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ABSTRACT

Most individuals with sleep-disorders remain undiagnosed due to unawareness of symptoms or the high cost of polysomno-
graphic (PSG) studies, impacting quality of life. Despite evidence that sleep-disorders alter sleep-stage-dynamics, clinical
practice resists including these parameters in PSG-reports. We introduce a novel digital sleep-fingerprint, leveraging the
matrix of sleep-stage-transition-proportions, enabling the derivation of several novel digital-markers and investigation of
dynamics mechanisms. Using causal inference we address confounding in an observational clinical database and estimate
personalized markers across ages, genders, and Obstructive-Sleep-Apnea (OSA) severities. Notably, our approach adjusts for
five categories of sleep-wake-related-comorbidities, an aspect ignored in existing research, impacting 48.6% of OSA-subjects in
our data. Key markers proposed, including NREM-REM-oscillations and sleep-stage-specific-fragmentations, were significantly
increased across all OSA-severities and demographics. We also identified several OSA-gender-phenotypes, suggesting higher
vulnerability of females to awakening and REM-sleep disruptions. Considering advances in automated-sleep-scoring and
wearables, our approach can enable novel, low-cost screening tools.
Keywords: Sleep Disorders, Sleep Dynamics, Polysomnography, Obstructive Sleep Apnea, Digital Markers, Dirichlet Regres-
sion, Causal Inference

Introduction
The clinical sleep study (polysomnography, PSG) involves comprehensive overnight monitoring of body biosignals, including
encephalogram (EEG), electrocardiogram (ECG), electromyogram (EMG), and others. Medical personnel evaluate the PSG
following guidelines of the American Academy of Sleep Medicine (AASM)1, focusing on the detection of breathing arrests,
movement events, and notably, categorizing stages of sleep. Sleep scoring - conventionally done manually for each 30-second
window (epoch) of the biosignals recorded - differentiates between five sleep-wake stages: wakefulness (W), rapid-eye-
movement (REM) sleep, and three other non-REM (N1, N2, N3) sleep-states. Such a structured sleep-scoring (hypnogram)
forms a basis for the PSG report, providing information on basic markers (e.g., sleep efficiency, % of sleep-stages, REM
latency) that relate to sleep quality and may also indicate certain sleep disorders2–4.

Sleep and its markers have a complex relationship with individuals’ age and may vary by gender5. Several meta-analyses
have made considerable efforts to establish normative values of sleep markers in healthy individuals6, 7. However, the validity
of certain estimates might be questionable due to inappropriate statistical evaluations of the individual studies whose results
were pooled8. For instance, REM latency, as a time-to-event phenomenon subject to censoring, is best quantified using survival
techniques rather than mean comparisons. Similarly, the % of sleep-stages, which are interdependent, should be assessed
by compositional methods. Proper techniques enabling unbiased estimation are however rarely applied. Quantification of
normative ranges and changes in sleep markers in diseased subjects is even more challenging. The observational study design
of PSG databases, typically including non-randomized symptomatic subjects, introduces a high degree of confounding9. This
results in an imbalanced prevalence of individuals with different clinical statuses and distributional shifts in their demographic
characteristics. These factors make it difficult to separate the effects of natural ageing from the effects of particular disorders on
sleep parameters. The unaddressed confounding, difficulty in assessing data of patients who often suffer from several sleep
disorders simultaneously, and the use of not always appropriate statistical approaches are major challenges that increase the risk
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of biased conclusions even in the analysis of well-established PSG markers.
While differences in sleep-stage dynamics are evident for certain sleep disorders, such as increased sleep fragmentation

in Obstructive Sleep Apnea (OSA)10, 11, or a short REM latency in narcoleptic patients12, the clinical PSG report has, so
far, included only a limited number of dynamics-related markers. This includes sleep and REM latencies and the absolute
counts of sleep-stage transitions or awakenings1. While latencies target the first (tens of) minutes of the night, the numbers
of transitions/awakenings are proportional to sleep duration and may not sufficiently capture more complex patterns of sleep
dynamics that may be specific to individual sleep disorders. Despite the clinical utility of studying sleep dynamics, there is
resistance to incorporating its parameters into the PSG report, primarily due to the lack of a uniform methodology that provides
a valid and intuitive framework for their evaluation by medical professionals. Recognizing these limitations, significant research
has been conducted to comprehensively explore sleep dynamics in various modalities. These studies, which date back to the
1980s, exhibit different levels of heterogeneity in terms of subject demographics, clinical diagnoses, and the methodologies
employed13. Two main investigative directions have emerged: (i) focusing on the transitions between sleep stages, and (ii)
focusing on the duration of sleep stages. The perspectives of these two seemingly distinct but strongly interrelated areas are
discussed in the following two separate paragraphs, highlighting the contribution of the most impactful studies.

Research on sleep-stage transitions has evolved rapidly, beginning with one of the earliest mathematical models by Kemp
(1986), who quantified transition intensities in 23 healthy males aged 18-3014. Yassouridis (1999) followed by exploring
the relationship between transition intensities and plasma cortisol levels in 30 males aged 20-3015. Several studies identified
associations between transition rates and clinical symptoms. For instance, Burns (2008) observed increased sleep fragmentation
and transitions into N3 in 15 females with fibromyalgia syndrome (mean ± standard deviation (SD) age of 42.5 ± 12.9),
contrasting with age- and gender-matched controls16. Laffan (2010) found a significant association between transition rates and
self-reported sleep quality in a large cohort from the Sleep Heart Health Study (SHHS) database, consisting of 5684 participants
(47.2% males, all aged over 40)17. The existing research extends to specific conditions such as chronic fatigue syndrome, where
Kishi (2008) reported abnormal REM transitions in 22 female patients (aged 42 ± 8) in comparison to healthy controls of similar
demographics18. Further exploring clinical implications, Kim (2009) found differences in sleep-stage dynamics between nights
with and without CPAP therapy in 113 OSA subjects (aged 54.0 ± 11.7, 16 females)19. Wei (2017) documented increased
N2-to-W/N1 transitions in 46 insomnia patients (aged 50.3 ± 13.6, 8 males) compared to age- and gender-matched controls,
indicating altered sleep patterns20. In addition, Schlemmer (2015) analyzed first- and second-order sleep-stage transitions
across 4 groups of subjects (young vs old, healthy vs disorder), highlighting the varied impacts of ageing and pathological
conditions21. Yet, the disordered subjects represented a pool of various sleep and psychological conditions, and the findings
cannot be attributed to a specific diagnosis. Recently, Wachter (2020) utilized MANOVA adjusted for age, gender, and BMI,
to evaluate differences in the 25 most common second-order transitions in different severities of OSA compared to healthy
subjects, demonstrating associations with demographic and clinical factors22. The significant findings primarily related to
wake and light-sleep (N1, N2) oscillations, when comparing severe-OSA and healthy. An innovative yet not diagnosis-oriented
approach by Yetton (2018) applied a Bayesian network to model transitions as well as stage durations in 3202 - according to
exclusion criteria - healthy subjects (mean age of 62.5, 60% males). The prediction-oriented results demonstrated the highest
accuracy (62.3%) in the identification of the current stage based on the previous 2 stages, the duration of the last stage, and no
consideration of age, gender, or BMI23.

Another perspective in understanding sleep dynamics focuses on the quantification of sleep stage durations, providing
insights into the temporal characteristics of individual sleep-wake periods. Lo (2002) initiated this research direction by
examining sleep-wake dynamics in 20 healthy subjects (aged 23-57, 9 males), revealing different characteristics between sleep
and wake periods’ duration and advocating for their modelling using power law distributions24. Building on this, Penzel (2003)
applied power-law models to quantify sleep-stage durations in both healthy and disordered subjects, identifying reduced duration
and hence more fragmented sleep in sleep-apnea subjects25 (with no specific demographics details provided). Following
that, Norman (2006) exploited survival techniques and revealed decreased sleep continuity when comparing 10 mild and 10
moderate/severe subjects with sleep-disordered-breathing (SDB) against 10 normal subjects26. The analysis did not consider
subjects’ age, which was significantly higher in disordered subjects. Chervin (2009) compared sleep architecture in 48 children
(aged 5-12.9) with sleep-disordered breathing to healthy controls, finding a significant decrease in the duration of N2 and
REM27. Bianchi (2010) employed multi-exponential fitting to analyze sleep-stage durations across 376 predefined controls
(aged 68.2 ± 6.3, 35.6% males), in comparison to 496 mild-OSA (aged 63.8 ± 0.3, 60% males), and 338 severe-OSA (aged 63.7
± 10.5, 70.7% males) subjects from the SHHS database28. They report accelerated decay rates in W, NREM, and REM among
OSA subjects, suggesting a larger sleep fragmentation and shorter stage bouts. Notably, despite considerable age and gender
differences within its sample (35.6% vs 70.7% males in healthy vs severe-OSA), the study did not adjust for them. Klerman
(2013) investigated durations of sleep-wake states in healthy subjects and identified an age-related decline of NREM-sleep
continuity29. A comparison of sleep-stage duration by Kishi (2020) in sleep bruxism (SB) patients (aged 23.3 ± 1.1, 6 males)
and matched controls showed that despite no differences in the prevalence of sleep-stages (except for N1), the SB subjects
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differed in several parameters describing their dynamics, particularly related to an increased REM fragmentation and hence
reduced duration of REM-bouts30.

By analysing sleep-stage transitions14–23 or by characterizing their duration24–30, all of these studies highlight the importance
and clinical utility of analysing sleep dynamics across a wide range of disorders. Although most of the studies focus on one of
these two aspects, it is important to point out that their nature is functionally linked as the lower transition probability relates to
an increased bout duration31, 32. The existing research works have variously addressed the complexities of confounding and the
selection of appropriate statistical models. The majority of studies concurred on the need to control for age and gender or limit
the demographic ranges to ensure a homogeneous group of study participants. In existing studies, this is achieved by using
stratified analysis with (M)ANOVA (e.g.,21, 22, 28), regression adjustment (e.g.,17), or selecting matched individuals (e.g.,16, 20, 30).
The simplicity of the first two approaches, typically comparing the effect of exposure (such as OSA) on the outcome (e.g., sleep
dynamics) against unexposed healthy controls, is offset by its susceptibility to confounding bias33. Analyzing non-randomized
observational PSG databases, which typically include older, symptomatic individuals, complicates the separation of confounder
effects (of age, gender) from the exposure (disorder). In contrast, while the matching approach helps a lot to reduce the bias34,
it is generally applied within smaller subject cohorts. This limitation arises from the challenges of finding individuals with
matched characteristics within typically imbalanced clinical databases of limited sizes.

Our study introduces a comprehensive framework for quantifying sleep dynamics, demonstrated on OSA but applicable
to other (sleep) disorders. OSA, the most prevalent sleep disorder affecting up to 17% of the general adult population35,
serves as a use-case to showcase the framework’s versatility. Building on existing research and addressing its limitations, our
framework—depicted in Figure 1 and explained in-depth in Methods—fulfils several key objectives:

• Data acquisition, Figure 1(i): Leveraging a high-quality, heterogeneous observational clinical database, we identified
OSA and healthy subjects (aged 6-91 years) based on clinical gold-standard of conclusive diagnosis. Consistent with
the literature (e.g.,17, 21, 22, 28, 35), we identified age and gender as the primary confounders. The subjects’ sleep was
summarized through AASM-scored hypnograms, forming the basis for proposing and deriving novel digital markers of
sleep and its dynamics.

• Balancing confounders, Figure 1(ii): To address confounding factors of age and gender, exhibiting distributional overlap
between OSA and healthy subjects, we applied Inverse Probability Weighting (IPW) (c.f.,36–38) to ensure balanced
comparisons between the two groups.

• Sleep dynamics modeling, Figure 1(iii): Utilizing hypnograms, we propose a novel “sleep fingerprint”, a matrix P
of sleep-stage transition proportions. We quantified this matrix using Dirichlet regression39, a method well-suited for
the compositional nature of P, within a causal S-Learner framework40 applied to IPW-balanced data. This approach
enables the estimation of changes in sleep (dynamics) across different ages, OSA severities (AHI), and the previously
understudied interplay of OSA with gender and sleep-wake-related comorbidities. This contribution is underscored by
the fact that 48.6% of OSA subjects in our dataset had at least one sleep-wake comorbidity in their conclusive diagnosis.

• Digital marker quantification, Figure 1(iv): Finally, by exploiting our estimated model, we present not only the
estimated effects of OSA on P but also derive several novel digital markers. These markers capture the disorder’s impact
on sleep, sleep-stage dynamics and also durations, personalized for arbitrary values of predictors, and are presented in
terms of Conditional Average Treatment Effect (CATE) and Risk-Ratio CATE (RR-CATE)41.

Our framework integrates the two main branches of sleep dynamics research—quantification of sleep-stage transitions and
durations—by demonstrating their interconnectedness and enabling their simultaneous quantification. As the first one in the
field, our study rigorously controls for the interaction between OSA, gender, and a wide range of comorbidities, offering
significant potential to discover new OSA phenotypes, personalized by age and apnea severity. By applying causal inference
techniques such as IPW and the S-learner, we address confounding and achieve precise estimates of the personalized effects of
OSA and its phenotypes. The results are publicly accessible through an interactive online app, fostering a broader scientific
exploration and discussion.

Results
The main findings of our study are presented in the three subsections:

• Modelling of sleep-stage transition matrix, following Figure 1(i)-(iii), presents the estimation of causal S-learner for
modelling the matrix P of sleep-stage transition proportions on IPW-balanced data.

• Personalized digital markers of sleep dynamics and the effects of OSA, following Figure 1(iv), introduces principal
findings on OSA-markers based on: 1. raw matrix P exploring the overall prevalence of individual transitions; 2. derived
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Figure 1. Graphical overview of the implemented approach for quantifying sleep-stage dynamics. Part (i): The study utilized
observational data, including hypnograms of subjects with a conclusive diagnosis of either Obstructive Sleep Apnea (OSA) or
healthy status. The illustration highlights differences in the overall prevalence of OSA (580 affected vs 62 healthy) concerning
gender (male predominance in OSA), age (higher OSA prevalence in older subjects), and comorbidities (not present in healthy
subjects). Part (ii): Inverse Probability Weighting (IPW) is applied to balance the data for the primary confounders of age and
gender, having distributional overlap between OSA and healthy subjects. Part (iii): A sleep fingerprint matrix P of sleep-stage
transition proportions is modelled using Dirichlet regression within a causal S-Learner framework to capture the effects of
OSA, its severity (Apnea-Hypopnea Index, AHI), age, gender, and comorbidities. Part (iv): The framework quantifies digital
markers of OSA (raw P, PM as the normalized Markovian P, and derived quantities such as sleep fragmentation), personalized
for subjects’ demographics, OSA severity, and comorbidities, and presented in terms of Conditional Average Treatment Effect
(CATE) and Risk-Ratio CATE (RR-CATE).

markers capturing certain clinical properties by summing up relevant dimensions of P; and 3. derived Markovian matrix
PM investigating sleep-stage-specific transition mechanisms related to stage durations. Utilizing our framework can
extrapolate effects for arbitrary values of predictors, the results are showcased for three scenarios according to OSA
severity, O1: mild (AHI = 5), O2: moderate (AHI = 15), and O3: severe (AHI = 30); three ages: A1: young (30
years), A2: middle-aged (50 years), A3: older (70 years); and for females (F) and males (M), without comorbidities.

• The third part introduces our app, which allows interactive exploration of results beyond the scope of the ones presented
within this paper (e.g., interactions of OSA with arbitrary comorbidities, evaluation of extreme OSA with AHI > 50, etc).

Modelling of sleep-stage transition matrix
Propensity score model and IPW balancing
To balance the Berner Sleep Data Base (BSDB) study dataset for the main confounders of gender and age, we used the Inverse
Probability Weighting (IPW) strategy, c.f., Figure 1(i)-(ii). Propensity scores introduced in Eq. 24 were used to calculate
weights according to Eq. 25. The estimates of propensity scores were based on the logistic regression model from Eq. 29. The
choice of gender and age as the inputs for the IPW was driven by the evidence of existing studies that control for them17, 22

and clinical evidence that OSA is more prevalent in males and at older ages35. In the BSDB exploited, both OSA and healthy
subjects can be observed across the entire range of age and genders, thus satisfying the assumption of overlap and positivity37.
After re-weighting the dataset, the characteristics of age and gender were balanced, which was evidenced by a t-test based on
IPW-reweighted means and standard deviations that failed to reject (p-val > 0.05) the null hypothesis of equality of variable
means between the OSA and healthy subjects.

Outcome model
The proportions of a total of 25 possible sleep-stage transitions were modelled using Dirichlet regression on IPW-balanced data,
c.f., Figure 1(iii). The model form followed Eq. 30, and the inclusion of the OSA indicator as one of its predictors exploited the
causal S-learner framework, enabling a straightforward quantification of effects and personalized markers of OSA in terms of
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Conditional Average Treatment Effect (CATE) and Risk-Ratio CATE (RR-CATE) (c.f., Eq. 27-28) on various sleep markers.
The model estimation followed the implementation of Dirichlet regression in R39. To assess uncertainty, both in the model
coefficients and derived effects, the nonparametric bootstrap with 200 repetitions was used to calculate 95% confidence intervals
(CI) based on 2.5% and 97.5% bootstrapped quantiles.

A summary of estimated regression coefficients together with CI for each predictor and transition proportion is provided
in Table 2. The estimates indicate a significant influence of both demographics (age and gender) and OSA and its severity
(AHI) on sleep-stage dynamics, as at least one of them had a significant impact on each of the transition proportions. The
significant interactions of OSA with gender point to the presence of possible gender-specific OSA phenotypes. The adjustment
for comorbidities appears to be essential as the comorbidity indicators influenced most of the transitions.

Given the complex relationship of the marginal effect on the outcome (i.e., transition %’s) with individual coefficients and
the actual predictors’ value (c.f., Eq. 18), we detail results in the intuitive scales of expected percentages, differences (CATE,
Eq. 27), and risk-ratios (RR-CATE, Eq. 28), below.

