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Dengue fever, a tropical vector-borne disease, is a leading cause of hospitaliza-
tion and death in many parts of the world, especially in Asia and Latin America.
In places where timely and accurate dengue activity surveillance is available,

decision-makers possess valuable information that may allow them to better de-
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sign and implement public health measures, and improve the allocation of lim-
ited public health resources. In addition, robust and reliable near-term forecasts
of likely epidemic outcomes may further help anticipate increased demand on
healthcare infrastructure and may promote a culture of preparedness. Here, we
propose ensemble modeling approaches that combine forecasts produced with a
variety of independent mechanistic, statistical, and machine learning component
models to forecast reported dengue case counts 1-, 2-, and 3-months ahead of cur-
rent time at the province level in multiple countries. We assess the ensemble
and each component models” monthly predictive ability in a fully out-of-sample
and retrospective fashion, in over 180 locations around the world — all provinces
of Brazil, Colombia, Malaysia, Mexico, and Thailand, as well as Iquitos, Peru,
and San Juan, Puerto Rico — during at least 2-3 years. Additionally, we evaluate
ensemble approaches in a multi-model, real-time, and prospective dengue fore-
casting platform — where issues of data availability and data completeness intro-
duce important limitations — during an 11-month time period in the years 2022
and 2023. We show that our ensemble modeling approaches lead to reliable and
robust prediction estimates when compared to baseline estimates produced with
available information at the time of prediction. This can be contrasted with the
high variability in the forecasting ability of each individual component model,
across locations and time. Furthermore, we find that no individual model leads
to optimal and robust predictions across time horizons and locations, and while
the ensemble models do not always achieve the best prediction performance in
any given location, they consistently provide reliable disease estimates — they
rank in the top 3 performing models across locations and time periods — both

retrospectively and prospectively.
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1 Introduction

Dengue fever is a tropical vector-borne disease threatening an estimated 3.9 billion people [62]
over 141 countries [2], with cases doubling every ten years since 1990 [26]. Over 390 million in-
fections arise each year worldwide, with severe dengue causing 25,000 deaths annually, mostly
in children [2, 3]. For many parts of Asia and Latin America, dengue is a leading cause of
hospitalization and death, especially among children [16]. It also causes more morbidity and
mortality than any other arthropod-borne virus [9]. While dengue infections often presents
with flu-like or otherwise mild symptoms [1], about 1 in 20 people infected with dengue will
develop severe dengue, which can further develop into dengue hemorrhagic fever [3] — a very
serious condition marked by capillary leakage leading to potentially significant organ impair-
ment, multiorgan failure, and death [1, 3, 21, 28]. The ability to forecast dengue fever cases
can provide public health officials with a more accurate picture of future disease dynamics,
empowering decision-makers to implement public health measures and better allocate limited

resources.

Over the past few decades, multiple approaches have been developed for dengue forecast-
ing. Dynamic, mathematical models that incorporate knowledge of dengue virus transmission
biology, historical incidence, and climatological factors have been developed to predict the evo-
lution of dengue epidemics [11, 64, 20, 51]. However, the intricate nature of dengue dynamics
poses a significant challenge, as mechanistic assumptions usually remain unclear — or hard to
quantify —, and acquiring the data to parameterize models often proves impossible. More re-
cently, data-driven methodologies to predict the severity of an upcoming seasonal outbreak —
a classification problem — have experienced a surge in popularity due to the increasing avail-
ability of epidemiological and exogenous dengue-related data. These include methods such as
k-Nearest-Neighbors, Logistic Regression, and various boosting methods [44]; or the identifi-
cation of weather (temperature, rain frequency) patterns that may help anticipate years with
high incidence [35, 57, 56]. Additionally, classical time series methods like SARIMA (and its
variants) have been widely explored to forecast confirmed case counts over time[6, 18, 46, 59],

as well as more complex, non-linear methods such as generalized additive models, artificial
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neural networks, and exponential smoothing approaches [5, 6, 29, 46]. Other studies have ex-
plored the feasibility of leveraging Internet-based data sources such as Dengue-related Google
search data [27, 50, 62], social media data [17, 33], and Wikipedia access logs [33] as additional

predictors of Dengue activity.

The abundance of dengue forecasting methodologies presents a significant challenge for decision-
makers and stakeholders who ultimately need a single set of reliable predictions to make in-
formed decisions to protect their communities. Factors such as data availability, computational
resources, and the desired level of accuracy further complicate the decision-making process.
Therefore, navigating the array of forecasting methodologies requires careful consideration
and expertise to ensure effective dengue prediction and response. Additionally, each model
has its own limitations [18, 43], including robustness to variability in data quality and sensitiv-

ity to different outbreak phases, which can lead to inconsistent predictions.

Ensemble methods that intelligently and adaptively combine the predictions of multiple com-
ponent models into a single prediction may be more robust alternatives for disease forecasting.
For example, previous studies have used averaged and weighted-averaged ensembles com-
bining models such as SARIMA, vector autoregression, neural networks, and linear regression
to nowcast and forecast dengue in Brazil and India [23, 53]. Similar ensembling approaches
combining models such as the Method of Analogues, Holt-Winter models, and Bayesian gen-
eralized linear mixed models, among other historical models, have shown promising results in
Iquitos, Peru [8], and Vietnam [12]. Chakraborty et al. directly combined ARIMA and neural
networks to forecast dengue in San Juan, Iquitos, and the Philippines as a composition of linear
and non-linear signals [10]. Mahajan et al. use a gradient-boosting super-ensemble to combine
ARIMA, exponential smoothing, and neural network for forecasting dengue in Hong Kong
[32]. Ensemble models intentionally involving strong and weak learners to reduce over-fitting

have also shown good predictive performance in Bangkok and Chiang Mai, Thailand [24].

However, the studies referenced above are (1) individually limited in their geographic scope
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—to study a few locations within a country at a time—, (2) they only focus on a few model choices
as potential ensemble components, and (3) they were in all cases implemented retrospectively.
The latter implies that issues of data availability, data completeness, and other challenges that
emerge in real-time forecasting efforts were not at all considered [34]. As such, the approaches
described are not guaranteed to generalize as robust, ready-to-use methodologies globally, in

real-time and prospective forecasting efforts.

We would like to highlight that the challenges of the real-time implementation of disease fore-
casting systems have been documented extensively, and they are still the backbone that moti-
vate multiple research studies ([37, 31, 54]). In fact, public health systems typically experience
severe lags in reporting [13, 36], and reported case counts for a given month may be updated
many times in the following months (this is commonly referred to as “backfill”) [50]. While
some methods for addressing these data quality and backfill issues have been proposed [15],
for example — methods that attempt to learn backfill patterns [22, 37] and methods that in-
troduce auxiliary data sources [45] to improve forecasts; we did not include in our real-time
prediction pipeline a comprehensive set of approaches to address these issues. Instead, we
evaluated the ability of our machine learning-based ensemble methods to lead to improved or

consistent forecasts in the presence of these challenges.

The primary prediction task addressed by this manuscript is the short-term forecast of reported
dengue fever case counts one to three months ahead in province-sized localities. The main con-
tributions of this work are twofold. First, we retrospectively formulate a family of ensemble
system pipelines — comprised of multiple structurally heterogeneous individual component
models — that generate more robust and accurate forecasts compared to their individual com-
ponent models. Specifically, we include the following 11 diverse classes of individual compo-
nent models as potential inputs to our ensembling pipelines: autoregressive (AR); autoregres-
sive with Google Trends data as exogenous covariates (ARGO [63]); three variants of vector
autoregression (NetModel and two variants of VAR [41] — VAR (Reg.) and VAR (Clust., Reg.);
a combination of ARGO and NetModel (ARGONet [31]); a novel, mechanistic, repurposed

dynamically-trained SIR; a classical error-trend-seasonality model (ETS); a mini-ensemble of
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machine learning methods (Stacked ML); a baseline naive persistence model; and a baseline
seasonal model. We exhaustively demonstrate across 180+ province-sized locations that our
ensemble models not only incur lower percent absolute errors on average compared to their in-
dividual component models (though such improvements may be modest), but also, and more
importantly, they produce top performing forecasts (typically in the top three) more consis-

tently than any individual model.

The second contribution of this study is the evaluation of a real-time dengue activity forecasting
platform implemented as a prospective tool to identify when and where an upcoming dengue
outbreak would be experienced 1, 2 and 3 months into the future. These predictive efforts
were implemented as a decision-making support tool to guide the allocation of resources for
prospective clinical trials in all provinces of Brazil, Colombia, Malaysia, Mexico, and Thailand.
The ensemble techniques were assessed using a different set of component models that were
chosen based on their suitability to be implemented in the presence of multiple data avail-
ability and data incompleteness issues. These models included: KNN, VAR (Reg.), Support
Vector Machines (SVM), and SARIMA. The scope of our study and the consistency of our an-
alyzes suggests that our ensemble approaches are generalizable across geographically diverse
locations and individual component models, and thus may become a reliable first choice for
forecasting teams who are interested in communicating concisely with public health officials

and other decision makers[54].

Results

We evaluated the performances of eleven optimized component models and two selected en-
semble models on forecasting reported dengue cases in over 180 province-sized locations world-
wide in Brazil, Colombia, Malaysia, Mexico, and Thailand. Specifically, we retrospectively as-
sessed each model’s ability to forecast reported dengue cases 1-, 2-, and 3-months ahead into

the future, with performance quantified using Percent Absolute Error (see Supplementary Ma-
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terials).

For each location, we partitioned the available data into distinct training and test periods. Dur-
ing the training phase, we engaged in a hyperparameter optimization for each component
model, and two versions of optimal hyperparameters for our ensembles: a "Country’ set of hy-
perparameters (using the same set of hyperparameter with best on-average performance across
all locations within a country), and a ‘Overall’ (using the set of hyperparameters that, on aver-
age, best performed within all the locations in the study). Following this stage, we proceeded
to generate out-of-sample forecasts utilizing the designated test period. It is important to note
that due to the varied availability of epidemiological data across different regions, the time pe-
riods for analysis varied from country to country. For specific details on the analysis period for

each country, please consult Table 2.

We present our main results in the following way: First, we observe the heterogeneity in the
performance of each of our component models in Figure 1, which presents a summary of the
performance of each model across each country, and each horizon of prediction. Then, in Fig-
ure 2 we focus specifically on the capacity of the ensemble models to consistently succeed in
generating reliable forecasts, independent of the location where they are trained on. Finally,
we present an overview of the error reduction of each component model, emphasizing the

consistency of the ensemble techniques to reduce error across locations.

Component model performance were significantly dependent on the location. Our results,
summarized in Figure 1, present a table with the percent absolute error ranking (PAE) distri-
bution for each model within Sections B through F (one for each country). Each row within
the table represents a distinct model, while columns denote their respective rankings (1st, 2nd,
3rd, etc.). For instance, for Brazil, the first entry of the table indicates that the model "Ensem-
ble (Country, EW)” secured the lowest PAE, achieving first place in 7 out of 27 locations across
the country. The tables showcase the top-performing model in terms of this ranking, listed in
descending order. We found that our ensembles, including the ‘Country” and "Optimized’ ver-
sions of the "Equal Weights” (EW) ensemble, and "Country” and 'Overall” 'Performance Based

Weights” (PBW) tended to be in the top positions within our ranking tables across all hori-
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zons for Brazil, Colombia, Mexico, and Thailand (see the Methods section for details on the

ensemble approaches). In the case of Malaysia, the EW ensemble appeared in the 6"

position
(almost half of the participating models). The Vector Autoregression (VAR) also consistently
appeared in top positions for each of the ranking matrices for each country. On the other hand,
the positioning of each of our component models varied from country to country. A country-
by-country description, along with additional results for San Juan, Puerto Rico, and Iquitos,
Peru can be found in the Supplementary Materials. We relegate Puerto Rico and Peru to the

Supplementary Materials, since we only have one location in each of these regions, which does

not facilitate interprovince analyses.
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Figure 1: Country-specific optimized individual and ensemble model performance rankings.
(A) Graphical representations of the 1-, 2-, and 3-month forecast horizons that we explore in
this paper. The red X marks our forecasting target n-months ahead, the blue dots represent the
historical cases that we are using as our observed training data (in this case, a 5-month sliding
window), the vertical blue dotted lines represent the limits of our training data range, and the
grey silhouette represents the ground truth reported case counts. (B) - (F) Within each country
and forecast horizon, the heatmaps show the rankings distribution for each individual and
ensemble model’s forecasts in terms of percent absolute error. The geographic maps next to
each heatmap indicate the best-performing model in each province, color-coded by the legend
at the bottom of the figure.
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Ensemble models consistently achieve the most top performance rankings com-

pared to any individual model.

Our second main result is that the country-specific and overall ensembles consistently perform
among the top 3 relative to the individual component models. Moreover, averaged across all
locations, two ensemble variants incurred the lowest prediction error compared to all other
component models. Fig. 2 shows the forecasting performance of both individual and ensemble
models across all 187 tested locations. In panel (A), we provide one example emphasizing the
advantages of using ensembles over component models. For the 1- and 2-month ahead hori-
zons, the best country-specific ensemble used equal weights (EW) for all component models
when producing an ensemble forecast at each timestep, while at the 3-month ahead horizon,
the best country-specific ensemble used performance-based weights (PBW), where the weight-
ings of the component models were determined based on which component models performed
the best in the recent past. Specifically, at the 1- and 2-month ahead forecast horizons, the en-
semble model predicted the ground truth (grey silhouette) much more closely and with less
variance than that of its component models, which tended to display more significant oscilla-
tion relative to the ground truth. At the 3-month ahead horizon, the ensemble and its com-
ponent models tended to produce less accurate predictions in this specific example. Given
the broad geographical scope of our study, these findings suggest that ensemble models are a

suitable default choice for generalizable and robust forecasts.

