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Abstract 46 

Previous studies have linked blood cell traits (BCTs) to cardiovascular diseases 47 

(CVDs) risks, but the common genetic mechanisms underlying heritable phenotypes 48 

remain unclear. Our study used multiple analytical approaches including single 49 

nucleotide polymorphisms, genes, pathways, and protein targets to reveal common 50 

genetic elements. We confirmed both genome-wide and local genetic associations 51 

between BCTs and CVDs, identifying key pleiotropic loci and genes contributing to 52 

these links. Specifically, ALDH2, MAPKAPK5, and ACAD10, all located at 12q24.1, 53 

are associated with leukocyte-CVD traits. TNFSF12 at 17p13.1 and ABO at 9q34.2 54 

correlate with platelet-CVD traits, while ZNF664 and CCDC92, also at 12q24.1, are 55 

linked to erythrocyte-CVD traits. Our findings also highlight multiple key 56 

trait-specific pathways mediating these phenotypic associations and potential 57 

therapeutic targets that may inform future clinical interventions. These insights 58 

significantly advance our understanding of the genetic interplay between BCTs and 59 

CVDs, underscoring the importance of focusing on BCTs to prevent cardiovascular 60 

conditions. 61 
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 66 

Highlights 67 

� There were wide genetic correlation and overlap between BCT and CVD. 68 

� Key pleiotropic loci and genes for three BCT-CVD trait pairs were identified. 69 

� Key signature-specific pathways mediating the BCTs-CVDs association were 70 

identified. 71 

� Potential therapeutic targets for BCTs-CVDs were identified. 72 

 73 
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Kong et al. report extensive genetic correlations and genetic overlaps between blood 75 

cell traits (BCTs) and cardiovascular diseases (CVDs), revealing key pleiotropic loci 76 

and genes contributing to these associations, as well as multiple trait-specific 77 

pathways mediating these phenotypic associations. Potential therapeutic targets to 78 

inform future clinical interventions were also identified, laying the foundation for 79 

understanding the genetic interactions between BCTs and CVDs. 80 

 81 

Introdution 82 

Cardiovascular diseases (CVDs), which encompass a range of conditions affecting the 83 

heart and blood vessels, are the leading cause of death and disability worldwide1,2. A 84 

primary contributor to CVDs, atherosclerosis, is significantly influenced by various 85 

blood cell traits (BCTs)3,4. For example, erythrocytes, critical in maintaining 86 

physiological hemodynamics, can exacerbate arterial wall pathologies and, through 87 

interactions with immune cells, potentially accelerate atherosclerosis due to oxidative 88 

stress5. Similarly, the secretory functions of leukocytes, especially lymphocytes, are 89 

pivotal as they release proinflammatory cytokines and proteases that may lead to 90 

plaque rupture6. Platelets also play a key role in hemostasis and thrombosis and 91 

enhancing the inflammatory environment, thus promoting the recruitment of 92 

inflammatory cells to lesions and releasing inflammatory mediators7. Extensive 93 

observational research has consistently demonstrated a robust association between 94 

alterations in BCTs and increased risk of CVDs. Recent studies have identified 95 

erythrocyte count (RBC), hematocrit (HCT), mean corpuscular volume (MCV), and 96 

red cell distribution width (RDW-CV) as potential biomarkers for cardiovascular 97 

risk.8. Additionally, conditions characteristic of CVDs can prompt the bone marrow to 98 

release immature cells or increase other cell populations, depending on the severity. 99 

Notably, the leukocyte is a cost-effective, widely used diagnostic tool in clinical 100 

practice, with insights from the Framingham Heart Study highlighting its role as an 101 

indicator of elevated CVD risks9. More precise predictions of CVD risk come from 102 

specific leukocyte subtypes, such as monocytes10, lymphocytes11, and neutrophils12, 103 

rather than total leukocyte count (WBC) alone. Furthermore, studies have shown that 104 
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platelet metrics like platelet component distribution width (PDW), mean platelet 105 

volume (MPV), and platelet count (PLT) are critical indicators of CVD risk13. These 106 

insights underscore the importance of monitoring alterations in blood cell functions 107 

for effective diagnosis, risk stratification, and predicting outcomes in CVDs. 108 

 109 

Epidemiological studies have consistently shown that BCTs are closely associated 110 

with CVDs, with this relationship likely influenced by shared genetic factors14,15. 111 

Genome-wide association studies (GWAS) have identified numerous genetic variants 112 

common to both BCTs and CVDs, such as SH2B3 and HFE, which are associated 113 

with RBC and coronary artery disease (CAD), respectively16-18. This suggests that 114 

pleiotropy, the influence of a single genetic variant on multiple traits, may be 115 

fundamental to understanding the genetic basis of these complex traits. Pleiotropy 116 

manifests in two primary forms: vertical and horizontal19. Vertical pleiotropy occurs 117 

when single nucleotide polymorphisms (SNPs) influence one trait, which 118 

subsequently affects another, permitting the use of Mendelian randomization (MR) to 119 

estimate causal relationships between traits. For example, Hashfield et al. 120 

demonstrated a positive causal relationship between PLT and eosinophil percentage of 121 

leukocytes (EO_P) with an increased risk of ischemic stroke and its subtypes20. 122 

Similarly, genetic predispositions towards high RBC and low monocyte count 123 

(MONO) correlate with increased venous thromboembolism (VTE) risk21. However, 124 

existing MR studies have yet to explore these trait categories fully. On the other hand, 125 

horizontal pleiotropy occurs when a genetic variant independently affects multiple 126 

phenotypes or influences intermediate processes between these phenotypes. Recent 127 

advances in statistical tools for genomics have underscored the importance of 128 

horizontal pleiotropy in elucidating the shared genetic basis of complex traits. For 129 

example, Yang et al. reported an extensive landscape of genetic correlations between 130 

29 BCTs and 11 neurological and psychiatric diseases22. Despite these insights, 131 

previous studies have yet to comprehensively explore the relationship between BCTs 132 

and CVDs. The complex association patterns and underlying mechanisms of their 133 

connection remain largely uncharted. Therefore, systematic analyses are necessary to 134 
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determine whether shared genetic architectures and molecular pathways exist between 135 

BCTs and CVDs, potentially unveiling new insights into their biological mechanisms. 136 

 137 

In this study, we comprehensively analyzed the latest and most extensive GWAS 138 

summary data from individuals of European ancestry to uncover the shared genetic 139 

architecture and mechanisms underlying 29 BCTs and six major CVDs (Table 1). Our 140 

initial analyses focused on identifying the shared genetic structure between BCTs and 141 

CVDs, utilizing methods to analyze genetic correlations and overlaps. Then, 142 

employing MR analysis within a framework of vertical pleiotropy, we explored 143 

evidence for causal relationships between BCTs and CVDs. This groundwork 144 

facilitated a cross-trait analysis, pinpointing pleiotropic SNPs at the SNP level, and 145 

allowed us to identify candidate pleiotropic genes through positional mapping and 146 

expression quantitative trait loci (eQTL) mapping. Further investigations included an 147 

enrichment analysis of biological pathways and the identification of pathogenic 148 

plasma proteins, assessing their potential as therapeutic targets. This multifaceted 149 

approach has illuminated complex genetic networks linking hematological markers to 150 

cardiovascular health, offering insights that could pave the way for novel diagnostic 151 

and therapeutic strategies. 152 

 153 

Result 154 

Genome-wide genetic correlation between BCTs and CVDs 155 

We assessed the SNP-based heritability (h2
SNP) of 29 BCTs and 6 major CVDs using 156 

linkage disequilibrium (LD) score regression (LDSC) and performed genome-wide 157 

genetic correlation (rg) analysis of these 174 trait pairs. Univariate LDSC analysis 158 

showed that h2
SNP estimates for BCTs were consistently higher than those for CVDs, 159 

ranging from 5.2% to 34.9%, with the highest estimate for MPV (h2
SNP = 34.88%, SE 160 

= 0.036). In contrast, h2
SNP estimates for CVDs were significantly lower, all below 5%, 161 

with the smallest estimate for Stroke (h2
SNP = 0.60%, SE = 0.0005) and the highest 162 

estimate for CAD (h2
SNP = 3.25%, SE = 0.0019) (Supplementary Table 1). Subsequent 163 

bivariate LDSC analysis found nominally significant associations for 36 (20.3%) of 164 
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174 trait pairs (P < 0.05). Of these, 26 trait pairs showed positive rg, especially 165 

between WBC and PAD, with a rg of 0.115 (SE = 0.053). In contrast, the most 166 

significant negative rg was between mean corpuscular hemoglobin concentration 167 

(MCHC) and VTE, with a rg of -0.101 (SE = 0.028). Using a less stringent 5% false 168 

discovery rate (FDR) threshold, we found that three blood cell count-related traits, 169 

including platelet crit (PCT), PLT, and MCHC, were associated with a lower risk of 170 

VTE. Six different BCTs (neutrophil count (NEUT), WBC, high light scatter 171 

reticulocyte count (HLR), high light scatter percentage of red cells (HLR_P), 172 

reticulocyte count (RET), and reticulocyte fraction of red cells (RET_P)) were 173 

significantly associated with an increased risk of CAD. In contrast, six different BCTs 174 

(immature fraction of reticulocytes (IRF), mean corpuscular hemoglobin (MCH), 175 

