virus surface antigen seropositive; RPG: random 
plasma glucose 

Figure 4. Lifestyle and frailty indices-associated protein biomarkers and their 
associations with other exposures 

Symbols and conventions as in Figure 3. 

Figure 5. Associations of six selected key baseline characteristics with protein 
biomarkers in CKB and UKB 

In CKB, analyses were adjusted for age, age2, sex, study area, fasting time, fasting 
time2, outdoor temperature, outdoor temperature2 and plate ID, where appropriate. In 
UKB, analyses were adjusted for age, age2, sex, assessment centre, fasting time, 
fasting time2, season, and plate ID, where appropriate. 
Abbreviations: BMI: Body mass index; CKB: China Kadoorie Biobank; SBP: systolic 
blood pressure; UKB: UK Biobank; RPG: Random plasma glucose 
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Table 1. Baseline characteristics of participants and their associations with Olink protein biomarkers  

Characteristics 
Mean (SD) or percentage, %a  No. of significant associations b 

Female 
(n=1,247)  

Male   
(n=759) 

All   
(n=2,006)  Female     Male  All  

Demographics        
  Age, years  50.7 (10.2)  50.8 (11.0)  50.8 (10.5)  1133 612 1154 
  Sex ─    ─ ─  ─    ─ 827 
  Urban residents 52.0 48.6 50.6  224 185 359 
  Schooling (>9 years)  20.4 7.6  22.9  4 0 3 
  Employed  60.1 77.5  66.8  1 0 3 
  Household income (≥¥20,000)  43.0 47.4  44.5  1 11 9 
  Ownership index c    3.3 (1.3)   3.4 (1.4)   3.3 (1.3)  0      29 15 
Lifestyle     
  Regular alcohol drinker   2.6 37.2  15.3  0 53 75 
  Current smoker   2.3 63.3  25.3  5 47 53 
  Diet     
    Food diversity score d  11.4 (3.3)  11.3 (3.2)  11.3 (3.3)  0 0 1 
    Rapeseed oil  33.3 38.8  35.4  6 0 22 
  Physical activity, MET-hrs/day  20.5 (13.2)  23.2 (16.3)  21.4 (14.5)  1 0 

0 
3 

Environmental     
  Outdoor temperature, °C  16.0 (10.6)  15.7 (10.9)  15.9 (10.7)  174 57 292 
  Clean heating fuel  45.3 44.3  45.0  0 0 1 
  Clean cooking fuel  49.9 36.0  44.8  1 0 0 
Health and wellbeing     
  Self-rated health   8.5  8.2   8.3  0 0 3 
  Respiratory disease   8.3  8.0   8.2  0 2 0 
  Kidney/liver disease   2.1  2.5   2.2  0 2 0 
  HBsAg+    2.2  2.5   2.3  198 45 282 
  Diabetes   7.0  5.8   6.5  217 39 340 
  Cancer   0.6  0.6   0.7  2 1 1 
  Life satisfaction   3.7  4.9   4.0   3.

1 0 0 
  Mental disorder   1.1  1.5   1.2   1.

0 0 0 
Clinical measurements     
  BMI, kg/m²  24.0 (3.5)  23.7 (3.3)  23.9 (3.4)  576 353 869 
  Standing height, cm 154.5 (6.1) 165.8 (6.5) 158.7 (8.3)  6 0 18 
  SBP, mmHg 129.4 (22.2) 132.6 (19.9) 130.5 (21.4)  295 80 479 
  DBP, mmHg  77.2 (10.6)  79.7 (11.6)  78.0 (11.1)  178 108 380 
  Heart rate, bpm  79.4 (11.4)  78.0 (11.9)  78.8 (11.6)  57 41 234 
  Exhaled CO, ppm   5.0 (2.2)  11.7 (2.5)   7.5 (2.3)  0 35     29 
  FEV1/FVC ratio  85.1 ( 6.1)  84.9 (10.1)  85.0 (8.5)  0 1 1 
  RPG, mmol/L   6.1 (8.2)   5.9 (8.8)   6.0 (8.5)  254 84 387 
  Fasting time, hours    5.2 (5.0)   5.0 (5.0)   5.1 (5.0)  56 26 79 
Reproductive factors     
  Age at menarche, years  15.4 (2.0) ─  15.4 (2.0)  1 ─ 1 
  Age at menopause, years  39.2 (4.3) ─  39.2 (4.3)  2 ─ 2 
  Post-menopausal  54.7 ─  54.7  181 ─ 181 
  Parity  99.8 ─  99.8  4 ─ 4 
  Age at first live birth, years  23.9 (3.3) ─  23.9 (3.3)  0 ─ 0 
Lifestyle index e   3.1 (0.8)   2.2 (1.0)   2.8 (1.0)  99 126 342 
Frailty index f   0.1 (0.06)   0.1 (0.06)   0.1 (0.06)  279 102 597 
a Baseline characteristics adjusted for age (10-year age groups) and study area (10 regions). 
b Analyses are adjusted for age, age2, sex, study area, fasting time, fasting time2, outdoor temperature, outdoor temperature2 and plate ID, where 
appropriate. Bonferroni (PCA) corrected p-value < 0.05 
c 6-point index of qualitative measures of living standards 
d 24-point index of frequency of intake in 12 food groups 
e 5-point index of low-risk lifestyle characteristics 
f 28-point index of accumulation of health deficits and physical activity 
Abbreviations: BMI: Body mass index; CO: carbon-monoxide; DBP: Diastolic blood pressure; FEV1/FVC: Forced Expiratory Volume in 1 second / Forced 
Vital Capacity; HBsAg+: Hepatitis B virus surface antigen seropositive; MET: metabolic equivalent task; RPG: random plasma glucose 
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Figure 1. Exposure profiles of 2923 Olink protein biomarkers in CKB, overall and by sex  
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Figure 2. Exposure profiles by characteristics type of the top 25 protein biomarkers with most associations, overall all and by sex  
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Figure 3. Sex- and age-associated protein biomarkers and their associations with other exposures 
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Figure 4. Lifestyle and frailty indices-associated protein biomarkers and their associations with other exposu

 

sures 
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Figure 5. Associations of six selected key baseline characteristics with protein 
biomarkers in CKB and UKB  
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