The heatmaps in Fig. 2 (B) show that the country-specific and overall ensembles had the most
locations where they performed in the top 3 rankings in terms of percent absolute error, fol-
lowed by regularized VAR and clustered + regularized VAR, out of the 187 tested locations. At
the 2-month ahead horizon, country-specific ensembles still garnered the most top 3 rankings,
but regularized VAR seemed to garner more top 3 rankings than the overall ensemble. At the
3-month ahead horizon, the country-specific and overall ensembles again attained the great-
est number of top 3 rankings, followed by regularized VAR. While ensembles may not always
be the absolute winner in every tested location, overall, they consistently placed on the top 3

rankings, being reliable and robust model choices. From the geographical maps in panel (C),

10


https://doi.org/10.1101/2024.10.22.24315925
http://creativecommons.org/licenses/by/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2024.10.22.24315925; this version posted October 23, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license .

ensemble models performed in the top 3 rankings in a vast majority of all 187 locations tested,
as indicated by most of the maps being colored yellow. We found only a few consistent excep-
tions to this rule primarily in central Brazil and Colombia. These maps again corroborate the

finding that ensembles are an effective option for stakeholders.
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Figure 2: A summary of our prediction tasks and optimized model performances across 187
locations. (A) An example of our fine-tuned country-specific ensemble variants’ forecasts com-
pared to their optimized component models in one selected location — Bahia, Brazil. The gold
standard ground truth of reported dengue cases is shown as the grey silhouette. Ensemble
predictions are shown in thick, bolded lines, while component models are shown in thinner,
colored lines.(B) Heatmaps of the number of locations where each model attained a specific
ranking in terms of mean absolute error with respect to the ground truth reported dengue case
counts across all 187 locations. (C) Geographical maps of Brazil, Colombia, Malaysia, Mexico,
and Thailand showing provinces where either the country-specific or overall ensemble per-
formed in the top 3 rankings for each location (in yellow) and where they did not (in grey).
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Ensembling also yields improvement in error distributions across locations.

We analyzed the potential error reduction of our ensemble models with respect to individual
models. Our results are displayed in 3, which shows the percent absolute error distributions
for the individual and the ensemble models in the 187 locations tested. Fig. 4 shows the same
percent absolute error distributions of the individual and ensemble models within each country

and forecast horizon.

Overall performances Despite the minor reduction in some cases, the country-specific and
overall ensembles had the lowest mean percent absolute errors compared to all other models
across all forecast horizons. Fig. 3 (A) to (C) displays the error distributions for each model,
across the 3 different horizons of forecast. In all cases, we can observe that the Ensemble models
were placed as the top performers, reaching values of 38.5%, 54.5% and 62.7% in terms of Per-
cent Absolute Error (% AE). The next best model were there VAR variants (one incorporating
regularization, and other implementing both regularization and clustering), reaching values of

40%, 55% 64%, for each respective task.

Performance by country Fig. 4 shows the performance per country. Notably, an ensemble
variant achieved the lowest mean percent absolute error in 14 out of 15 tested combinations of
forecast horizon and country. The sole exception was Colombia at 2-months ahead, with clus-
tered + regularized VAR having achieved the lowest mean percent absolute error. However,
the mean percent absolute errors and the shapes of the errors” distributions are very similar for
the top-performing models. Nonetheless, our analyses shown in this figure still confirm that
the ensembles were greater than the sum of their component models, even when looking only

within a particular country.
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Figure 3: Overall error distributions for optimized individual and ensemble models across
all 187 tested locations. (A) - (C) Ridgeline plots show percent absolute error distributions at
the 1-month, 2-month, and 3-month horizons, respectively. Side tables record the mean percent
absolute error incurred.
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cent absolute error incurred.
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Prospective Study: a real-life application and analysis of our methodology

In this section, we evaluate the performance of our forecasts generated by a real-time dengue
activity forecasting platform. This platform was designed as a prospective tool to predict where
dengue outbreak activity would occur 1, 2, and 3 months into the future. There are two primary
differences between our retrospective and prospective studies. First, the prospective study was
conducted in a real-world scenario where future ground truth data was unknown, whereas, in
the retrospective study, we had access to the entire time series beforehand. Second, due to re-
porting delays in dengue case data, our prospective predictions did not utilize the most up-to-
date epidemiological data. In contrast, the retrospective predictions were made using the most
complete datasets available. This evaluation covered various locations in Brazil, Colombia,
Mexico, Thailand, and Panama from May 2022 to July 2023. The forecasting models included
Support Vector Machine (SVM), K-Nearest Neighbors (KNN), a regularized version of Vector
Autoregression (VAR), and Seasonal Autoregressive Integrated Moving Average (SARIMA).
Our ensemble models comprised a weighted ensemble, which assigned weights based on the
mean squared error score of each model over the past six months, and a winner-takes-all en-
semble, which selected the prediction from the ‘best” base model with the least mean squared

error over the past 3 months. Additionally, we used Persistence as our baseline model.

Figure 5 and Table 1 show a summary of the number of times our ensemble’s Mean Squared Er-
ror was among the top 3 best over all the locations within a Country (the analysis was repeated
over each forecasting horizon). We also present the overall error reduction of each model with
. ERRORyy04¢1 : _— .
respect to persistence(zrzo Rpersisteme) using a set of violin plots. We conducted the analysis

for each location and each country (Figure 6).

Top 3 Analysis

Figure 5 shows the number of times a model reached within the top 3 Mean Squared Error
reductions, for each country and each horizon. Each barplot represents the performance of a

model within a Country, for a different prediction horizon. We can see VAR appearing eight
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Top 3 overview

Weighted Ensemble 3318
VAR (regularized) 2989
Winner Takes All 2310
SARIMA 1638
KNN 1519
SVM 1512
Persistence 658

Table 1: Summary of the number of times a model scored a Mean Squared Value among the top
3 best, across every location, and every horizon. Our results show that our weighted ensemble,
VAR and Winner takes all approach are among the top performers.

times on the leftmost side (40%), and our Weighted Ensemble appearing seven times(35%).
Our Winner-Takes-all approach appeared only two times on the leftmost side (10%), but had
a comparable count with the top model whenever it was on second position (see Thailand in
horizon 1, Panama in Horizon 1 and 4, Brazil in horizon 1, and Mexico in Horizon 1 and 2).
Overall, most of our base models and ensembles had a higher count than persistence, with
exception to Colombia in horizon 1, Panama in horizon 2, and Mexico in Horizon 1. Table 1
shows a total count over all locations, and all horizons. Our weighted ensemble had a total of

3318 counts, followed by VAR with 2989 and Winner-Takes-All with 2310 counts.

17


https://doi.org/10.1101/2024.10.22.24315925
http://creativecommons.org/licenses/by/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2024.10.22.24315925; this version posted October 23, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license .

Horizon 1 Horizon 2 Horizon 3 Horizon 4

N
o

Panama

SESTFE & &
(o c,\*

Mexico Thailand

Colombia

0 0
¢ & & SR ¢ & & ©
@y@‘g@é & X\ &cy@@@q\

.. 2
B & &
& &

Figure 5: Top performer count. A visualization of the number of times a model scored a value
of MSE rated among the top 3 best, ordered from left (models with the highest count) to right
(models with the lowest count). Our results show that the Weighted Ensemble (blue), VAR

(green), and the Winner-Takes-All approach are frequently among the top performers (leftmost
side).
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1.0.1 Overall Error reduction

Figure 6 exhibits a summary of the error reduction for the analyzed models with respect to the

Persistence model (5 ERRO R oqel

m). The violin plots are ordered so that the best model is to

the rightmost side, and a dashed horizontal line plotted at y = 1 (y = 1 means the error of our
model is equal to the error of Persistence) serves as a reference to know if a model consistently

beat persistence or not.

The weighted ensemble (WE), vector autoregression and the winner-takes-all (WTA) ensemble
were the three models that most frequently scored within top-3 error reduction. We observe
that the weighted ensemble had median error reduction within the top 3 at every location and
time horizon, except Panama in horizon 1. Regularized VAR scored the biggest error reduction
in Colombia and Thailand for horizons 1,2, and 3, 4. Although less frequently, the Winner-
Takes-All ensemble also remained within the top 3 performances with exception to Thailand in

horizon 4, Panama in horizon 3 and 4, and Mexico in horizon 3 and 4.
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Figure 6: Error reduction with respect to the Persistence model. Summary of the error re-
duction of each model with respect to the Persistence baseline model. Each plot represents a
different horizon (columns) and country (rows). Each violin plot visualizes a summary of the
error reduction scores (%) for a single model. Models are ordered from worst

(left) to best (right). The gray dashed line represents the value of persistence and serves as a
reference to validate if a model improved over the baseline.

20


https://doi.org/10.1101/2024.10.22.24315925
http://creativecommons.org/licenses/by/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2024.10.22.24315925; this version posted October 23, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license .

Impact of reporting delays in our model’s performance

In conducting the prospective analysis, our forecasts were generated in a real-time scenario
where the ground truth for each location was not fully reported at the time of prediction. The
performance of our models were therefore likely affected by backfill issues in the data. Figure 7
illustrates our forecasts within the region of Sergipe, Brazil. At the time of prediction, the avail-
able information on confirmed cases (depicted in dark gray) differed from the most recently
reported data (shown in light gray), which we employed as our ground truth for final metrics
and error scores. Such backfill issues significantly impact real world applications as our models

are trained solely on the information available at the given point in time.
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Figure 7: Visualization of the bias embedded in our models given reporting delays. The offi-
cial reports known at the time of prediction, shown in dark gray, is the only information avail-
able to our models at the time of prediction. After several months, the ground truth changes
due to backfill efforts based on the most recent reports are shown in light gray.
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Discussion

Dengue is a leading cause of hospitalization and death for many people around the world [16],
and with cases doubling every ten years [26]. An essential component of dengue control is
disease forecasting. Enhancing the accuracy and robustness of predictive models, particularly
across multiple diverse geographical localities, empowers public health institutions to adopt a

more proactive approach towards curbing the spread of the disease.

We tackled the task of predicting reported dengue fever case counts one, two, and three months
ahead in various province-sized locations around the worldwide. Since individual model per-
formances typically fluctuate across locations, there is a need for more robust and generaliz-
able forecast models. In this context, our first contribution was the development of a family
of ensemble models that retrospectively produced more accurate forecasts than their compo-
nents across a broad range of geographically and socially diverse locations. Specifically, we
investigated eleven types of data-driven, statistical, and mechanistic models as potential com-
ponents of our ensemble. We also explored three ensembling mechanisms — performance-
based weights, winner-takes-all, and simple average — and found that our ensemble mod-
els achieved lower percent absolute errors across 180+ geographically diverse locations. Our
second contribution was a real-time dengue forecasting platform to predict when and where
outbreaks will occur 1, 2, and 3 months in advance. Our forecasts were made in real-time with-
out complete ground truth for each location. In fact, this task is not the same as performing
retrospective studies, since dengue case data are typically updated months later (a problem
commonly referred to as “backfill”). In this challenging scenario, our ensemble models still
emerged as the top performers, producing better forecasts and reducing error compared to

individual components.

Our ensemble models were robust predictors of dengue across the world. This fact is espe-
cially relevant because, as shown in Fig. 1, no individual model consistently achieved the
lowest error. By contrast, while country-specific and overall ensembles were not always the

best-performing models at a given location and forecast horizon, they almost always incurred
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the most top 3 performers compared to any of the component models. As shown in Fig. 3, our
ensemble variants incurred the lowest error averaged across all 180+ tested locations in terms
of percent absolute error compared to the component models. Even looking within a partic-
ular country and forecast horizon, as shown in Fig 4, ensemble models achieved the lowest
error averaged across all locations within that country in 13 out of 15 combinations of country
and forecast horizon. The two exceptions were Colombia at 2-months and 3-months ahead.
Furthermore, in 9 out of 15 country-horizon combinations, both the country-specific and over-
all ensembles achieved the top 2 lowest errors averaged across locations. In our prospective
study, the weighted ensemble (WE) model was overall the top performer in terms of low mean
squared error, followed by VAR and the Winner Takes All (WTA) ensemble (Table 1). In terms
of error reduction with respect to the persistence model, WE and WTA also consistently per-

formed within top-3 performers across locations.

It is worth addressing the excellent performance of our VAR model in both retrospective and
prospective studies. Examining our results more granularly, from Fig. 4, we observe that in
Colombia, at the 2-month ahead horizon, VAR (Clust., Reg.) achieved more top 3 rankings
than both ensemble variants. At the 3-month ahead horizon, VAR (Clust., Reg.) not only out-
performs the overall ensemble in terms of the number of top 3 rankings but achieves more top
1 rankings than both ensemble variants. Similarly, at least one VAR model also outperforms at
least one ensemble variant in terms of the number of top 3 rankings in all three forecast hori-
zons of both Malaysia and Thailand. We hypothesize that VAR’s stellar performance in Colom-
bia, Malaysia, and Thailand can be significantly attributed to the fact that these three countries
are “province-dense” in the sense that individual provinces are relatively geographically small
and, by extension, extremely close to each other. For example, Thailand has 77 provinces com-
pacted into a relatively-small total surface area. In contrast, Brazil has 27 provinces spread out
across a much larger area. The consequence of this geographical difference is that population
centers between Brazilian provinces are much farther apart, and thus network effects are much
weaker than their Thai counterparts. As such, VAR is much more effective in Thailand than
Brazil because there are significantly stronger network effects between provinces to capture in

our models.
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We also investigated component models that were not exhaustively hyperparameter tuned but
rather deployed straight out of the box, which we refer to as “standard” models. For details,
we refer the reader to our Supplementary Information. As shown in Figs. 12 and 14, while our
standard component models are nearly all unable to outperform our naive persistence baseline
in terms of percent absolute error as averaged across locations, our ensemble models comprised
of these standard component models outperformed the naive persistence baseline consistently.
As such, our ensembling approach can take relatively weak, unoptimized learners and output
a much stronger and more robust prediction. In this sense, the ensemble still performs better

than its components.

From Tables 6 - 8 in the Supplemental Materials, we observe that when forecasting 1-month
and 2-months ahead, the ensembling method most commonly employed (albeit plurality, not
majority) was the equal weights method, followed by the performance-based weights model.
At 3-months ahead, however, the performance-based weights mechanism was employed in
most countries, including the overall ensemble. There does not appear to be a clear trend with
respect to the ensemble training window sizes used to fit the performance-based weights and

winner-takes-all ensembles.

Since the success of our forecasts is measured by achieving a lower percent absolute error than
the naive persistence baseline model, ensembling enables us to include the naive persistence
model itself as a component. As shown in our standard model results in the Supplementary
Materials, we observe that when working with standard, non-fine-tuned component models,
nearly all of the best country-specific and overall ensembles were comprised of the naive and
seasonal basic models, coupled with one or two other models. From a bias-variance tradeoff
perspective, the naive persistence model has very low variance, given its absence of tunable
parameters. While other component models may overfit to noise and thus incur large errors,
the naive persistence, by being simple, provides a stable component to the ensemble and thus

allows the ensemble to outperform the other models, including its components.

One limitation of our work is that of the eight non-basic models that we include as potential

components into the ensemble, six of them — AR, ARGO, ARGONet, NetModel, VAR (regular-
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ized), VAR (clustered + regularized) — can be interpreted as belonging to a common family tree
of linear models involving autoregressive terms. In fact, we did not include many models in
our analyses that were non-linear with respect to historical (logged) reported case counts, and
our resultant ensembles may not be expressive enough. In the future, one could consider in-
cluding more expressive but also more heavily-parameterized models such as Random Forests
[65] and neural networks [4, 65] into our ensemble lineup to potentially increase performance.
However, as explored in [4], heavily-overparameterized neural networks may underperform
compared to simpler regression models at short-term disease forecasting tasks. One could also
include additional traditional time series forecasting techniques like Holt-Winter, as explored
in [52], into the ensemble lineup for extra non-linear models. With the exception of ARGO and
ARGONet, all of our models were trained exclusively using historical dengue-reported case
counts. Future work could include models that leverage climate data and earth observations

into our ensemble lineup, as explored in [12].