Personalized digital markers of sleep dynamics and the effects of OSA
The estimated outcome model enables various scenarios of comparisons of OSA vs healthy, including the raw matrix P, derived
markers (e.g., % of sleep-stages), and Markovian transition matrix PM , c.f., Figure 1(iv). All this, for arbitrary values of
predictors, provides a wide range of results that can inspire new investigative directions. Since all of our results refer to (possibly
derived) transition probabilities (%), we present them in RR-CATE (CATE)% format, indicating the rate of relative (absolute)%
changes, respectively. When selecting the most prominent effect in a group, we choose the one according to RR-CATE.

Matrix P of sleep-stage transition proportions
The heatmap in Figure 2 shows whether individual transition proportions in P (Eq. 1) were significantly altered due to specific
OSA conditions across different ages and genders. All these aggregated findings are based on detailed results depicted as
supplementary heatmap figures supplemented with respective estimates and CI. Figures 6 and 9 depict expected P for different
ages and OSA-severities for F and M, respectively. Based on that, Figures 7 and 10 present CATE comparisons between
different levels of OSA and healthy individuals of the same demographics, and Figures 8 and 11 depict the respective RR-CATE.

Figure 2. Heatmap of Risk-Ratio Conditional-Average-Treatment-Effects (RR-CATE) of OSA (compared to a matched
healthy subject) on individual dimensions of sleep-fingerprint matrix P of sleep-stage transition proportions, per gender (F, M),
age (A1, A2, A3), and OSA-severity (O1, O2, O3). Decreased (i.e., RR < 100%) and increased (i.e., RR > 100%) risk-ratios
are depicted with red and green shaded backgrounds, respectively. Significant effects are in bold and highlighted with a star (*).

Notably, except for N2 → N3 and N3 → N2 of A3-F, each significant effect identified for O1 or O2 of both genders was
followed with significant effect in the corresponding more severe OSA group. This follows the intuition, that the sleep-stage
dynamics and hence also P change gradually with increasing prevalence of apnea events (i.e., AHI). The exemption of older F
is justified by a significantly lower % of N3, 70.04 (-5.6)% in A3-O3 (c.f., Table 5).

As the entire P sums up to 100%, each decrease in a certain proportion is compensated with an increase in one or more other
ones. For F, a major decrease is observed in REM → REM, with RR-CATE of about 60% across all ages and OSA severities,
and the most prominent drop, 55.55 (-4.85)%, in older. This suggests significant REM sleep instability, which could impact
cognitive health42. The O2- and O3-F also show significantly decreased N3 → N3, as low as 57.08 (-6.97)% in A3, indicating
disrupted deep-sleep continuity, which may affect physical restoration and memory consolidation43. For A1-M, REM → REM
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decreased for all OSA severities, down to 67.5 (-6.19)%, and for A2-(O2,O3), 66.93 (-4.73)%, with the largest declines always
in O3. The decreases in all A3-M-OSA groups were not significant, likely due to a larger variance in estimates caused by the
limited number of healthy older M in the data. Contrary to F, a decrease in N3 → N3 was not significant in M, but a significant
decrease in N2 → N2 was noted for (A1, A2) O3-OSA, as low as 91.09 (-3.22)%.

For both genders of all ages and OSA severities, several significantly increased transition proportions were identified,
distinguishing them from healthy subjects. The most pronounced effects were found in A1-O3-F. The increased W → (N2, N3)
transitions, up to 234.6 (0.4)%, indicate more frequent arousals attributable to apneic events and subsequent attempts to quickly
regain restorative sleep. Increased transitions from N1 → N3, up to 241.0 (0.4)%, suggest a compensatory mechanism where the
body attempts to achieve the restorative effects of deep sleep, bypassing intermediate stages due to frequent sleep disruptions.
The increase in N3 → (N1, REM) transitions, up to 245.5 (0.3)%, indicates frequent deep sleep disruptions, causing a regression
to lighter sleep or irregular shifts to REM sleep. Lastly, elevated REM → (N1, N3) transitions, up to 261.6 (0.6)%, reflect REM
stage instability, with more frequent abrupt changes in sleep depth.

Interestingly, all OSA-F showed a significant increase in awakenings from all sleep stages, (N1, N2, N3, REM) → W. For
M, there was no increase in REM → W in any OSA group, and increases in (N1, N2, N3) → W were observed only for O2 and
O3. This suggests that in comparison to M, the OSA-F may experience more fragmented sleep due to frequent awakenings
from all stages, potentially leading to greater daytime sleepiness.

PSG markers derived from P
The heatmap in Figure 3 aggregates the OSA-effects identified for different PSG markers (c.f., Eq. 2-13) derived from P.
Detailed results concerning expected probabilities (%) of their occurrence following Eq. 18-19, CATE, and RR-CATE for
individual age and OSA categories are provided in Tables 3, 4, 5 for F, and in Tables 6, 7, 8 for M, respectively.

Figure 3. Heatmap of Risk-Ratio Conditional-Average-Treatment-Effects (RR-CATE) of OSA (compared to a matched
healthy subject) on PSG-markers derived from matrix P of sleep-stage transition proportions, per gender (F, M), age (A1, A2,
A3), and OSA-severity (O1, O2, O3). Decreased (i.e., RR < 100%) and increased (i.e., RR > 100%) risk-ratios are depicted
with red and green shaded backgrounds, respectively. Significant effects are in bold and highlighted with a star (*).

Regarding the percentagess of individual sleep-stages, the main effect of OSA shared between both genders of all ages
is the increase in N1 in O3, with the largest increase of 161.94 (5.53)% in A1-F. The increase affected also all O2-M, up to
122.36 (2.57)% in A1, and A1-O2-F, 134.41 (3.07)%. F seem to have more affected sleep macro-architecture by OSA than
M, as for all OSA-severities of (A1, A2)-F an additional increase in W%, up to 185.63% (3.57%) in A1-O3, suggesting a
reduced sleep-efficiency, and decreased REM%, as low as 74.9 (-4.25)% in A2-O3, was identified. Except for reduced REM%
in A1-O3-M, 79.54 (-4.46)%, these changes were identified only in F.

In addition to increased N3- and REM-awakening from Eq. 5-6 already discussed above, increased aggregates of total-
awakenings (Eq. 3), up to 192.55 (2.89)%, and of light-sleep-awakenings (Eq. 4), up to 200.35 (2.01)%, were observed in all
age and OSA categories with exception of O1-M, with largest effects in A1-O3-F.

A particularly sensitive marker of OSA for all severities appear to be NREM-and-REM oscillations (Eq. 7), which were
identified as significantly increased across all groups, peaking at 212.48 (3.59)% in A1-O3-F. This marker is elaborated in detail
in Figure 4 showcasing the expected outcome for F. The upper plots (1a-c) depict the expected probability (%), CATE, and
RR-CATE and corresponding CIs for varying age (and fixed AHI), whereas the bottom plots (2a-c) for varying AHI (and fixed
age). One can observe, that the effect of OSA remains significant over the entire range of both, age and AHI. The magnitude of
the difference tends to decrease with age (c.f., 1b-c), from CATE of about 4.5% in children to 1.5% in older age, likely due to
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generally shorter sleep with decreasing REM% and lower number of sleep cycles. The effect’s size increases rapidly with AHI
(c.f., 2b-c), which typically increases with age. The outcomes for M are illustrated in supplementary Figure 18.

Figure 4. Effects of age and OSA-severities on NREM-REM oscillations, P(NREM ⇄ REM), in females. The left plots (1a,
2a) depict expected probabilities for varying age with fixed AHI = 30, and for varying AHI with fixed age = 30. Based on that,
the central (1b, 2b) and right (1c, 2c) plots depict age- and AHI-related CATE and RR-CATE.

Another two highly sensitive derived markers of OSA include sleep- and sleep-stage-fragmentation from Eq. 10 and 12,
referring to probabilities of transitions between wakefulness and sleep, and switching from one non-W stage to the other,
respectively. The effect of the sleep-fragmentation was significant across all groups except O1-M and peaked at 192.33
(5.66)% for A1-O3-F. The sleep-stage-fragmentation was increased in all groups, peaking at 174.94 (10.42)% in A1-O3-F. The
sleep-stage-fragmentation marker is in-depth elaborated in supplementary Figures 19 and 20, for F and M, respectively.

The increased fragmentation is reflected in decreased sleep- and sleep-stage-compactness from Eq. 9 and 11, referring to
staying in not-interrupted sleep and sleep-stage, respectively. Reduced sleep-compactness, down to 88.42 (-9.65)% in A3-O3-F,
seems specific to F, suggesting their more frequent apnea-related arousals than M. The sleep-stage-compactness was reduced in
all categories of F, down to 76.77 (-16.54)% in A3-O3. This decrease, however, was not present for A3-M and A2-O1-M.

The reduced stage-specific-compactness metrics (e.g., REM → REM) were already elaborated in the section on P-specific
transition %’s. Yet, the stage-specific-fragmentation markers (Eq. 13) show significant alterations due to OSA across almost all
demographic groups. The only gender-specific difference can be observed in wake-fragmentation, which is increased in all
cases of F (likely due to more frequent awakenings experienced), up to 192.1 (2.77)% in A1-O3, but not for O1- and A3-O2-M.
The fragmentation related to non-REM (N1, N2, N3) stages increased in all OSA and demographics groups, ranging from
118.29 (1.18)% in N1-fragmentation in A1-O1-M to 178.61% (4.05%) in A1-O3-F. The most pronounced effects were visible
in REM-fragmentation, up to 219.51 (2.32)% in A1-O3-F, referring to more than twice as many transitions leaving REM sleep.

Markovian transition matrix PM derived from P
Finally, we present the main findings based on PM , derived from P through row normalization as shown in Eq. 14. While
P quantifies the overall probabilities (%) of the 25 sleep-stage transitions, PM conditions on the presence of a specific stage,
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summing to 100% per row. Therefore, whereas P evaluates overall chances of observing specific transitions in the hypnogram
during the night (e.g., 36.4% of N2 → N2 in healthy A1-F), the PM evaluates the distribution of the next sleep stage given
the current stage (e.g., 84.3% to stay in N2 in healthy A1-F), offering another perspective on the underlying mechanisms
of sleep dynamics. The heatmap in Figure 5 depicts how individual transitions of PM (Eq. 14) altered due to specific OSA
conditions across different ages and genders. Detailed results on expected transition probabilities of PM , CATE, and RR-CATE
for comparisons of OSA vs healthy are provided in heatmap Figures 12, 13, 14 and 15, 16, 17 for F and M, respectively.

Figure 5. Heatmap of Risk-Ratio Conditional-Average-Treatment-Effects (RR-CATE) of OSA (compared to a matched
healthy subject) on individual dimensions of row-normalized Markovian transition matrix PM , per gender (F, M), age (A1, A2,
A3), and OSA-severity (O1, O2, O3). Decreased (i.e., RR < 100%) and increased (i.e., RR > 100%) risk-ratios are depicted
with red and green shaded backgrounds, respectively. Significant effects are in bold and highlighted with a star (*).

W-transitions: Despite increased occurrences of P-transitions from W in F, the respective PM-dynamic was not significantly
altered, indicating that the mechanism of the W-transitions remains similar to healthy subjects, but those transitions tend to
occur more often. This suggests that for OSA-F, the overall increased W% is the main trigger of the W-related transitions in P.
Conversely, M exhibit increased W → (N2, N3, REM) transitions, up to 250.5 (1.3)% in A3-O3 for W → N2, across all ages
and OSA severities, suggesting an increased sleep pressure due to its disruption induced by apneic events.

N1-transitions: Both genders showed increased N1 → N3, up to 169.4 (0.9)% in A3-O1-F. Only F experience increased
N1 → W, up to 156.5 (4.7)% in A3-O1, and decreased N1 → N1, as low as 76.5 (-10.3)% in A1-O1. Increased N1 → REM
transitions were present in all F, up to 201.1 (3.4)% in A3-O1, but only in some of the O1-M, up to 122.7 (1.1)% in A3.

N2-transitions: All groups have decreased N2 → N2, down to 88.4 (-9.8)% in A1-O3-F, and, except for A1-O3-F,
significantly increased N2 → N3 transitions, up to 145.6 (2.2)% in A3-O3-F. All F groups have increased N2 → W transitions,
up to 177.6 (1.6)% in A3-O3-F, which is present also in all O3-M. N2 → N1 increased for all O2 and O3 groups, up to 179.8
(4.2)% in A3-O3-F, and N2 → R increased for all O3.

N3-transitions: Across all groups, the N3 dynamic had significantly increased transitions into REM, peaking up to 293.1
(2.1)% in A3-O3-F, pointing to almost three times higher occurrence of these atypical transitions in OSA. Additionally,
decreased N3 → N3, as low as 77.9 (-18.0)% in A1-O3-M, and increased N3 → N1, up to 316.8% (2.5%) in A3-O3-F, were
noted for all except O1-M. Transitions N3 → W increased in all (A2, A3)-F, up to 214.1% (2.6%) in A3, and only in O3-M of
the same demographics.

REM-transitions: The most prominent effects of OSA are visible in changed REM dynamics. The decrease in REM→REM
in both genders of all ages, down to 77.1 (-20.4)% in A3-O3-F, is compensated by increased transitions into all NREM-stages,
up to 345.8 (5.9)% in REM → N1 for A1-O3-F. The increased REM → W is specific for all F, up to 254.8 (5.3)% in A1-O3-F.
For M, these transitions are decreased partially for all O3 and A3-O2, up to 180.0% (2.8%) in A3-O3.

Stage-survival: Finally, following Eq. 15, the diagonal elements of PM (i.e., probabilities of W → W, N1 → N1, etc.)
simplistically approximate the average expected duration of individual sleep stages, bridging transition dynamics with
investigations modelling the sleep-bout durations. Here, naturally, significantly decreased probabilities of staying in a given
stage introduced above are equivalent to significantly decreased stage durations.

Interactive R Shiny app
The above-presented results focused on three categories age (30, 50, 70 years), OSA severity (mild, moderate, severe), and
both genders, considering a case without sleep-comorbidities. For a deeper exploration of our findings, the volume of which is
beyond the scope of this paper, we created a freely accessible app (https://mystatsapps.shinyapps.io/Causal_Sleep_Dynamics/)
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that interactively displays results for arbitrary values of predictors. As an input, the user specifies the transition(s) of interest by
clicking out some of the 25 (5×5) dimensions, age, OSA severity (AHI), and the presence of comorbidities (as indicated in
Eq 30). Additionally, the user chooses whether CATE and RR-CATE should be displayed for age or AHI (= CATE-variable).

As an output, the app displays a total of six panels. The most important one, Effects of OSA, displays expected
probabilities (%) of selected transitions for healthy vs OSA together with corresponding CATE and RR-CATE. All these outputs
are supplemented by 95% CI and are depicted for selected age (range 0-100 years) or AHI (range 5-100), and both genders.

The Percentual Transition Matrix and Markovian Transition Matrix tabs show the expected matrix
of sleep-stage transitions P and the derived row-normalized PM for healthy and OSA subjects of both genders and specified
characteristics. In addition, each tab shows matrices of CATE and RR-CATE depicted as heatmaps supplemented with 95% CI.

The Dirichlet Regression Coefficients tab summarizes regression coefficients as presented in Table 2. The
dimensions of specified transitions of interest from the input are highlighted.

The Marginal Effects of All Predictors tab approximate the Eq. 18 by calculating the difference in the
outcome by a row-indicated change in the predictors’ value. The marginal effects that are supplemented with 95% CI are shown
concerning four baselines (healthy, OSA) × (female, male), of specified characteristics from the input. Due to the complex
relationship of marginal effect with all Dirichlet dimensions its value changes with the values of predictors (c.f., Eq. 18). Hence,
their understanding can be particularly useful in understanding the interplay between different levels of demographics, OSA
severity, and particularly their interactions with comorbidities, that have been so far understudied.

Finally, the Sleep Stage Survival tab depicts survival curves of individual sleep stages, based on diagonal elements
on PM and Eq. 15. Notably, as this quantity is based on the whole-night PM , survival curves illustrate the overall average
duration of individual stages.

Discussion
Sleep is a complex phenomenon whose finest mechanisms are yet to be fully deciphered. Scoring sleep into a hypnogram of
five sleep-wake stages translates it into a simplified, human-readable code, enabling the calculation of PSG markers and their
interpretation by clinical personnel. Currently, likely due to fragmented or less intuitive methodologies, the established markers
from clinical PSG reports provide only negligible information on sleep dynamics1, 44. Yet, existing studies provide strong
evidence that more granular characteristics of sleep-stage transitions14–23 or sleep-stage duration/survival24–30 can be specific
for various sleep conditions and age. For clinical, economic, and ethical reasons, most of the related research has in common
that PSG data were collected in a non-randomised way and were analysed retrospectively, hence subjected to considerable
confounding33. A minority of studies investigating sleep dynamics addressed confounding either by analyzing subjects with
restricted demographic ranges (e.g.,14, 15, 24), or by selecting typically age- and gender-matched controls (e.g.,16, 18, 20, 30). This
may limit the findings’ generalizability or underfit the age- and gender-specific phenotypes.

By exploiting techniques of causal inference (IPW-balancing from Eq. 25; S-Learner from Eq. 30), our study presents a
novel and highly flexible approach to jointly quantify (i) sleep-stage dynamics, (ii) effect of disorder, and (iii) derive several
established as well as novel digital markers of sleep. We demonstrate our approach to OSA, the most prevalent sleep condition
and a significant risk factor, evidenced to impact sleep-macrostrucure and dynamics19, 22, 25–28.