MCV, mean reticulocyte volume (MRV), mean spheric corpuscular volume (MSCV), 176 

and red cell distribution width (RDW_CV) were significantly associated with an 177 

increased risk of VTE. Notably, four trait pairs previously identified as having the 178 

same direction of genetic correlations (including HLR-CAD, MRV-VTE, MCV-VTE, 179 

and RDW_CV-VTE) confirmed significant correlations between them21,23-26 (Fig. 1 180 

and Supplementary Table 2). 181 

 182 

Local genetic correlation between BCTs and CVDs 183 

LDSC is used to estimate additive genetic effects on traits across the genome, 184 

however, when genetic signals show opposite correlations in different genomic 185 

regions, the cumulative genome-wide rg can asymptotically approach zero. To address 186 

this issue, we used Local Analysis of [co] Variant Annotation (LAVA) to perform 187 

more detailed analyses within shorter genomic regions, specifically focusing on local 188 

genetic correlations (local-rgs) between 29 BCTs and 6 CVDs. Applying it to 80,126 189 

regions, we identified 28,887 univariate genetic signals associated with BCTs in 2,219 190 

unique regions and 2,716 signals associated with CVDs in 1,472 unique regions, all 191 

with p-values less than 1×10-4 (Supplementary Table 3). Subsequent bivariate analysis 192 

revealed significant local-rgs (FDR < 0.05) for all trait pairs, covering 5,233 genetic 193 

regions (including 898 unique regions)(Supplementary Fig.1 and Supplementary 194 
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Table 4). Interestingly, there is mixed local genetic effects on trait pairs where 195 

genome-wide rg is not significant. For example, between MSCV and CAD, 41.4% of 196 

the partitions showed positive associations, 59.6% showed negative associations, 197 

suggesting that genome-wide rg may underestimate the polygenic overlap of these 198 

trait pairs. Notably, LD block 1841 on chromosome 12 was associated with more than 199 

half of the trait pairs, followed by LD block 1479 on chromosome 9 and LD block 200 

1480 on chromosome 12, which showed correlations with 68 and 47 trait pairs, 201 

respectively. Then, Hypothesis Prioritisation for multi-trait Colocalization 202 

(HyPrColoc) further identified the common causal variants among them and indicated 203 

a high association frequency for pleiotropic SNPs in the 12q24.12 region. Notably, 204 

rs3184504 (mapped to the SH2B3 gene) showed strong evidence of colocalization 205 

between 19 BCTs and 2 CVDs (CAD and VTE) , with a posterior probability (PP) > 206 

0.7. In addition, rs4378452 (mapped to the CUX2 gene) was identified as a potential 207 

common causal variable between 22 BCTs and CAD. 208 

 209 

Extensive genetic overlap between BCTs and CVDs 210 

Consider that rg can not characterize detailed association patterns at individual loci, 211 

and nonsignificant estimates do not necessarily indicate the absence of a common 212 

genetic background. Therefore, we further applied genetic analysis combining 213 

pleiotropy and annotation (GPA) approach to explore the overlapping genetic variants 214 

of 29 BCTs and 6 CVDs, enhancing the understanding of the common genetic 215 

landscape of BCTs and CVDs. GPA analysis revealed that all BCTs-CVDs trait pairs 216 

exhibited varying degrees of genetic overlap at a 5% FDR threshold, regardless of 217 

whether the genome-wide rg was significant (Supplementary Fig.2 and Supplementary 218 

Table 5). Notably, reticulocyte count (RET) and CAD showed a relatively high 219 

proportion of shared SNPs (proportion of association ratio (PAR) = 25.4%), consistent 220 

with their significant genetic correlation (rg = 0.107). Among the 138 BCTs-CVDs 221 

pairs with non-significant genome-wide rg, the overlap between CAD and MSCV was 222 

particularly pronounced, with a shared genetic overlap of 24.1%. As for IRF-VTE, as 223 

a significant genome-wide rg trait pair, the proportion of pleiotropic SNPs is only 224 
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19.0%, which is lower than MSCV-CAD. In summary, we confirmed the presence of 225 

shared genetic structure in all trait pairs using LAVA and GPA approaches. Although 226 

some trait pairs did not show evidence of genome-wide rg, possibly due to 227 

confounding effects, our analyses highlight potential genetic links that contribute to 228 

the complex relationship between BCTs and CVDs. 229 

 230 

Mendelian Randomization between BCTs and CVDs 231 

To investigate vertical pleiotropy between 29 BCTs and 6 CVDs, we employed Latent 232 

Heritable Confounder Mendelian Randomization (LHC-MR) to evaluate causal 233 

relationships. The forward analysis identified seven causal relationships that achieved 234 

Bonferroni-corrected significance, including positive associations for RDW-VTE, 235 

basophil percentage of leukocytes (BASO_P)-AF, and BASO_P-CAD. For example, 236 

an elevated RDW_CV was associated with an increased risk of VTE (OR = 1.08), 237 

whereas a higher IRF was linked to a reduced risk of CAD (OR = 0.91), indicating 238 

negative causal relationships. The reverse analysis uncovered twelve positive causal 239 

relationships, such as AF, with an increased MCV (OR = 1.52). In contrast, four pairs 240 

showed negative causal relationships, notably VTE associated with a decreased 241 

RDW_CV (OR = 0.71). Remarkably, only the pair PCT-CAD exhibited a bidirectional 242 

causal relationship. These findings suggest that although some trait pairs demonstrate 243 

distinct causal connections, most associations between BCTs and CVDs are not driven 244 

by underlying causal factors(Fig. 2, Supplementary Fig. 3, Supplementary Table 6 and 245 

Supplementary Table 7). 246 

 247 

Shared Loci between BCTs and CVDs 248 

Although the above three approaches have enhanced our understanding of the general 249 

pleiotropy between BCTs and CVDs, they still need to elaborate on the association 250 

patterns of individual loci and clarify their shared genetic architecture from the 251 

perspective of vertical and horizontal pleiotropy. To fill this gap, we employed the 252 

Pleiotropic Analysis under the Composite Null Hypothesis (PLACO) to identify 253 

horizontal pleiotropic SNPs mediating the association between BCTs and CVDs. A 254 
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total of 571,782 SNPs (P < 5×10-8) were identified as significant pleiotropic variants 255 

across all BCT-CVD pairs (Fig. 3 and Supplementary Table 8). Notably, the PLT-CAD 256 

pair exhibited the most pleiotropic associations with 176 pleiotropic SNPs, followed 257 

closely by RBC-CAD (173 pleiotropic SNPs) and MSCV-CAD (168 pleiotropic 258 

SNPs), consistent with the significant genetic overlap between these trait pairs. 259 

Subsequently, 571,782 pleiotropic SNPs were clustered into 13,697 genomic loci in 260 

580 unique chromosomal regions using functional mapping and annotation (FUMA). 261 

Specifically, 11,810 loci were associated with BCTs, 3,904 with CVDs, and 2,622 262 

were shared between BCTs and CVDs. Notably, 12 chromosomal regions were shared 263 

by at least half of the trait pairs, including regions 9q34.2, 12q24.12, 12q24.31, and 264 

19p13.2. We also observed mixed directions of allelic associations, with 6,721 top 265 

SNPs (49.1%) consistently associated with specific traits, indicating that these 266 

variants can either simultaneously reduce (3,185 SNPs) or increase (3,536 SNPs) the 267 

number/percentage of BCTs and CVDs risks. In contrast, the remaining 50.9% of the 268 

top SNPs showed opposite associations with specific traits, suggesting the presence of 269 

different biological mechanisms.  270 

 271 

For functional annotation, we utilized ANNOVAR and discovered that 8,201 (59.9%) 272 

of the variants were intronic, 3,749 (27.4%) were intergenic, and 523 (3.8%) were 273 

exonic. Among these, the index SNP rs1613662 at the 19q13.42 locus (PPLACO = 9.26274 

×10-10 for basophil count BASO-VTE and PLT-VTE) was related to an adipose 275 

visceral omentum eQTL (PAdipose_Visceral_Omentum = 1.49×10-5), encoding the collagen 276 

receptor GPVI/FcRγ, primarily involving GP6 variants (Supplementary Table 10). 277 

This receptor interaction with subendothelial collagen exposed after vessel wall injury 278 

can promote platelet activation and aggregation, thus affecting the risk of VTE27. 279 

Additionally, combined annotation-dependent depletion (CADD) scores revealed that 280 

1,031 SNPs had scores greater than 12.37, with rs116843064 in the 19p13.2 region 281 

having the highest  CADD score of 33. A total of 484 top SNPs were found to 282 
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potentially affect transcription factor binding and correlate with gene target 283 

expression. Among these, six SNPs, including rs4987082, rs12440045, rs6511703, 284 

rs1214761, rs9810512, and rs6882088, had the highest credibility for regulatory 285 

functions (RegulomeDB score: 1a). We further performed colocalization analysis on 286 

13,697 potential pleiotropic loci, of which 1,709 (12.5%) showed strong 287 

colocalization evidence (PPH4 > 0.7). Notably, the 12q24.31 locus affected 46 trait 288 

pairs, with PP.H4 values ranging from 0.740 to 0.995, demonstrating significant 289 

pleiotropy. 290 

 291 

Candidate pleiotropic genes by position mapping 292 

We further integrated these pleiotropic SNPs to the gene level using multi-marker 293 

analysis of genomic annotation (MAGMA) and identified 10,106 significant 294 

pleiotropic genes (1,973 unique genes) (P < 1.63×10-8) (Fig. 3, Supplementary Table 295 