Despite our efforts to forecast dengue cases in over 180 locations worlwide, there are still many
other countries, especially in the Americas and Asia, where we can retrospectively and prospec-
tively test our individual and ensemble models. Our methodology can also be easily extended
to support uncertainty quantification. Please see our Supplementary Materials for additional
details and proofs-of-concept of such an extension. Future studies could explore classification
tasks of predicting whether a given location will experience an outbreak by thresholding our
case count predictions. Methods like DT-SIR, while prone to over-predicting at outbreak peaks,
are still excellent at capturing the outbreak progression trend. Another interesting research av-
enue involves combining regression and classification components together within ensembles.
For example, one can consider an ensemble setup containing both regression models (predict-
ing the number of dengue reported case counts) and classification models (predicting whether
an outbreak will occur in the next months). Future work could also involve combining ensem-

bles together into superensembles to further reduce variance.
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2 Methods

2.1 Data Sources

In this section, we present our data collection and processing routines.

Reported Case Counts

We used two primary modalities of data to train our models. Raw weekly and monthly re-
ported dengue case counts at the city and province levels were obtained from the following
sources. For Brazil, data was obtained from SINAN (using the Datasus package in R) and
from the Info Dengue website API (at https://info.dengue.mat.br). Data from both sources
were reformatted and merged into a single data set. Area codes were translated to state and
municipality names. For Thailand, National Disease Surveillance Reports were downloaded
from http://doe.moph.go.th. Separate files are available for dengue fever, DHF, and DHF
shock syndrome. Files were processed in R, reformatted and combined into a single data set.
For all other countries, PDF-formatted reports were downloaded from the Ministry of Health
websites (for Colombia: https://www.ins.gov.co; for Malaysia: https://www.moh.gov.my;
for Mexico: https://www.gob.mx; for Peru: https://www.dge.gob.pe and for Puerto Rico:
https:/ /www.salud.gov.pr). Tables containing dengue case data on a regional level were iden-
tified and extracted using ABBYY FineReader PDF software, applying OCR where required,
and saved to excel. Extracted tables were then processed in R, checking extracted region names
and count values using regular expressions and verifying table totals where available. All ta-
bles were time-stamped with the date of the report they were extracted from, reformatted and
combined into a single data set per country. Data at the city level were aggregated via sum-
mation into province-level resolution before input into our model training pipeline. All data at
the weekly level were also aggregated via summation into monthly values before the start of

model training.

Google Trends
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We used the Google Health Trends API to obtain monthly dengue-related search terms’ fre-
quencies at the province level for all of our locations. For a small number of locations where
Google Trends data was not available at the provincial level, we used the Google Trends data of
the dengue-related search terms at the country level as a proxy. Within each country, we used
the same set of dengue-related search terms for each province. Country-specific lists of all the

dengue-related search terms we used can be found in our Supplementary Materials.

To maintain consistency, we chose only the top 10 most useful dengue-related search terms in
each country as input into the ARGO and ARGONet models that required Google Trends data.
Specifically, we determined each term’s “usefulness” in a particular location by computing
the Pearson correlation of these term’s search frequencies with the reported case counts on a
time window directly preceding our model evaluation time window to avoid signal leakage.
We ordered the Google Trends terms in decreasing order of Pearson correlation and used this
ordered data as input into the ARGO and ARGONet models. Country-specific time windows
for the Pearson correlation analyses can be found in our Supplementary Materials under the

“Training Period” column of Table 2.

2.2 Fitting Methods

Fig. 8 illustrates our two methods for fitting our individual models at each timestep.
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A Sliding Window B Expanding Window

reported cases
reported cases

Figure 8: Schematics of model-fitting techniques. (A) Sliding window model-fitting. (B) Ex-
panding window model-fitting.

Fig. 8 shows our two mechanisms for model-fitting. Panel (A) shows the sliding window
mechanism for model fitting. For example, if the current time is February 2019, our prediction
task is to forecast one month ahead — March 2019. And suppose, for example, that we are us-
ing a 9-month sliding window. Then, when fitting a given model to forecast for March 2019, a
9-month sliding window fitting method implies that we will only use the reported case counts
data between June 2018 and February 2019 (inclusive) as target variables in our training set, as
indicated by the green shaded region inside of the two dotted green lines. After March 2019,
our new prediction task will be to forecast for April 2019, and we will slide our fitting window
to fit our model using only the reported case counts data from July 2018 to March 2019 (now
observed) as the target variables in our training set, as indicated by the blue shaded region
inside of the two solid blue lines. To emphasize, because of the “sliding” operation, June 2018
is no longer contributing to our model fit. The assumption behind the sliding window mech-
anism is that infectious disease dynamics change across time, and thus, relationships between
reported case counts in the distant past are likely not very informative of the current dynamics

of the disease.

In contrast, panel (B) shows the expanding window mechanism for model fitting. Suppose

that the earliest date in our dataset of reported case counts for which we can assemble a full
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set of covariate features is April 2018. Suppose that the current time is December 2018, and our
goal is to forecast one month ahead — January 2019. Then, when fitting the model using an
expanding window mechanism, we will use all of the reported case counts between April 2018
and December 2018 as target variables in our training set, as indicated by the region shaded in
green inside of the two green dotted lines. After January 2019, our new prediction task will be
to forecast for February 2019, and we will “expand” our fitting window to use all reported case
counts from April 2018 to January 2019 as target variables in the training set, with the expansion
region shaded in blue and bound by the solid blue line. In contrast to the sliding window, April
2018 is still in our training set. The underlying assumption behind the expanding window
mechanism is that there exists some stationary distribution / ground-truth autoregressive data-

generating process that holds across all time.

2.3 Individual Models

In this section, we describe the individual, fine-tuned component models that we will later

ensemble together for more robust forecasts.

2.3.1 Autoregression (AR)

As explained by [55], a k-month-ahead autoregressive model reported case counts in a specific
location at month ¢ + k as a linear combination of reported case counts at months ¢ through ¢ —
L +1in said location, with a bias term. The hyperparameter L is the number of lags that we are
using when forecasting. Initial experiments suggested that autoregressive models experienced
significant performance boosts when working with log-transformed case counts, so we define
y; as the log-transformed reported case counts of dengue in a given location at month t. An
AR(L) model for k-month-ahead forecasting can thus be expressed as the following, where ¢ is

an irreducible error term:
L

Ytk = p+ Z Biye—i+1 + €.
=1
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Standard Variant
For the standard variant, at all forecast horizons and locations, we used a generic AR(4) model
fitted using Ordinary Least Squares, with no log-transformation of the reported case counts.

We use an expanding window for model-fitting.

Optimized Variant

For the optimized variant, at all forecast horizons, we found that setting L = 24 yielded the best
performance. We also trained all AR models in all locations and horizons using an expanding
window approach. Computationally, we used the glmnet package [14] to minimize the L2
error subject to LASSO regularization (with regularization strength determined using cross-
validation) to fit our model at each simulated month. From initial testing, we did not regularize
the first two lags. For 2- and 3-months ahead forecasting, in addition to our choice of L = 24,

we manually chose the specific lags of 1,2, 3,12, 13,14, 15, and 24.

2.3.2 AutoRegression with Google Search Data (ARGO)

As introduced in [63], ARGO builds on the classical AR model and incorporates the most-
recently-available Google Trends search frequencies of dengue-related keywords as covariates
into the linear model architecture. While ARGO was originally designed for flu incidence fore-
casting, it has also been adopted by [27] for dengue forecasting in 20 Brazilian cities. Let zy,
be the log-transformed Google Trends search frequency of term m (for m = 1 to m = 10) at

month ¢. Then, the ARGO model with L epidemiological lags can be given by

L 10
Yt+k =+ Z BiYe—i+1 + Z YmTm,t + €.
=1 m=1

Standard Variant
For all forecast horizons, we used AR(4) coupled with the most recently observed Google
Trends data as our features. We did use LASSO regularization via glmnet [14], but we did

not protect any features from regularization. We also did not log-transform either the autore-
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gressive features or the Google Trends features. We used an expanding window approach for

model fitting.

Optimized Variant

Just as in AR, for all forecast horizons, we set L = 24 for maximum performance and use
the same expanding window approach. We also use glmnet [14] with the same settings for
model-fitting at each simulated month, with the first two epidemiological lags not subject to
regularization. Unlike AR, we did not perform any manual selection of autoregressive lags and

simply used all L = 24 lags as covariates.

2.3.3 NetModel

To model the network effects of dengue spreading between nearby provinces, we extend the
original AR linear model by modeling log-transformed reported case counts for location j dur-
ing month ¢ + k as a linear combination of only recent reported case counts in location j, but
also recently reported case counts for all provinces j' € J, where J is the set of all provinces in

a given country. A similar approach was implemented for flu forecasting in [31].

Let L, be the number of lags from location j itself (local lags) and L; be the number of lags
from each of the other locations j' € J (neighbor lags) that we will be adding into our linear
model. Let y;; be the log-transformed reported case counts in location j at month ¢. Then, our

NetModel is given by

L J Ly
Yjt = P+ Z BiaYjt—la+1 + Z Z Vi Yi! b=l +1 T €
la=1 j’:Lj’;ﬁj lbzl

Standard Variant
For all forecast horizons, we used L, = 4 and L, = 1. We used LASSO via glmnet for model-
titting, but did not protect any lags from regularization. We used the expanding window fitting

scheme for all locations and horizons. We did not log-transform the local lags nor the neighbor
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lags.

Optimized Variant

For 1-month ahead forecasting, we chose L, = 24, with manual feature-selection of the lags
1,2,3,12,13,14, 15, and 24, and chose L; = 1, log-transforming both the local and neighbor lag
features. We used glmnet with LASSO to fit our model, using an expanding window scheme,

and refrained from regularizing the first two local lags.

For 2-months ahead forecasting, we chose L, = 12 and L; = 1, log-transforming both the
local and neighbor lag features. We also used glmnet with LASSO to fit our model, using an

expanding window scheme, and refrained from regularizing the first two local lags.

For 3-months ahead forecasting, we chose L, = 12, with manual feature-selection of the lags
1,2,3,and 12, and chose L;, = 2, log-transforming both the local and neighbor lag features. We
used glmnet with LASSO to fit our model, using an expanding window scheme, and refrained

from regularizing only the first local lags.

234 ARGONet

As introduced in [31], we also include ARGONet with two-component models — ARGO and
NetModel — into our list of component models. Specifically, across all forecast horizons and
locations, ARGONet returns the mean of the individual ARGO and NetModel predictions as
its ensemble prediction. While ARGONet was also implemented in [31] with a winner-takes-all
approach, we found that for the prediction task of forecasting monthly dengue-reported case

counts, such a scheme was not as effective as simply returning the mean.

We implemented the standard / optimized variants of ARGONet by taking the mean of the
corresponding standard / optimized ARGO and NetModel predictions, respectively.

33


https://doi.org/10.1101/2024.10.22.24315925
http://creativecommons.org/licenses/by/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2024.10.22.24315925; this version posted October 23, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license .

2.3.5 Exponential Smoothing

To implement exponential smoothing (ETS), we used the skt ime [30] toolbox in Python. We
used the pipeline functionality available within skt ime with three different input-transforming
preprocessors. The preprocessors we used were a power transformation, a robust scaler, and a
min-max scaler. We then used AutoETS with a period of 12 (the number of months in a season)
as the model in the pipeline. The pipeline was grid searched for the optimal input transforma-
tion using cross-validation with an expanding window splitter on the training data. After the
pipeline hyperparameters were trained, it was used to make out-of-sample predictions in the
usual manner with sequential addition of data, retraining parameters (not hyperparameters),

and subsequent prediction.

2.3.6 Vector Autoregression

We implemented multiple vector autoregression (VAR) models with varying degrees of regu-
larization and clustering. Prior to modeling, the data were transformed with a standard log
transformation. As with other components of the manuscript, we tested several transforma-
tion approaches, but none were consistently better than a log transformation. As the nature
of VAR requires that data be available for all time points in every time series included in the
model, we decided to individually implement a different VAR model for each country in the
data. This allowed us to use nearly the entire time series available in each country. The alterna-
tive approach would be to combine all countries into a single model. Unfortunately, this would
have seriously compromised the length of the time series in several countries as historical data

varies considerably by country.

For modeling, we began with the most common method implemented in R through the VARS
package [49]. Unfortunately, with the amount of data available, a standard VAR model in some
countries (e.g., Thailand) would not converge even with a lag order of 1. However, much of the
diminished performance could be resolved by implementing geographic clustering (discussed

below), suggesting that the issue was primarily a result of some degree of underdetermination.
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Nevertheless, the regularized models uniformly outperformed their unregularized counter-
parts, whether clustered or unclustered, so we proceeded with exclusively regularized models.
In an effort to simplify the process of lag selection, we decided to standardize all regularized
VAR models to use a lag order of 4. Any selection greater than 4 seemed to make no difference

to the out-of-sample accuracy of the model.

For regularized VAR, we used primarily the BigVAR package made available in R [42]. We
trialed several regularization frameworks, including (in the terminology of the package) Ba-
sic Lasso, Basic Elastic Net, Lag, Own/Other, Sparse Lag, Sparse Own/Other, Hierarchical
Componentwise, Hierarchical Elementwise, and Hierarchical Own/Other. We used the stan-
dard rolling cross-validation method, expanding window, and adjusted the train/test window.
However, there was no benefit to altering these from the default selections. We tested several
lambda grid depth values and selected 100 as a good tradeoff between sufficient depth and

reasonable compute time. We refer to this model in our figures and tables as “VAR (Reg.).”

2.3.7 Vector Autoregression with Geographic Clustering

Next, we investigated to what extent geographic clustering could improve predictions. To that
end, we obtained the latitude and longitude of every city in the data. We used the sp [7,47] and
geosphere packages available in R to compute the within-country distance matrix between
all cities using the Haversine distance. The cities were then grouped with hierarchical clus-
tering. The tree was produced using hclust and the clusters were produced using cutree
as the highest number of clusters that allowed two or more cities in every cluster (which is a

requirement for the application of VAR.

After within-country geographic clustering, VAR and regularized VAR were applied in the
same manner as above. In all figures and tables, we refer to this model using the abbreviation

“VAR (Clust., Reg.).”

35


https://doi.org/10.1101/2024.10.22.24315925
http://creativecommons.org/licenses/by/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2024.10.22.24315925; this version posted October 23, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license .