Working with the observational BSDB database, we initially balanced the dataset using IPW-reweighting and addressed
the confounding of age and gender, whose distributions differed between healthy and OSA-affected subjects. Ignoring this, it
would be challenging to separate the effects of demographics (e.g., of ageing) from OSA, since its prevalence and severity
increase with age28. To quantify sleep-stage dynamics, we proposed to exploit the matrix P (Eq. 1), consisting of 25 (5 ×
5) interdependent transition proportions. Thanks to the flexibility of P to quantify all, the dynamics, derived markers, and
Markovian PM , we suggest considering it as a simple digital sleep-fingerprint. All dimensions of P were modelled jointly
as an outcome of Dirichlet regression (Eq. 17, 30), respecting their compositional nature (summing to 100%) and allowing
their straightforward aggregation to derive many established and novel PSG markers (c.f., Eq. 3-13). In contrast, analyzing
dependent outcomes, e.g., % of sleep stages and their transitions, separately, such as using (M)ANOVA22, would lead to biases
and disregard constraints on value ranges and cummulative sums. Considering predictors of age and gender allowed outcome
model’s (Eq. 30) adaptation to nonlinear changes in sleep due to ageing and quantification of possible gender phenotypes2, 4, 5.
Most importantly, the inclusion of the OSA indicator followed the causal S-learner framework40, allowing direct quantification
of OSA effects in terms of CATE and RR-CATE (c.f., Eq. 27-28) by comparing expected outcomes for healthy individuals
of given demographics with hypothetically matched OSA-subject of specified OSA-severity (AHI). Our modelling approach
avoids discretization of age and AHI, and hence allows quantification of personalized effects/markers, closely aligning the
needs of precision medicine. Uniquely, the richness of BSDB allowed us to account for interactions between OSA and several
other sleep comorbidities - a clinically well-known and relevant fact (c.f., 45–49), so far either overlooked (e.g.,19, 25), being
admitted but not handled (c.f., 28), or leading to analysis of subjects with no sleep-comorbidities (e.g.,22, 26). With 48.6% of
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OSA subjects in our observational dataset having at least one additional sleep comorbidity, addressing these interactions is
crucial for reducing bias and accurately estimating the impact of OSA from other conditions.

The estimated outcome model provides three main dimensions of our results. First, the quantification of sleep fingerprint
P provides information on the % of time spent in individual transitions and compactness of sleep-stages. Several transitions
were significantly increased by OSA for all demographics and AHI-severity groups: W → (N2, N3), N1 → N3, N3 → (N1,
REM), and REM → (N1, N3), all peaking with RR-CATE >200%. Despite their rare presence in healthy subjects, our findings
suggest they may be a sensitive marker of OSA. In addition, all OSA-F had significantly increased (N1, N2, N3, REM) → W,
W → REM, N1 → REM, REM → (W, N2), and decreased REM → REM, suggesting their higher vulnerability to awakenings
and REM-disruptions in comparison to M, for whom these effects were observed only partially. This finding may also be linked
to more likely REM-OSA in F50. Secondly, by aggregating dimensions of P, one can derive standard PSG markers (e.q., %
of sleep-stages), and many novel proposed ones, that may be specific to particular conditions. For all demographic and AHI
groups, OSA significantly increased NREM-REM oscillations (c.f., Eq. 7), overall sleep-stage fragmentation (c.f., Eq. 12), and
(N1, N2, N3, REM)-specific fragmentations (c.f., Eq. 13). In addition, all, sleep-, light-sleep, and deep-sleep-awakenings (c.f.,
Eq. 3-5), were increased for all moderate and severe-OSA groups. Finally, row-normalizing P yields the Markovian PM , which
quantifies the probabilistic distribution of the next phase given the current state, thus investigating deeper dynamic mechanisms.
For all age and AHI groups, OSA increased N1 → N3, N3 → REM, REM → (N1, N2, N3), and decreased REM → REM and
N2 → N2. All moderate and severe OSA had also increased N3 → N1 and decreased N3 → N3. For all OSA-M, an additional
increase in W → (N2, N3, REM) and for all OSA-F increase in N1 → (W, REM), (N2, REM) → W and decreased N1 → N1
was observed. Furthermore, we demonstrated that PM can also be used to model sleep-stage survival (Eq. 15), bridging the
two principal directions of sleep dynamics research: sleep-transitions14–23 and sleep-stage bout duration quantification24–30.
The merit of the stage survival analysis includes the evaluation of the functional form of the distribution. We can learn their
statistical property which provides insights into the underlying mechanism.

In summary, our findings from different perspectives confirm that OSA is associated with reduced continuity of N2, N3,
and REM sleep, reflected by increased sleep fragmentation19, 22, 25–28. By exploiting the matrices P and PM , we identified
OSA-specific transitions contributing to this fragmentation, particularly atypical transitions from light to deep sleep and
oscillations between N3 and REM. These transitions, though rare in healthy individuals, may serve as sensitive markers of
OSA, possibly reflecting compensatory mechanisms where the body attempts to acquire back the restorative states, after their
frequent disruption by apneic events. Additionally, we proposed several intuitive markers that aggregate dimensions of P,
demonstrating their potential to distinguish between disordered and healthy subjects. The results of our work are also available
as an interactive app, allowing in-depth exploration of results and proposed markers for arbitrary demographics, OSA-severity,
and their interactions with other sleep-comorbidities.

Our approach to support diagnostics, has broader applicability beyond the OSA use-case, as sleep dynamics and their
markers can be specific to other sleep disorders, such as narcolepsy, insomnia, periodic limb movement disorder, and others.
With the rise of telemedicine and increasing use of wearables, investigating sleep dynamics and its markers could become
a valuable screening tool for assessing the risk of psychiatric (e.g., depression, schizophrenia, etc.) and neurodegenerative
disorders (e.g., Parkinson’s disorder, Alzheimer’s disease, etc.), which are evidenced to be associated with disrupted sleep51–53.
Furthermore, with advances in automatic sleep-scoring tools that offer hypnodensity beyond the standard hypnogram54, our
framework could enhance the understanding of sleep micro-events and more granular sleep dynamics. Our future work will
extend our approach to address several of its limitations. Following ideas of21, we aim to extend it to the second-order
sleep-stage transitions that would require quantifying a 125 (= 5 x 25) dimensional transition cube. Next, we plan to account for
time spent asleep and investigate dynamics at different times of the night. Currently, we have focused on transitions aggregated
over the entire sleep period, but recognizing the non-stationary nature of sleep offers opportunities for identifying even more
specific markers. This would also concern the quantification of sleep-stage survival or duration, which our current work
approximated by an overall night expectation. Additionally, we plan to investigate in greater detail the interaction of OSA with
comorbidities, which can already be explored in our app.

Methods
This section describes the study dataset, introduces the novel digital marker of sleep and its properties, outlines the technical
framework for their quantification, and concludes with a use-case investigating the effects of OSA.

Dataset
For evaluations of our study, we exploited the clinical Berner Sleep Data Base (BSDB) from Inselspital, University Hospital
Bern. We considered a subset of 62 healthy subjects undergoing PSG as controls in several historical studies and a total of 560
individuals having OSA as one of their conclusive diagnoses, made by physicians considering all test-based diagnoses (e.g.,
actigraphy- or PSG-based), clinical anamnesis, and the context. The PSG signals were recorded at 200 Hz and scored manually
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according to the AASM rules1. To align older recordings scored by Rechtschaffen and Kales55 rules with AASM standard, N3
and N4 stages were merged into N3. To prevent bias due to possibly longer sleep-onset in the unfamiliar clinical setting, a part
of the PSG recording and hypnogram before the first sleep was cut off. Further, recordings with total sleep time <180 minutes,
>5% of the time with lights-on, no sleep-stage transitions, and subjects with breath control or ventilation therapy introduced, or
undergoing split night PSG evaluations were excluded. We considered 3 groups of OSA subjects: mild (O1) with AHI ∈ [5,15),
moderate (O2) with AHI ∈ [15,30), and severe (O3) with AHI ≥ 30. The overview of the study dataset is provided in Table 1.

Most sleep metrics and demographics differ significantly between healthy individuals and OSA groups, as well as across
different OSA severity levels. There is a clear trend of increasing age and % of males from healthy to more severe OSA, which
is also associated with changes in sleep architecture, such as decreased sleep efficiency and reduced N3 and REM %. Separating
the effects of these demographic shifts from the effects of OSA is a key challenge, addressed using a causal inference below.

H: Healthy O1: Mild OSA O2: Moderate OSA O3: Severe OSA Significant Pairs

DEMOGRAPHICS:
Subjects [count] 62 238 164 158
∗Males 25 (40.3) 166 (69.7) 117 (71.3) 127 (80.4) O1H, O2H, O3H
∗Females 37 (59.7) 72 (30.3) 47 (28.7) 31 (19.6) O1H, O2H, O3H
†Age 34.9 (18) 50.6 (14.9) 53.8 (14.7) 58 (11.9) O1H, O2H, O3H, O3O1

SLEEP METRICS:
†TST [minutes] 370.3 (62.9) 345.5 (74.3) 344.1 (76.4) 321.4 (64.2) O2H, O3H, O3O1, O3O2
†Efficiency [%] 88.4 (6.6) 83.4 (11.7) 81.3 (12.2) 78.9 (12.5) O2H, O3H, O3O1
†Sleep latency [minutes] 16.5 (15.4) 12.9 (19) 16.6 (24) 15.7 (22) O1H
†REM latency [minutes] 113.4 (50.7) 138.9 (80.1) 124.4 (72.6) 148.6 (86.3) -
†Hourly transitions [ N

hour ] 16.2 (4.9) 20.6 (5.6) 22.2 (6.1) 25.9 (7.9) O1H, O2H, O3H, O2O1, O3O1, O3O2
†Hourly awakenings [ N

hour ] 2.4 (1.2) 3.2 (1.7) 3.3 (1.7) 4 (2.8) O1H, O2H, O3H, O3O1
†W [%] 11.6 (6.6) 16.6 (11.7) 18.7 (12.2) 21.1 (12.5) O1H, O2H, O3H, O3O1
†N1 [%] 9.4 (6.3) 13.6 (7.6) 16.3 (9.1) 24.1 (13.3) O1H, O2H, O3H, O2O1, O3O1, O3O2
†N2 [%] 40.6 (10.3) 39.9 (10.3) 36.1 (10.7) 34.1 (13.2) O2H, O3H, O2O1, O3O1
†N3 [%] 21.7 (8.7) 16.9 (9.7) 16.4 (11.1) 10.2 (7.9) O1H, O2H, O3H, O3O1, O3O2
†REM [%] 16.7 (7.1) 13.1 (6.7) 12.5 (6.4) 10.4 (6.5) O1H, O2H, O3H, O3O1, O3O2

SLEEP COMORBIDITIES:
∗No comorbidity 62 (100) 94 (39.5) 85 (51.8) 109 (69) O3O1, O3O2
∗Single comorbidity 0 (0) 52 (21.8) 37 (22.6) 30 (19) -
∗Multiple comorbidities 0 (0) 92 (38.7) 42 (25.6) 19 (12) O2O1, O3O1, O3O2
∗Insomnias 0 (0) 44 (18.5) 22 (13.4) 15 (9.5) -
∗Narcolepsy type 1 0 (0) 11 (4.6) 7 (4.3) 4 (2.5) -
∗Other hypersomnias 0 (0) 88 (37) 37 (22.6) 15 (9.5) O2O1, O3O1, O3O2
∗Parasomnias 0 (0) 28 (11.8) 25 (15.2) 22 (13.9) -
∗Movement-related 0 (0) 23 (9.7) 13 (7.9) 12 (7.6) -
∗Circadian-rhythm-related 0 (0) 2 (0.8) 3 (1.8) 1 (0.6) -

Table 1. Comparison of demographics, sleep metrics, and prevalence of sleep comorbidities among healthy and (mild,
moderate, severe) OSA subjects in the BSDB dataset. Variables denoted with ∗ are binary, summarized as count (percentage),
N (%), and significantly different pairs are listed, following a significant chi-squared independence test and pairwise posthoc
proportions test. Healthy subjects were excluded from comorbidities comparisons as they had no comorbidities. Variables
denoted with † are continuous, summarized as mean (standard deviation), µ(σ), and significant pairs are listed following a
significant Kruskal-Wallis test and pairwise Wilcoxon posthoc test. All posthoc pairwise comparisons were performed with
Bonferonni corrections at the significance level of 0.05.

Matrix P of sleep-stage transition proportions: a basic sleep marker
Our framework proposes the use of a flexible digital marker—a sleep fingerprint—that, based on the observed sleep stages of a
subject, enables the derivation of both established and novel PSG parameters, quantifying various sleep characteristics that
may be specific to different sleep conditions. The basis for achieving this is the hypnogram, which represents the sequence of
sleep-wake stages (W, N1, N2, N3, REM) throughout the night. While sleep dynamics in clinical PSG reports are currently
limited to the total counts of transitions and awakenings, this can be easily extended by the 5 x 5 matrix of sleep-stage transition
proportions P. Let us denote the total number of epochs in the patient’s hypnogram (starting from sleep-onset) as NE , and the
number of transitions from stage i to j as Ni j. Each cell pi j of P can then be expressed as:

pi j =
Ni j

NE = P(next stage = j, current stage = i) = P(i → j) ∀i, j ∈ {W, N1, N2, N3, REM}, (1)
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indicating the empirical probability (proportion, %) of observing a transition from stage i to j (i → j), relative to all the
transitions observed in the hypnogram. In the following, we highlight three main dimensions of the clinical relevance of P.

P recovers the majority of clinically established PSG markers
For example, summing up the column transition proportions of P yields the overall percentage of sleep stages:

stage j % = p∗, j = ∑
i∈{W, N1, N2, N3, REM}

pi, j ∀ j ∈ {W, N1, N2, N3, REM}. (2)

In addition, other clinically commonly used PSG markers can be easily derived by considering relevant proportions and the
Total Sleep Time (TST), TST = NE

2 , in minutes. For example, Sleep Efficiency (SE), quantifying the percentage of sleep after its
onset, can be calculated as SE = ∑ j∈{N1, N2, N3, REM} p∗, j = 1− p∗,W . The Wake After Sleep Onset (WASO) minutes can be

computed as WASO = NE

2 p∗,W . The Number of Awakenings (NoA) can be determined by NoA = NE
∑i∈{N1, N2, N3, REM} pi,W .

Finally, the Number of Transitions (NoT) is given by NoT = NE
∑i∈{W, N1, N2, N3, REM}(1− pi,i).

P allows derivation of novel PSG markers
The aggregation of P-dimensions offers a great flexibility to derive several novel and highly intuitive digital markers of sleep and
its dynamics. Considering a set of sleep-states, S = {N1, N2, N3, REM}, we propose and in results also evaluate the following.

Total Awakenings, the probability of transitioning from any sleep-state (S ) to wakefulness:

P(S → W) = ∑
i∈S

pi,W = pN1,W + pN2,W + pN3,W + pREM,W, (3)

Light-sleep Awakenings, the probability of transitioning from light sleep (N1, N2) to wakefulness:

P(Light-sleep → W) = pN1,W + pN2,W, (4)

Deep-sleep Awakenings, the probability of transitioning from deep sleep (N3) to wakefulness:

P(N3 → W) = pN3,W, (5)

REM Awakenings, the probability of transitioning from REM sleep to wakefulness:

P(REM → W) = pREM,W, (6)

NREM-REM Oscillations, sum of probabilities for transitions between NREM sleep stages and REM sleep:

P(NREM ⇄ REM) = ∑
(i, j)∈{N1,N2,N3}×{REM}

pi, j (7)

Light-sleep Oscillations, sum of probabilities for transitions between the light sleep stages (N1 a, N2):

P(N1 ⇄ N2) = pN1,N2 + pN2,N1, (8)

Sleep Compactness, the total probability of staying within any (non-wake) sleep stages:

P(Sleep Compactness) = ∑
(i, j)∈S×S

pi, j, (9)

Sleep Fragmentation, the total probability of switching between wakefulness and sleep states:

P(Sleep Fragmentation) = ∑
i∈S

(pW,i + pi,W ), (10)

Sleep-stage Compactness, the sum of probabilities of staying within the same (non-wake) sleep stages:

P(Sleep-stage Compactness) = ∑
i∈S

pi,i, (11)

Sleep-stage Fragmentation, the probability of transitioning from one (non-wake) sleep stage to a different one:

P(Sleep-stage Fragmentation) = ∑
(i, j)∈S×S

i ̸= j

pi, j (12)
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Stage-specific Compactness and Fragmentation, for each sleep stage i, the probability of staying in the same stage and the
probability of switching to any other sleep stage, respectivelly:

P(i-th stage Compactness) = pi,i, P(i-th stage Fragmentation) = ∑
j:i̸= j

pi, j ∀i ∈ {W, N1, N2, N3, REM} (13)

Each metric from Eq. 3-13 expands the standard clinical PSG markers and focuses on a specific sleep pattern. Their quantification
requires no additional effort once the subject has undergone the PSG study and the hypnogram is available.

P bridges stage-transitions and durations-oriented sleep dynamics research.
Normalizing P so that each row sums to 1 (100%) yields a standard transition matrix, often utilized in Markovian models. We
denote this matrix as PM , where M indicates it is Markovian. Each cell, pM

i, j, corresponds to the conditional probability of
transitioning to stage j after being in stage i:

pM
i, j = P(next stage = j | current stage = i) =

pi, j

pi,∗
=

pi, j

∑ j∈{W, N1, N2, N3, REM} pi, j
∀i, j ∈ {W, N1, N2, N3, REM} (14)

The key difference is that while P provides an overall view of the plausibility of individual transitions, PM operates under
the assumption that a given state has occurred and problematically evaluates the chances of (not-)switching the sleep-stage
in the next epoch. Both P and PM are interconnected and offering two perspectives on sleep-stage dynamics. Notably, the
diagonal elements of PM enable straightforward quantification of the sleep-stage durations, as they are exponentially distributed,
E (λ ) = E (1− pM

i,i), with the expected duration (ED) of each stage (over entire night):

EDi = E(duration of stage i) =
1
λ

=
1

1− pM
i,i

∀i ∈ {W, N1, N2, N3, REM}, (15)

known as the mean sojourn time. Due to the scoring of sleep in 30-second windows, these durations are measured in epochs.

Causal framework to quantify sleep-stage transition matrix P and effects of a disorder
The preceding sections have highlighted the utility of investigating the matrix P as a sleep-fingerprint, showing its relation
to several clinically established PSG markers and its connection between stage-transition and stage-duration sleep dynamics
research. Moreover, we introduced several novel markers derived from P. To quantify P and the derived markers, the next
sections will present an approach that combines Dirichlet regression, well-suited for the compositional data of P, with elements
of causal inference to address confounding. The key challenge in modeling P lies in respecting the compositional nature of the
data, where the total of all percentages must sum to 100%. Ignoring this constraint, such as analyzing particular proportions
separately with ANOVA, can lead to significant bias and counterintuitive outcomes. This issue is evident in some meta-analyses
where, for example, aggregated percentages of sleep stages do not sum to 100%, as seen in Table 2 of 7. This challenge must be
addressed when modeling the proportions of sleep-stage transitions in P, which involve 25 compositional dimensions. Ensuring
the outcomes are intuitive and correct is crucial for enabling their interpretation by medical professionals.