12). Notably, 1,453 (73.6%) of these genes were widely shared between two or more 296 

trait pairs. For example, ATXN2, ACAD10, ALDH2, CUX2, BRAP, SH2B3, and 297 

MAPKAPK5 were identified as significant pleiotropic genes in 69, 67, 64, 61, 58, 58 298 

and 56 trait pairs, respectively. These genes are located in the 12q24.11-12q24.13 299 

region, known for its pleiotropic effects on PCT and various cardiometabolic traits, 300 

including fasting glucose, blood pressure, and obesity-related traits (body mass index 301 

(BMI) and waist-to-hip ratio (WHR)). Depleting the cytoplasmic protein encoded by 302 

ATXN2 has resulted in defective platelet aggregation and dysregulation of hemostatic 303 

processes28. Additionally, polymorphisms in ATXN2 significantly affect the 304 

kynurenine level in erythrocytes29 and are critical loci for systolic (SBP) and diastolic 305 

blood pressure (DBP), as well as mean arterial pressure (MAP)30. Consequently, 306 

ATXN2 plays a pivotal role in the onset of various CVD events by regulating blood 307 

pressure. To ensure the robustness of our findings, SNPs were positionally remapped 308 

using the SNP2GENE function of FUMA, which verified 88.5% of the genes 309 

identified by MAGMA (Supplementary Table 10). Further comparisons of the 310 

PLACO-based MAGMA results with single trait GWAS data for BCTs and CVDs 311 
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revealed 855 (8.5%) novel genes for BCTs, 4,938 (48.9%) novel genes for CVDs, and 312 

229 genes that overlapped between BCTs and CVDs (Supplementary Table 12). 313 

  314 

Candidate tissue-specific pleiotropic genes by eQTL mapping 315 

To elucidate how the above SNPs affect gene expression in a tissue-specific manner, 316 

we first used LDSC-specific expression (LDSC-SEG) to determine the tissue 317 

association corresponding to each trait. We found that BCTs-related traits were mainly 318 

significantly enriched in Adipose_Visceral_(Omentum), Cells_EBV- 319 

transformed_lymphocytes, Lung, Small_Intestine_Terminal_Ileum and Whole_Blood 320 

tissues (FDR < 0.05) (Supplementary Fig. 4, Supplementary Table 15A). In CVDs, 321 

AF showed significant enrichment in heart-related tissues (Heart_Atrial_Appendage 322 

and Heart_Left_Ventricle), while CAD showed considerable enrichment in 323 

artery-related tissues (Artery_Aorta, Artery_Coronary, and Artery_Tibial). Subsequent 324 

LDSC-SEG chromatin analysis showed that BCTs were mostly significantly enriched 325 

in primary cells from peripheral blood (Supplementary Table 15B). In CVDs, AF was 326 

mainly enriched in the fetal heart, and CAD was significantly enriched in the aorta 327 

and coronary artery, confirming the multi-tissue gene expression results. 328 

 329 

To overcome the limitation of the MAGMA approach (assigning SNPs to the nearest 330 

gene without considering functional association), we employed eQTL Multi-marker 331 

Analysis of GenoMic Annotation (eMAGMA) to link tissue-specific cis-eQTL 332 

information to genes to generate more biologically meaningful results (Supplementary 333 

Table 16). From an analysis of 10 selected tissues, we identified 2,328 unique 334 

pleiotropic genes achieving Bonferroni-corrected significance, each highly enriched 335 

in at least one specific tissue. Notably, 1,875 of these genes (80.5%) were present in 336 

two or more trait pairs. Among them, genes such as ABO (n=125), TMEM116 (n=99), 337 

ALDH2 (n=95), and MAPKAPK5 (n=87) appeared in over half of the trait pairings, 338 

each demonstrating specific tissue enrichments. In particular, the ABO gene is 339 

predominantly found in liver and visceral adipose tissues; TMEM116 in the artery 340 

tibial and visceral adipose tissues; ALDH2 in both artery tibial and artery aorta tissues; 341 
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and MAPKAPK5 in adipose subcutaneous and visceral adipose tissues. Notably, the 342 

ABO gene affects the serum levels of von Willebrand factor (vWF) and soluble 343 

E-selectin31, which are involved in thrombosis and endothelial dysfunction, 344 

respectively, and are critical for the development of cerebrovascular injury and 345 

atherosclerosis31,32,33,34. We further used the single-trait GWAS results to conduct 346 

transcriptome-wide association study (TWAS) to identify tissue-specific pleiotropic 347 

genes for complex traits and found 5,609 novel genes for BCTs and 20 novel genes 348 

for CVDs (Supplementary Table 17). Notably, genes such as ABO and ALDH2 were 349 

identified in more than half of the trait pairs, and both eQTL-based strategies 350 

highlighted that ALDH2 in the 12q24.12 region was associated with a common 351 

molecular mechanism for BCTs and CVDs, which may mediate CVDs 352 

pathophysiology by affecting the metabolism of reactive aldehydes under oxidative 353 

stress. However, the exact role of ALDH2 in the blood phenotype remains to be 354 

elucidated. In addition, we further validated 81.7% of the genes identified by 355 

eMAGMA using eQTL mapping using FUMA (Supplementary Table 10). 356 

 357 

In our study, MAGMA and eMAGMA analyses identified 5,063 pleiotropic genes, of 358 

which 936 (313 unique) exhibited strong evidence of colocalization and were 359 

included in subsequent analyses (Supplementary Table 8 and Supplementary Table 360 

12). Notably, 194 of these genes demonstrated pleiotropic effects across two or more 361 

BCT-CVD trait pairs, including significant genes such as ALDH2, PHETA1, and 362 

MAPKAPK5 (all located at 12q24.12), CCDC92 (12q24.31), and ZNF664 (12q24.31). 363 

Interestingly, the degree of pleiotropy varied significantly among some genes across 364 

different categories of trait pairs. For instance, of the 18 trait pairs associated with 365 

ACAD10, 15 involved Leukocyte-CVD pairs, while the remaining 3 were 366 

Erythrocyte-CVD. Similarly, CCDC92 appeared in 20 trait pairs, with 15 categorized 367 

as Erythrocyte-CVD, accounting for 17.9% of the total Erythrocyte-CVD. Conversely, 368 

CCDC92 featured less frequently in Leukocyte-CVD (4 pairs, representing 6.1% of 369 

all such pairs) and Platelet-CVD (only 1 pair, or 4.2% of these pairings). 370 

 371 
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Therefore, considering that the association of genes with CVDs may be influenced by 372 

BCT type, we categorized all BCTs-CVDs trait pairs into three groups based on BCT 373 

types, including Leukocytes-CVDs, Platelets-CVDs, and Erythrocytes-CVDs, with 374 

pleiotropic gene counts of 174, 117, and 164, respectively. Among the 375 

Leukocytes-CVDs trait pairs, ACAD10, one of the specific genes, is not associated 376 

with Leukocytes-AF. ACAD10 is critical in mitochondrial fatty acid β-oxidation, 377 

influencing leukocyte functions such as proliferation, cytokine production, and 378 

adhesion molecule production. It is also an essential energy source for 379 

cardiomyocytes, underscoring its significant role in CVD pathophysiology35. Among 380 

the Platelets-CVDs pairs, TNFSF12 (TWEAK) was notably associated with PCT and 381 

AF. The interaction of TNFSF12 with the fibroblast growth factor-inducible molecule 382 

14 (Fn14) activates signaling pathways essential for vascular and cardiac remodeling, 383 

pivotal in acute and chronic CVDs36. Furthermore, studies have linked serum TWEAK 384 

levels to PLT, highlighting clinical relevance33,37. For the Erythrocytes-CVDs pairs, 385 

CCDC92 was the most frequently pleiotropic gene, which affects the occurrence of 386 

cardiovascular events by regulating adipose tissue distribution and insulin sensitivity, 387 

highlighting its broad impact on metabolic and cardiovascular health38,39. 388 

 389 

Potential shared biological mechanism between BCTs and CVDs 390 

We performed MAGMA gene set analysis to explore specific biological pathways or 391 

cellular functions implicated in the BCTs-CVDs pair's genetic etiology. A total of 392 

1,599 pathways were significantly enriched after Bonferroni correction (P < 3.00×393 

10-8), including 169 Gene Ontology Biological Process (GO BP) terms, 30 KEGG 394 

pathways, and 33 Reactome pathways (Supplementary Table 18). Since most genes 395 

have obvious trait specificity and participate in different biological pathways, we still 396 

divide the pathways enriched by BCTs-CVDs into three categories to observe whether 397 

they have specific and reliable results. Of these, 992 were associated with the 398 

Leukocytes-CVDs pairs, and more than half of these involved pathways were related 399 

to the regulation of immune system processes, immune responses, and cellular 400 
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activation, affecting all leukocyte phenotypes except basophil-related parameters. In 401 

contrast, the Platelets-CVDs pairs were enriched for only 77 pathways, mainly related 402 

to hemostasis and platelet activation, signaling, and aggregation. VTE showed strong 403 

correlations with all four platelet parameters in these specific pathways. For the 404 