2.3.8 Stacked Machine Learning

We produced a stacked regression (stackedML) model using skt ime [30] and scikit-learn
[48]. We constructed it as an ensemble of several available machine-learning models in the

toolboxes.

Given the challenges posed by underdetermination for these data when using higher lag orders
on univariate time series, before implementing the model, we utilized a simple pipeline with a
preprocessor and an elastic network (EN) base model that we optimized for the best L1 ratio.

We then used this model to trim higher lag orders that seemed to improve this simple model.

After trimming the higher lag orders, we implemented the stackedML model again as a pipeline
to allow comprehensive hyperparameter selection via grid-searched cross-validation. For pre-
processing, we included the standard scaler, the min-max scaler, and a log transformation. For
base models, we included an EN model, a k-nearest neighbors model (KNN), a support vector
machine model (SVM), and a gradient-boosted machine (GBM) model. The pipeline was en-
sembled with an independently cross-validated elastic network model allowing only positive
covariates. Hyperparameters in the base models were optimized via a grid search of the entire
pipeline at once; the hyperparameters that we tuned included the number of neighbors in the
KNN base model, the C-parameter in the SVM base model, and the number of leaves in the
base GBM model.

After extensive testing, there were a few obvious limitations. First, optimizing the pipeline was
extremely computationally intensive and became exponentially complex as more hyperparam-
eters were searched. Second, the first issue was particularly challenging when combined with
rolling optimization and leave-one-out (out-of-sample) cross-validation. Third, the data of a
single-city univariate time series was clearly insufficient to tune an extremely large hyperpa-
rameter space. As a result, we pared the base models to remove the GBM. The GBM alone
requires tuning of so many hyperparameters for optimal predictions that it was not improving
the model with its inclusion. Then, we observed that the KNN was essentially never used by

the ensembling model, so it was removed as well. As a result, we were left with an EN and an
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SVM model stacked together.

2.3.9 Dynamically-Trained SIR

We introduce a novel, dynamically-trained SIR (DT-SIR) interpolator model for forecasting re-
ported dengue cases. This model borrows the mathematical behaviors and properties of the tra-
ditional SIR dynamical system as introduced by Kermack and McKendrick [25] but re-purposes

it for forecasting tasks.

As presented in [39], the traditional SIR model is governed by the following system of differ-
ential equations, parameterized by time ¢, where S is the number of susceptible individuals,
I is the number of currently-infected individuals, R is the number of recovered (including de-

ceased) individuals in a given population:

as gSI dI  BSI dR

R A e
Here, N is the total number of people in the population, which we assume to be fixed. The
parameter 3 governs the rate at which susceptible individuals (in S) become infected, and the
parameter v governs the rate at which infected individuals (in /) become recovered (or de-
ceased). Mathematically, we can define any set of solution trajectory curves for S(t), I(t), R(t)
for any interval of time starting with ¢ = 0 by specifying 3 and ~, as well as specifying our ini-
tial conditions Sy and I for the numbers of susceptible and infected individuals at our initial

point of reference ¢t = 0. Since the SIR model assumes for all timesteps ¢ that S +1 + R = N,

Ry is always uniquely determined by Sy and Ij.

We acknowledge that the SIR model, originally designed for modeling direct transmission-type
diseases, is an oversimplified model for dengue, given the complex combination of mosquito
vector-borne transmission dynamics and intricate systems of partial immunity acquisition to
different serotypes. However, for the sole purpose of forecasting case counts, our empirical re-

sults suggest that the basic SIR model is still sufficient. In fact, the mechanisms of the mosquito
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intermediary between infected humans for dengue transmission can be absorbed into / suit-
ably approximated by the basic SIR model. It is also worth noting that using more complex
models with more compartments and parameters risks over parameterization and overfitting,

which could be undesirable regarding bias-variance tradeoff considerations.

It is important to note that our public health data provides new infected cases per month and
not the total infected number of infected people within a population at a given time. However,
because the recovery period of dengue is almost always less than a month [1], we can assume
that all individuals who become newly infected in month m will also become recovered in
the same month m. With this train of thought, it follows that we can treat new infected cases
at month m as interchangeable with total infected people within the population at month m.
However, from previous works in the literature, we know that dengue case reporting rates are
very low. This is due in part to the reality that dengue fever oftentimes manifests no symptoms
and that even when symptoms are present, they are oftentimes similar to that of the common
flu. As such, reporting rates tend to be low. To accommodate this underreporting, we introduce
a learnable report rate parameter r € (0, 1) that captures the proportion of infected individuals
who are recorded by public health authorities. Given S(t), I(t), R(t), let us define C'(t) = rxI(t)
to represent the number of reported infectious people within the population at month ¢, which

we clarified above is interchangeable with the reported number of new infections at month ¢.

For each month m, DT-SIR outputs reported case count predictions for the month m + h at a
single location through the following algorithm. For simplicity, suppose we are forecasting 1-
month ahead, with 2 = 1. But, we can output forecasts for the 2- and 3-month-ahead horizons

analogously.

1. We query the historical dengue reported case counts for the past 7" months: m — 1" +
1,m—T+2,...,m—1, and m. In practice, we found through extensive testing that 7' = 5
performed the best across all locations and horizons, and thus we set 7' = 5 for both our

standard and optimized DT-SIR variants. Let us denote these historical case counts as

Ym—T+1, Ym—-T4+25 -+ - Ym—1, and Ym-
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2. Using the scipy.integrate.odeint numerical integration package from SciPy [60]
and the non-linear least-squares curve-fitting package 1mfit [40], we find the best set of
parameters 3, , So, Io, 7 such that the resultant integrated C(t) curve (always calibrated
to start mathematically from ¢ = 0, corresponding to month m — T + 1) best fits the
historical dengue reported case counts in the past 7" months. To emphasize, the solution
curves to our SIR differential equations systems will always be plotted mathematically
starting with ¢ = 0, regardless of what month m we are in. We can do this because our
initial conditions of Sy and Iy render our resultant trajectory curves agnostic to the real-
time month/phase of an outbreak that we are in. We define “best fit” as minimizing the
RMSE of the resultant C'(¢) curve (evaluated at¢ = 0,1,2,...,T — 1) with respect to the
historical dengue case counts observed at months m —7T+1,m—-T+2,...,m—1, and m.
Because this objective function is almost certainly non-convex, we cannot guarantee that
our curve-fitting algorithm will find the global minima. The best we can do is find a very

good local optimum.

Given that we are only using the most recent 7" months” observations as input data for
fitting our SIR system parameters, in other words, we are using a sliding window ap-
proach and shifting our sliding window after each prediction timestep. The reason for
using a sliding window as opposed to an expanding window that we use for the other
component models is because the SIR model, by nature, can only model one outbreak
peak at a time. If we used an expanding window approach, we may have multiple peaks
in our fitting data, and our resultant SIR parameter fit would be very poor. The sliding
window approach is especially attractive if we accept the assumption that disease out-
break dynamics vary significantly across time and various historical outbreak cycles. As
such, we must re-estimate our model parameters at each timestep to remain up-to-date

with current transmission dynamics.

When fitting our C'(¢) curve to the observed monthly data, it should be noted that we limit
the plausible range for 5 € [0,500] and « € [0,8.5]. We limited £ to a still sizeable range
mainly for practicality and reproducibility. From existing literature [1], we know that the

average human infectious period for dengue fever is 4-5 days. Canonically, we know that
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1
average infectious period *

7 represents As such, converting to months, we find corresponding
values of 6 and 7.5. We expand the upper bound of our parameter interval by 1 to account
for some possible anomalies. Of course, we also restrict Sy and Ij to never exceed N, the

total population. We restrict r € [0, 1].

To avoid being confined to one local optima, we perform 500 independent fits for 3, v, So, Io, 7,
selecting the estimated parameters corresponding to our “best” fit (in terms of RMSE) for
our forecasting purposes. For 250 of these fits, we randomly initialize our parameter
guesses across their entire permitted intervals. For the other 250 fits, we initialize the
starting parameter guesses to be distributed uniformly on an interval that is within 20%
of the previous timestep’s fitted optimal parameter values, to enforce some “continuity”
of our disease dynamic parameters over time. For Sy and Iy, we initialize Sy during each
fit to a starting guess of N, the total population, because intuitively, the proportion of

people with dengue in a population is relatively low.

3. Using our best-estimated parameters of 3, v, Sy, and I, and r, we evaluate C(t) at t =
T — 1 + h to produce our provisional prediction for the number of reported dengue case

counts at month m + h. Let us call our provisional prediction 4.

However, as observed in [58], SIR-type models are prone to “overshooting,” or signifi-
cantly overestimating the number of reported dengue cases at outbreak peaks. Our DT-
SIR, without modification, also experiences such limitations. To mitigate this potential in-
accuracy, we implement an anti-overshooting mechanism at each prediction timestep m,
comprising of a “threshold” and a “compensator”. We will explain this anti-overshooting
mechanism for the 1-month-ahead forecasting task (i.e., A = 1), but the 2-month and 3-

month-ahead setups are analogous.

(@) Threshold: We calculate y; — y;—n, the observed h-month-apart differences between
reported dengue case counts, for the past n months. Next, we calculate the mean

observed historical differences in these past n months and add s standard deviations
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to this value. This computed value is our threshold k. Formally, we have

1 m—n+1 1 m—n+1

12

k= (n Z (g — yth)) t+s- n Z (Yt — Yt—n) — )
t=m t=m

where 3 is the sample mean of the y; —y;_p, for t = mtot = m—n-+1. From extensive

testing, we found that n = 24 and s = 4 were the most suitable and generalizable

hyperparameter settings across all of our locations and forecast horizons.

(b) Compensator: If the difference between our provisional prediction for month m + h,
Um+h, and the true reported case count for our most recently observed month, y,,,
is greater than our threshold k, then our threshold is triggered and we adjust our
prediction. Define y* to be the mean positive h-month-apart differences between

reported dengue case counts for the past n months:

1 m—n+1
—t
y' = - (Yt — ye—n) 1 (Yt — y4—n, > 0),
f{i,,?” 1(y: —y—n >0) ;

where 1 is an indicator function. Our compensator value is formulated as the sum of
y* and s times the standard deviation of the positive h-month-apart differences be-
tween reported dengue case counts for the past n months. Let § be our compensator

value, which is formally defined as

m—n+1

b=y +s- Z (e = Ye-n — §5)* 1 (g — yr—n > 0).
t=m

1
—
Y (g — yeen > 0)

With our compensator value computed, we output the following adjusted prediction
for month m + h, g, ,:

g;n-fh =Ym + J.

Intuitively, it would make sense to set 6 = k. However, this alternative adjustment is
suboptimal because setting it renders it very difficult for our model to predict an out-

break that is truly significantly more intense (in terms of peak reported case counts)
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than it has historically seen in its training data. In contrast, using our compensator
formulation with the historical positive differences allows us to better capture the

intuition that cases will indeed increase rapidly during outbreak peaks.

4. Finally, to predict reported case counts for the next month, month m + h + 1, we slide our

titting window forward by one month and repeat the steps enumerated above.

We use similar DT-SIR model settings in both our standard and optimized ensembling tests,
for all locations and all forecast horizons — specifically, we use the most recent 7" = 5 months
of observations as our sliding training window. However, for the standard model setting, we

disable the anti-overshooting mechanism.

2.3.10 Basic Models

In addition to the more complex individual models described above, we also include two

relatively-simple baselines as potential component models in our ensemble.

Naive Persistence

If we are simulating being in month ¢ and forecasting k£ months ahead, the naive persistence
model will return the number of reported cases currently observed in month ¢ as its forecast
for month ¢ + k. We use the same naive persistence model in both our standard and optimized

ensembling tests.

Seasonal

Suppose we are simulating being in month ¢ and forecasting k¥ months ahead. Without loss
of generality, suppose that month ¢ + £ is January. Then, the seasonal model will query our
historical reported case counts for all observed January reported case counts, and return the
mean of all the historical January dengue case counts as its forecast for month ¢ + k. The idea
behind the seasonal model is that dengue has been found to be seasonal in many locations
around the world (see [19], [38], [61]). We use the same seasonal model in both our standard

and optimized ensembling tests.
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2.4 Ensemble Systems
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Figure 9: Schematics of the three ensembling methods. (A) Graphical representations of three
individual models’ predictions during the ensemble fitting window. The ground truth reported
case counts during the ensemble fitting window are depicted using the blue points. Each in-
dividual model’s predictions during the ensemble fitting window are shown with the con-
nected lines. (B) Performance-Based Weights (PBW) ensemble fitting and prediction output.
(C) Winner-Takes-All (WTA) ensemble fitting and prediction output. (D) Equal Weights (EW)
ensemble prediction output.

Fig. 9 illustrates the three ensembling methods that we tested. Let ¢;; refer to the prediction
generated by model i for time ¢, §; represent our component models” predictions for time ¢

stored as a vector, and y; be the ground-truth reported case counts at time ¢. Panel (B) illus-
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trates the Performance-Based Weights (PBW) ensemble. In our toy example shown in Fig. 9,
for this prediction timestep and our choice of a 5-month ensemble fitting window, the PBW
ensemble finds the optimal set of non-negative weights w that minimizes the following objec-
tive function, if we calibrate ¢ = 5 to correspond to the last observed timestep of April 2021:
Liw)=Y", (ye — wTyt)2 , subject to the constraint that 17w = 1. Such optimization was per-
formed using the scikit-learn [48] package. To make our ensemble prediction for time ¢t +1,
we output said prediction as wly,11, where ¥, is the vector of our individual models’ pre-
dictions for time ¢ + 1. Panel (C) illustrates the Winner-Takes-All (WTA) ensemble. Extending
the notation from our discussion of the PBW ensemble, the WTA ensemble outputs ;. 11 as
our ensemble prediction, where i* = arg min; 2?21 (ye — g),,t)Q encodes the index correspond-
ing to the component model that outputted the most accurate predictions during the ensemble
titting window. Panel (D) represents the Equal Weights (EW) ensemble, which simply outputs
the unweighted mean of the components’ predictions at time ¢ + 1 as the ensemble prediction.
Please see Tables 3-5 and 6-8 in the Supplementary Materials for the best ensemble variants us-
ing the standard and optimized individual models, respectively, at each forecast horizon and

within each country.

2.5 Model Evaluation

Allindividual and ensemble models were evaluated on the time periods under “Test Period” in
Table 2 in the Supplementary Materials. While available data timeframes differed significantly
across countries, we aimed to secure at least 3 years (the most recent years) of evaluation data
points for each country. The remainder of the data were binned as training data, whether that

be used directly for model-fitting, and/or for feature engineering.