Dirichlet regression: model formulation and properties
The Dirichlet distribution is well-suited for modeling compositional data, such as percentages or the elements of P. For
a random variable Y = (Y1,Y2, ...,YD) representing proportions over D dimensions, the probability density function of the
Dirichlet distribution is parameterized by a vector of positive reals α = (α1, ...,αD) and given by:

Dir(Y ;α) =
1

B(α)

D

∏
d=1

Y αd−1
d , (16)

where B(α) is the multivariate beta function ensuring normalization39. In Dirichlet regression, the logarithms of α are modeled
as functions of covariates, adapting the distribution’s characteristics based on predictor values:

log(αd) = βd0 +βd1X1 + · · ·+βdKXK , (17)

where X = (X1, ...,XK) is a set of K covariates and βd = (βd0, ...,βdK) a vector of regression coefficients for the d-th dimension.
The expectation of each component Yd , E[Yd ], and the marginal effect of X j on E[Yd ],

∂E[Yd ]
∂Xk

, are directly influenced by all
elements of X and α , reflecting the interdependencies of compositional data:

E[Yd ] =
αd

∑
D
j=1 α j

=
exp(βd0 +βd1X1 + · · ·+βdkXK)

∑
D
j=1 exp(β j0 +β j1X1 + · · ·+β jkXK)

,

∂E[Yd ]

∂Xk
= E[Yd ]

(
βdk −

D

∑
j=1

β jkE[Yj]

)
. (18)
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A convenient property of the Dirichlet distribution is its ability to aggregate over several dimensions, allowing flexible
quantification of measures based on the elements’ summation. For example, aggregating dimensions i and j yields:

Y ′ = (Y1, ...,Yi +Yj, ...,YD)∼ Dir(Y ′;(α1, ...,αi +α j, ...,αD)). (19)

Thus, Dirichlet regression is suitable for modelling P, and its aggregation property facilitates straightforward quantification of
all markers derived from it (c.f., Eq. 2-13).

Causal elements
In contrast to randomized experiments, the analysis of observational data, such as those from PSG databases, is susceptible to
confounding, due to varying distributions of characteristics (e.g., age), between treated/exposed and healthy-control subjects.
Our study, which aims to quantify changes in sleep parameters resulting from a sleep disorder, adopts the principles and
standard notation of causal inference41. We define the treatment/exposure variable T as an indicator of whether a subject suffers
from a particular disorder of interest (T = 1), or is a healthy control (T = 0). The outcome (Y ) represents the sleep parameter
investigated, such as P, while subject characteristics and potential confounders are denoted as X .

Potential outcomes framework and causal estimands. The potential outcomes framework asserts to each individual two
hypothetical outcomes: Y (1), under T = 1, and Y (0), without exposure, T = 0. The Individual Treatment Effect (ITE), τi, is
the difference between these outcomes, evaluating the causal effect of exposure (e.g., OSA) on subject’s outcome (e.g., sleep):

ITE = τi = Yi(1)−Yi(0). (20)

The Average Treatment Effect (ATE) is the expected ITE, assessing the effect of T across the entire population:

ATE = E[τ] = E[Y (1)−Y (0)]. (21)

The Conditional Average Treatment Effect (CATE) assesses τ(x), standing for the treatment effect within a specific subgroup of
the population characterized by covariates X , making it suitable to quantify personalized markers for different conditions:

CATE(X) = E[τ(x)] = E[Y (1)−Y (0) | X ], (22)

The fundamental problem of causal inference is that only one of the two potential outcomes is observed for each individual,
according to their treatment/exposure assignment Ti:

Y obs
i = Yi(Ti) = TiY (1)+(1−Ti)Y (0), (23)

making it impossible to directly calculate all hypothetical estimands (ITE/ATE/CATE) from observed data (Y obs
i ,Ti,Xi).

Personalized markers using CATE estimates. To estimate (C)ATE from observational data, advanced techniques are
required to adjust for confounders and mimic a randomized experiment setting. One method exploits Propensity Scores (PS):

π(Xi) = P(T = 1|Xi), (24)

assessing the probability of receiving treatment given the individual’s characteristics X . Adjusting for PS removes biases
associated with included covariates36. In addition, by assuming positivity (i.e., all confounder values can be observed in both
treated and controls) and no unobserved confounders, the treatment and potential outcomes become independent conditional on
π(Xi), T ⊥ Y (0),Y (1)|π(X), allowing straightforward effect estimation by matching or regressing the outcome on PS37.

Another approach, Inverse Probability Weighting (IPW), balances the distribution of X across treated and controls by
creating a pseudo-population where each original subject is re-weighted using weights:

wi =
Ti

π(Xi)
+

1−Ti

1−π(Xi)
. (25)

The weights can be, for example, incorporated into flexible, even machine-learning-based, outcome models (e.g., weighted
regression) to estimate the treatment effect while mitigating selection bias38.

In our study, focusing on quantifying the effects of OSA (T = 1) on P, we employ IPW within the S-learner framework40.
The S-learner is a baseline approach of meta-learners, enabling flexible estimation of heterogeneous CATE. The S-learner
quantifies the outcome using a single model (hence S-Learner), including the treatment indicator T as one of its predictors:

µ(x, t) = E[Y obs|X = x,T = t], (26)
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allowing straightforward estimation of CATE from Eq. 22 that is easily extrapolated over the entire range of X :

ˆCATE(x) = µ̂(x,1)− µ̂(x,0). (27)

For probabilistic outcomes, the Risk-Ratio CATE (RR-CATE) is preferred as it naturally compares the chances of an event:

ˆRR-CATE(x) =
µ̂(x,1)
µ̂(x,0)

. (28)

One of the key benefits of S-Learner is its simplicity in extrapolating the (RR-)CATE estimates over and beyond the observed
values of X . Unlike other meta-learners (e.g., T- or X-learner40) that fit separate response functions for exposed (T = 1) and
control (T = 0) subjects, the S-learner estimates a single model and thus requires less data, while assuming that the effects of
the other (non-treatment) variables are shared within groups.

Practical considerations. Care must be taken in interpreting causal effects due to assumptions underlying PS (and so IPW),
such as no unobserved confounders and positivity. These assumptions are challenging to validate rigorously. In summary,
addressing confounding is better than ignoring it, but interpretations should consider the assumptions made.

Study use case: effects of OSA on sleep-stage transitions matrix P and derived markers
The practical part of our study links the proposed sleep fingerprint P (c.f. Eq. 1) and derived markers (c.f., Eq. 2-13 and Eq. 14)
to a causal framework for their efficient quantification and estimation of disorder effect. We demonstrate our approach on OSA,
the most prevalent sleep disorder and a significant risk factor, and exploit study dataset from BSDB.

To model PS from Eq. 24, we applied the logistic regression including confounders the most frequently occurring in the
literature: age and gender. Both factors are also known to impact the risk of OSA and at the same time, their value range is
not constrained between OSA and healthy subjects, thus meeting the positivity assumption. The PS model included separate
predictors of scaled age (X(Age>50)/10), gender indicator (Imale), and their interaction:

π(X) = P(OSA = 1 | X) =
1

1+ e−(β0+β1Imale+β2X(Age>50)/10+β3Imale×X(Age>50)/10)
. (29)

The IPW weights based on Eq. 25 were used to balance the data concerning the main confounders shared.
To estimate the effects, i.e., (RR)-CATE from Eq. 27-28, of OSA on the compositional outcome of P, the Dirichlet

regression, as introduced in Eq. 16-17, was exploited to model the response within the S-learner framework from Eq. 26. Each
of the 25 possible transition proportions captured in P and indexed as (i, j) ∀i, j ∈ {W, N1, N2, N3, REM}, was modelled
using the predictor specific for the corresponding dimension characterized by α(i, j):

log(α(i, j)) =β(i, j),0 +β(i, j),1Imale +β(i, j),2X(Age>50)/10 +β(i, j),3IOSA +β(i, j),4(IOSA × Imale)+

β(i, j),5(IOSA ×X(AHI>5)/10)+β(i, j),6(IOSA × IInsomnia_Com)+β(i, j),7(IOSA × INT1_Com)+

β(i, j),8(IOSA × IOtherHyp_Com)+β(i, j),9(IOSA × IParasomnia_Com)+β(i, j),10(IOSA × IMovement_Com).

(30)

This log-transformed α(i, j) was regressed on several covariates and interaction terms with a primary goal to separate and
quantify the effect of OSA, present as an indicator variable IOSA. Although this S-learner model was estimated on IPW-balanced
data (c.f., Eq. 29), the inclusion of age and gender was justified by the necessary adjustment due to their known influence
on sleep manifestation. Next, the interaction of OSA with gender was also included, to investigate potential gender-specific
phenotypes. In addition, several variables that violating the positivity assumption were included, as they could not be utilized
within the PS model due to their disjoint distributions among healthy and OSA subjects. This included the interaction terms of
OSA with Apnea Hypopnea Index (AHI), X(AHI>5)/10, capturing the apnea severity as the number of breath-arrests per hour.
Uniquely, our model adjusts for a comprehensive range of comorbidities present as indicator variables: insomnia (IInsomnia_Com),
Narcolepsy Type 1 (NT1, INT1_Com), other hypersomnolence except NT1 (IOtherHyp_Com), parasomnias (IParasomnia_Com), and
movement-related sleep-disorders (IMovement_Com). The distribution of AHI and all the comorbidities is completely disjoint, as
healthy subjects do not suffer from any disorder/comorbidity and AHI values in OSA subjects are always greater than 5.

To assess uncertainty and calculate confidence intervals (CI) in all strands of our investigations, including the PS model,
IPW-balanced S-learner with Dirichlet regression, and subsequent quantification of P-derived markers using (RR)-CATE, we
implemented a non-parametric bootstrap procedure with 200 repetitions, inspired by56.
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Supplementary materials
Outcome model of Dirichlet regression

α Intercept Imale X(Age>50)/10 IOSA IOSA × Imale IOSA ×X(AHI>5)/10 IOSA × IInsomnia_Com IOSA × INT1_Com IOSA × IOtherHyp_Com IOSA × IParasomnia_Com IOSA × IMovement_Com
W → W 1.11* (0.25, 1.94) -0.18 (-0.64, 0.09) 0.00 (-0.10, 0.10) -0.59* (-1.72, -0.19) 0.50* (0.12, 1.62) 0.12 (-1.42, 0.51) -0.32 (-0.61, 0.36) 0.01 (-0.29, 0.22) 0.10 (-0.23, 1.68) -0.06* (-0.11, -0.04) 0.19* (0.05, 0.44)
W → N1 0.65 (-0.33, 2.00) 0.17 (-0.59, 0.48) 0.26* (0.04, 0.65) 0.07 (-0.80, 0.48) 0.17* (0.05, 1.07) 0.01 (-0.04, 0.06) 0.34* (0.09, 0.65) -1.34* (-1.47, -1.12) -0.96* (-1.86, -0.57) -0.13 (-0.31, 0.02) -0.14* (-0.44, -0.01)
W → N2 0.74* (0.28, 2.03) -0.02 (-0.04, 0.01) 0.26* (0.14, 0.48) 1.18* (0.80, 1.60) 0.01 (-0.73, 0.31) -0.19 (-0.58, 0.06) -0.59* (-1.23, -0.33) -0.06 (-0.27, 0.59) 0.17 (-2.32, 0.92) 0.23 (-0.04, 0.81) 0.03 (-0.20, 0.23)
W → N3 -0.44 (-2.04, 0.32) 0.01 (-0.13, 0.18) -0.16* (-0.61, -0.01) -0.02 (-0.37, 1.51) -0.40 (-1.64, 0.02) 0.04 (-0.28, 0.64) -0.22 (-0.62, 0.09) -0.00 (-0.05, 0.19) -0.23* (-0.33, -0.12) 0.33* (0.17, 0.66) -1.59* (-1.65, -1.50)
W → R -0.49 (-2.21, 0.52) 0.02 (-0.18, 0.33) -0.07 (-0.29, 0.08) 0.14* (0.03, 0.85) -0.04* (-0.09, -0.00) 0.48* (0.22, 0.84) -0.31 (-0.65, 0.05) -0.12 (-0.37, 0.05) -0.67* (-1.15, -0.07) -0.41* (-1.18, -0.17) -0.01 (-0.09, 0.40)
N1 → W -0.06 (-0.11, 0.02) 0.21* (0.07, 0.34) -0.18 (-0.57, 0.24) -0.62* (-1.17, -0.32) -0.35* (-0.59, -0.13) -0.71* (-1.64, -0.34) 0.03 (-0.29, 1.21) 0.09 (-0.54, 0.30) -0.27 (-0.89, 1.21) -0.17 (-0.53, 0.06) 0.03 (-0.00, 0.23)
N1 → N1 0.31 (-0.28, 0.71) -0.16* (-0.41, -0.01) 0.40 (-0.01, 1.66) 0.15 (-1.34, 0.54) 0.48* (0.18, 1.07) 0.05 (-0.55, 0.45) 0.03 (-0.03, 0.47) -0.03* (-0.05, -0.01) 1.03* (0.49, 1.58) -0.82* (-1.52, -0.30) -0.14* (-0.26, -0.09)
N1 → N2 0.82* (0.39, 1.65) -0.04 (-0.23, 0.15) 0.26* (0.14, 1.07) -0.02 (-0.07, 0.03) 0.28* (0.06, 0.78) 3.48* (2.98, 3.98) -0.43* (-0.86, -0.06) -0.08 (-0.19, 0.04) -0.83* (-2.01, -0.21) 0.36 (-0.19, 2.02) 0.01 (-0.46, 0.10)
N1 → N3 0.51* (0.13, 1.11) -1.52* (-1.61, -1.39) -0.25 (-1.03, 0.10) -0.13 (-0.45, 0.12) -0.50* (-1.44, -0.23) -0.12 (-0.52, 1.39) 0.09 (-1.13, 0.44) -0.09 (-0.24, 0.18) -0.20 (-0.87, 0.37) 0.12 (-0.01, 1.19) -0.01* (-0.03, -0.01)
N1 → R -0.87* (-1.91, -0.26) -0.06 (-0.18, 0.43) -0.25 (-1.48, 0.18) 0.02 (-0.29, 0.68) -0.33* (-0.82, -0.05) 0.15 (-0.04, 1.10) -0.07* (-0.11, -0.04) 0.13* (0.03, 0.27) -1.47* (-1.60, -1.34) -0.02 (-0.87, 0.30) -0.03 (-0.10, 0.02)
N2 → W -0.07 (-0.72, 0.47) 0.02 (-0.01, 0.23) 0.01 (-0.03, 0.04) 0.52* (0.26, 0.83) -0.06 (-0.49, 0.44) -0.76* (-1.61, -0.47) -0.11 (-0.33, 0.06) -0.03 (-0.25, 0.12) -0.12 (-0.23, 0.34) -0.25 (-1.93, 0.25) 0.04 (-0.02, 0.22)
N2 → N1 0.59* (0.21, 1.00) -0.20* (-0.38, -0.11) 0.09 (-0.12, 0.33) -0.76* (-1.60, -0.36) -0.03 (-0.45, 1.35) 0.19 (-1.56, 0.64) -0.23 (-0.51, 0.28) -0.02 (-0.19, 0.13) 0.04* (0.01, 0.24) -0.04 (-0.10, 0.01) 0.10* (0.05, 0.22)
N2 → N2 0.18 (-0.18, 1.46) 0.07 (-0.46, 0.18) 0.49* (0.22, 1.03) -0.04 (-0.65, 0.32) 0.06 (-0.03, 0.42) -0.17* (-0.24, -0.09) 0.34* (0.18, 0.62) 0.47* (0.18, 0.84) -0.21* (-0.36, -0.10) -0.28* (-0.52, -0.02) -0.12* (-0.33, -0.04)
N2 → N3 0.20* (0.10, 0.96) -0.01* (-0.03, -0.01) 0.31* (0.10, 0.77) -1.54* (-1.62, -1.42) -0.39* (-0.91, -0.01) -0.30 (-0.64, 0.02) -0.46* (-0.93, -0.29) -0.14 (-0.57, 1.46) 0.13 (-0.37, 0.25) 0.25 (-0.14, 0.90) -0.03 (-0.16, 0.03)
N2 → R -0.54* (-1.21, -0.18) -0.03 (-0.11, 0.03) -0.51* (-1.49, -0.25) -0.05 (-0.13, 0.37) 0.08 (-1.43, 0.49) -0.14 (-0.55, 0.63) -0.30* (-0.61, -0.09) 0.13* (0.02, 0.77) -0.02* (-0.04, -0.01) 0.32* (0.08, 0.95) 2.57* (2.29, 2.99)
N3 → W -0.06 (-1.36, 0.32) 0.06 (-0.01, 0.25) -0.04 (-0.87, 0.32) 0.03 (-0.01, 0.23) -0.04* (-0.08, -0.00) 0.52* (0.22, 0.96) -0.80* (-1.05, -0.44) -0.32 (-0.79, 0.02) -0.04 (-0.11, 0.02) -0.47* (-1.47, -0.23) -0.14 (-0.48, 1.26)
N3 → N1 -0.02 (-0.06, 0.02) 0.12* (0.07, 0.23) 1.65* (1.04, 2.06) -0.17* (-0.32, -0.09) 0.11 (-0.08, 0.29) -0.93* (-1.97, -0.39) -0.15 (-0.55, 0.88) 0.05 (-1.78, 0.50) 0.03 (-0.04, 0.20) -0.24 (-0.68, 0.10) 0.01 (-0.12, 0.57)
N3 → N2 0.08 (-0.16, 0.31) -0.13* (-0.33, -0.07) 0.13 (-0.35, 1.50) 0.06 (-0.43, 0.15) 0.06 (-0.25, 0.60) -0.30 (-1.07, 0.17) 0.07 (-0.05, 0.77) -0.13* (-0.19, -0.08) 0.11* (0.04, 0.23) -0.98* (-1.24, -0.68) -1.19* (-1.97, -0.76)
N3 → N3 0.36* (0.10, 0.93) -0.01 (-0.15, 0.09) 0.33* (0.13, 1.40) -0.01* (-0.03, -0.00) 0.36* (0.14, 0.62) 0.65* (0.36, 1.00) -0.42* (-0.89, -0.18) -0.27 (-0.56, 0.01) -0.12* (-0.34, -0.06) 0.02 (-0.31, 1.08) 0.28 (-1.23, 0.74)
N3 → R 0.46* (0.26, 0.85) -1.42* (-1.58, -1.21) -0.90* (-2.21, -0.52) -0.04 (-0.10, 0.03) -0.39* (-0.82, -0.17) -0.16 (-0.55, 1.47) 0.03 (-1.16, 0.45) -0.45 (-0.74, 0.28) -0.02 (-0.16, 0.07) -0.05 (-0.11, 0.18) -0.15* (-0.22, -0.08)
R → W -0.55* (-1.46, -0.30) 0.05 (-0.16, 0.91) 0.19 (-1.21, 0.69) 0.02 (-0.06, 0.18) -0.12 (-0.47, 0.11) 0.12* (0.01, 0.78) -0.06* (-0.10, -0.04) 0.31* (0.06, 0.62) -0.82* (-1.10, -0.51) -0.31* (-0.68, -0.04) -0.42* (-0.92, -0.01)
R → N1 -0.05 (-0.67, 0.28) 0.03 (-0.04, 0.33) 0.03 (-0.02, 0.09) 0.13* (0.07, 0.24) 0.68* (0.29, 1.07) -0.35* (-0.85, -0.03) -0.09 (-0.28, 0.10) -0.60* (-1.19, -0.32) 0.22 (-0.18, 1.54) -0.01 (-1.06, 0.35) 0.08 (-0.62, 1.10)
R → N2 -1.08* (-1.32, -0.71) -0.19* (-0.47, -0.05) -0.12 (-0.46, 0.19) -0.10* (-0.32, -0.02) 0.06 (-0.35, 1.66) 0.04 (-1.72, 0.47) 0.08 (-0.17, 0.49) -0.24 (-0.67, 0.09) 0.11* (0.01, 0.73) -0.04* (-0.07, -0.02) 0.76* (0.29, 1.16)
R → N3 -0.21 (-0.52, 0.51) -0.04 (-0.89, 0.19) 0.74* (0.41, 1.41) 0.01 (-0.12, 0.12) 0.14* (0.01, 0.85) -0.13* (-0.19, -0.09) 0.31* (0.14, 0.68) 2.76* (1.65, 3.17) -0.26 (-0.72, 0.03) -0.08 (-0.24, 0.04) -0.68* (-1.48, -0.13)
R → R -0.04 (-0.11, 0.16) 0.00 (-0.02, 0.02) 0.50* (0.13, 0.99) -0.91* (-1.29, -0.58) -0.50* (-1.05, -0.16) -0.26 (-0.55, 0.01) -0.25* (-1.11, -0.05) -0.46 (-1.10, 1.20) -0.12 (-1.42, 0.25) -0.08 (-0.25, 0.26) -0.19 (-1.05, 0.31)