Erythrocytes-CVDs pairs, 530 pathways were enriched, mainly involving vascular 405 

and circulatory system development, with AF and CAD being more highly associated 406 

with these terms than other CVDs. 407 

 408 

Further enrichment analysis of overlapping genes in MAGMA and eMAGMA 409 

analyses using Metascape confirmed that the Leukocytes-CVDs related gene set was 410 

mainly involved in the inflammatory response, the Platelets-CVDs related gene set 411 

focused on platelet activation and aggregation, and the Erythrocytes-CVDs related 412 

gene set was mainly engaged in the regulation of hematopoietic progenitor 413 

differentiation, which is highly consistent with the results of the MAGMA gene set 414 

analysis(Supplementary Table 19). These findings revealed the common molecular 415 

genetic mechanisms behind the extensive multi-gene overlap between the three types 416 

of BCTs and CVDs, highlighting important pathways that may become therapeutic 417 

targets for treating these diseases. 418 

 419 

Identification of pathogenic proteins and drugs in cross-sectional traits 420 

To investigate the associations between plasma protein expression and disease risk, 421 

we employed summary-data-based Mendelian Randomization (SMR). We sourced 422 

blood cis-pQTL data from the UK Biobank Pharmaceutical Proteomics Project 423 

(UKB-PPP) and the deCODE Health study. After excluding entries that failed the 424 

heterogeneity in dependent instruments (HEIDI) test, underwent multiple SNP-SMR 425 

sensitivity analyses, and surpassed the Bonferroni correction threshold, we identified 426 

1,589 causal proteins, of which 1,534 were associated with BCTs and 55 with CVDs. 427 

Among these, 49, 62, and 101 overlapping proteins were associated with leukocytes, 428 

platelets, and erythrocytes, respectively, from deCODE Health and UKB-PPP studies, 429 

with an additional eight proteins linked to CVDs. Remarkably, our analysis uncovered 430 
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only three pleiotropic proteins across seven distinct trait pairs, specifically SERPINE2 431 

and TNFSF12 in Platelets-CVDs pairs and GP6 in both Platelets-CVDs and 432 

Erythrocytes-CVDs pairs. Subsequent colocalization analysis confirmed that the GP6 433 

gene polymorphic variant rs892090 demonstrated strong colocalization in all pertinent 434 

trait pairs except MPV-VTE (Supplementary Table 20). 435 

 436 

Discussion 437 

We discovered significant genetic overlaps between BCTs and CVDs through 438 

comprehensive pleiotropic analyses of large-scale GWAS summary statistics. 439 

However, evidence for a direct causal relationship remains limited. Our studies 440 

identified 571,782 pleiotropic variants and 313 unique pleiotropic genes, which show 441 

varied CVD risks across different BCT subgroups, including leukocytes, platelets, and 442 

erythrocytes. We further explored the distinct characteristics of these blood cell 443 

phenotypes, revealing that specific pathways play key roles in their pathophysiology. 444 

For platelet-CVD subgroups, platelet activation is central; for erythrocyte-CVD 445 

subgroups, the regulation of hematopoietic progenitor differentiation is crucial; and 446 

for leukocyte-CVD subgroups, the inflammatory response is pivotal. Additionally, our 447 

research has identified GP6, TNFSF12, and SERPINE2 as potential therapeutic 448 

targets for these conditions. These findings underscore the value of BCT parameters 449 

as biomarkers for assessing CVD risk and provide valuable insights into the genetic 450 

underpinnings of these associations. 451 

 452 

We identified a substantial genetic overlap between BCTs and CVDs using diverse 453 

analytical methodologies, including LDSC, GPA, and LAVA. Our analysis indicated 454 

significant genome-wide genetic correlations for 8.6% of trait pairs, corroborating 455 

previous phenotypic associations and confirming a shared genetic foundation. 456 

Although genome-wide rg (averaging shared SNP effects across the genome) may 457 

obscure specific genetic associations within genomic regions, we utilized LAVA to 458 

pinpoint multiple specific genomic areas. We observed local-rgs for all trait pairs 459 

within these regions, indicating confounding effects that are not evident in 460 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 23, 2024. ; https://doi.org/10.1101/2024.10.23.24315926doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.23.24315926


genome-wide estimates. For instance, despite a genome-wide rg near zero according 461 

to LDSC, both BASO_P-AF and BASO-CAD demonstrated approximately equal 462 

numbers of positively and negatively correlated genetic regions. This nuance 463 

underscores significant genetic correlations that broader statistical frameworks might 464 

overlook. Our GPA analysis further confirmed substantial polygenic overlap among 465 

all trait pairs, highlighting the complex genetic interplay between BCTs and CVDs. In 466 

conclusion, our study reveals an extensive shared genetic liability between BCTs and 467 

CVDs, suggesting that their relationships are more robust and intricate than 468 

previously recognized. 469 

 470 

The LHC-MR method explored the causal relationship at the level of vertical 471 

pleiotropy, which can reveal part of the common genetic mechanisms between BCTs 472 

and CVDs. We identified 23 putative causal relationships, especially positive ones in 473 

RDW_CV-VTE, Stroke-eosinophil count (EO), and Stroke-PCT, consistent with 474 

previous studies20,40. The causal link for RDW_CV-VTE may be the reduced 475 

deformability and increased aggregation of red blood cells, elevating viscosity and 476 

impeding blood flow, thereby increasing VTE risk. Conversely, our findings did not 477 

confirm the previously reported associations between high neut and increased risks of 478 

AF, HF, PAD, and Stroke, as suggested by Jiao et al41. This discrepancy could stem 479 

from the significant sample overlap between BCTs and CVDs GWAS samples in the 480 

UK Biobank, a typical challenge in two-sample Mendelian randomization analyses. 481 

Our LHC-MR approach addressed and mitigated genetic confounding due to this 482 

sample overlap and clarified the exposure-outcome relationships. Additionally, we 483 

report for the first time a positive association between HF and several BCTs, such as 484 

MPV, MSCV, PCT, and PLT, and a negative association with HCT. However, the 485 

negative relationship between AF and PLT is consistent with previous studies. 486 

Specifically, a meta-analysis by Alexander et al. indicated a significant reduction in 487 

PLT in AF patients, potentially influenced by factors such as AF type, smoking status, 488 

and geographic region42. We found no causal associations between the remaining trait 489 

pairs, and the limited causal evidence suggests that the BCTs-CVDs trait pair 490 
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associations are less driven by causality and may be primarily mediated by horizontal 491 

pleiotropy. 492 

 493 

Although we discovered that BCTs and CVDs share a common genetic foundation, it 494 

remains unclear whether the association between them occurs via horizontal or 495 

vertical pleiotropy. We first investigated the horizontal pleiotropy level and identified 496 

multiple pleiotropic loci associated with BCTs and CVDs, among which important 497 

loci such as 9q34.2, 12q24.31, and 12q24.12 affected more than 50% of the trait pairs. 498 

Recent research has underscored the pleiotropic effects of genes within the 12q24.12 499 

region on CVDs43. Notably, the gene ALDH2, encoding aldehyde dehydrogenase 2, is 500 

associated with CAD, blood pressure regulation, and alcohol-induced cardiac 501 

dysfunction44. This enzyme is essential for metabolizing both endogenous and 502 

exogenous aldehydes; its dysfunction leads to aldehyde accumulation, markedly 503 

increasing the risk of specific CVDs. Furthermore, ALDH2 modulates 504 

atherosclerosis-related risk factors such as foam cell formation and macrophage 505 

effervescence through non-enzymatic pathways45. Another critical gene in this region, 506 

SH2B3 (also known as lymphocyte adaptor protein or LNK), regulates cytokine 507 

signaling and cell proliferation46. In mouse models, targeted deletion of LNK disrupts 508 

the negative feedback regulation of various pathways, affecting hematopoiesis and 509 

enhancing thrombopoietin (TPO) signaling47. This disruption leads to increased 510 

thrombosis and atherosclerosis, thereby elevating the incidence of CVD events. 511 

Consistently, studies have linked the LNK rs3184504 (T allele, R262W) variant with 512 

an increased risk of CAD and thrombotic stroke48. HyPrColoc results confirm that 513 

rs3184504 is a common pathogenic variant across CAD, VTE, and 19 other BCTs, 514 

highlighting the pleiotropic role of SH2B3. The gene MAPKAPK5, which encodes the 515 

MK5 protein—a serine/threonine kinase—also shows high expression levels in the 516 

human heart49. MK5 plays a role in endothelial cell migration and angiogenesis50 and 517 

influences erythrocytes' structure, metabolism, and ion channels51, thus affecting 518 

susceptibility to atherosclerosis52. In conclusion, the identified pleiotropic loci 519 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 23, 2024. ; https://doi.org/10.1101/2024.10.23.24315926doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.23.24315926


associated with BCTs and CVDs reveal a strong genetic interrelation between these 520 

traits, providing deeper insights into their complex genetic associations. 521 

 522 

In our study, we employed two gene mapping strategies to associate candidate SNPs 523 

with genes that influence both BCTs and CVDs. Specifically, among the 524 

Leukocytes-CVDs trait pairs, ALDH2, MAPKAPK5, and ACAD10, all located at 525 

12q24.12, were identified as significant pleiotropic genes. ACAD10, in particular, 526 

plays a crucial role in activating mitochondrial fatty acid oxidation (FAO)53, which is 527 

pivotal in developing atherosclerosis through NLRP3 inflammasome activation and 528 

IL-4-induced macrophage polarization54. Notably, the FAO inhibitor trimetazidine 529 

effectively prevents foam cell formation from macrophages originating from 530 

circulating monocytes in the arterial intima55. About Platelets-CVDs trait pairs, 531 

TNFSF12 (17p13.1) has emerged as key pleiotropic genes. SMR studies have 532 

demonstrated a significant association between TNFSF12 protein levels and PCT-AF. 533 

TNFSF12, also known as TWEAK, activates the JAK2/STAT3 pathway via the Fn14 534 

receptor, inducing hypertrophy in HL-1 atrial myocytes—a vital adaptive change in 535 

AF development56. This pathway also influences PLT and vascular permeability33. 536 