To compare model performances, we used percent absolute error (PAE) on the predicted versus
ground-truth reported case counts as our evaluation metrics. The “percent” implies that we
divided the raw mean absolute errors for each model in a given location by the mean number

of cases present in said location during the evaluation period.
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3 Supplementary Materials

3.1 Extension of methodology for uncertainty quantification

Though not the focus of our main manuscript, our methodology can be easily extended to in-
corporate uncertainty quantification via approximate 95% predictive intervals for our forecasts.

Our predictive interval generation algorithm is as follows:

1. Suppose today is month m and we would like to provide uncertainty quantification inter-
vals for our h-month-ahead ensemble forecast. In practice, the ensemble can be replaced

with any individual component model, too.

2. We can compute the predictive residuals ¢; = §; — y; for previously-observed months
t = 1 through t = m, where y, was the true reported dengue case count at month ¢ and g,
was our h-month-ahead dengue forecast for that month (i.e., generated in month ¢ — h).

Let us name our expanding-each-month vector of residuals at month m as €.

3. Using our ensemble, we can generate our point-forecast for month m + h, and denote it
as Ym+r. 10 provide uncertainty quantification, we can compute the standard deviation
of this model’s historical residuals stored in €,, and, assuming approximate Normality,

multiply by 1.96 to obtain the width of an approximate 95% predictive interval.

4. Then, our uncertainty-quantified ensemble forecast for month m + h would be

Omah £ 1.96 X SD(€m).

5. Because case counts cannot be negative, we may also clip our forecast intervals to be

strictly non-negative.

Below, we demonstrate this uncertainty quantification algorithm on 1-, 2-, and 3-month country-
specific ensemble forecasts in Ceara, Brazil, with approximate 95% predictive intervals gener-

ated for January, May, and September of 2020 and 2021.
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Uncertainty Quantification of Dengue Forecasts in Ceara, Brazil
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Figure 10: Demonstration of uncertainty quantification interval algorithm in Ceara, Brazil.
The green points indicate the reference months m, and each set of subsequent three black points
marks the 1-, 2-, and 3-month ahead point forecasts. The error bars corresponding to each point
forecast quantify our 95% approximate predictive intervals. The blue cones emphasize how
the uncertainty in our forecasts evolves over forecast horizon. The grey silhouette shows the
ground truth reported dengue case counts.

No one individual model is best across all locations: model performance is signifi-

cantly dependent on location.

Fig. 1 summarizes the comparative performances of our optimized individual and ensemble
models” within each of the five countries, tested across the three prediction tasks of forecasting
1-, 2-, and 3-months ahead. The reader can find additional details on our fine-tuning and

optimization processes in the Supplementary Information.

Panel (A) illustrates our three forecasting tasks of forecasting 1-, 2-, and 3-months ahead. Pan-
els (B) to (F) show the models” performances within each country in two ways. On the left of
each panel, we present a heatmap where each row represents a model, and each column en-
codes the number of locations within the country of interest where a model achieved a certain
rank in terms of percent absolute error (PAE) compared to the other individual component and
ensemble models (1st through 13th rankings). The models in each heatmap are listed in de-
creasing order by the sum of the number of locations where each model performed in the first,

second, or third ranks. As an example, “Ensemble (Country, EW)” having a value of 7 corre-
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sponding to Ranking 1 in Brazil (1-Month Ahead) means that the country-specific ensemble
incurred the lowest (best) PAE compared to all other individual and ensemble models in 7 out
of the 27 provinces of Brazil. On the right of each panel, we have a geographical map where
each province is colored according to the model that incurred the lowest PAE in that province,
with the legend displayed at the bottom of the overall figure. Overall, ensemble models were
robust within any of our tested countries. They demonstrated the most or nearly the most top-3

rankings compared to other models.

Formally, we define percent absolute error (PAE) on the predicted versus ground-truth reported
case counts as the raw mean absolute error divided by the mean number of monthly reported
cases observed in a given location during the evaluation period. Mathematically, let y; ...yr

be the ground-truth reported case counts, and 9 . .. yr be our predicted case counts. Then,

S g — el
PAE = === =,
t=1 Yt

On the right of panels (B) - (F), we plot a map of each country along with the best-performing
model for each province. We observed that no particular model consistently performs the best
across all locations and prediction tasks within a country. Our findings thus suggest that,
in practice, it is not feasible to train, evaluate, and find the best-performing models for ev-
ery single province in every single country. Instead, using an out-of-the-box ensemble setup
would require significantly less computation and optimization while still effectively guaran-

teeing strong performance. In what follows, we present the results for each country.

Brazil

Fig. 1 (B) shows that, within the 27 provinces of Brazil, the country-specific ensemble achieved
the most top 3 rankings compared to any other model, with the overall ensemble having
reached the second most top 3 rankings at the 1-month and 2-month horizons. However, at

the 3-month horizon, ARGONet and AR outperformed the overall ensemble in the number of
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top 3 rankings. From the accompanying color-coded geographical maps, we observed that at
any forecast horizon for Brazil, the ensemble did not rank first in many locations - the winning

model varied widely across sites.

Colombia

Fig. 1 (C) shows our 13 models’ ranking in the 33 provinces of Colombia. While the country-
specific and overall ensembles achieved the most top 3 rankings at the 1-month ahead fore-
cast horizon, clustered + regularized VAR achieved the most top 3 rankings, superseding the
two ensemble variants, at 2-month ahead. At 3-months ahead, the country-specific ensemble
achieved the top 3 rankings, but the overall ensemble was still outperformed by clustered +

regularized VAR.

Malaysia

Fig. 1 (D) shows our results for the 15 provinces in Malaysia. While the country-specific ensem-
ble achieved the most top 3 rankings at the 1-month and 3-month ahead horizons, clustered +
regularized VAR achieved the most top 3 rankings at the 2-month horizon. Notably, the overall
ensemble did not generalize very well in Malaysia, being ranked even below the naive persis-
tence baseline at the 1-month ahead horizon. We note, however, that the two easternmost (and
largest) Malaysian provinces both saw the country-specific ensemble performing the best out

of all 13 models at the 1-month and 3-month horizons.

Mexico

Fig. 1(E) shows our 13 models’ rankings in the 32 provinces of Mexico. Regularized VAR
achieved the top 3 rankings at the 1-month ahead forecast horizon, followed by the country-
specific ensemble. At the 2-month ahead horizon, the two ensembles achieved the top 3 rank-

ings, though at 3-months ahead. In contrast, the overall ensemble maintained the top 3 rank-
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ings, regularized VAR overtook the country-specific ensemble for the second most top 3 rank-
ings. From the geographical maps, we see that no individual model achieved the top rank

across most of locations.

Thailand

In Fig. 1(F), we show the results in the 77 provinces of Thailand. From the heatmaps, we
observed that the country-specific ensemble achieved the most top 3 rankings at the 1-month
and 2-month horizons. By comparison, regularized VAR superseded both ensembles for the
most top 3 rankings at the 3-month horizon. Notably, at the 2-month horizon, regularized VAR
achieved more first-place rankings than both ensembles. At the 1-month horizon, regularized
VAR achieved the same number of first-place rankings as the overall ensemble and significantly
more first-place rankings than the country-specific ensemble. The geographical maps show that

no particular model performed the best across most Thailand provinces.

No one individual model is best across all locations: model performance is signifi-

cantly dependent on location.

Fig. 1 summarizes the comparative performances of our optimized individual and ensemble
models” within each of the five countries, tested across the three prediction tasks of forecasting
1-, 2-, and 3-months ahead. The reader can find additional details on our fine-tuning and

optimization processes in the Supplementary Information.

Panel (A) illustrates our three forecasting tasks of forecasting 1-, 2-, and 3-months ahead. Pan-
els (B) to (F) show the models’ performances within each country in two ways. On the left of
each panel, we present a heatmap where each row represents a model, and each column en-
codes the number of locations within the country of interest where a model achieved a certain

rank in terms of percent absolute error (PAE) compared to the other individual component and
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ensemble models (1st through 13th rankings). The models in each heatmap are listed in de-
creasing order by the sum of the number of locations where each model performed in the first,
second, or third ranks. As an example, “Ensemble (Country, EW)” having a value of 7 corre-
sponding to Ranking 1 in Brazil (1-Month Ahead) means that the country-specific ensemble
incurred the lowest (best) PAE compared to all other individual and ensemble models in 7 out
of the 27 provinces of Brazil. On the right of each panel, we have a geographical map where
each province is colored according to the model that incurred the lowest PAE in that province,
with the legend displayed at the bottom of the overall figure. Overall, ensemble models were
robust within any of our tested countries. They demonstrated the most or nearly the most top-3

rankings compared to other models.

Formally, we define percent absolute error (PAE) on the predicted versus ground-truth reported
case counts as the raw mean absolute error divided by the mean number of monthly reported
cases observed in a given location during the evaluation period. Mathematically, let y; ...yr

be the ground-truth reported case counts, and 9 . .. yr be our predicted case counts. Then,

ST e — el
PAE = ==L 2
t=1 Yt

On the right of panels (B) - (F), we plot a map of each country along with the best-performing
model for each province. We observed that no particular model consistently performs the best
across all locations and prediction tasks within a country. Our findings thus suggest that,
in practice, it is not feasible to train, evaluate, and find the best-performing models for ev-
ery single province in every single country. Instead, using an out-of-the-box ensemble setup
would require significantly less computation and optimization while still effectively guaran-

teeing strong performance. In what follows, we present the results for each country.
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Brazil

Fig. 1 (B) shows that, within the 27 provinces of Brazil, the country-specific ensemble achieved
the most top 3 rankings compared to any other model, with the overall ensemble having
reached the second most top 3 rankings at the 1-month and 2-month horizons. However, at
the 3-month horizon, ARGONet and AR outperformed the overall ensemble in the number of
top 3 rankings. From the accompanying color-coded geographical maps, we observed that at
any forecast horizon for Brazil, the ensemble did not rank first in many locations - the winning

model varied widely across sites.

Colombia

Fig. 1 (C) shows our 13 models’ ranking in the 33 provinces of Colombia. While the country-
specific and overall ensembles achieved the most top 3 rankings at the 1-month ahead fore-
cast horizon, clustered + regularized VAR achieved the most top 3 rankings, superseding the
two ensemble variants, at 2-month ahead. At 3-months ahead, the country-specific ensemble
achieved the top 3 rankings, but the overall ensemble was still outperformed by clustered +

regularized VAR.

Malaysia

Fig. 1 (D) shows our results for the 15 provinces in Malaysia. While the country-specific ensem-
ble achieved the most top 3 rankings at the 1-month and 3-month ahead horizons, clustered +
regularized VAR achieved the most top 3 rankings at the 2-month horizon. Notably, the overall
ensemble did not generalize very well in Malaysia, being ranked even below the naive persis-
tence baseline at the 1-month ahead horizon. We note, however, that the two easternmost (and
largest) Malaysian provinces both saw the country-specific ensemble performing the best out

of all 13 models at the 1-month and 3-month horizons.
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Mexico

Fig. 1(E) shows our 13 models’ rankings in the 32 provinces of Mexico. Regularized VAR
achieved the top 3 rankings at the 1-month ahead forecast horizon, followed by the country-
specific ensemble. At the 2-month ahead horizon, the two ensembles achieved the top 3 rank-
ings, though at 3-months ahead. In contrast, the overall ensemble maintained the top 3 rank-
ings, regularized VAR overtook the country-specific ensemble for the second most top 3 rank-
ings. From the geographical maps, we see that no individual model achieved the top rank

across most of locations.

Thailand

In Fig. 1(F), we show the results in the 77 provinces of Thailand. From the heatmaps, we
observed that the country-specific ensemble achieved the most top 3 rankings at the 1-month
and 2-month horizons. By comparison, regularized VAR superseded both ensembles for the
most top 3 rankings at the 3-month horizon. Notably, at the 2-month horizon, regularized VAR
achieved more first-place rankings than both ensembles. At the 1-month horizon, regularized
VAR achieved the same number of first-place rankings as the overall ensemble and significantly
more first-place rankings than the country-specific ensemble. The geographical maps show that

no particular model performed the best across most Thailand provinces.

3.2 Forecasting performance of ensemble models built from standard non-optimized

individual components

It is not always feasible to fine-tune the hyperparameters of each individual component model
into their most optimized, highest-performing variants, as we did in this study. In many sit-
uations, the lack of high-quality epidemiological data and/or computational resources may
impose significant challenges, likely forcing users to apply standard, off-the-shelf models and

systems without significant fine-tuning. In this section, we demonstrate that even in such a
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situation, ensembling is a very effective and robust solution for short-term forecasting.

We present the performances of 11 standard component models and two ensemble variants
on forecasting dengue in our tested province-level locations. The forecasting tasks, evaluation
ranges and metrics, data sources, and training processes are identical to those of the results that
we present in the main manuscript for the optimized models. We also refer the reader to our
Methods section and the Additional Methods Details in our Supplementary Information for
specific details on our standard individual component models, intended to replicate off-the-

shelf deployment.

Our key findings from this section not only corroborate but also, in fact, enhance our reported
findings in the main manuscript. First, we find that there does not exist one standard model
that consistently outperforms all others in all locations, reinforcing our corresponding finding
in the main manuscript with optimized models. Second, and most importantly, even though
our standard individual component models are overall markedly inferior to the naive persis-
tence baseline model, combining such weak individual component models together produces
ensemble models that consistently and significantly outperform the naive persistence baseline.
Indeed, even when given weak individual learners, our ensemble methods are robust and gen-
eralizable forecasting tools. Fig. 11 summarizes our standard individual and ensemble models’
comparative performances within each of the five tested countries, across our three prediction
tasks of forecasting 1-, 2-, and 3-months ahead. The individual models presented here are de-

ployed with standard off-the-shelf settings and are not fully-optimized.
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Figure 11: Country-specific standard individual and ensemble model performance rankings.
(A) Graphical representations of the 1-, 2-, and 3-month forecast horizons. The red X marks our
forecasting target n-months ahead, the blue dots represent the historical cases that we are using
as our observed training data (in this case, a 5-month window), the vertical blue dotted lines
represent the limits of our training data range. The grey silhouette represents the ground truth
reported case counts. (B) - (F) Within each country and forecast horizon, the heatmaps show the
rankings distribution for each individual and ensemble model’s forecasts in terms of percent
absolute error. The geographic maps next to each heatmap indicate the best-performing model
in each province, color-coded by the legend at the bottom of the figure.

The heatmaps on Fig. 11 represent the distribution of rankings for each model in each coun-
try, with models listed in decreasing order by the number of top 3 rankings accrued. We ob-

serve that in all combinations of country and forecast horizon presented, an ensemble model
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achieved the most top 3 rankings. This corroborates our finding in the main manuscript that
the ensembles, while not always the top 1 ranked model, are generally very high-performing

and robust.