Table 2. Summary of estimated coefficients together with bootstrapped 95% confidence interval for the Dirichlet regression outcome model from Eq. 30. Significant
estimates are highlighted in bold *. The rows correspond to individual dimensions, specific to each of the 25 possible sleep-stage transitions.
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Comparison based on matrices of transition proportions P

Figure 6. Expected matrices of transition proportions P for healthy females and females with OSA (AHI = 5, 15, 30) at different ages (30, 50, 70 years). Estimates are
supplemented with 95% bootstrapped confidence intervals.
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Figure 7. Difference (CATE) of matrices of transition proportions P for healthy females versus females with OSA (AHI = 5, 15, 30) at different ages (30, 50, 70 years).
Estimates are supplemented with 95% bootstrapped confidence intervals.
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Figure 8. Risk ratio (RR-CATE) of matrices of transition proportions P for healthy females versus females with OSA (AHI = 5, 15, 30) at different ages (30, 50, 70
years). Estimates are supplemented with 95% bootstrapped confidence intervals.
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Figure 9. Expected matrices of transition proportions P for healthy males and males with OSA (AHI = 5, 15, 30) at different ages (30, 50, 70 years). Estimates are
supplemented with 95% bootstrapped confidence intervals.
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Figure 10. Difference (CATE) of matrices of transition proportions P for healthy males versus males with OSA (AHI = 5, 15, 30) at different ages (30, 50, 70 years).
Estimates are supplemented with 95% bootstrapped confidence intervals.
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Figure 11. Risk ratio (RR-CATE) of matrices of transition proportions P for healthy males versus males with OSA (AHI = 5, 15, 30) at different ages (30, 50, 70 years).
Estimates are supplemented with 95% bootstrapped confidence intervals.

25/40

 . 
C

C
-B

Y
 4.0 International license

It is m
ade available under a 
 is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in perpetuity. 
(w

h
ich

 w
as n

o
t certified

 b
y p

eer review
)

T
he copyright holder for this preprint 

this version posted O
ctober 23, 2024. 

; 
https://doi.org/10.1101/2024.10.23.24315965

doi: 
m

edR
xiv preprint 

https://doi.org/10.1101/2024.10.23.24315965
http://creativecommons.org/licenses/by/4.0/


Effect tables

Quantity Estimate Healthy O1: OSA (AHI = 5) O2: OSA (AHI = 15) O3: OSA (AHI = 30)
P(W) % 4.17 (2.85, 7.15) 6.28 (4.45, 11.24) 6.85 (4.75, 11.67) 7.74 (5.34, 12.55)

CATE 2.1* (0.87, 4.29) 2.68* (1.42, 4.94) 3.57* (2.11, 5.91)
RR-CATE 150.47* (118.71, 199.74) 164.35* (129.93, 212.12) 185.63* (143.44, 236.11)

P(N1) % 8.93 (7.14, 11.04) 10.52 (8.87, 12.22) 12 (10.17, 13.57) 14.45 (11.34, 16.46)
CATE 1.59 (-0.52, 3.74) 3.07* (0.78, 5.23) 5.53* (2.8, 7.61)
RR-CATE 117.87 (94.82, 146.85) 134.41* (107.51, 164.96) 161.94* (125.03, 197.44)

P(N2) % 43.03 (35.97, 46.7) 45.99 (35.57, 49.56) 45.29 (34.95, 48.5) 43.98 (34.44, 47.83)
CATE 2.95 (-2.47, 7.24) 2.26 (-3.24, 6.9) 0.94 (-4.71, 5.28)
RR-CATE 106.86 (94.35, 118.57) 105.25 (92.97, 117.03) 102.2 (89.66, 113.11)

P(N3) % 22.45 (7.76, 29.61) 21.02 (11.32, 28.36) 19.62 (11.16, 26.19) 17.65 (11.24, 23.86)
CATE -1.43 (-6.72, 5.62) -2.83 (-7.76, 5.96) -4.8 (-9.49, 6.39)
RR-CATE 93.63 (75.77, 164.23) 87.4 (71.79, 165.62) 78.61 (63.55, 171.61)

P(REM) % 21.42 (15.78, 39.37) 16.2 (11.82, 28.76) 16.24 (11.7, 28.3) 16.18 (11.55, 27.31)
CATE -5.22* (-12.13, -1.35) -5.18* (-12.89, -1.7) -5.24* (-13.99, -1.88)
RR-CATE 75.62* (63.08, 93.18) 75.8* (63.54, 91.42) 75.53* (62.73, 90.04)

P((N1,N2,N3,REM) → W) % 3.12 (2.2, 6.87) 4.82 (3.24, 10.16) 5.29 (3.6, 10.48) 6.02 (4.04, 11.3)
CATE 1.69* (0.77, 3.64) 2.16* (1.12, 3.83) 2.89* (1.6, 4.53)
RR-CATE 154.24* (126.08, 195.75) 169.25* (135.59, 209.54) 192.55* (151.32, 230.47)

P((N1,N2) → W) % 2.01 (1.35, 4.25) 3.11 (2.1, 7.13) 3.46 (2.36, 7.37) 4.02 (2.72, 7.83)
CATE 1.1* (0.46, 2.38) 1.45* (0.74, 2.88) 2.01* (1.18, 3.49)
RR-CATE 154.75* (121.62, 200.22) 172.33* (137.19, 215.64) 200.35* (154.77, 253.65)

P(N3 → W) % 0.59 (0.45, 1.09) 0.84 (0.61, 1.46) 0.89 (0.66, 1.49) 0.98 (0.72, 1.56)
CATE 0.25* (0.03, 0.53) 0.3* (0.1, 0.58) 0.39* (0.17, 0.69)
RR-CATE 141.77* (104.75, 190.72) 151.7* (113.57, 199.84) 165.96* (124.65, 219.4)

P(REM → W) % 0.53 (0.25, 1.21) 0.88 (0.46, 2.05) 0.93 (0.5, 2.09) 1.02 (0.51, 2.12)
CATE 0.35* (0.08, 1.1) 0.41* (0.12, 0.93) 0.49* (0.16, 0.96)
RR-CATE 166.23* (115.25, 259.61) 177.15* (122.92, 270.8) 192.6* (130.02, 293.61)

P(NREM ⇄ REM) % 3.19 (2.19, 7.53) 5.53 (4.07, 15.36) 6.02 (4.39, 16.38) 6.78 (4.98, 17.83)
CATE 2.33* (1.19, 7.93) 2.83* (1.56, 8.93) 3.59* (2.06, 10.38)
RR-CATE 173.18* (135.99, 244.33) 188.79* (145.45, 260.22) 212.48* (159.99, 292.82)

P(N1 ⇄ N2) % 5.89 (4.25, 8.34) 7.17 (5.41, 9.46) 8.1 (6.07, 9.92) 9.61 (7.14, 11.37)
CATE 1.28 (-0.2, 2.42) 2.21* (0.59, 3.37) 3.72* (1.57, 5.04)
RR-CATE 121.73 (97.19, 150.33) 137.52* (108.78, 167.48) 163.24* (125.05, 193.52)

P(Sleep compactness) % 92.82 (85.85, 95.05) 89.31 (76.67, 92.32) 88.21 (75.49, 91.52) 86.49 (73.31, 90.45)
CATE -3.52* (-8.83, -1.43) -4.62* (-10.46, -2.37) -6.34* (-12.18, -4.02)
RR-CATE 96.21* (89.76, 98.45) 95.02* (87.88, 97.4) 93.17* (85.11, 95.75)

P(Sleep fragmentation) % 6.13 (4.26, 13.87) 9.24 (6.28, 23.18) 10.23 (7.14, 24.35) 11.79 (8.03, 26.05)
CATE 3.11* (1.43, 9.04) 4.1* (2.22, 10.58) 5.66* (3.38, 11.96)
RR-CATE 150.7* (124.39, 190.2) 166.87* (139.17, 204.44) 192.33* (160.07, 236.24)

P(Sleep-stage compactness) % 78.91 (61.89, 82.74) 68.93 (36.64, 74.62) 66.28 (34.47, 72.21) 62.15 (30.04, 68.79)
CATE -9.98* (-25.15, -6.58) -12.64* (-28.1, -9.02) -16.76* (-32.37, -12.66)
RR-CATE 87.35* (58.8, 91.84) 83.98* (55.19, 88.7) 78.76* (49.17, 84.41)

P(Sleep-stage fragmentation) % 13.91 (10.74, 23.49) 20.37 (16, 40.05) 21.93 (17.32, 40.28) 24.33 (18.83, 42.09)
CATE 6.46* (3.09, 16.83) 8.02* (4.56, 17.45) 10.42* (6.5, 18.44)
RR-CATE 146.46* (124.33, 187.22) 157.66* (134, 198.38) 174.94* (148.28, 216.31)

P(W → W) % 1.05 (0.33, 2.92) 1.46 (0.18, 4.27) 1.57 (0.19, 4.64) 1.73 (0.17, 5.32)
CATE 0.41 (-0.35, 2.23) 0.52 (-0.28, 2.52) 0.68 (-0.21, 2.97)
RR-CATE 139.22 (42.54, 274.01) 149.7 (44.75, 299.99) 164.95 (45.63, 333.06)

P(N1 → N1) % 4.01 (1.59, 5.26) 3.53 (0.77, 4.91) 4.14 (0.86, 5.73) 5.2 (1.03, 7.1)
CATE -0.48 (-1.85, 0.73) 0.13 (-1.44, 1.44) 1.19 (-1.11, 2.86)
RR-CATE 88.06 (37.68, 118.66) 103.3 (43.8, 136.66) 129.7 (54.59, 171.73)

P(N2 → N2) % 36.34 (24.17, 40.75) 36.85 (16.05, 41.1) 35.44 (14.74, 39.78) 33.03 (13.14, 38)
CATE 0.5 (-6.46, 5.55) -0.9 (-8.42, 4.06) -3.31 (-10.99, 1.39)
RR-CATE 101.39 (68.82, 115.48) 97.51 (62.45, 110.85) 90.89 (54.45, 104.41)

P(N3 → N3) % 19.26 (1.59, 26.61) 15.9 (0.87, 23.85) 14.33 (0.78, 21.61) 12.11 (0.68, 18.55)
CATE -3.36 (-8.53, 0.35) -4.93* (-9.66, -0.44) -7.15* (-11.67, -0.76)
RR-CATE 82.55 (43.2, 104.4) 74.38* (40.56, 91.4) 62.87* (29.6, 77.92)

P(REM → REM) % 19.3 (13.72, 34.14) 12.66 (8.28, 20.06) 12.37 (8.32, 19.29) 11.81 (7.62, 18.04)
CATE -6.65* (-16.35, -2.47) -6.93* (-17.11, -2.97) -7.49* (-18.28, -3.86)
RR-CATE 65.57* (49.07, 83.92) 64.08* (46.32, 81.8) 61.18* (42.31, 77.66)

P(W-fragmentation) % 3.01 (2.09, 7.01) 4.42 (3.06, 12.3) 4.94 (3.51, 13.03) 5.77 (4, 14.79)
CATE 1.41* (0.65, 5.38) 1.94* (1.05, 6.47) 2.77* (1.74, 7.97)
RR-CATE 147.02* (125.01, 186.42) 164.39* (139.85, 201.78) 192.1* (163.44, 238.83)

P(N1-fragmentation) % 5.16 (3.94, 7.31) 7.02 (5.7, 9.56) 7.86 (6.47, 10.26) 9.21 (7.52, 11.44)
CATE 1.86* (0.96, 2.8) 2.71* (1.65, 3.78) 4.05* (2.86, 5.17)
RR-CATE 136.16* (115.95, 162.61) 152.47* (130.35, 178.28) 178.61* (143.53, 209.53)

P(N2-fragmentation) % 6.78 (5.13, 12.06) 9.65 (7.38, 18.19) 10.31 (7.8, 18.48) 11.33 (8.47, 18.81)
CATE 2.86* (1.26, 5.9) 3.53* (1.81, 5.97) 4.55* (2.69, 6.7)
RR-CATE 142.19* (118.74, 170.61) 151.99* (127.54, 182.91) 167.08* (139.25, 199.61)

P(N3-fragmentation) % 3.15 (2.3, 6.58) 5.05 (3.71, 12.17) 5.26 (3.92, 12.5) 5.54 (4.11, 12.97)
CATE 1.9* (0.77, 6.35) 2.11* (1.02, 6.56) 2.39* (1.18, 6.62)
RR-CATE 160.31* (123.48, 224.18) 166.87* (132.04, 230.58) 175.86* (138.11, 238.99)

P(REM-fragmentation) % 1.94 (1.21, 4.89) 3.47 (2.45, 10.09) 3.79 (2.7, 10.78) 4.26 (3.06, 11.58)
CATE 1.53* (0.75, 5.22) 1.84* (0.97, 5.95) 2.32* (1.29, 7)
RR-CATE 178.76* (134.92, 258.28) 194.95* (147.82, 280.14) 219.51* (165.81, 312.96)

Table 3. Summary of expected probabilities (%) and estimated effects of OSA (CATE, RR-CATE) for 30-year-old females.
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Quantity Estimate Healthy O1: OSA (AHI = 5) O2: OSA (AHI = 15) O3: OSA (AHI = 30)
P(W) % 6.59 (4.83, 9.19) 9.51 (7.29, 12.83) 10.3 (8.11, 13.63) 11.46 (9.19, 14.72)

CATE 2.92* (0.29, 6.05) 3.7* (1.11, 6.77) 4.87* (2.14, 7.86)
RR-CATE 144.3* (104.48, 208.14) 156.17* (114.78, 221.8) 173.85* (126.1, 244.19)

P(N1) % 11.2 (9.66, 13.59) 12.33 (10.63, 13.97) 14.04 (12.07, 15.91) 16.85 (14.28, 18.41)
CATE 1.13 (-1.63, 3.67) 2.83 (-0.11, 5.36) 5.65* (2.13, 7.98)
RR-CATE 110.1 (86.24, 135.03) 125.29 (99.12, 151.07) 150.4* (117.31, 180.77)

P(N2) % 43.99 (40.42, 48.3) 45.87 (43.03, 49) 44.83 (42.38, 47.65) 43 (40.43, 45.75)
CATE 1.88 (-3.03, 6.14) 0.85 (-4.33, 5.13) -0.99 (-6.38, 3.08)
RR-CATE 104.28 (93.63, 115.16) 101.93 (91, 112.67) 97.75 (86.82, 107.5)

P(N3) % 21.29 (11.26, 24.02) 19.49 (12.84, 22.54) 18.05 (12.38, 20.5) 16.02 (11.57, 18.25)
CATE -1.81 (-5.97, 3.33) -3.25 (-7.51, 2.15) -5.28 (-9.29, 1.1)
RR-CATE 91.5 (72.53, 128.84) 84.75 (68.01, 123.55) 75.22 (60.11, 112.02)

P(REM) % 16.92 (15.51, 22.66) 12.8 (11.05, 18.45) 12.79 (11.08, 18.39) 12.67 (11.04, 18.38)
CATE -4.13* (-7.41, -1.08) -4.14* (-7.11, -1.2) -4.25* (-7.32, -1.23)
RR-CATE 75.61* (63.48, 93.29) 75.56* (64.48, 92.93) 74.9* (63.2, 92.36)