Given their potential, the drugs BIIB-023 and RO-5458640, currently indicated for 537 

lupus nephritis and rheumatoid arthritis, respectively, warrant further investigation in 538 

clinical trials to evaluate their efficacy in treating PCT and AF. Regarding 539 

Erythrocytes-CVDs trait pairs, ZNF664 and CCDC92, both located in the 12q24.31 540 

region, are critical. CCDC92, a coiled-coil domain protein, is intimately associated 541 

with lipid metabolism and insulin sensitivity38. Insulin resistance, influenced by 542 

CCDC92, leads to coronary endothelial dysfunction and promotes vascular smooth 543 

muscle cell proliferation via insulin-like growth factor receptors, exacerbating 544 

atherosclerosis57. At the same time, no studies have directly linked CCDC92 with 545 

erythroid characteristics; ZNF664 and CCDC92 exhibit co-regulated expression 546 

patterns and engage in nearly identical molecular pathways58,59.  547 

 548 

Shared genetic determinants indicate common biological pathways underlying 549 
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Leukocytes-CVDs trait pairs. Our pathway analysis revealed that inflammatory 550 

responses are critical, with TNFSF12 playing a significant role. Specifically, 551 

inflammatory reactions within the vessel wall, coupled with oxidative stress from 552 

endothelial dysfunction, are pivotal in the progression of atherosclerosis60. For 553 

example, circulating monocytes infiltrate fatty streaks and differentiate into 554 

macrophages with pro-inflammatory properties61. These macrophages then recruit 555 

inflammatory factors, amplifying local inflammatory responses. A notable mediator, 556 

Irg1, exacerbates inflammation by promoting the formation of neutrophil extracellular 557 

traps (NETs) and activating the NLRP3 inflammasome in macrophages, enhancing 558 

IL-1β release62. In analyzing Platelets-CVDs trait pairs, we focused on key processes 559 

such as hemostasis, platelets activation, and aggregation involving GP6. Platelets, 560 

derived from megakaryocytes, are fundamental to the pathogenesis of coronary 561 

thrombosis and atherosclerosis63. Peptide hormone receptors on platelets may trigger 562 

thrombosis64, while the chemokines they secrete play roles in both inflammation and 563 

hemostasis65. Additionally, oxidative stress and the production of reactive oxygen 564 

species (ROS) activate platelets, profoundly affecting CVD pathogenesis, especially 565 

in older individuals. Regarding Erythrocytes-CVDs trait pairs, pathways involved in 566 

vascular development and the circulatory system are crucial, with TNFSF12 also 567 

implicated. Erythrocytes primarily influence blood viscosity, impacting the friction 568 

exerted on the arterial wall, a key factor in maintaining systemic arterial pressure 569 

post-birth and promoting vasoconstriction5. Pathologically, collisions of erythrocytes 570 

with the arterial wall can lead to local retention and hemolysis of their membrane 571 

lipids, which are associated with both the early and late stages of atherosclerosis66,67. 572 

From a classification perspective, our study elucidates how different pathways 573 

mediate the association between BCTs and CVDs, highlighting that targeted 574 

regulation of key genes could significantly reduce disease risk. 575 

 576 

Using SMR and colocalization analysis, we identified three significantly shared 577 

proteins—GP6, TNFSF12, and SERPINE2—across seven trait pairs. Both GP6 and 578 

TNFSF12 are key target proteins currently under clinical investigation. GP6 encodes 579 
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platelets glycoprotein VI, essential for collagen-dependent activation, signal 580 

transduction, and full platelets activation, adhesion, and aggregation68. Variants in 581 

GP6, such as the common variant rs1613662, are associated with increased VTE risk 582 

and alterations in platelets function, impacting CVDs susceptibility. Although no 583 

studies have reported how GP6 participates in erythrocyte physiological processes, 584 

our analysis highlights that GP6 upregulation correlates with heightened VTE risk and 585 

elevations in 2 platelet parameters (MPV and PDW) and 4 erythrocyte parameters 586 

(HLR_P, HLR, RET_P, and RET). This suggests that the GP6 inhibitor, glenisomab, 587 

may represent a promising drug repurposing opportunity to mitigate excessive VTE 588 

risk and elevated platelet and erythrocyte parameters. Restingly, common CVD 589 

preventive drugs such as aspirin do not target the pathogenic proteins identified in our 590 

SMR analysis. This may be due to the inability of blood-based cis-eQTL analysis to 591 

capture anticoagulant factors produced by the liver. Moreover, the TNFSF12 inhibitor 592 

BIIB-023 could be repurposed to reduce the risk of PCT and AF complications. 593 

However, the underlying mechanisms remain under-explored, highlighting our 594 

proposal as novel and underscoring the need for further research. 595 

 596 

In conclusion, this is the first study to characterize the pleiotropic effects of a range of 597 

BCTs and CVDs on a large scale and provide important insights into the genetic 598 

architecture widely distributed throughout the genome and the mechanisms behind 599 

common genetic diseases. These results have successively provided new clues at the 600 

level of pleiotropic SNPs and genes, biological pathways, potential drug proteins, and 601 

causal relationships and will facilitate further laboratory investigations and clinical 602 

studies. 603 

 604 

Limitations of the study 605 

Our study presents several limitations. First, the GWAS datasets employed to 606 

investigate BCTs and CVDs may include cases with concurrent blood cell 607 

abnormalities and CVDs, potentially introducing bias into our analysis of genetic 608 

overlap. Second, the lack of rare variants in most GWAS datasets restricts our ability 609 
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to explore pleiotropy between rare loci associated with BCTs and CVDs, which could 610 

deepen our understanding of the disease mechanisms. Third, while minimizing 611 

demographic bias, our focus on European populations limits our findings' 612 

generalizability to other ethnic groups. Finally, the new pathway signals and gene loci 613 

identified require further validation through clinical cohort studies or animal models 614 

to bolster the robustness and credibility of our results. 615 

 616 

STAR★Methods 617 

Key resources table 618 

REAGENT or RESOURCE IDENTIFIER 

Deposited data 

Blood cell traits 
ftp://ftp.sanger.ac.uk/pub/project/humgen/summary_statistics/UKB

B_blood_cell_traits/ 

Atrial fibrillation https://www.ebi.ac.uk/gwas/studies/GCST006414 

Coronary artery disease https://cvd.hugeamp.org/datasets.html 

Venous thromboembolism https://www.decode.com/summarydata/ 

Heart failure https://www.ebi.ac.uk/gwas/studies/GCST009541 

Peripheral artery disease https://cvd.hugeamp.org/datasets.html 

Stroke https://www.ebi.ac.uk/gwas/studies/GCST90104539 

Software and algorithms 
LDSC (v1.0.1) https://github.com/bulik/ldsc 

MiXeR (v1.3) https://github.com/precimed/mixer 

LAVA (v0.1.0) https://github.com/josefin-werme/LAVA 

LHC-MR (v0.0.0.9000) https://github.com/LizaDarrous/lhcMR 

PLACO (v0.1.1) https://github.com/RayDebashree/PLACO 

FUMA (v1.5.4) http://fuma.ctglab.nl/ 

HyPrColoc(v1.0) https://github.com/jrs95/hyprcoloc 

MAGMA (v.1.08) https://ctg.cncr.nl/software/magma 

e-MAGMA https://github.com/eskederks/eMAGMA-tutorial 

TWAS http://gusevlab.org/projects/fusion/ 

SMR (v1.31) https://yanglab.westlake.edu.cn/software/smr/ 

COLOC (v5.2.1) https://github.com/chr1swallace/coloc 

R (v.4.1.3) https://www.r-project.org/ 

 619 

Resource availability 620 

Lead contact 621 
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Further information and requests for resources and reagents should be directed to and 622 

will be fulfilled by the lead contact, Luke Kong (kongluke2005@163.com). 623 

 624 

Materials availability 625 

This study did not generate new unique reagents. 626 

 627 

Data and code availability 628 

The study used only openly available GWAS summary statistics on blood cell traits 629 

and cardiovascular diseases that have originally been conducted using human data. 630 

GWAS summary statistics on BCTs are available at 631 

ftp://ftp.sanger.ac.uk/pub/project/humgen/summary_statistics/UKBB_blood_cell_trait632 

s/. GWAS summary statistics on AF, HF, and Stroke are available at the GWAS 633 

Catalog (GCST90104539, GCST009541, and GCST90104539). GWAS summary 634 

statistics on CAD and PAD are publicly available for download at the Cardiovascular 635 

Disease Knowledge Portal (CVDKP) website: https://cvd.hugeamp.org/datasets.html. 636 

GWAS summary statistics on VTE are obtained from the deCODE genetics website: 637 

https://www.decode.com/summarydata/. All data are publicly available and listed in 638 

the key resources table. No unique datasets or code were generated for this study. Any 639 

additional information required for reanalysis of the data reported in this article is 640 

available from the primary contact on request. 641 

 642 

Method details 643 

Study Design 644 

Figure 1 presents the workflow for this study 645 

 646 

Data selection and quality control 647 
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Summary statistics for 29 BCTs were retrieved from a genome-wide association study 648 

of 408,112 participants of European ancestry in the UK Biobank cohort, which 649 

included data on leukocytes, platelets, and erythrocytes16. Additionally, we integrated 650 

GWAS summary data on six major CVDs for individuals of European ancestry with 651 

sample sizes exceeding 50,000 to ensure robust statistical power. Specifically, 652 

summary data for AF were derived from a large-scale meta-analysis including six 653 

contributing studies: the Nord-Trøndelag Health Study (HUNT), deCODE, the 654 

Michigan Genomics Initiative (MGI), DiscovEHR, UK Biobank, and the AFGen 655 

Consortium, encompassed 60,620 cases and 970,216 controls of European ancestry69. 656 