From the geographical color-coded maps encoding the top 1 model in each province, we ob-
serve that no one model — standard individual nor ensemble — consistently outperformed the
rest of the models. This result mirrors our finding in the main manuscript that no individual
model performs the best across all locations consistently. Finally, the heatmaps and geograph-
ical maps emphasize that our standard individual component models are indeed very weak

learners, being mostly outperformed by the naive persistence model.
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Figure 12: A summary of our prediction tasks and standard models” overall performances
across 187 locations. (A) An example of our standard country-specific ensemble variants’ fore-
casts compared to their standard, non-optimized component models in one selected location —
Chachoengsao, Thailand. The gold standard ground truth of reported dengue cases is shown
as the grey silhouette. Ensemble predictions are shown in thick, bolded lines, while standard
component models are shown in thinner, colored lines.(B) Heatmaps of the number of locations
where each model attained a specific ranking in terms of mean absolute error with respect to the
ground truth reported dengue case counts across all 187 locations. (C) Geographical maps of
Brazil, Colombia, Malaysia, Mexico, and Thailand showing provinces where either the country-
specific or overall ensemble performed in the top 3 rankings for each location (in yellow) and
where they did not (in grey).

Fig. 12 shows the forecasting performances of our standard individual and ensemble models

across all 187 tested locations. Panel (A) emphasizes the primary advantage of ensemble mod-
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els over their individual component models: while the individual component models fluctuate
wildly in underpredicting and overpredicting, the ensemble model is much more invariant to

such fluctuations and much more closely matches the ground truth.

From panel (B), we observe that for all three forecast horizons, both ensemble models achieved
the most top 3 rankings compared to any other model, including the naive persistence baseline,
which is ranked higher than all other standard individual component models. Indeed, one
main advantage of the ensemble models is that they can take in the naive persistence models’
inputs as a component model, absorbing the robustness of the naive persistence model in times

when the more complex data-driven models fail to perform well.

Panel (C) corroborates the main message in panel (B): the presence of only a few sparse patches
of grey indicates that the ensemble models performed in the top 3 rankings for almost all tested
locations. It should be mentioned that there are more yellow patches on this grid of maps than
the corresponding grid presented in the main manuscript (see Fig. 2) — which is to be expected,

as the standard individual models are consistently weaker than their optimized counterparts.

Fig. 13 displays the percent absolute error distributions for all of our standard individual com-
ponent and ensemble models across all 187 tested locations. The ensemble models incurred the
best mean percent absolute error across all locations compared to all other models. If compared
to the optimized model results in the main manuscript, the improvements from individual
component models to ensemble models were much larger when working with standard mod-
els. Finally, while all of the individual component models, at any forecast horizon, incurred
significantly worse errors than the naive persistence model, the resultant ensemble models —
taking as input these very same weak learners — were generally able to outperform the naive

persistence baseline.
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Figure 13: Overall error distributions for standard individual and ensemble models across
all 187 tested locations. (A) - (C) Ridgeline plots show percent absolute error distributions at
the 1-month, 2-month, and 3-month horizons, respectively. Side tables record the mean percent
absolute error incurred.

Fig. 14 provides more granular, country-specific summaries of the standard individual and
component models” percent absolute error distributions within each country and forecast hori-
zon. Corroborating our findings in the main manuscript, an ensemble model achieved the
lowest mean percent absolute error in 12 out of 15 tested combinations of forecast horizon and
country. The only exceptions were Malaysia at 1- and 2-months ahead, and Mexico at 1-month
ahead, where the ensembles were still unable to outperform the naive persistence model in

terms of mean percent absolute error. Nonetheless, even when the naive persistence model
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ranks higher, the error distributions of the two ensembles are visually very similar to that of

the naive persistence.

Compared to Fig. 4, we observe that the differences in variance between the two ensembles and
the standard individual component models, as measured through the spread of their ridgeline
distributions, were much more pronounced. This corroborates our continual finding that en-
sembles yield relatively larger performance improvements when provided with weaker learn-

ers as input.
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Figure 14: Country-specific error distributions for standard individual and ensemble mod-
cent absolute error incurred.
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3.3 Additional Methods Details
Country Terms Queried
Brazil dengue, sintomas dengue, sintomas da dengue, a dengue, sintomas de
dengue, mosquito da dengue, mosquito Dengue, sobre a dengue, mosquito,
dengue hemorréagica
Colombia dengue, dengue sintomas, el dengue, sintomas del dengue, dolor de cabeza,
dolor cabeza, fiebre,hemorragia, dolor abdominal, me duele la cabeza
Malaysia demam, denggi, demam denggi, sakit kepala, demam panas, sakit tulang,
tanda denggi, simptom denggi, ruam merah, gejala denggi
Mexico dengue dengue dengue, dengue, dengue sintomas, el dengue, sintomas del
dengue, dengue hemorragico, sintomas de dengue, dengue clasico, que es
dengue, dengue mosquito
Peru sintomas de dengue, que es dengue, dengue mosquito, dengue hemorragico,
dengue sintomas, el dengue, dengue clasico, sintomas del dengue, dengue
dengue dengue, dengue
Puerto Rico | dengue dengue dengue, dengue, sintomas del dengue, el dengue, dengue
sintomas, sintomas de dengue, dengue mosquito, dengue hemorragico, que
es dengue, dengue clasico
Thailand ladamnan, 1ns a4 ldidanean, 1sa l9idannan, Tsalddanaan, 91n1s Tsa
ldidanaan, indaiancn, s ldtdanaan, n1s flasiu ldidanasn, 46
2NSTUNA, LALGaf
Figure 15: Country-specific Google Trends search terms.
Country Training Period Test Period
Brazil January 2010 - December 2017 | January 2018 - December 2021
Colombia | January 2007 - December 2013 | January 2014 - December 2017
Malaysia January 2010 - December 2017 | January 2018 - December 2021
Mexico January 2013 - December 2017 | January 2018 - December 2021
Peru January 2001 - December 2008 | January 2009 - December 2012
Puerto Rico | January 1991 - December 2008 | January 2009 - December 2012
Thailand January 2003 - December 2017 | January 2018 - December 2021

Table 2: Country-specific train and test periods. Specifically, the “Test Period” column denotes
the range of dates for which predictions were generated by individual component models.
Because ensemble models require an extra ensemble training window range, we generated
ensemble model predictions starting one year after the individual component model start date.
All metrics for both individual component and ensemble models presented in this paper are
computed across the ensembles models’ test prediction ranges.

61


https://doi.org/10.1101/2024.10.22.24315925
http://creativecommons.org/licenses/by/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2024.10.22.24315925; this version posted October 23, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY 4.0 International license .

Country Ensembling Method ETW | Component Models

Brazil Winner-Takes-All 2 AR, Naive, NetModel

Colombia Performance-Based Weights | 3 AR, Naive

Malaysia Performance-Based Weights | 1 ARGO, Naive, NetModel

Mexico Performance-Based Weights | 2 AR, Naive, Seasonal

Peru Performance-Based Weights | 3 Naive, Seasonal

Puerto Rico | Equal Weights 0 AR, SIR

Thailand Performance-Based Weights | 1 AR, ARGONet, Naive, NetModel, Seasonal
Overall Performance-Based Weights | 2 AR, Naive, NetModel

Table 3: Best ensemble variants in each country for forecasting 1-month ahead using standard
component models. “ETW” refers to ensemble training window.

Country Ensembling Method ETW | Component Models
Brazil Winner-Takes-All 1 AR, Naive
Colombia Winner-Takes-All 4 AR, Naive

Malaysia Performance-Based Weights | 4 AR, Naive

Mexico Performance-Based Weights | 1 AR, Naive, Seasonal
Peru Performance-Based Weights | 1 SIR, Seasonal
Puerto Rico | Equal Weights 0 SIR, Seasonal
Thailand Performance-Based Weights | 3 Naive, Seasonal
Overall Performance-Based Weights | 1 AR, Naive, Seasonal

Table 4: Best ensemble variants in each country for forecasting 2-months ahead using standard
component models. “ETW” refers to ensemble training window.

Country Ensembling Method ETW | Component Models

Brazil Performance-Based Weights | 6 Naive, Seasonal

Colombia | Performance-Based Weights | 3 Naive, NetModel

Malaysia Winner-Takes-All 2 AR, Naive

Mexico Performance-Based Weights | 1 ARGONet, Naive, Seasonal
Peru Performance-Based Weights | 1 Naive, SIR, Seasonal
Puerto Rico | Performance-Based Weights | 1 SIR, Seasonal

Thailand Performance-Based Weights | 2 Naive, Seasonal

Overall Performance-Based Weights | 2 Naive, Seasonal

Table 5: Best ensemble variants in each country for forecasting 3-months ahead using standard
component models. “ETW” refers to ensemble training window.
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Country Ensembling Method ETW | Component Models

Brazil Equal Weights 0 AR, NetModel, SIR, VAR (Clust., Reg.), VAR (Reg.)

Colombia | Equal Weights 0 ARGONet, SIR, VAR (Clust., Reg.), VAR (Reg.)

Malaysia Performance-Based Weights | 1 ARGO, ARGONet, Naive, Seasonal, VAR (Clust., Reg.), VAR (Reg.)
Mexico Performance-Based Weights | 1 ARGO, VAR (Clust., Reg.), VAR (Reg.)

Peru Performance-Based Weights | 5 ARGO, NetModel, Seasonal

Puerto Rico | Equal Weights 0 SIR, StackedML

Thailand Performance-Based Weights | 12 NetModel, VAR (Clust., Reg.), VAR (Reg.)

Overall Equal Weights 0 ARGO, NetModel, SIR, VAR (Clust., Reg.), VAR (Reg.)

Table 6: Best ensemble variants in each country for forecasting 1-month ahead using optimized
component models. “ETW” refers to ensemble training window.

Country Ensembling Method ETW | Component Models

Brazil Equal Weights 0 AR, ARGONet, SIR, StackedML, VAR (Clust., Reg.), VAR (Reg.)
Colombia Equal Weights 0 ARGONet, SIR, VAR (Clust., Reg.), VAR (Reg.)

Malaysia Equal Weights 0 AR, ARGO, ARGONet, ETS, Naive, NetModel, SIR, VAR (Clust., Reg.)
Mexico Winner-Takes-All 4 ARGONet, VAR (Clust., Reg.), VAR (Reg.)

Peru Performance-Based Weights | 1 SIR, Seasonal

Puerto Rico | Equal Weights 0 SIR, StackedML

Thailand Equal Weights 0 NetModel, VAR (Reg.)

Overall Equal Weights 0 ARGONet, VAR (Clust., Reg.), VAR (Reg.)

Table 7: Best ensemble variants in each country for forecasting 2-months ahead using optimized
component models. “ETW” refers to ensemble training window.

Country Ensembling Method ETW | Component Models

Brazil Performance-Based Weights | 12 ARGO, ARGONet, VAR (Clust., Reg.)
Colombia Performance-Based Weights | 12 SIR, VAR (Clust., Reg.), VAR (Reg.)
Malaysia Performance-Based Weights | 4 NetModel, StackedML, VAR (Clust., Reg.)
Mexico Winner-Takes-All 1 VAR (Clust., Reg.), VAR (Reg.)

Peru Performance-Based Weights | 1 Naive, SIR, Seasonal

Puerto Rico | Winner-Takes-All 12 SIR, StackedML

Thailand Performance-Based Weights | 6 NetModel, StackedML, VAR (Reg.)
Overall Performance-Based Weights | 1 ARGONet, VAR (Reg.)

Table 8: Best ensemble variants in each country for forecasting 3-months ahead using optimized
component models. “ETW” refers to ensemble training window.
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3.4 Optimized Models’ PAE by Country

3.4.1 1-Month Ahead

location AR ARGO ARGONet ETS Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal StackedML VAR (Clust., Reg.) VAR (Reg.)
Acre 40.0 40.0 402 429 382 38.2 429 405 57.2 98.9 45.9 30.3 32.8
Alagoas 26.7 26.7 25.6 384 243 243 38.4 248 313 121.0 28.2 26.0 28.1
Amapa 41.1 42.0 42.0 399 42.0 424 39.9 421 59.1 539.3 128.8 46.2 53.7
Amazonas 23.1 22.6 23.0 271 235 234 27.1 23.6 30.1 119.0 45.2 21.2 27.2
Bahia 224 23.0 206 421 249 247 421 20.6 33.2 514 33.0 33.7 317
Ceara 17.4 17.8 180 356 17.7 17.8 35.6 183 288 90.5 58.3 23.9 257
Distrito Federal 327 32.0 252 458 265 26.4 458 223 403 66.3 424 38.5 27.7
Espirito Santo 24.9 24.0 257 354 257 25.6 35.4 278 405 125.7 37.8 26.2 29.2
Goias 20.5 21.2 202 358 18.1 18.0 35.8 20.7 268 60.0 227 22.7 19.6
Maranhao 415 429 420 418 36.7 37.0 418 412 502 183.5 126.0 35.4 35.5
Mato Grosso 25.9 26.5 278 341 25.8 25.8 34.1 31.0 42.6 52.5 22,0 24.3 25.0
Mato Grosso do Sul ~ 28.4 28.4 284 499 26.3 26.3 49.9 284 444 57.0 28.6 29.1 33.2
Minas Gerais 32.7 32.7 351 50.8 34.1 34.1 50.8 39.0 334 87.5 45.3 402 49.7
Para 24.7 257 26.1 355 28.1 28.2 35.5 272 404 132.7 43.3 36.7 26.4
Paraiba 25.4 25.3 248 379 22.7 22,7 37.9 247 29.0 75.6 374 23.4 324
Parana 29.0 29.0 29.0 50.7 25.0 25.0 50.7 29.0 34.1 67.2 40.1 32.7 35.1
Pernambuco 26.4 26.4 268 36.5 26.2 26.2 36.5 271 358 64.2 26.8 28.9 22.2
Piaui 27.8 27.8 269 44.6 23.7 237 446 262 34.0 109.2 53.2 29.3 329
Rio Grande do Norte  29.1 28.0 323 35.0 25.6 25.4 35.0 36.8 31.9 103.5 46.0 26.6 28.6
Rio Grande do Sul 53.0 53.0 49.1 771 48.6 48.6 77.1 481 559 71.1 53.2 52.8 55.2
Rio de Janeiro 33.0 30.1 333 455 30.1 30.3 455 38.0 40.0 420.0 120.8 34.1 39.1
Rondonia 30.2 30.1 30.1 312 26.2 26.2 31.2 30.1 356 144.8 39.5 26.6 24.6
Roraima 29.6 29.7 30.2 289 30.0 30.0 29.0 30.7 36.7 2417 52.4 325 34.6
Santa Catarina 38.1 38.1 364 535 30.1 30.1 53.5 44.0 407 77.3 38.9 44.2 41.2
Sao Paulo 26.3 26.1 265 45.6 26.1 26.1 45.6 271 326 444 25.6 29.3 325
Sergipe 29.9 29.9 299 429 29.3 29.3 429 299 35.6 69.6 41.1 31.0 35.6
Tocantins 24.9 25.0 240 381 232 23.2 38.1 23.0 339 89.7 319 265 30.1