P((N1,N2,N3,REM) → W) % 3.08 (2.66, 4.38) 4.71 (4.06, 7.35) 5.16 (4.48, 7.77) 5.86 (5.02, 8.6)
CATE 1.63* (0.91, 3.19) 2.08* (1.34, 3.81) 2.78* (1.94, 4.76)
RR-CATE 153.03* (129.36, 197.2) 167.68* (141.27, 208.08) 190.25* (158.06, 239.26)

P((N1,N2) → W) % 2.05 (1.65, 2.95) 3.16 (2.72, 4.69) 3.52 (3.05, 5.1) 4.08 (3.47, 5.9)
CATE 1.11* (0.59, 1.99) 1.46* (0.95, 2.46) 2.03* (1.44, 3.24)
RR-CATE 154.05* (125.49, 200.21) 171.38* (141.51, 224.97) 198.82* (162.16, 251.85)

P(N3 → W) % 0.52 (0.42, 0.77) 0.72 (0.57, 1.09) 0.77 (0.61, 1.12) 0.83 (0.67, 1.15)
CATE 0.2* (0.03, 0.46) 0.25* (0.07, 0.49) 0.31* (0.14, 0.54)
RR-CATE 139.15* (105.33, 191.21) 148.04* (113.09, 200.2) 160.43* (122.7, 213.34)

P(REM → W) % 0.51 (0.33, 0.79) 0.83 (0.66, 1.34) 0.88 (0.7, 1.4) 0.94 (0.74, 1.52)
CATE 0.32* (0.09, 0.78) 0.37* (0.13, 0.77) 0.44* (0.17, 0.84)
RR-CATE 163.17* (114.04, 284.16) 172.87* (121.72, 302.79) 186.19* (128.28, 307.05)

P(NREM ⇄ REM) % 2.75 (2.07, 3.73) 4.77 (3.96, 7.34) 5.17 (4.34, 8) 5.76 (4.85, 8.8)
CATE 2.01* (1.08, 4.42) 2.41* (1.34, 5.09) 3.01* (1.78, 6.07)
RR-CATE 173.2* (133.27, 253.24) 187.76* (140.87, 274.42) 209.38* (153.92, 308.82)

P(N1 ⇄ N2) % 6.06 (5.12, 7.63) 7.24 (6.43, 9.46) 8.13 (7.32, 10.42) 9.56 (8.73, 11.75)
CATE 1.18 (-0.08, 2.65) 2.07* (0.77, 3.61) 3.5* (2.11, 5.21)
RR-CATE 119.5 (98.73, 150.25) 134.22* (111.38, 169.78) 157.84* (130.84, 192.88)

P(Sleep compactness) % 90.39 (87.53, 92.32) 86.29 (81.86, 88.51) 85.04 (80.68, 87.24) 83.15 (78.95, 85.5)
CATE -4.1* (-8.04, -1.22) -5.35* (-8.92, -2.57) -7.24* (-11.29, -4.49)
RR-CATE 95.46* (91.07, 98.63) 94.08* (89.48, 97.11) 91.99* (87.49, 94.94)

P(Sleep fragmentation) % 6.09 (5.31, 8.39) 8.91 (7.69, 14.29) 9.82 (8.49, 15.36) 11.25 (9.61, 16.91)
CATE 2.82* (1.55, 6.03) 3.73* (2.34, 7.29) 5.16* (3.61, 9.23)
RR-CATE 146.23* (124.43, 185.01) 161.26* (136.57, 198.55) 184.62* (155.03, 230.8)

P(Sleep-stage compactness) % 76.97 (71.41, 78.93) 67.13 (53.56, 70.5) 64.53 (51.15, 67.77) 60.6 (47.5, 63.3)
CATE -9.85* (-19.52, -7.1) -12.44* (-21.56, -9.78) -16.38* (-24.97, -13.75)
RR-CATE 87.21* (73.02, 90.71) 83.84* (70.12, 87.17) 78.73* (65.58, 82.08)

P(Sleep-stage fragmentation) % 13.42 (11.04, 17.5) 19.16 (17.2, 29.1) 20.51 (18.28, 29.68) 22.55 (20.13, 31.66)
CATE 5.74* (2.85, 14.85) 7.09* (3.97, 15.67) 9.13* (5.63, 17.11)
RR-CATE 142.78* (120.55, 198.49) 152.82* (127.93, 205.73) 168.03* (139.01, 219.11)

P(W → W) % 3.51 (1.82, 6.07) 4.8 (1.68, 7.56) 5.13 (1.75, 8.07) 5.6 (1.92, 8.91)
CATE 1.29 (-1.47, 4.12) 1.62 (-1.28, 4.51) 2.09 (-0.93, 5.24)
RR-CATE 136.65 (48.5, 264.53) 146.08 (53.57, 288.02) 159.46 (56.6, 309.79)

P(N1 → N1) % 6.02 (4.46, 7.56) 5.2 (2.34, 6.61) 6.07 (2.68, 7.5) 7.55 (3.27, 9.26)
CATE -0.82 (-3.36, 0.8) 0.05 (-2.87, 1.72) 1.53 (-1.97, 3.47)
RR-CATE 86.44 (43.49, 114.53) 100.81 (51.32, 131.2) 125.39 (65.66, 165.26)

P(N2 → N2) % 37.55 (33.15, 41.94) 37.37 (32.08, 39.99) 35.73 (30.25, 37.95) 32.99 (27.23, 35.42)
CATE -0.18 (-7.32, 4.63) -1.82 (-9.5, 3.01) -4.55 (-12.92, 0.09)
RR-CATE 99.52 (82.57, 113.95) 95.16 (75.88, 108.8) 87.87 (67.8, 100.27)

P(N3 → N3) % 18.34 (7.43, 20.79) 14.86 (5.7, 17.68) 13.31 (4.96, 15.55) 11.15 (4.19, 13.2)
CATE -3.48 (-7.51, 0.55) -5.03* (-9.05, -1.16) -7.19* (-10.64, -2.35)
RR-CATE 81.03 (49.63, 105.85) 72.59* (44.01, 91.8) 60.77* (39.8, 76.63)

P(REM → REM) % 15.07 (13.69, 20.4) 9.7 (8.03, 14.05) 9.42 (7.99, 13.8) 8.91 (7.28, 13.01)
CATE -5.37* (-9.41, -2.3) -5.64* (-9.83, -2.68) -6.15* (-10.56, -3.05)
RR-CATE 64.36* (50.52, 84.26) 62.54* (50.52, 81.8) 59.15* (45.33, 79.15)

P(W-fragmentation) % 3.01 (2.62, 4) 4.2 (3.55, 6.48) 4.66 (4.02, 7.11) 5.39 (4.59, 8.52)
CATE 1.18* (0.6, 2.7) 1.65* (0.99, 3.31) 2.38* (1.65, 4.44)
RR-CATE 139.27* (119.02, 173.29) 154.69* (133.34, 190.31) 178.86* (152.82, 225.96)

P(N1-fragmentation) % 5.45 (4.72, 6.8) 7.34 (6.58, 9.43) 8.18 (7.48, 10.29) 9.5 (8.7, 11.5)
CATE 1.89* (0.88, 3.13) 2.72* (1.8, 3.98) 4.05* (3, 5.45)
RR-CATE 134.59* (115.31, 159.43) 149.96* (131.13, 174.85) 174.24* (149.31, 198.76)

P(N2-fragmentation) % 6.44 (5.32, 8.59) 8.97 (8, 14.33) 9.54 (8.51, 14.65) 10.41 (9.35, 15.37)
CATE 2.53* (1.1, 6.61) 3.1* (1.66, 7.07) 3.97* (2.54, 7.94)
RR-CATE 139.3* (116.03, 183.45) 148.19* (121.75, 191.06) 161.68* (135.07, 202.4)

P(N3-fragmentation) % 2.93 (2.23, 4.29) 4.59 (3.88, 7.89) 4.73 (3.99, 8.03) 4.9 (4.15, 8.33)
CATE 1.66* (0.59, 4.89) 1.8* (0.79, 4.81) 1.97* (0.93, 4.67)
RR-CATE 156.56* (117.24, 230.22) 161.32* (122.44, 232.53) 167.29* (128.36, 238.25)

P(REM-fragmentation) % 1.68 (1.19, 2.37) 2.98 (2.46, 4.7) 3.23 (2.72, 5.02) 3.6 (3, 5.37)
CATE 1.3* (0.64, 3.01) 1.55* (0.84, 3.28) 1.92* (1.14, 3.67)
RR-CATE 177.4* (131.47, 280.3) 192.2* (144.46, 301.09) 214.16* (157.16, 324.83)

Table 4. Summary of expected probabilities (%) and estimated effects of OSA (CATE, RR-CATE) for 50-year-old females.
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Quantity Estimate Healthy O1: OSA (AHI = 5) O2: OSA (AHI = 15) O3: OSA (AHI = 30)
P(W) % 13.8 (7.73, 20.64) 18.74 (13.44, 22.39) 19.94 (14.68, 23.54) 21.63 (16.57, 24.99)

CATE 4.94 (-4.07, 11.5) 6.14 (-2.46, 12.33) 7.83 (-0.68, 13.55)
RR-CATE 135.8 (79.4, 225.94) 144.51 (87.08, 242.92) 156.75 (96.45, 267.43)

P(N1) % 13.45 (10.83, 16.5) 13.68 (10.24, 16.48) 15.45 (11.91, 18.02) 18.33 (14.32, 20.73)
CATE 0.23 (-3.09, 3.34) 2 (-1.78, 5.02) 4.87* (1.03, 8.02)
RR-CATE 101.7 (76.75, 127.51) 114.84 (89.14, 140.83) 136.23* (105.89, 166.41)

P(N2) % 41.67 (34.75, 46.54) 41.83 (37.94, 46.19) 40.36 (36.81, 44.91) 37.96 (34.94, 42.21)
CATE 0.16 (-4.67, 7.61) -1.3 (-6.17, 5.71) -3.71 (-8.8, 4.44)
RR-CATE 100.39 (89.51, 121.1) 96.87 (86.38, 116.94) 91.1 (80.64, 111.68)

P(N3) % 18.69 (11.54, 34.87) 16.47 (11.19, 25.59) 15.06 (10.31, 24.49) 13.09 (9.34, 20.67)
CATE -2.21 (-11.12, 2.79) -3.63 (-12.84, 0.61) -5.6* (-15.5, -0.66)
RR-CATE 88.16 (64.41, 115.1) 80.57 (61.66, 102.97) 70.04* (52.99, 93.94)

P(REM) % 12.39 (6.86, 18.64) 9.27 (6.49, 13.55) 9.19 (6.58, 13.02) 8.99 (6.53, 12.45)
CATE -3.12 (-6.41, 0.65) -3.21 (-6.65, 0.8) -3.4 (-7.42, 0.65)
RR-CATE 74.81 (61.93, 108.95) 74.13 (61.67, 110.74) 72.57 (58.98, 107.88)

P((N1,N2,N3,REM) → W) % 2.89 (1.76, 4.04) 4.33 (3.19, 6.02) 4.72 (3.59, 6.39) 5.3 (4.15, 6.77)
CATE 1.44* (0.81, 2.59) 1.82* (1.22, 2.96) 2.4* (1.81, 3.52)
RR-CATE 149.69* (125.93, 205.77) 162.94* (136.15, 227.13) 183.04* (151.34, 257.14)

P((N1,N2) → W) % 2.02 (1.25, 2.84) 3.05 (2.24, 4.08) 3.37 (2.56, 4.45) 3.87 (3.07, 4.82)
CATE 1.03* (0.54, 1.84) 1.35* (0.92, 2.15) 1.85* (1.4, 2.64)
RR-CATE 151.07* (122.94, 203.07) 166.94* (137.15, 228.97) 191.67* (155.42, 261.8)

P(N3 → W) % 0.42 (0.25, 0.55) 0.57 (0.41, 0.74) 0.6 (0.45, 0.78) 0.64 (0.49, 0.81)
CATE 0.15* (0.02, 0.35) 0.18* (0.05, 0.37) 0.22* (0.09, 0.41)
RR-CATE 134.54* (103.84, 209.11) 141.49* (109.8, 218.61) 150.68* (116.73, 230.17)

P(REM → W) % 0.45 (0.19, 0.75) 0.71 (0.47, 1.19) 0.75 (0.49, 1.17) 0.79 (0.54, 1.18)
CATE 0.26* (0.06, 0.53) 0.29* (0.09, 0.56) 0.34* (0.12, 0.6)
RR-CATE 157.76* (110.52, 334.5) 165.22* (115.34, 349.12) 174.87* (120.53, 385.77)

P(NREM ⇄ REM) % 2.24 (1.27, 3.46) 3.82 (2.8, 5.02) 4.09 (3.05, 5.21) 4.49 (3.3, 5.38)
CATE 1.58* (0.85, 2.52) 1.86* (1.02, 2.76) 2.25* (1.34, 3.09)
RR-CATE 170.81* (129.14, 284.15) 183.08* (135.16, 303.51) 200.68* (143.42, 330.32)

P(N1 ⇄ N2) % 5.76 (3.82, 7.61) 6.66 (5.39, 8.42) 7.39 (6.04, 9.22) 8.54 (7.14, 10.54)
CATE 0.9 (-0.41, 2.98) 1.63* (0.37, 3.7) 2.78* (1.51, 4.79)
RR-CATE 115.55 (94.17, 178) 128.3* (105.39, 196.79) 148.27* (122.41, 225.89)

P(Sleep compactness) % 83.3 (76.47, 89.69) 77.47 (72.87, 83.36) 75.9 (71.72, 81.81) 73.65 (70.14, 79.12)
CATE -5.83 (-12.03, 3.03) -7.4 (-13.69, 1.33) -9.65* (-15.89, -0.76)
RR-CATE 93 (86.19, 103.88) 91.12 (84.42, 101.74) 88.42* (81.88, 99.03)

P(Sleep fragmentation) % 5.79 (3.58, 7.86) 8.12 (5.96, 11.21) 8.87 (6.72, 11.91) 10.01 (7.78, 12.72)
CATE 2.32* (1.22, 4.35) 3.08* (2.01, 4.97) 4.22* (3.16, 6.22)
RR-CATE 140.11* (118.84, 184.86) 153.08* (129.66, 204.25) 172.79* (144.49, 237.49)

P(Sleep-stage compactness) % 71.21 (66.28, 79.03) 60.88 (54.79, 68.14) 58.35 (53.03, 65.4) 54.67 (50.01, 62.23)
CATE -10.33* (-15.96, -3.3) -12.87* (-18.33, -6.4) -16.54* (-21.92, -9.7)
RR-CATE 85.5* (78.04, 94.81) 81.93* (75.07, 90.62) 76.77* (70.92, 86.32)

P(Sleep-stage fragmentation) % 12.09 (7.7, 16.15) 16.59 (13.43, 21.14) 17.56 (14.4, 21.82) 18.98 (15.98, 22.68)
CATE 4.5* (1.81, 9.37) 5.47* (2.72, 10.01) 6.89* (3.7, 11.3)
RR-CATE 137.23* (112.42, 230.9) 145.24* (117.68, 234.03) 157.03* (126, 255.23)

P(W → W) % 10.91 (4.79, 18.51) 14.41 (9.29, 17.2) 15.23 (10.04, 18.13) 16.33 (11.23, 19.13)
CATE 3.5 (-5.93, 9.37) 4.32 (-5.09, 9.86) 5.43 (-3.51, 10.84)
RR-CATE 132.12 (60.79, 257.6) 139.62 (67.22, 272.05) 149.77 (74.8, 292.61)

P(N1 → N1) % 8.35 (6.57, 10.76) 6.98 (4.45, 8.43) 8.05 (5.22, 9.61) 9.83 (6.55, 11.54)
CATE -1.37 (-4.15, 0.72) -0.31 (-3.22, 1.84) 1.48 (-1.84, 3.87)
RR-CATE 83.57 (49.73, 110.6) 96.35 (60.43, 125.95) 117.76 (79.01, 155.24)

P(N2 → N2) % 35.85 (29.77, 40.35) 34.5 (30.6, 38.71) 32.61 (29.19, 36.5) 29.59 (26.58, 33.06)
CATE -1.36 (-6.04, 4.57) -3.25 (-7.91, 2.61) -6.26 (-11.26, 0.82)
RR-CATE 96.22 (83.82, 114.11) 90.95 (79.1, 108.59) 82.53 (70.26, 102.74)

P(N3 → N3) % 16.14 (9.49, 33.3) 12.64 (6.87, 22.38) 11.2 (6.08, 21.43) 9.21 (5.23, 17.07)
CATE -3.5 (-12.45, 1.11) -4.94* (-13.98, -1.32) -6.93* (-16.72, -2.62)
RR-CATE 78.34 (56.09, 106.72) 69.37* (50.76, 91.53) 57.08* (42.04, 78.53)

P(REM → REM) % 10.87 (5.9, 17.05) 6.76 (4.53, 10.91) 6.49 (4.37, 10.14) 6.04 (4.24, 9.38)
CATE -4.1* (-7.73, -0.55) -4.37* (-8.19, -0.58) -4.83* (-8.96, -0.85)
RR-CATE 62.23* (49.83, 91.26) 59.77* (48.03, 93.54) 55.55* (42.97, 87.33)

P(W-fragmentation) % 2.9 (1.82, 3.94) 3.79 (2.77, 5.17) 4.15 (3.13, 5.4) 4.71 (3.68, 5.94)
CATE 0.89* (0.36, 1.78) 1.25* (0.75, 2.08) 1.81* (1.34, 2.74)
RR-CATE 130.55* (110.34, 171.89) 143.23* (122.03, 184.49) 162.55* (138.65, 218.91)

P(N1-fragmentation) % 5.39 (3.84, 6.86) 7.08 (5.69, 8.61) 7.8 (6.51, 9.36) 8.92 (7.62, 10.35)
CATE 1.69* (0.72, 3.21) 2.41* (1.45, 3.95) 3.53* (2.56, 5.23)
RR-CATE 131.36* (111.36, 185.69) 144.83* (122.94, 205.3) 165.62* (139.92, 231.63)