Summary data for CAD were derived from GWAS summary statistics from a 657 

genome-wide meta-analysis by the CARDIoGRAMplusC4D Consortium and UK 658 

Biobank, including 181,522 cases and 984,168 controls of European ancestry70. 659 

Summary data for VTE were sourced from a genome-wide association study by Jonas 660 

Chouse et al., featuring 81,190 cases and 1,419,671 controls of European ancestry71. 661 

Summary statistics for HF were extracted from a GWAS meta-analysis by Sonia Shah 662 

et al., including data from 47,309 cases and 930,014 controls of European ancestry 663 

across 26 studies from the Heart Failure Molecular Epidemiology for Therapeutic 664 

Targets (HERMES) Consortium72. Summary statistics for PAD were obtained from a 665 

large-scale GWAS meta-analysis comprising 12,086 cases and 499,548 controls of 666 

European ancestry73. Summary statistics for stroke, involving 73,652 cases and 667 

1,234,808 controls of European ancestry, were retrieved from the GlGASTROKE 668 

consortium74. Detailed information on these GWAS summary statistics and their 669 

original publication sources is available in Table 1. 670 

 671 

We implemented stringent quality control measures to ensure the integrity of our 672 

GWAS summary data and facilitate a valid comparison between BCTs and CVDs. 673 

These included (i) aligning the data with the hg19 genome build based on the 1000 674 

Genomes Project v3 Europeans reference; (ii) filtering out SNPs that either lacked a 675 

reference SNP ID (rsID) or had duplicated rsIDs; (iii) excluding non-biallelic SNPs, 676 

which do not have precisely two allele forms; (iv) removing SNPs with a minor allele 677 
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frequency (MAF) below 0.01, ensuring that only commonly occurring variants are 678 

analyzed. Following these measures, we included only common SNPs in the analysis, 679 

totaling 6,923,169, available across all traits. 680 

 681 

Statistical Analysis 682 

Genome-wide genetic correlations between BCTs and CVDs 683 

We used LDSC to analyze the h2
SNP and rg between 29 BCTs and 6 major CVDs. 684 

LDSC helps quantify the contributions of polygenic effects by examining the 685 

relationship between linkage disequilibrium scores from GWAS summary results and 686 

SNP test statistics75. Initially, univariate LDSC was used to assess the SNP-based 687 

heritability for each of the 29 BCTs and 6 CVDs, which measures the proportion of 688 

phenotypic variance explained by common genetic variants. For this analysis, we 689 

calculated LD scores using the 1000 Genomes Phase 3 European reference76, 690 

excluding variants within the major histocompatibility complex (MHC) region (CHR 691 

6: 25–35 Mb) due to its complex LD structure. We then conducted bivariate LDSC to 692 

evaluate the genetic correlations among 174 BCTs and CVDs pairwise combinations. 693 

This step calculates the proportion of SNP-based heritability shared between two 694 

traits, normalized by the geometric mean of their heritability estimates, with 695 

correlation values ranging from -1 to +1 to indicate the direction of genetic effects. To 696 

adjust for multiple comparisons, we employed the FDR method, setting an FDR 697 

threshold of <0.05 to determine statistical significance. 698 

 699 

We employed LDSC-SEG to explore whether the SNP heritability of 29 BCTs and 6 700 

major CVDs is significantly correlated with tissue-specific gene expression, thereby 701 

identifying relevant tissues77. Utilizing multi-tissue gene expression data from the 702 

Genotype-Tissue Expression (GTEx) project and additional data from the Franke 703 

laboratory, we analyzed patterns across 53 tissues and 152 cell types78. Furthermore, 704 

we enhanced our validation process by incorporating chromatin-based annotations 705 

linked to six epigenetic marks: DNase hypersensitivity, H3K27ac, H3K4me1, 706 

H3K4me3, H3K9ac, and H3K36me3. These annotations included 93 tags from the 707 
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Encyclopedia of DNA Elements (ENCODE) project and 396 tags from the Roadmap 708 

Epigenomics database, which validated our analysis. To determine the statistical 709 

significance of the coefficients for the identified tissues, we applied a FDR threshold 710 

of 0.05. 711 

 712 

Local genetic correlation analyses between BCTs and CVDs 713 

To investigate local genetic correlations between 29 BCTs and 6 major CVDs within 714 

specific genomic regions, we utilized the LAVA. LAVA computed local-rgs for 2,495 715 

semi-independent genetic loci, each approximately 1 Mb in size, identified by 716 

dividing the genome into blocks with minimal LD between them. The LD reference 717 

panel, derived from the 1000 Genomes Project Phase 3 of European ancestry76, 718 

excluded the MHC region (chr6:25-35 Mb). Initial univariate tests ascertained the 719 

local heritability of each trait using a stringent p-value threshold of < 1×10-4 to 720 

exclude loci with insignificant genetic correlation or univariate heritability. 721 

Subsequently, we performed 80,126 bivariate tests on loci and traits that exhibited 722 

significant univariate genetic signals. To address the conservative nature of the 723 

Bonferroni correction, we applied a FDR of 0.05 to identify significant associations.  724 

 725 

For regions identified by LAVA with evidence of shared risk loci across multiple 726 

phenotypes, we conducted a multi-trait co-localization analysis using HyPrColoc79. 727 

This method builds on the COLOC framework and simultaneously assesses 728 

co-localization among several traits by calculating the PP of multiple traits 729 

co-localizing due to a single causal variant. A SNP with a PP exceeding 0.7 indicates a 730 

significant co-localization signal, pointing to shared causal mechanisms within the 731 

region. 732 

 733 

Genetic overlap analysis between BCTs and CVDs 734 

To further explore the genetic overlap between BCTs and six major CVDs, we 735 

applied the GPA80. This method leverages GWAS summary results, using the 736 

intersection of P-values for each phenotype as input, and fits a GPA model based on 737 
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the resulting P-value matrix data. GPA categorizes SNPs into four groups according 738 

to their association with the traits: SNPs unrelated to any traits (π00), related only to 739 

the first trait (π10), related only to the second trait (π01), and associated with both 740 

traits (π11). This classification helps estimate the proportions of SNPs and elucidates 741 

the causal effects on the phenotypes. The statistical significance of the genetic overlap 742 

is assessed using a Likelihood Ratio Test (LRT), which tests the fit of the four-group 743 

model against a model of independent effects. GPA assumes P-values from null SNPs 744 

follow a uniform distribution, while those from non-null SNPs follow a Beta 745 

distribution. The PAR, defined as π11/(π01 + π10 + π11), represents the proportion of 746 

SNPs associated with both traits relative to those associated with at least one trait81. 747 

To minimize the influence of LD on our GPA estimates, we performed LD pruning 748 

using PLINK82 with genotype data from the 1000 Genomes Project Phase 3 for 749 

European ancestry, selecting relatively independent SNPs76. We then applied the FDR 750 

method to correct for multiple testing, with an FDR threshold of <0.05 to determine 751 

statistical significance. 752 

 753 

Mendelian randomization analysis using LHCMR 754 

We employed the LHC-MR method to explore potential causal relationships between 755 

29 BCTs and 6 major CVDs83. Unlike traditional polygenic MR approaches that rely 756 

only on genome-wide significant SNPs, LHC-MR exploits all genome-wide variation 757 

for causal estimation, using structural equation models to relate genome-wide 758 

associations to traits and confounders. LHC-MR enhances the ability to estimate 759 

bidirectional causal effects, direct heritability, and confounding effects, as well as 760 

accommodate sample overlap. Moreover, we also applied traditional bidirectional MR 761 

models for sensitivity analysis, including MR Egger, weighted median, inverse variance 762 

weighted (IVW), simple mode, and weighted mode84. Estimates from LHC-MR are 763 

reported as odds ratios (ORs) with corresponding 95% confidence intervals (CIs). We 764 

applied a Bonferroni correction to rigorously evaluate causal relationships between 765 

trait pairs, setting a significance threshold at P < 1.44×10-4 (0.05 divided by 174 pairs, 766 

then divided by 2 to account for testing in both directions). A unidirectional causal 767 
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relationship was established when the P-value in one direction was below the 768 

threshold, while in the opposite direction, it exceeded 0.05. Conversely, a 769 

bidirectional relationship was confirmed when the P-values in both directions were 770 

below 1.44×10-4. 771 

 772 

SNP-level Analysis 773 

Pleiotropic SNPs Identified by PLACO 774 

To assess the evidence for horizontal pleiotropy between 29 BCTs and 6 major CVDs, 775 

we utilized the PLACO. PLACO is a sophisticated statistical method designed to 776 

detect pleiotropic associations of each variant by evaluating the hypothesis that a SNP 777 

is associated with neither or just one of the traits85. This hypothesis is subdivided into 778 

four specific scenarios: (1) H00, indicating no association with either trait; (2) H10, 779 

suggesting an association exclusively with the first trait; (3) H01, indicating an 780 

association solely with the second trait; and (4) H11, representing a pleiotropic 781 

association with both traits. The test statistic is calculated as the product of the Z 782 

statistics for the SNPs for each trait, which is assumed to follow a mixture distribution. 783 