Table 9: 1-month ahead percent absolute errors in Brazil for optimized models. Best performing
models in each location are bolded. Lower values indicate stronger performance.

location AR ARGO ARGONet ETS Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal StackedML VAR (Clust, Reg.) VAR (Reg.)
Amazonas 39.8 39.8 40.1 - 42.6 419 428 404 604 148.3 99.8 452 43.8
Antioquia 17.3 173 17.6 - 16.7 16.6 20.5 180 200 80.8 257 18.8 20.6
Arauca 32.8 328 332 N 34.1 33.8 33.7 337 445 126.0 529 35.4 38.8
Atlantico 31.1 31.1 31.1 - 32.0 31.6 441 311 328 103.0 434 37.5 37.1
Bogota 100.3 100.3 100.3 - 111.6 1094 103.9 100.3 158.3 612.7 528.8 89.0 98.9
Bolivar 25.8 25.8 25.8 - 254 25.4 30.9 258 301 83.2 31.1 32.0 34.1
Boyaca 355 35.5 349 - 32,9 332 344 353 337 80.9 36.6 372 38.4
Caldas 29.3 29.3 29.7 - 27.2 27.6 31.2 30.8 352 64.0 33.1 25.4 26.6
Caqueta 34.6 34.6 34.4 - 35.8 35.3 36.5 343 469 78.6 43.5 38.0 32.9
Casanare 30.2 30.2 29.7 N 253 25.6 293 29.7 367 116.7 47.9 21.4 25.6
Cauca 25.3 25.3 253 - 25.4 25.1 25.6 253 29.0 67.5 321 27.8 30.4
Cesar 23.8 23.9 249 - 24.7 244 274 274 296 86.4 27.5 25.1 30.1
Choco 27.9 27.9 279 - 25.8 26.0 30.0 279 343 63.7 37.5 269 29.5
Cordoba 312 320 31.7 - 29.7 30.0 31.0 314 348 81.1 49.2 30.4 36.6
Cundinamarca 19.2 19.2 18.9 - 18.7 18.6 21.1 19.1 261 56.5 17.8 22.0 20.0
Guainia 50.7 50.7 50.2 - 47.0 47.3 54.5 498 577 97.4 62.4 50.5 477
Guajira 38.6 385 385 N 36.4 36.5 38.4 387 410 145.2 46.4 37.7 389
Guaviare 38.0 38.0 38.0 - 34.3 34.4 41.0 38.0 524 76.2 42.8 36.2 34.2
Huila 24.7 247 247 - 22.1 22.5 23.6 247 286 67.7 28.4 - 23.7
Magdalena 36.3 36.3 35.5 - 33.3 33.7 37.5 347 372 103.6 39.9 35.1 35.8
Meta 17.3 17.3 17.6 - 17.2 17.1 20.7 179 215 78.8 19.6 20.8 19.7
Naria 30.1 30.1 30.1 - 31.1 30.5 32.0 301 437 59.0 36.0 30.7 32.0
Norte Santander ~ 19.8 19.8 19.8 - 19.8 19.8 20.6 19.8 258 77.3 27.8 19.9 222
Putumayo 219 219 213 N 20.7 20.5 248 265 299 56.6 27.7 246 19.0
Quindio 16.5 16.5 16.5 - 17.4 17.2 21.4 16.5 22.0 55.4 17.7 18.7 17.8
Risaralda 24.5 24.5 247 - 23.3 23.6 257 249 279 90.9 68.5 239 27.0
San Andres 55.7 56.9 57.9 - 60.2 55.0 74.1 59.0 782 90.8 63.0 - -
Santander 13.3 13.3 13.3 - 12.0 12.0 14.2 133 164 76.6 14.4 12.9 12.5
Sucre 34.2 34.2 342 - 30.9 31.6 33.2 342 331 98.3 67.5 347 38.8
Tolima 16.4 16.4 16.4 - 189 183 194 165 283 46.4 18.0 18.8 18.5
Valle 18.4 18.4 18.4 N 19.8 19.5 225 184 283 61.7 19.5 18.6 18.4
Vaupes 160.9 160.9 160.9 - 132.0 137.8  150.0 160.9 133.5 364.0 316.9 120.0 120.0
Vichada 50.6 50.6 50.6 - 46.5 45.8 54.2 50.6 627 117.0 73.8 51.6 55.7

Table 10: 1-month ahead percent absolute errors in Colombia for optimized models. Best per-
forming models in each location are bolded. Lower values indicate stronger performance.
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location AR ARGO ARGONet ETS Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal StackedML VAR (Clust.,, Reg.) VAR (Reg.)
Johor 24.3 24.3 243 242 21.5 224 21.8 243 284 52.6 29.9 220 214
Kedah 26.0 26.0 26.0 297 25.8 24.0 28.2 260 36.4 49.9 36.9 23.5 24.4
Kelantan 36.7 36.7 36.1 418 33.2 38.1 418 356 51.1 82.8 59.8 40.4 40.1
Kuala Lumpur and Putrajaya 24.9 249 249 251 21.8 219 234 249 283 58.9 29.8 2238 223
Labuan 56.8 56.8 56.8 53.9 58.6 61.2 65.8 56.8 719 109.9 103.4 60.5 66.0
Malacca - - - 250 20.8 20.5 21.0 - - 54.8 24.7 217 19.4
Negeri Sembilan 21.3 21.3 21.3 219 19.9 211 20.4 21.3 249 47.6 25.1 26.1 25.0
Pahang 25.1 25.0 248 259 19.7 217 203 246 30.0 64.3 29.0 23.3 23.8
Perak 229 229 229 204 199 21.0 19.4 229 232 103.3 34.1 23.8 241
Perlis 44.7 4.7 447 445 46.9 35.6 52.5 447 66.1 116.8 55.3 316 341
Pulau Pinang - - - 288 21.3 28.7 274 - - 106.3 33.4 29.1 282
Sabah 320 32.0 320 318 27.5 34.4 31.6 319 534 48.7 34.0 31.0 30.9
Sarawak 248 24.8 248 226 19.5 23.6 20.6 249 276 85.0 26.8 287 29.0
Selangor 24.4 244 244 232 21.7 227 208 244 325 57.6 31.2 224 21.6
Terengganu 38.5 38.5 385 388 414 37.7 39.0 385 452 172.5 64.1 38.3 38.0

Table 11: 1-month ahead percent absolute errors in Malaysia for optimized models. Best per-
forming models in each location are bolded. Lower values indicate stronger performance.

location AR ARGO ARGONet ETS Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal StackedML VAR (Clust., Reg.) VAR (Reg.)
Aguascalientes 103.2 103.2 1032 976 84.7 954 100.8 1033  88.1 153.9 129.4 94.1 88.2
Baja California 212.6 212.6 2126 1111 164.2 179.1 1111 2126 1923 1911.7 1622.6 148.1 166.7
Baja California Sur ~ 68.5 68.5 60.1 794 76.3 81.9 78.8 54.3 1353 2126.3 1606.1 89.0 77.3
Campeche 68.3 68.3 71.0 708 66.7 68.5 74.2 738 918 4187 101.5 60.7 61.3
Chiapas 46.8 46.8 469 49.6 39.2 45.3 49.7 485 717 139.8 68.3 36.5 44.5
Chihuahua 110.0 110.0 110.0 137.2 111.1 1322 1407 110.0 253.6 137.3 132.6 89.6 102.1
Coahuila 56.0 58.1 59.0  90.6 48.0 58.0 90.6 60.0 64.0 76.8 79.1 70.9 72.0
Colima 54.2 54.2 542  62.0 51.9 52.1 62.0 542 764 195.3 715 50.3 48.2
Durango 100.0 100.0 100.0 106.0 118.1 102.2 98.8 100.0 1259 282.8 324.7 78.6 130.5
Guanajuato 71.2 712 71.1 937 55.1 63.1 86.4 71.1  98.0 308.3 398.6 66.8 62.2
Guerrero 51.7 51.7 519 56.0 53.0 44.2 56.0 521  56.0 151.6 90.2 47.6 55.9
Hidalgo 75.4 75.4 75.6 872 60.8 67.5 87.2 75.8 112.6 96.6 91.0 70.9 59.9
Jalisco 44.5 40.1 358 552 33.8 32.0 552 448 673 88.1 58.4 44.6 38.7
Mexico 117.9 118.1 118.0 1187 119.5 1157  136.3 1179 185.1 145.6 173.5 115.5 117.3
Mexico City - - - - - - - - - - - - -
Michoacan 422 31.9 369 392 26.3 35.9 39.2 440 503 77.9 50.8 40.7 42.2
Morelos 48.7 47.6 483  61.2 46.9 48.7 61.3 492 736 62.6 48.2 47.0 46.9
Nayarit 62.1 62.1 621  64.0 49.8 57.1 64.3 621 803 95.3 73.0 48.5 47.7
Nuevo Leon 48.5 47.8 450 87.8 50.9 60.8 87.4 444 110.6 122.8 93.7 51.2 67.5
Oaxaca 54.3 54.3 533 588 479 449 58.7 532 834 100.4 61.1 54.1 50.6
Puebla 52.9 52.7 51.1  58.0 48.7 45.7 58.1 50.6 57.8 78.2 94.9 53.4 45.9
Queretaro 73.6 73.6 829 765 76.7 73.6 76.0 923 118.0 110.4 110.7 81.9 75.9
Quintana Roo 45.5 45.5 455 416 47.0 4.7 41.6 455  46.0 142.1 67.4 522 42.5
San Luis Potosi 62.9 62.9 629 788 54.5 59.5 787 629 100.2 90.4 93.5 56.7 56.5
Sinaloa 54.2 53.6 540 637 49.7 50.0 63.7 546 322 89.0 57.8 67.1 70.6
Sonora 53.9 53.9 546 72.6 58.6 54.0 72.5 552 75.7 507.9 4121 63.5 52.6
Tabasco 53.1 53.1 532 542 52.5 53.1 54.2 533  66.6 233.6 57.8 50.4 51.1
Tamaulipas 63.4 63.4 634 628 58.6 50.8 62.8 63.5 689 147.1 132.1 55.8 55.1
Tlaxcala - - - - - - - - - - - - -
Veracruz 48.9 48.4 471 521 44.4 43.3 52.0 459 49.6 104.6 73.2 49.5 36.6
Yucatan 61.4 61.4 58.9 53.1 52.7 53.2 53.2 56.6  51.1 285.2 93.3 60.9 4.7
Zacatecas 113.5 113.5 113.7 1059 102.3 96.2 107.8 113.8 214.1 192.2 206.0 103.7 109.7

Table 12: 1-month ahead percent absolute errors in Mexico for optimized models. Best per-
forming models in each location are bolded. Lower values indicate stronger performance.

location AR ARGO ARGONet ETS Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal StackedML VAR (Clust., Reg.) VAR (Reg.)
Iquitos  67.5 67.7 67.6 79.8 53.6 - 79.2 67.5 119.3 80.6 744 - -

Table 13: 1-month ahead percent absolute errors in Peru for optimized models. Best performing
models in each location are bolded. Lower values indicate stronger performance.

location AR ARGO ARGONet ETS Ensemble (Country) Ensemble (Overall Naive NetModel SIR Seasonal StackedML VAR (Clust., Reg.) VAR (Reg.)
San Juan 27.4 284 279 307 16.8 - 30.7 274 222 60.7 22.5 - -