P(N2-fragmentation) % 5.68 (3.42, 7.75) 7.64 (6.11, 10) 8.04 (6.58, 10.24) 8.64 (7.19, 10.72)
CATE 1.96* (0.71, 4.31) 2.36* (1.12, 4.55) 2.96* (1.69, 5.05)
RR-CATE 134.4* (111.99, 229.52) 141.51* (114.46, 238.97) 152.04* (124.4, 253)

P(N3-fragmentation) % 2.54 (1.52, 3.79) 3.83 (3.04, 5.18) 3.88 (3.08, 5.09) 3.93 (3.13, 4.93)
CATE 1.29* (0.3, 2.71) 1.34* (0.37, 2.65) 1.39* (0.45, 2.55)
RR-CATE 150.72* (109.06, 278.93) 152.91* (110.17, 275.26) 154.84* (112.07, 268.2)

P(REM-fragmentation) % 1.37 (0.74, 2.21) 2.38 (1.73, 3.27) 2.55 (1.9, 3.38) 2.79 (2.02, 3.53)
CATE 1.01* (0.42, 1.62) 1.17* (0.55, 1.78) 1.41* (0.74, 2.01)
RR-CATE 173.23* (123.6, 301.1) 185.4* (131.69, 314.71) 202.79* (142.65, 332.9)

Table 5. Summary of expected probabilities (%) and estimated effects of OSA (CATE, RR-CATE) for 70-year-old females.
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Quantity Estimate Healthy O1: OSA (AHI = 5) O2: OSA (AHI = 15) O3: OSA (AHI = 30)
P(W) % 6.24 (4.41, 9.27) 6.6 (4.59, 11.36) 7.16 (4.95, 11.89) 8.01 (5.61, 12.25)

CATE 0.35 (-1.68, 4.55) 0.92 (-1.05, 5.07) 1.76 (-0.36, 6.27)
RR-CATE 105.69 (76.98, 186.83) 114.68 (85.13, 201.2) 128.26 (94.34, 224.75)

P(N1) % 11.51 (8.83, 14) 12.42 (10.39, 14.18) 14.09 (11.59, 15.7) 16.85 (13.59, 18.63)
CATE 0.9 (-0.97, 3.82) 2.57* (0.66, 5.26) 5.33* (2.66, 8.02)
RR-CATE 107.85 (91.92, 140.3) 122.36* (105.28, 159.89) 146.31* (120.47, 187.6)

P(N2) % 43.53 (35.5, 48.16) 47.15 (31.96, 49.36) 46.11 (31.57, 48.49) 44.3 (31.25, 47.09)
CATE 3.62 (-4.01, 6.34) 2.57 (-4.99, 5.7) 0.77 (-7.05, 3.88)
RR-CATE 108.3 (90.39, 116.23) 105.91 (87.91, 113.33) 101.76 (84.46, 109.71)

P(N3) % 16.93 (5.67, 21.61) 16.1 (9.13, 23.13) 15.03 (8.94, 21.79) 13.53 (8.7, 19.75)
CATE -0.83 (-5.03, 7.79) -1.91 (-6.21, 6.34) -3.41 (-7.25, 5.82)
RR-CATE 95.1 (72.79, 173.01) 88.74 (68.08, 173.22) 79.88 (62.77, 178.25)

P(REM) % 21.77 (17.6, 38.26) 17.73 (12.45, 32.81) 17.62 (12.51, 32.06) 17.32 (12.07, 31.15)
CATE -4.04 (-10.82, 1) -4.16 (-10.92, 0.54) -4.46* (-11.44, -0.25)
RR-CATE 81.43 (57.64, 105.31) 80.91 (57.82, 102.88) 79.54* (54.34, 98.67)

P((N1,N2,N3,REM) → W) % 3.97 (2.74, 5.53) 4.94 (3.27, 9.76) 5.39 (3.57, 10.25) 6.08 (4.03, 10.95)
CATE 0.97 (-0.16, 4.48) 1.42* (0.2, 5) 2.11* (0.66, 5.33)
RR-CATE 124.42 (95.66, 197.26) 135.75* (105.9, 209.74) 153.11* (119.35, 219.6)

P((N1,N2) → W) % 2.65 (2.01, 4) 3.28 (2.17, 7.33) 3.63 (2.39, 7.66) 4.18 (2.78, 7.96)
CATE 0.64 (-0.14, 3.1) 0.99* (0.11, 3.55) 1.54* (0.47, 3.94)
RR-CATE 123.99 (94.43, 189.08) 137.23* (105.04, 200) 158.07* (120.57, 219.84)

P(N3 → W) % 0.57 (0.3, 0.88) 0.72 (0.52, 1.25) 0.76 (0.56, 1.26) 0.83 (0.59, 1.31)
CATE 0.14 (-0.04, 0.62) 0.19* (0.01, 0.67) 0.25* (0.1, 0.7)
RR-CATE 125.09 (94.73, 248.93) 132.88* (100.93, 256.6) 143.77* (115.55, 267.93)

P(REM → W) % 0.75 (0.36, 1.32) 0.94 (0.49, 2.19) 0.99 (0.53, 2.21) 1.07 (0.55, 2.04)
CATE 0.19 (-0.26, 1.06) 0.24 (-0.21, 1.06) 0.32 (-0.14, 1.06)
RR-CATE 125.45 (68.89, 278.93) 132.72 (72.47, 279.01) 142.71 (75.83, 275.8)

P(NREM ⇄ REM) % 4.19 (2.29, 6) 5.75 (4.26, 14.95) 6.22 (4.57, 15.85) 6.91 (5.18, 17.1)
CATE 1.56* (0.63, 10.4) 2.03* (1.08, 11.05) 2.73* (1.64, 11.75)
RR-CATE 137.26* (115.38, 329.3) 148.46* (126.77, 337.19) 165.11* (138.22, 348.28)

P(N1 ⇄ N2) % 6.74 (5.51, 9.8) 8.04 (6.05, 10.06) 9.02 (6.83, 10.91) 10.6 (8.1, 12.59)
CATE 1.3 (-0.93, 2.28) 2.28 (-0.41, 3.28) 3.86* (0.27, 4.94)
RR-CATE 119.35 (88.57, 136.32) 133.89 (95.73, 153.19) 157.27* (102.64, 182.3)

P(Sleep compactness) % 90.09 (86.76, 93.12) 88.91 (77.31, 92.11) 87.86 (75.78, 91.49) 86.23 (73.58, 90.35)
CATE -1.18 (-12.26, 1.46) -2.23 (-13.14, 0.35) -3.85* (-14.94, -0.97)
RR-CATE 98.69 (86.34, 101.66) 97.52 (85.03, 100.39) 95.72* (83.55, 98.9)

P(Sleep fragmentation) % 7.64 (5.14, 10.41) 9.43 (6.36, 22.33) 10.37 (7, 23.46) 11.83 (7.99, 25.47)
CATE 1.79 (-0.15, 12.7) 2.73* (0.69, 14.03) 4.2* (1.85, 15.68)
RR-CATE 123.47 (97.84, 231.34) 135.8* (109.56, 244.75) 154.96* (126.99, 267.12)

P(Sleep-stage compactness) % 74.39 (65.36, 80.53) 68.28 (39.47, 74.61) 65.7 (37.23, 71.94) 61.74 (33.12, 68.45)
CATE -6.11* (-28.22, -1.72) -8.7* (-31.06, -4.67) -12.66* (-34.15, -8.66)
RR-CATE 91.78* (57.61, 97.68) 88.31* (53.79, 93.69) 82.99* (49.69, 88.56)

P(Sleep-stage fragmentation) % 15.7 (12.01, 22.29) 20.63 (16.3, 37.53) 22.16 (17.53, 38.56) 24.5 (19.28, 40.46)
CATE 4.93* (2.07, 15.87) 6.46* (3.51, 17.25) 8.8* (5.62, 18.57)
RR-CATE 131.44* (112.95, 178.98) 141.18* (122.93, 180.9) 156.07* (137.57, 196.56)

P(W → W) % 2.27 (0.56, 4.3) 1.66 (0.2, 5.04) 1.77 (0.21, 5.48) 1.93 (0.21, 5.95)
CATE -0.61 (-2.04, 2.34) -0.5 (-1.96, 2.83) -0.34 (-1.86, 3.53)
RR-CATE 72.97 (27.74, 209.34) 77.9 (28.66, 222.01) 84.89 (30.26, 252.4)

P(N1 → N1) % 5.17 (2.5, 7.02) 4.7 (1.2, 6.01) 5.47 (1.29, 7.09) 6.8 (1.45, 8.75)
CATE -0.47 (-2.46, 1.46) 0.31 (-2.03, 2.41) 1.63 (-1.27, 4.05)
RR-CATE 90.98 (45.72, 136.63) 105.94 (52.65, 156.15) 131.56 (67.16, 194.25)

P(N2 → N2) % 36.43 (25.04, 41.75) 38.02 (14.13, 41.41) 36.3 (13.4, 39.8) 33.47 (10.67, 37.31)
CATE 1.59 (-11.16, 4.74) -0.13 (-12.11, 2.87) -2.96* (-13.94, -0.23)
RR-CATE 104.37 (56.45, 114.73) 99.65 (54.01, 107.84) 91.87* (45.9, 99.37)

P(N3 → N3) % 13.74 (1.39, 19.1) 11.52 (0.29, 19.09) 10.3 (0.27, 17.7) 8.61 (0.24, 15.4)
CATE -2.23 (-8.07, 6.21) -3.44 (-8.55, 4.26) -5.13 (-10.17, 1.88)
RR-CATE 83.81 (18.41, 155.79) 74.96 (16.25, 139.74) 62.66 (13.37, 116.7)

P(REM → REM) % 19.05 (15.74, 34.09) 14.04 (9.12, 23.19) 13.62 (8.99, 22.08) 12.86 (8.21, 20.54)
CATE -5.01* (-12.62, -0.82) -5.43* (-13.65, -1.78) -6.19* (-15.34, -2.91)
RR-CATE 73.68* (46.42, 95.58) 71.48* (44.74, 89.62) 67.5* (41.94, 83.34)

P(W-fragmentation) % 3.67 (2.44, 4.71) 4.49 (3.07, 12.63) 4.98 (3.43, 13.44) 5.76 (3.98, 14.9)
CATE 0.82 (-0.09, 8.2) 1.32* (0.43, 9.21) 2.09* (1.08, 10.29)
RR-CATE 122.43 (97, 282.77) 135.86* (111.56, 299.2) 156.97* (132.91, 323.74)

P(N1-fragmentation) % 6.46 (5.06, 8.57) 7.64 (6.16, 10.09) 8.5 (6.91, 10.92) 9.85 (8.09, 12.24)
CATE 1.18* (0.26, 2.35) 2.04* (1.07, 3.08) 3.39* (2.28, 4.4)
RR-CATE 118.29* (104.19, 140.53) 131.5* (117.26, 154.57) 152.39* (133.8, 174.95)

P(N2-fragmentation) % 7.46 (5.96, 11.83) 9.76 (7.27, 16.94) 10.43 (7.77, 17.27) 11.45 (8.41, 17.67)
CATE 2.3* (0.54, 5.29) 2.97* (0.94, 5.77) 4* (1.55, 6.24)
RR-CATE 130.91* (107.81, 162.45) 139.87* (113.93, 165.49) 153.61* (122.92, 181.7)

P(N3-fragmentation) % 3.13 (2.19, 4.81) 4.58 (3.38, 10.81) 4.74 (3.51, 10.99) 4.96 (3.7, 11.26)
CATE 1.45* (0.69, 6.26) 1.61* (0.86, 6.41) 1.82* (1.11, 6.42)
RR-CATE 146.22* (121.73, 238.07) 151.37* (128.16, 236.6) 158.23* (136.63, 243.25)

P(REM-fragmentation) % 2.62 (1.31, 3.75) 3.59 (2.54, 10.36) 3.88 (2.75, 10.83) 4.32 (3.06, 11.6)
CATE 0.97* (0.16, 7.21) 1.26* (0.48, 7.82) 1.7* (0.87, 8.38)
RR-CATE 137.07* (105.93, 322.35) 148.33* (117.64, 343.87) 165.09* (133.09, 368.89)

Table 6. Summary of expected probabilities (%) and estimated effects of OSA (CATE, RR-CATE) for 30-year-old males.
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Quantity Estimate Healthy O1: OSA (AHI = 5) O2: OSA (AHI = 15) O3: OSA (AHI = 30)
P(W) % 11.24 (6.32, 14.97) 10.23 (8.07, 12.87) 10.99 (8.65, 13.52) 12.08 (9.58, 14.94)

CATE -1 (-4.77, 5.2) -0.25 (-4.31, 6.31) 0.84 (-3.04, 7.9)
RR-CATE 91.08 (67.3, 179.25) 97.77 (70.51, 196.92) 107.52 (78.54, 216.37)

P(N1) % 13.92 (11.14, 16.57) 14.65 (12.98, 16.52) 16.57 (14.99, 18.22) 19.71 (18.14, 21.23)
CATE 0.73 (-1.52, 3.8) 2.65* (0.5, 5.49) 5.79* (3.49, 8.58)
RR-CATE 105.21 (90.75, 134.95) 119.02* (103.32, 150.89) 141.56* (123.49, 176.82)

P(N2) % 42.78 (40.29, 47.62) 46.56 (42.59, 48.67) 45.15 (41.37, 46.85) 42.79 (38.66, 44.68)
CATE 3.79 (-3.26, 6.64) 2.37 (-4.88, 4.75) 0.01 (-7.33, 1.96)
RR-CATE 108.85 (93.17, 116.39) 105.55 (89.76, 111.91) 100.03 (85.14, 104.85)

P(N3) % 15.41 (8.24, 19.16) 14.72 (7.67, 17.32) 13.61 (7.51, 15.62) 12.06 (7.73, 13.75)
CATE -0.69 (-6.21, 6.17) -1.81 (-6.96, 4.71) -3.36 (-8.05, 2.76)
RR-CATE 95.51 (65.63, 161.66) 88.29 (63, 147.19) 78.23 (57.57, 126.81)

P(REM) % 16.65 (13.92, 23) 13.83 (12.06, 21.33) 13.69 (12.13, 21.48) 13.37 (11.58, 20.8)
CATE -2.82 (-9.2, 2.94) -2.96 (-9.35, 2.55) -3.29 (-9.84, 2.05)
RR-CATE 83.08 (58.65, 116.08) 82.2 (58.03, 113.47) 80.26 (55.27, 112.83)

P((N1,N2,N3,REM) → W) % 3.89 (2.81, 4.89) 4.83 (4.08, 7.49) 5.25 (4.52, 8.01) 5.9 (5.1, 8.7)
CATE 0.93 (-0.18, 4.31) 1.36* (0.22, 4.7) 2.01* (0.73, 5.36)
RR-CATE 123.93 (95.69, 233.47) 134.9* (104.54, 246.1) 151.53* (116.55, 269.71)

P((N1,N2) → W) % 2.72 (2.12, 3.28) 3.34 (2.81, 5.1) 3.68 (3.17, 5.59) 4.23 (3.66, 6.27)
CATE 0.62 (-0.12, 2.8) 0.97* (0.22, 3.12) 1.51* (0.68, 3.77)
RR-CATE 122.82 (96.02, 214.24) 135.67* (107.12, 226.57) 155.7* (121.47, 257.59)

P(N3 → W) % 0.49 (0.27, 0.6) 0.62 (0.5, 0.91) 0.65 (0.53, 0.92) 0.7 (0.59, 0.95)
CATE 0.13 (-0.04, 0.56) 0.16 (0, 0.57) 0.21* (0.08, 0.59)
RR-CATE 126.26 (94.09, 285.85) 133.21* (100.83, 293.09) 142.55* (113.48, 289.69)

P(REM → W) % 0.69 (0.38, 1.04) 0.87 (0.69, 1.6) 0.92 (0.74, 1.64) 0.98 (0.78, 1.57)
CATE 0.18 (-0.29, 0.99) 0.23 (-0.26, 1.05) 0.29 (-0.25, 1.1)
RR-CATE 126.63 (69.68, 327.29) 133.05 (74.48, 338.65) 141.5 (76.35, 344.74)

P(NREM ⇄ REM) % 3.57 (2.06, 4.17) 4.92 (4.17, 7.93) 5.29 (4.63, 8.25) 5.82 (5.13, 9.05)
CATE 1.36* (0.59, 5.02) 1.72* (1.03, 5.45) 2.25* (1.39, 6.12)
RR-CATE 138.03* (115.19, 322.55) 148.3* (127.19, 333.03) 163.19* (135.24, 347.69)

P(N1 ⇄ N2) % 6.67 (5.58, 8.53) 8.03 (7.22, 11.05) 8.95 (8.15, 11.9) 10.4 (9.44, 13.2)
CATE 1.37 (-0.64, 3.14) 2.28* (0.21, 4.01) 3.73* (1.59, 5.37)
RR-CATE 120.48 (92.28, 145.73) 134.24* (102.62, 160.17) 155.96* (119.33, 184.75)

P(Sleep compactness) % 85.13 (81.26, 90.66) 85.49 (81.46, 87.39) 84.31 (80.57, 86.34) 82.55 (79.16, 84.74)
CATE 0.36 (-6.99, 4.58) -0.83 (-8.26, 3.63) -2.59 (-10.21, 2.07)
RR-CATE 100.42 (92.38, 105.67) 99.03 (90.93, 104.45) 96.96 (88.7, 102.55)

P(Sleep fragmentation) % 7.52 (5.6, 9.16) 9.1 (7.75, 14.61) 9.96 (8.62, 15.84) 11.27 (9.77, 17.24)
CATE 1.58 (-0.46, 8.5) 2.44* (0.41, 9.44) 3.75* (1.43, 10.52)
RR-CATE 120.95 (94.71, 231.03) 132.38* (104.62, 244.07) 149.83* (116.84, 268.84)

P(Sleep-stage compactness) % 70.53 (66.74, 76.39) 66.25 (53.63, 69.03) 63.77 (51.35, 66.39) 60.08 (47.63, 62.8)
CATE -4.28 (-18.11, 0.4) -6.75* (-19.95, -2.64) -10.45* (-22.81, -6.6)
RR-CATE 93.94 (75.3, 100.6) 90.42* (71.73, 96.17) 85.19* (67.67, 90.29)