To ensure accuracy, SNPs with squared Z statistics (Z2) greater than 100 are excluded 784 

from analysis. SNPs are declared significantly pleiotropic at the genome-wide level if 785 

their P-values are less than 5×10-8. 786 

 787 

Genomic loci definition and functional analysis 788 

We employed the FUMA platform86 to identify and functionally annotate independent 789 

genomic loci and pleiotropic SNPs identified through PLACO. FUMA processes 790 

GWAS summary statistics to annotate and prioritize SNPs and genes, enhancing data 791 

interpretation through interactive visualizations76. Using European population data 792 

from the 1000 Genomes Phase 3 as a reference, we identified independently 793 

significant SNPs (P < 5 × 10-8, r2 < 0.6) from GWAS results. LeadSNPs were then 794 

defined from these SNPs based on mutual independence (r2 < 0.1), and genomic risk 795 

sites were determined where SNPs were in LD (r2 > 0.6). LD blocks within lead SNPs, 796 

separated by less than 500 kb, were combined into single sites, with the top lead SNP 797 
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determined by the lowest P value in each site. We then evaluated the directional 798 

effects of these top SNPs by comparing Z-scores, considering them novel if 799 

inconsistent with any previously reported loci for BCTs or CVDs in original GWAS. 800 

For functional and pathogenic prediction of variants, we utilized ANNOVAR, 801 

applying metrics like the CADD score to predict the deleteriousness of variants based 802 

on 67 functional annotations. SNPs with a CADD score over 12.37 were considered 803 

harmful87. The regulatory potential of SNPs was assessed using RegulomeDB scores, 804 

ranging from 1a (strong evidence of regulatory function) to 7, with lower scores 805 

indicating higher activity88. Chromatin states, predicted by ChromHMM using five 806 

chromatin markers across 127 epigenomes, helped highlight the regulatory landscape 807 

of genomic regions89. Lastly, SNP-gene associations were analyzed through positional 808 

mapping within a 10 kb window of genes and eQTL mapping from GTEx v8 data to 809 

identify significant cis-SNP gene pairs within 1 Mb relevant to the studied traits. 810 

 811 

Bayesian colocalization analysis 812 

Bayesian colocalization analysis used the 'coloc' R package on pleiotropic loci 813 

annotated by FUMA to identify shared causal variants within each locus90. This 814 

analysis assesses whether specific loci contain a causal variation that influences two 815 

traits simultaneously. We tested five hypotheses using COLOC to evaluate different 816 

scenarios of genetic influence at these loci91: PP0: no association with either trait; PP1: 817 

a causal variant affects only the first trait; PP2: a causal variant affects only the 818 

second trait; PP3: different causal variants affect each trait.; PP4: a common causal 819 

variant affects both traits. Loci with a posterior probability for hypothesis four (PP.H4) 820 

greater than 0.7 were deemed to exhibit significant colocalization. Within these loci, 821 

the SNP showing the highest PP.H4 was identified as the putative causal variant, 822 

suggesting a strong genetic link between the traits at this genomic location. 823 

 824 

Gene-level Analysis 825 

Gene-based association analysis using MAGMA 826 
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To identify candidate pleiotropic genes based on the pleiotropic SNPs identified by 827 

PLACO and single-trait GWAS results, we employed the MAGMA. This analysis 828 

utilizes multiple linear principal component regression to map SNP annotations from 829 

GWAS data onto the genome, detecting gene-disease associations. MAGMA's 830 

strength lies in aggregating evidence from multiple genetic variants within the same 831 

gene to enhance the detection of novel genetic signals. For analytical robustness, we 832 

restricted our analysis to protein-coding genes containing at least ten SNPs. Gene 833 

annotations were aligned with the Genome Reference Consortium Human Build 37 834 

(hg19), and the analysis incorporated the 1000 Genomes Phase 3 European LD score 835 

reference panel76, focusing on 17,636 autosomal protein-coding genes. SNPs were 836 

systematically assigned to genes based on their location within the gene body or 837 

within a ±10 kb window surrounding the gene. Additionally, regions within the MHC 838 

(chr6:25-35 Mb) were excluded due to their complex linkage disequilibrium patterns. 839 

We applied a rigorous Bonferroni correction for multiple testing across 17,636 840 

protein-coding genes and 174 trait pairs, setting a stringent significance threshold for 841 

the MAGMA analysis at P < 0.05/(17,636×174). 842 

 843 

Investigation of the tissue-specific genes using EMAGMA and TWAS 844 

To overcome limitations in identifying causal genes using traditional MAGMA, 845 

which assigns SNPs to genes within a genomic window, we implemented 846 

E-MAGMA92 for transcriptome-wide association analysis. This enhanced approach 847 

uses tissue-specific cis-eQTL information from the GTEx v8 to link SNPs more 848 

accurately with their putative genes, thereby improving the biological interpretability 849 

of gene-based association analyses in BCTs and CVDs. E-MAGMA, adhering to the 850 

statistical framework of MAGMA, utilizes multiple linear principal component 851 

regression models. We focused our analysis on ten GTEx v8 tissues previously 852 

identified as relevant to BCTs and CVDs, including arterial, adipose, and cardiac 853 

tissues. To mitigate analytical complexities, regions like the MHC (chr6:25-35 Mb) 854 

were excluded, and we employed Bonferroni-corrected significance thresholds 855 

tailored per tissue and trait pair, ensuring robust statistical validation.  856 
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 857 

Complementing our E-MAGMA analysis, we conducted TWAS93 using the 858 

Functional Summary-based Imputation (FUSION) approach. TWAS integrates gene 859 

expression data with single-trait GWAS results to uncover tissue-specific genetic 860 

influences. We employed various prediction models, including Best Linear Unbiased 861 

Prediction (BLUP), Least Absolute Shrinkage and Selection Operator (LASSO), 862 

Elastic Net, and Bayesian Sparse Linear Mixed Model (BSLMM), selecting the model 863 

that provided the best prediction accuracy for each tissue. Adjustments for multiple 864 

comparisons were made using the Bonferroni method across each tissue type to 865 

ensure the statistical rigor of our findings. 866 

 867 

Pathway-level analysis using MAGMA and Metascape 868 

We used MAGMA gene set analysis to elucidate the biological relevance of 869 

pleiotropic genes identified from overlaps detected by MAGMA and subsequent 870 

pathway enrichment annotation94. This involved a competitive gene set enrichment 871 

analysis using MAGMA, which assesses whether genes within specific sets exhibit 872 

stronger associations with the phenotype than those in other gene sets across the 873 

genome. Our analysis included 9,398 gene sets from the Molecular Signatures 874 

Database (MSigDB, version 2023.1), particularly focusing on the C2: Reactome 875 

Pathways and C5: GO Biological Processes and various biological process sets. We 876 

applied a stringent Bonferroni correction for multiple testing, setting the threshold at 877 

P = 0.05 / (7744 + 186 + 1654) / 174 = 3.00×10-8 to ensure robust statistical validity.  878 

 879 

In addition, we used Metascape to perform pathway enrichment analysis on genes 880 

significantly identified in MAGMA and E-MAGMA analyses to elucidate the 881 

biological functions and pathways of pleiotropic genes associated with BCTs and 882 

CVDs. Metascape95 integrates functional enrichment analysis, interaction analysis, 883 

gene annotation, and member search functions to facilitate comprehensive 884 

bioinformatics analysis of bulk genes. For pathway enrichment analysis, we used the 885 

following ontology sources: GO annotation, KEGG, and Reactome pathways. P 886 
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values below 0.01 were considered statistically significant. 887 

 888 

Proteome-wide Mendeian Randomization analysis using SMR and 889 

Colocalization analysis 890 

To explore potential common pathogenic factors at the proteomic level between 29 891 

BCTs and 6 major CVDs, we employed SMR96. We analyzed disease GWAS data 892 

and pQTL data from the deCODE Health study and the UKB-PPP. The deCODE 893 

study measured 4,719 plasma proteins in 35,559 Icelandic individuals using the 894 

SomaScan platform, while the UKB-PPP assessed 2,940 proteins in 34,557 European 895 

individuals using the Olink Explore platform. Instrumental variables for SMR were 896 

selected based on genome-wide significant SNPs (P < 5 × 10-8) located within ±1 Mb 897 

of the transcription initiation sites of target genes. SMR is a novel MR method used to 898 

determine the association between genetically determined traits, such as gene 899 

expression and plasma protein levels, and outcomes of interest, such as disease 900 

phenotypes. This method integrates multi-omics data to facilitate the exploration of 901 

potential causal relationships between specific drug targets and diseases. To validate 902 

the observed causal associations, the HEIDI96 test is applied; a p-value below 0.01 903 

indicates the presence of linkage disequilibrium and pleiotropy. For sensitivity 904 

analysis, SMR employs multi-SNP-SMR for each circulating protein, setting a 905 

significance threshold at p < 0.05, strengthening the main analysis's evidence. The 906 

significance level is adjusted for multiple testing using the Bonferroni method, 907 

establishing the threshold at p < 5.23 × 10-7 (0.05 divided by 2,730 unique proteins 908 

and 35 traits). We then performed Bayesian colocalization analysis to complement our 909 

SMR findings and determine whether the same causal variants underlie the 910 

associations between protein levels and disease phenotypes. A posterior probability 911 

(PP.H4) greater than 0.7 indicates significant colocalization, suggesting that identical 912 

genetic factors may influence protein abundance and disease outcomes concurrently. 913 

 914 

To assess the therapeutic potential of the identified proteins, we utilized the 915 

OpenTargets database, which compiles comprehensive data from 22 renowned 916 
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sources. These sources include genetic associations, somatic mutations, existing drugs, 917 

differential expression, animal models, and insights into pathways and systems 918 

biology, providing a rich foundation for identifying potential therapeutic applications. 919 

The database further enhances our analysis by categorizing protein-related drugs 920 

according to their clinical trial phases, as reported on the ClinicalTrials website. 921 

Additionally, to ensure the reliability of our findings, we cross-referenced the 922 

identified proteins against a well-curated list of druggable genes. Finally, we 923 

thoroughly examined the drugs associated with these target proteins, assessing their 924 

relevance and potential efficacy based on current clinical and preclinical evidence. 925 
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408,112 NA NA 

GRCh37 

(hg19) 
41,263,103 

Monocyte percentage 

of leukocytes 
MONO_P  32888494 

ftp://ftp.sanger.ac.uk/pub/project/humgen/su

mmary_statistics/UKBB_blood_cell_traits/ 
408,112 NA NA 

GRCh37 

(hg19) 
41,263,840 

Neutrophil count NEUT  32888494 
ftp://ftp.sanger.ac.uk/pub/project/humgen/su

mmary_statistics/UKBB_blood_cell_traits/ 
408,112 NA NA 

GRCh37 

(hg19) 
41,265,469 

Neutrophil 

percentage of 

leukocytes 

NEUT_P  32888494 
ftp://ftp.sanger.ac.uk/pub/project/humgen/su

mmary_statistics/UKBB_blood_cell_traits/ 
408,112 NA NA 

GRCh37 

(hg19) 
41,266,508 

leukocyte count WBC  32888494 ftp://ftp.sanger.ac.uk/pub/project/humgen/su 408,112 NA NA GRCh37 41,264,179 
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mmary_statistics/UKBB_blood_cell_traits/ (hg19) 

Mean platelet volume MPV  32888494 
ftp://ftp.sanger.ac.uk/pub/project/humgen/su

mmary_statistics/UKBB_blood_cell_traits/ 
408,112 NA NA 

GRCh37 

(hg19) 
41,253,304 

Plateletcrit PCT  32888494 
ftp://ftp.sanger.ac.uk/pub/project/humgen/su

mmary_statistics/UKBB_blood_cell_traits/ 
408,112 NA NA 

GRCh37 

(hg19) 
41,253,096 

Platelet component 

distribution width 
PDW  32888494 

ftp://ftp.sanger.ac.uk/pub/project/humgen/su

mmary_statistics/UKBB_blood_cell_traits/ 
408,112 NA NA 

GRCh37 

(hg19) 
41,254,093 

Platelet count PLT  32888494 
ftp://ftp.sanger.ac.uk/pub/project/humgen/su

mmary_statistics/UKBB_blood_cell_traits/ 
408,112 NA NA 

GRCh37 

(hg19) 
41,253,708 

Hematocrit HCT  32888494 
ftp://ftp.sanger.ac.uk/pub/project/humgen/su

mmary_statistics/UKBB_blood_cell_traits/ 
408,112 NA NA 

GRCh37 

(hg19) 
41,262,764 

Hemoglobin 

measurement 
HGB  32888494 

ftp://ftp.sanger.ac.uk/pub/project/humgen/su

mmary_statistics/UKBB_blood_cell_traits/ 
408,112 NA NA 

GRCh37 

(hg19) 
41,261,840 

High light scatter 

reticulocyte count 
HLR  32888494 

ftp://ftp.sanger.ac.uk/pub/project/humgen/su

mmary_statistics/UKBB_blood_cell_traits/ 
408,112 NA NA 

GRCh37 

(hg19) 
41,252,382 

High light scatter 

percentage of red 

cells 

HLR_P  32888494 
ftp://ftp.sanger.ac.uk/pub/project/humgen/su

mmary_statistics/UKBB_blood_cell_traits/ 
408,112 NA NA 

GRCh37 

(hg19) 
41,251,884 

Immature fraction of 

reticulocytes 
IRF  32888494 

ftp://ftp.sanger.ac.uk/pub/project/humgen/su

mmary_statistics/UKBB_blood_cell_traits/ 
408,112 NA NA 

GRCh37 

(hg19) 
41,249,976 

Mean corpuscular 

hemoglobin 
MCH  32888494 

ftp://ftp.sanger.ac.uk/pub/project/humgen/su

mmary_statistics/UKBB_blood_cell_traits/ 
408,112 NA NA 

GRCh37 

(hg19) 
41,254,732 

Mean corpuscular 

hemoglobin 

concentration 

MCHC  32888494 
ftp://ftp.sanger.ac.uk/pub/project/humgen/su

mmary_statistics/UKBB_blood_cell_traits/ 
408,112 NA NA 

GRCh37 

(hg19) 
41,262,882 

Mean corpuscular MCV  32888494 ftp://ftp.sanger.ac.uk/pub/project/humgen/su 408,112 NA NA GRCh37 41,255,855 
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volume mmary_statistics/UKBB_blood_cell_traits/ (hg19) 

Mean reticulocyte 

volume 
MRV  32888494 

ftp://ftp.sanger.ac.uk/pub/project/humgen/su

mmary_statistics/UKBB_blood_cell_traits/ 
408,112 NA NA 

GRCh37 

(hg19) 
41,250,423 

Mean spheric 

corpuscular volume 
MSCV  32888494 

ftp://ftp.sanger.ac.uk/pub/project/humgen/su

mmary_statistics/UKBB_blood_cell_traits/ 
408,112 NA NA 

GRCh37 

(hg19) 
41,251,154 

Erythrocyte count RBC  32888494 
ftp://ftp.sanger.ac.uk/pub/project/humgen/su

mmary_statistics/UKBB_blood_cell_traits/ 
408,112 NA NA 

GRCh37 

(hg19) 
41,263,113 

Red cell distribution 

width 
RDW_CV  32888494 

ftp://ftp.sanger.ac.uk/pub/project/humgen/su

mmary_statistics/UKBB_blood_cell_traits/ 
408,112 NA NA 

GRCh37 

(hg19) 
41,258,684 

Reticulocyte count RET  32888494 
ftp://ftp.sanger.ac.uk/pub/project/humgen/su

mmary_statistics/UKBB_blood_cell_traits/ 
408,112 NA NA 

GRCh37 

(hg19) 
41,249,680 

Reticulocyte fraction 

of red cells 
RET_P  32888494 

ftp://ftp.sanger.ac.uk/pub/project/humgen/su

mmary_statistics/UKBB_blood_cell_traits/ 
408,112 NA NA 

GRCh37 

(hg19) 
41,249,637 

Atrial fibrillation AF 30061737 
https://www.ebi.ac.uk/gwas/studies/GCST00

6414 
1,030,836 60,620 970,216 

GRCh37 

(hg19) 
34,740,186 

Coronary artery 

disease 
CAD 36474045 https://cvd.hugeamp.org/datasets.html 1,165,690 181,522 984,168 

GRCh37 

(hg19) 
20,073,070 

Venous 

thromboembolism 
VTE 36658437 https://www.decode.com/summarydata/ 1,500,861 81,190 1,419,671 

GRCh37 

(hg19) 
9,617,942 

Heart failure HF 31919418 
https://www.ebi.ac.uk/gwas/studies/GCST00

9541 
977,323 47,309 930,014 

GRCh37 

(hg19) 
8,281,262 

Peripheral artery 

disease 
PAD 34601942 https://cvd.hugeamp.org/datasets.html 511,634 12,086 499,548 

GRCh37 

(hg19) 
10,250,121 

Stroke Stroke 36180795 
https://www.ebi.ac.uk/gwas/studies/GCST90

104539 
1,308,460 73,652 1,234,808 

GRCh37 

(hg19) 
7,511,476 
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Table 1: Overview of 29 blood cell traits and 6 cardiovascular diseases included 1222 

in this study 1223 

Note: Overview of 29 blood cell traits and 6 cardiovascular diseases, abbreviations as 1224 

used throughout the manuscript, associated PubMed ID, Data source and Year of 1225 

publication, the sample size, population and reference genome on which summary 1226 

statistics are based, and the number of SNPs included in the original summary 1227 

statistics, before we applied filtering.  1228 
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 1231 

Figure 1: Estimated genome-wide genetic correlations between BCTs and CVDs 1232 

using LDSC 1233 

Genome-wide genetic associations between BCTs and CVDs. Orange or green 1234 

borders highlight significant genetic correlations (with estimates provided) if they 1235 

were FDR significant (FDR < 0.05) or nominally significant (p < 0.05), respectively.  1236 

 1237 

1238 

Figure 2: Forest plot of the bidirectional causal relationship between BCTs and 1239 

CVDs 1240 

LHC-MR analysis was used to detect (a) forward (BCTs → CVDs) and (b) reverse 1241 

(CVDs → BCTs) causal effects. Estimates and 95% confidence intervals are shown as 1242 
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dots and error bars, respectively. 1243 

 1244 

 1245 

Figure 3: Overall landscape of the pleiotropic associations across three types of 1246 

BCTs and six major CVDs 1247 

The three circular dendrograms included three BCTs (central points, including [a] 1248 

leukocytes, [b] platelets, and [c] erythrocytes) and six CVDs (first circle), resulting in 1249 

66, 24, and 84 trait pairs (second circle). A total of 156, 81, and 192 pleiotropic loci 1250 

were identified in 43, 13, and 58 trait pairs for (a) leukocyte-CVDs, (b) platelet-CVDs, 1251 

and (c) erythrocyte-CVDs, respectively (third circle). Significant pleiotropic genes 1252 

were further identified by MAGMA and EMAGMA, and a total of 936 pleiotropic 1253 

genes co-localized for paired traits. For trait pairs with more than three pleiotropic 1254 

genes, we only displayed the top three pleiotropic genes according to the priority of 1255 

candidate pleiotropic genes (fourth circle). 1256 

 1257 
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