P(Sleep-stage fragmentation) % 14.6 (12.21, 16.73) 19.24 (17.38, 28.47) 20.53 (18.59, 29.25) 22.46 (20.37, 30.79)
CATE 4.63* (1.93, 12.96) 5.93* (3.34, 14) 7.86* (5.18, 15.38)
RR-CATE 131.74* (112.14, 182.36) 140.58* (120.97, 188.27) 153.82* (132.46, 200.52)

P(W → W) % 7.34 (3.15, 10.9) 5.41 (1.99, 7.71) 5.73 (2.1, 8.4) 6.18 (2.33, 9.09)
CATE -1.93 (-5.73, 3.84) -1.61 (-5.5, 4.5) -1.16 (-5.04, 5.34)
RR-CATE 73.66 (36.6, 213.54) 78.09 (38.66, 223.98) 84.17 (41.58, 239.56)

P(N1 → N1) % 7.46 (5.36, 9.7) 6.85 (4.4, 7.99) 7.92 (5.15, 8.92) 9.73 (5.87, 10.89)
CATE -0.61 (-3.63, 2) 0.46 (-2.42, 2.93) 2.27 (-0.9, 4.96)
RR-CATE 91.83 (60.77, 136.2) 106.21 (71.69, 153.63) 130.45 (87.87, 191.07)

P(N2 → N2) % 36.19 (33.54, 40.89) 38.13 (29.83, 39.94) 36.16 (27.67, 37.6) 32.97 (24.66, 34.48)
CATE 1.94 (-7.08, 4.81) -0.04 (-8.8, 2.31) -3.22* (-12.03, -1)
RR-CATE 105.35 (80.47, 114.4) 99.9 (76.64, 106.67) 91.09* (68.65, 97.12)

P(N3 → N3) % 12.58 (5.16, 16.85) 10.64 (1.77, 13.24) 9.46 (1.68, 11.51) 7.82 (1.25, 9.85)
CATE -1.94 (-8.96, 4.8) -3.13 (-9.45, 3.27) -4.77 (-10.57, 1.2)
RR-CATE 84.59 (26.11, 160.79) 75.15 (23.56, 142.39) 62.13 (20, 116.59)

P(REM → REM) % 14.29 (12.02, 20.89) 10.63 (9.07, 15.82) 10.24 (8.83, 16.01) 9.57 (7.98, 14.74)
CATE -3.66 (-10.28, 0.27) -4.05* (-10.69, -0.47) -4.73* (-11.41, -1.35)
RR-CATE 74.37 (47.68, 102.02) 71.66* (45.58, 97.18) 66.93* (42.1, 91.3)

P(W-fragmentation) % 3.63 (2.76, 4.24) 4.27 (3.6, 7.24) 4.71 (4.01, 7.9) 5.37 (4.65, 8.81)
CATE 0.64 (-0.31, 3.97) 1.08* (0.12, 4.68) 1.74* (0.71, 5.23)
RR-CATE 117.75 (91.99, 223.8) 129.68* (102.91, 242.99) 148.01* (118.69, 265.48)

P(N1-fragmentation) % 6.68 (5.68, 7.58) 7.92 (7.11, 10.71) 8.75 (7.98, 11.37) 10.05 (9.2, 12.87)
CATE 1.24* (0.19, 3.22) 2.08* (1.1, 3.96) 3.37* (2.28, 5.24)
RR-CATE 118.65* (102.67, 150.56) 131.12* (114.5, 163.56) 150.49* (132.49, 183.02)

P(N2-fragmentation) % 6.81 (5.74, 8.11) 8.98 (8.04, 13.65) 9.54 (8.61, 14.16) 10.39 (9.41, 14.75)
CATE 2.17* (0.54, 6.23) 2.74* (0.96, 6.73) 3.58* (1.51, 7.4)
RR-CATE 131.94* (106.68, 180.12) 140.2* (112.16, 187.98) 152.65* (119.04, 199.3)

P(N3-fragmentation) % 2.8 (2.07, 3.14) 4.1 (3.53, 6.75) 4.19 (3.65, 6.75) 4.31 (3.79, 6.97)
CATE 1.3* (0.66, 4.02) 1.4* (0.74, 4.15) 1.51* (0.85, 4.05)
RR-CATE 146.53* (122.09, 247.27) 149.99* (126, 245.88) 154* (129.54, 235.46)

P(REM-fragmentation) % 2.22 (1.12, 2.71) 3.07 (2.62, 5.16) 3.29 (2.82, 5.3) 3.62 (3.13, 5.72)
CATE 0.85* (0.17, 3.46) 1.07* (0.4, 3.63) 1.4* (0.72, 4.01)
RR-CATE 138.16* (107.36, 329.54) 148.39* (116.67, 340.06) 163.17* (128.56, 342.75)

Table 7. Summary of expected probabilities (%) and estimated effects of OSA (CATE, RR-CATE) for 50-year-old males.
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Quantity Estimate Healthy O1: OSA (AHI = 5) O2: OSA (AHI = 15) O3: OSA (AHI = 30)
P(W) % 24.25 (9.24, 31.04) 20.28 (14.57, 23.61) 21.39 (15.68, 24.18) 22.89 (17.57, 25.22)

CATE -3.98 (-12.28, 7.19) -2.87 (-10.6, 8.48) -1.37 (-8.93, 10.23)
RR-CATE 83.61 (58.88, 179.93) 88.17 (64.35, 190.48) 94.36 (70.98, 208.42)

P(N1) % 15.26 (12.59, 17.75) 16.17 (14.35, 19.68) 18.14 (16.67, 21.86) 21.3 (19.9, 25.12)
CATE 0.91 (-2.07, 4.87) 2.88 (0, 7.05) 6.04* (3.33, 10.05)
RR-CATE 105.97 (88.64, 135.5) 118.86* (100.01, 148.98) 139.58* (118.92, 173.61)

P(N2) % 36.95 (34.21, 45.05) 41.6 (38.29, 45.66) 39.8 (37.04, 43.64) 36.96 (34.69, 40.61)
CATE 4.65 (-2.41, 10.6) 2.85 (-3.78, 8.58) 0.01 (-6.45, 4.89)
RR-CATE 112.58 (94.63, 130.46) 107.71 (91.72, 124.14) 100.03 (85.57, 114.11)

P(N3) % 12.32 (6.17, 19.21) 12.15 (8.56, 15.05) 11.07 (7.99, 13.4) 9.6 (7.31, 11.37)
CATE -0.16 (-9.43, 4.58) -1.24 (-9.87, 3.39) -2.72 (-10.59, 1.97)
RR-CATE 98.69 (49.31, 162.84) 89.92 (46.76, 147.29) 77.91 (42.11, 130)

P(REM) % 11.22 (6.3, 21.78) 9.8 (8.31, 13.78) 9.61 (8.34, 13.08) 9.26 (8.03, 12.03)
CATE -1.42 (-8.22, 3.48) -1.61 (-8.95, 3.42) -1.96 (-10.27, 3.21)
RR-CATE 87.32 (58.31, 155.78) 85.61 (57.35, 154.62) 82.5 (53.48, 150.53)

P((N1,N2,N3,REM) → W) % 3.46 (1.76, 5.31) 4.39 (3.53, 5.99) 4.75 (3.96, 6.23) 5.28 (4.5, 6.55)
CATE 0.93 (-0.1, 3.15) 1.28* (0.3, 3.38) 1.81* (0.92, 3.83)
RR-CATE 126.78 (97.65, 274.51) 137.01* (107.01, 287.19) 152.28* (118.33, 318.1)

P((N1,N2) → W) % 2.54 (1.44, 3.7) 3.18 (2.54, 4.22) 3.49 (2.92, 4.45) 3.96 (3.46, 4.87)
CATE 0.64* (0.01, 1.93) 0.95* (0.32, 2.27) 1.42* (0.8, 2.81)
RR-CATE 125.16* (100.25, 234.19) 137.22* (109.17, 259.82) 155.72* (122.68, 293.63)

P(N3 → W) % 0.36 (0.14, 0.46) 0.48 (0.37, 0.59) 0.5 (0.39, 0.6) 0.52 (0.42, 0.62)
CATE 0.11 (-0.01, 0.37) 0.13* (0.02, 0.41) 0.16* (0.06, 0.42)
RR-CATE 130.99 (97.6, 352.35) 136.52* (105.43, 363.08) 143.46* (112.55, 385.68)

P(REM → W) % 0.56 (0.17, 1.17) 0.74 (0.55, 1.17) 0.76 (0.58, 1.16) 0.8 (0.61, 1.14)
CATE 0.18 (-0.24, 0.55) 0.2 (-0.23, 0.57) 0.24 (-0.23, 0.6)
RR-CATE 131.38 (77.78, 452.58) 136.36 (78.9, 473.86) 142.4 (80.22, 447.72)

P(NREM ⇄ REM) % 2.72 (1.42, 3.48) 3.88 (3.03, 4.74) 4.12 (3.35, 4.9) 4.45 (3.82, 5.22)
CATE 1.16* (0.55, 2.75) 1.4* (0.82, 2.86) 1.73* (1.09, 3.12)
RR-CATE 142.56* (117.62, 277.57) 151.35* (125.04, 290.05) 163.59* (133.12, 320.97)

P(N1 ⇄ N2) % 5.78 (4.38, 9.42) 7.23 (6.49, 9.17) 7.96 (7.23, 9.96) 9.08 (8.4, 11.09)
CATE 1.45 (-0.8, 3.93) 2.17 (-0.02, 4.56) 3.3* (1.34, 5.53)
RR-CATE 125.01 (91.53, 189.09) 137.6 (99.81, 201.05) 156.98* (113.74, 223.75)

P(Sleep compactness) % 72.49 (64.61, 87.34) 75.9 (71.91, 81.17) 74.46 (71.08, 79.54) 72.46 (69.58, 77.56)
CATE 3.41 (-7.93, 12.57) 1.97 (-9.56, 10.49) -0.03 (-11.87, 8.2)
RR-CATE 104.7 (90.85, 118.97) 102.72 (88.99, 115.82) 99.96 (86.31, 112.71)

P(Sleep fragmentation) % 6.72 (3.57, 10.33) 8.21 (6.6, 10.69) 8.9 (7.43, 11.21) 9.92 (8.49, 12.25)
CATE 1.49 (-0.42, 5.25) 2.18* (0.37, 5.76) 3.21* (1.34, 6.81)
RR-CATE 122.22 (95.17, 250.28) 132.44* (104.15, 261.75) 147.7* (113.64, 289.47)

P(Sleep-stage compactness) % 60.46 (53.83, 71.54) 59.56 (55, 64.01) 57.23 (53.36, 61.45) 53.93 (50.72, 58.13)
CATE -0.9 (-11.58, 5.88) -3.23 (-13.72, 2.9) -6.53 (-16.86, 0.31)
RR-CATE 98.51 (83.6, 110.46) 94.65 (80.89, 105.56) 89.2 (75.93, 100.6)

P(Sleep-stage fragmentation) % 12.03 (8.14, 17.09) 16.34 (14.29, 19.79) 17.24 (15.23, 20.49) 18.53 (17.02, 21.52)
CATE 4.31* (1.79, 10.1) 5.2* (2.77, 10.34) 6.5* (3.98, 10.88)
RR-CATE 135.82* (111.39, 224.05) 143.25* (116.4, 226.95) 154.04* (124.69, 239.48)

P(W → W) % 20.79 (5.55, 26.66) 15.89 (10.1, 18.62) 16.64 (10.91, 19.14) 17.61 (12.07, 19.78)
CATE -4.9 (-13.62, 5.95) -4.15 (-12.72, 6.81) -3.18 (-10.73, 7.89)
RR-CATE 76.42 (50.56, 209.13) 80.03 (53.06, 222.71) 84.71 (57.23, 234.23)

P(N1 → N1) % 9.43 (6.19, 11.12) 8.99 (7.34, 11.23) 10.27 (8.68, 12.48) 12.39 (10.81, 15.18)
CATE -0.45 (-3.15, 2.45) 0.84 (-1.6, 3.6) 2.95* (0.48, 5.59)
RR-CATE 95.27 (72.01, 136.91) 108.85 (86.65, 154.44) 131.28* (104.19, 189.99)

P(N2 → N2) % 31.52 (28.89, 37.56) 34.45 (30.83, 38.17) 32.27 (29.1, 35.36) 28.89 (26.32, 31.94)
CATE 2.93 (-3.34, 7.11) 0.75 (-4.82, 4.42) -2.63 (-8.14, 0.51)
RR-CATE 109.3 (90.85, 123.11) 102.38 (86.68, 113.78) 91.67 (78.04, 101.58)

P(N3 → N3) % 10.1 (4.16, 17.88) 8.86 (5.38, 12.2) 7.78 (4.87, 10.51) 6.32 (4.1, 8.32)
CATE -1.24 (-11.52, 3.46) -2.32 (-11.89, 2.35) -3.79 (-12.42, 0.84)
RR-CATE 87.76 (36.17, 171.39) 77.02 (32.56, 146.38) 62.53 (28.65, 119.37)

P(REM → REM) % 9.4 (5.48, 20.11) 7.26 (6.07, 10.79) 6.91 (5.9, 10.11) 6.33 (5.39, 9.11)
CATE -2.15 (-9.37, 1.95) -2.5 (-10.57, 1.67) -3.07 (-12.08, 1.21)
RR-CATE 77.16 (47.39, 136.07) 73.44 (45.74, 131) 67.35 (41.12, 121.62)

P(W-fragmentation) % 3.25 (1.81, 5.02) 3.82 (3.07, 4.97) 4.15 (3.42, 5.2) 4.65 (3.99, 5.67)
CATE 0.57 (-0.43, 2.19) 0.9 (-0.08, 2.5) 1.39* (0.37, 2.97)
RR-CATE 117.37 (90.6, 219.1) 127.59 (98.35, 238.16) 142.83* (107.28, 262.14)

P(N1-fragmentation) % 6.12 (4.42, 8.02) 7.49 (6.58, 9.06) 8.19 (7.34, 9.74) 9.24 (8.57, 10.94)
CATE 1.37* (0.05, 4.43) 2.07* (1.01, 5.04) 3.12* (2.08, 6)
RR-CATE 122.43* (100.68, 199.22) 133.8* (112.74, 214.14) 151.02* (126.83, 234.56)

P(N2-fragmentation) % 5.49 (3.49, 8.55) 7.5 (6.53, 9.65) 7.88 (7, 9.91) 8.45 (7.7, 10.22)
CATE 2.01* (0.36, 4.42) 2.4* (0.75, 4.7) 2.96* (1.31, 5.11)
RR-CATE 136.67* (104.35, 227.21) 143.69* (108.64, 234.71) 154.01* (115.91, 246.5)

P(N3-fragmentation) % 2.21 (1.18, 3.3) 3.33 (2.77, 4.2) 3.35 (2.84, 4.09) 3.36 (2.86, 4)
CATE 1.13* (0.39, 2.38) 1.15* (0.43, 2.28) 1.15* (0.46, 2.09)
RR-CATE 151.09* (110.91, 297.74) 152.13* (115.04, 289.05) 152.37* (115.08, 273.77)

P(REM-fragmentation) % 1.68 (0.8, 2.41) 2.41 (1.96, 3.12) 2.55 (2.07, 3.2) 2.76 (2.33, 3.3)
CATE 0.73* (0.23, 1.79) 0.87* (0.36, 1.86) 1.07* (0.53, 1.97)
RR-CATE 143.11* (110.63, 313.22) 151.73* (116.31, 328.02) 163.67* (123.05, 338.27)

Table 8. Summary of expected probabilities (%) and estimated effects of OSA (CATE, RR-CATE) for 70-year-old males.
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Comparison based on derived Markovian matrices PM

Figure 12. Derived Markovian transition matrices PM for healthy females and females with OSA (AHI = 5, 15, 30) at different ages (30, 50, 70 years). Estimates are
supplemented with 95% bootstrapped confidence intervals.
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Figure 13. Difference in derived Markovian transition matrices PM for healthy females versus females with OSA (AHI = 5, 15, 30) at different ages (30, 50, 70 years).
Estimates are supplemented with 95% bootstrapped confidence intervals.
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Figure 14. Risk ratio of derived Markovian transition matrices PM for healthy females versus females with OSA (AHI = 5, 15, 30) at different ages (30, 50, 70 years).
Estimates are supplemented with 95% bootstrapped confidence intervals.
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Figure 15. Derived Markovian transition matrices PM for healthy males and males with OSA (AHI = 5, 15, 30) at different ages (30, 50, 70 years). Estimates are
supplemented with 95% bootstrapped confidence intervals.
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Figure 16. Difference in derived Markovian transition matrices PM for healthy males versus males with OSA (AHI = 5, 15, 30) at different ages (30, 50, 70 years).
Estimates are supplemented with 95% bootstrapped confidence intervals.
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Figure 17. Risk ratio of derived Markovian transition matrices PM for healthy males versus males with OSA (AHI = 5, 15, 30) at different ages (30, 50, 70 years).
Estimates are supplemented with 95% bootstrapped confidence intervals.
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Effect plots

Figure 18. Effects of age and OSA-severities on NREM-REM oscillations, P(NREM ⇄ REM), in males. The left plots (1a,
2a) depict expected probabilities for varying age with fixed AHI = 30, and for varying AHI with fixed age = 30. Based on that,
the central (1b, 2b) and right (1c, 2c) plots depict age- and AHI-related CATE and RR-CATE.
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Figure 19. Effects of age and OSA-severities on sleep-stage fragmentation, i.e., the probability of transitioning from one
(non-wake) sleep stage to a different one, in females. The left plots (1a, 2a) depict expected probabilities for varying age with
fixed AHI = 30, and for varying AHI with fixed age = 30. Based on that, the central (1b, 2b) and right (1c, 2c) plots depict age-
and AHI-related CATE and RR-CATE.
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Figure 20. Effects of age and OSA-severities on sleep-stage fragmentation, i.e., the probability of transitioning from one
(non-wake) sleep stage to a different one, in males. The left plots (1a, 2a) depict expected probabilities for varying age with
fixed AHI = 30, and for varying AHI with fixed age = 30. Based on that, the central (1b, 2b) and right (1c, 2c) plots depict age-
and AHI-related CATE and RR-CATE.
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