Table 14: 1-month ahead percent absolute errors in Puerto Rico for optimized models. Best
performing models in each location are bolded. Lower values indicate stronger performance.
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location AR ARGO ARGONet ETS Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal StackedML VAR (Clust., Reg.) VAR (Reg.)
Amnat Charoen 43.2 43.2 431 56.6 49.5 49.1 56.6 449 657 99.2 62.5 56.5 58.1
Ang Thong 51.1 51.1 50.8 53.3 47.0 46.7 53.3 50.6 524 80.5 53.6 47.9 46.5
Bangkok 29.9 30.2 28.0 357 259 28.2 35.7 259 395 734 52.2 282 27.4
Bungkan 69.4 70.8 722 80.5 87.0 80.2 80.4 73.6 1156 87.0 98.1 77.9 85.8
Buri Ram 35.0 34.3 340 458 33.6 36.5 45.8 339 557 79.1 48.6 311 31.2
Chachoengsao 27.8 27.8 259 315 27.2 29.5 315 272 327 146.7 52.1 35.2 36.9
Chai Nat 48.4 48.4 484 491 47.9 46.4 49.0 483  56.7 76.7 52.6 47.1 50.1
Chaiyaphum 39.1 39.0 37.0 436 36.7 36.5 43.6 349 430 89.3 47.3 45.0 46.8
Chanthaburi 27.6 27.6 235 433 232 27.1 433 224 388 83.2 39.7 33.6 26.1
Chiang Mai 29.1 29.1 24.6 45.1 23.1 25.8 45.1 228 438 68.5 35.1 29.2 25.7
Chiang Rai 38.6 38.6 35.0 49.6 32.0 38.9 49.6 329 683 76.9 56.0 39.5 43.8
Chon Buri 294 294 294 335 30.1 29.4 33.5 294 402 67.9 28.2 29.0 37.9
Chumphon 372 37.6 375 393 33.7 345 39.3 375 436 85.9 46.7 35.7 32.2
Kalasin 357 35.8 341 468 31.1 31.0 46.8 356 517 69.9 44.6 30.9 32.1
Kamphaeng Phet 45.0 43.3 374 426 33.9 35.5 42.6 333 479 1322 69.4 40.8 33.8
Kanchanaburi 41.1 41.1 38.7 448 37.3 34.9 44.8 376 487 91.7 40.6 377 35.2
Khon Kaen 415 415 414 404 445 43.5 40.4 413 597 83.8 423 42.0 4.3
Krabi 34.0 34.0 340 315 26.7 29.3 315 340 389 178.0 37.3 30.2 26.1
Lampang 418 420 39.0 632 342 38.9 63.2 363 731 68.3 55.9 37.5 30.6
Lamphun 49.5 49.5 470 59.1 38.4 45.4 59.1 447 708 136.3 782 36.2 39.5
Loei 413 413 383 523 36.6 34.1 52.3 354 444 80.0 50.1 482 418
Lop Buri 414 414 413 416 40.3 39.5 41.6 412 548 72.6 475 39.5 39.4
Mae Hong Son 40.7 40.7 417 62.0 414 42.3 62.0 43.0 739 63.9 50.7 40.5 51.7
Maha Sarakham 38.8 38.8 37.7 473 39.8 37.0 47.3 383 618 81.4 51.3 415 38.8
Mukdahan 40.4 40.3 37.8 579 36.3 39.5 57.9 354 623 78.1 45.8 442 43.6
Nakhon Nayok 54.1 54.1 541 554 49.9 55.8 55.4 541 774 124.5 75.6 57.7 51.1
Nakhon Pathom 18.1 18.0 166 28.6 16.1 157 286 159 231 58.3 193 175 18.0
Nakhon Phanom 48.4 48.5 483 654 54.6 42.6 65.4 48.1 450 71.1 58.7 50.8 49.1
Nakhon Ratchasima 35.4 35.4 35.0 457 36.3 36.1 45.7 356 487 82.8 45.2 36.8 37.3
Nakhon Sawan 29.6 29.6 267 312 253 27.9 31.2 243 427 74.7 31.0 29.4 27.7
Nakhon Si Thammarat  21.1 21.1 199 251 18.7 21.4 25.1 188 310 87.2 28.8 199 19.2
Nan 51.0 51.0 50.8 57.0 52.5 55.0 57.0 50.6  90.6 56.2 484 53.7 46.6
Narathiwat 34.8 35.1 31.8 386 30.8 337 386 315 543 94.5 46.6 29.3 29.7
Nong Bua Lam Phu 47.3 47.6 494 589 50.6 46.5 58.9 51.3 642 82.8 85.2 54.3 47.9
Nong Khai 43.0 43.0 381 53.1 38.7 375 53.1 359 56.2 79.2 47.4 421 38.4
Nonthaburi 25.1 25.1 25.1 354 23.3 229 35.4 251 30.1 99.5 33.7 23.0 23.6
P.Nakhon S.Ayutthaya 32.7 32.7 324 371 29.1 27.2 37.1 320 416 85.3 40.0 28.9 29.9
Pathum Thani 40.1 40.1 39.8 40.1 34.0 34.1 39.9 394 442 127.9 45.7 36.2 349
Pattani 30.9 30.9 30.6 347 29.8 30.6 34.7 323 407 84.4 385 29.2 28.3
Phangnga 31.1 31.1 311 393 30.6 31.1 39.3 311 480 62.5 38.5 31.8 30.4
Phatthalung 43.5 43.5 43.7 472 39.3 439 47.2 442 637 135.7 57.4 38.9 40.4
Phayao 56.1 56.2 544 69.7 39.8 45.0 69.7 527 661 82.7 737 51.3 39.3
Phetchabun 372 38.3 344 512 324 33.8 51.2 305 53.2 77.6 40.3 39.6 36.3
Phetchaburi 325 32.5 321 298 31.0 29.7 298 322 351 94.9 34.3 29.4 30.4
Phichit 47.4 474 473 527 417 44.0 52.7 474 63.2 163.0 50.5 38.2 43.0
Phitsanulok 375 37.5 37.6 409 30.4 30.9 40.9 378 497 74.8 38.6 32.3 30.9
Phrae 51.6 51.5 504 68.2 37.4 41.6 68.2 50.0 643 139.2 715 419 27.3
Phuket 325 32.5 324 349 29.0 31.3 34.9 322 390 110.5 49.7 27.6 30.0
Prachin Buri 30.4 30.5 294 412 31.1 25.6 41.2 289 349 76.3 39.7 29.1 30.5
Prachuap Khiri Khan ~ 31.7 31.8 31.0 322 27.8 29.1 322 303 353 83.2 38.3 324 27.0
Ranong 443 443 445 470 417 42.1 45.3 448 585 48.3 40.8 46.1 422
Ratchaburi 27.7 27.8 27.0 271 23.1 25.1 27.1 262 299 68.3 26.7 20.7 24.9
Rayong 28.9 29.0 28.9 380 29.8 28.7 380 289 404 67.2 36.3 34.8 31.1
Roi Et 30.0 30.1 29.6 445 29.0 31.4 445 293 521 748 38.0 29.1 28.9
Sa Kaeo 35.3 35.2 355 424 38.3 33.0 424 357 388 83.7 36.7 36.6 39.4
Sakon Nakhon 40.8 40.8 39.6 64.1 38.8 39.1 64.1 383 720 74.7 429 40.2 37.9
Samut Prakan 28.3 28.1 274 303 26.7 27.1 30.3 272 371 95.3 30.6 29.2 28.7
Samut Sakhon 249 249 248 289 243 24.6 28.9 248 392 73.0 29.6 234 241
Samut Songkhram 41.0 41.0 39.7 409 34.1 33.4 40.5 384 401 137.8 48.7 32.9 39.9
Saraburi 35.0 35.0 347 375 322 31.7 37.5 344 462 66.0 35.2 30.5 31.0
Satun 70.9 70.9 70.9 733 62.4 68.5 733 709  99.8 226.0 125.7 59.7 68.4
Si Sa Ket 31.9 31.9 309 428 32.5 33.1 4.8 303 540 85.2 43.1 30.8 31.2
Sing Buri 76.9 76.9 76.8 83.0 77.4 75.2 85.0 767 954 95.3 91.0 75.3 75.5
Songkhla 294 29.4 294 312 28.8 29.2 31.2 29.7 386 95.4 34.6 27.3 28.9
Sukhothai 37.4 37.4 353 435 34.8 31.2 435 346 391 56.3 31.9 35.0 36.7
Suphan Buri 247 247 246 31.6 237 22.7 31.6 245 338 45.1 264 249 23.1
Surat Thani 37.1 36.9 349 374 33.5 32.6 37.4 332 393 184.0 429 37.3 318
Surin 34.3 34.3 31.6 404 33.0 29.1 40.4 323 577 65.5 29.6 31.2 32.0
Tak 34.7 34.7 32.8 511 28.8 33.2 51.1 319 580 41.8 36.1 38.4 27.0
Trang 30.9 29.1 269 41.8 28.2 29.0 41.8 271 465 68.3 43.2 29.4 30.1
Trat 42.0 4.1 416 434 413 36.6 434 412 465 95.3 45.0 40.6 39.4
Ubon Ratchathani 32.9 33.1 32.6 50.7 34.0 34.9 50.7 33.0 451 81.3 43.3 40.7 35.7
Udon Thani 459 45.5 43.7 673 38.6 458 67.3 420 874 87.2 56.4 455 38.0
Uthai Thani 427 42.7 41.6 480 37.8 46.4 48.0 411 747 81.6 51.2 45.0 36.2
Uttaradit 442 443 403 553 38.0 429 55.3 370 736 49.3 454 427 39.7
Yala 31.3 31.3 31.3 345 30.5 28.8 34.5 313 405 77.8 35.3 327 30.2
Yasothon 38.2 38.1 37.1 471 38.6 39.2 47.1 362 64.6 79.1 434 38.1 36.2

Table 15: 1-month ahead percent absolute errors in Thailand for optimized models. Best per-
forming models in each location are bolded. Lower values indicate stronger performance.
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3.4.2 2-Month Ahead

location AR ARGO ARGONet ETS Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal StackedML VAR (Clust., Reg.) VAR (Reg.)
Acre 55.5 55.9 58.1 76.8 529 53.0 76.8 61.3 741 96.5 62.7 49.2 543
Alagoas 49.8 50.2 57.3 732 47.7 50.8 732 654 529 119.7 72.5 49.6 49.7
Amapa 68.6 70.2 736 586 69.6 74.0 58.5 824 827 540.8 132.4 80.5 78.6
Amazonas 354 33.6 339 444 33.6 317 44.4 40.1 519 116.4 99.7 29.4 35.1
Bahia 37.1 36.7 36.7 734 39.8 46.1 734 446 703 51.4 39.4 54.0 50.3
Ceara 317 31.9 31.6 65.6 342 35.3 65.6 331 619 90.7 70.4 42.8 39.6
Distrito Federal 53.8 53.7 351 79.6 474 44.0 79.6 445 688 66.2 55.3 60.4 449
Espirito Santo 45.3 45.3 46.3 648 50.4 47.4 64.8 51.5 578 123.6 73.0 46.2 50.7
Goias 31.1 30.5 319 63.6 25.4 26.0 63.6 39.6 53.0 57.8 37.8 35.0 29.3
Maranhao 69.5 70.5 60.7 726 63.7 56.0 72.6 526 974 180.4 138.6 58.8 57.5
Mato Grosso 48.8 49.1 61.8 621 471 47.6 62.1 80.3  80.0 52.7 39.0 45.0 41.8
Mato Grosso do Sul ~ 50.9 51.2 534 921 46.8 475 921 57.8 81.0 56.0 59.8 52.0 53.6
Minas Gerais 55.9 57.3 708  99.1 61.7 63.4 99.1 86.6 744 86.9 70.9 60.5 67.5
Para 39.9 414 409  59.0 43.3 43.4 59.0 40.7 858 127.6 83.9 59.1 38.7
Paraiba 39.0 38.8 432 612 36.9 42.0 61.2 49.1 501 75.0 474 38.1 47.3
Parana 59.0 59.0 49.0 963 48.6 50.9 96.3 539 616 67.0 56.1 58.8 57.0
Pernambuco 40.2 40.0 403 633 39.4 40.0 63.2 41.7 654 64.5 60.2 44.5 37.3
Piaui 418 40.7 447 736 37.5 39.2 73.7 50.6 587 104.9 85.2 45.6 415
Rio Grande do Norte  47.8 47.9 475 615 45.4 441 61.5 47.3 620 103.9 93.5 43.4 45.6
Rio Grande do Sul 774 76.1 704 1175 70.6 721 1175 68.2 100.6 71.0 77.8 73.7 76.5
Rio de Janeiro 57.8 53.5 594 816 84.6 51.0 81.6 70.1 738 410.4 3259 443 522
Rondonia 35.5 35.7 38.8 533 344 345 53.3 49.8 539 139.7 52.8 38.7 36.7
Roraima 429 428 505 422 44.5 46.1 42.2 585 539 2283 823 43.6 48.0
Santa Catarina 66.4 65.9 422 100.5 57.2 55.6  100.5 464 862 77.1 66.6 66.1 64.9
Sao Paulo 54.1 56.1 58.2  85.6 50.1 53.1 85.6 64.0 762 44.0 60.2 51.0 53.5
Sergipe 523 52.3 51.6 702 51.8 529 70.2 51.0 66.7 69.2 59.0 522 55.5
Tocantins 46.2 45.7 469 689 442 46.6 68.9 51.3 611 87.1 57.1 485 51.4

Table 16: 2-month ahead percent absolute errors in Brazil for optimized models. Best perform-
ing models in each location are bolded. Lower values indicate stronger performance.

location AR ARGO ARGONet ETS Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal StackedML VAR (Clust, Reg.) VAR (Reg.)
Amazonas 49.4 49.4 58.1 - 51.3 52.9 55.0 694  68.1 119.2 77.6 50.3 50.6
Antioquia 329 329 37.7 - 28.5 339 375 512 329 76.3 40.5 320 35.7
Arauca 42.8 42.8 41.6 - 484 454 46.4 419 710 128.5 88.7 459 51.2
Atlantico 53.4 53.6 54.1 - 51.6 56.8 74.4 55.1 685 90.7 55.6 62.3 55.1
Bogota 1086 1114 118.8 - 1152 103.5 96.1 1262 163.8 431.6 368.3 87.1 104.5
Bolivar 45.3 463 49.6 - 41.2 48.8 50.9 545 472 79.2 45.8 48.0 49.1
Boyaca 46.8 46.5 46.8 - 43.0 459 459 51.5 547 78.0 4.7 473 483
Caldas 36.0 36.0 316 - 31.0 29.0 39.6 305 459 59.9 411 292 30.1
Caqueta 518 518 36.8 - 47.1 422 59.4 378 831 75.8 719 52.4 423
Casanare 53.0 53.0 405 - 37.0 33.5 46.6 368 644 134.3 57.5 30.2 37.5
Cauca 38.1 38.1 422 - 416 44.0 39.8 475 548 65.9 421 422 482
Cesar 412 412 458 - 422 443 447 539 57.8 84.6 50.5 39.1 487
Choco 409 40.9 404 - 36.0 36.3 423 399 521 61.5 443 33.9 39.1
Cordoba 463 51.5 49.9 - 43.0 479 49.2 525 462 77.7 118.5 43.7 515
Cundinamarca 32.1 321 279 - 28.4 29.5 35.7 27.8 426 50.0 32.7 332 29.7
Guainia 60.6 60.6 59.7 - 63.0 619 82.7 622  86.0 97.6 84.4 66.5 62.6
Guajira 57.2 56.6 583 - 54.9 58.8 58.4 624 679 129.4 97.0 59.1 59.4
Guaviare 52.9 52.9 50.0 - 459 484 59.3 51.7 708 73.3 50.0 50.8 48.1
Huila 41.0 43.5 389 - 37.9 37.6 40.0 359 551 66.4 44.1 - 37.8
Magdalena 58.9 58.9 59.3 - 51.9 55.5 62.0 609  66.1 103.3 63.5 55.2 547
Meta 32.0 320 27.7 - 26.9 29.8 34.6 249 388 75.7 444 33.8 29.9
Naria 36.3 36.3 332 - 36.7 317 409 386 584 58.9 59.2 329 33.4
Norte Santander ~ 32.1 321 328 - 29.7 316 321 346 441 718 36.7 299 329
Putumayo 40.7 40.7 335 - 31.7 32.1 43.1 322 529 58.1 50.5 39.1 26.3
Quindio 29.9 29.6 29.8 - 28.8 28.7 352 30.7 389 53.2 438 30.4 27.0
Risaralda 382 374 435 - 37.3 402 428 49.7 442 86.0 67.5 379 39.9
San Andres 67.1 67.9 67.3 - 89.9 673 1104 66.8 1252 90.8 91.2 - -
Santander 22.6 226 21.0 - 18.2 19.5 22.3 214 257 726 25.8 19.4 18.9
Sucre 50.8 51.0 50.6 - 417 49.1 514 51.8 479 82.5 67.7 469 50.2
Tolima 288 288 28.0 - 29.2 27.1 30.8 281 508 41.7 324 27.8 273
Valle 33.1 33.1 32.1 - 34.0 324 37.6 362 548 61.8 37.2 345 313
Vaupes 1762 1762 160.5 - 147.1 1453 1417 171.6  168.0 381.9 360.5 133.8 1417
Vichada 61.0 61.0 60.6 - 61.9 59.1 66.8 603 99.7 109.9 102.0 55.0 67.0

Table 17: 2-month ahead percent absolute errors in Colombia for optimized models. Best per-
forming models in each location are bolded. Lower values indicate stronger performance.
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location AR ARGO ARGONet ETS Ensemble (Country) Ensemble (Overall Naive NetModel SIR Seasonal StackedML VAR (Clust, Reg.) VAR (Reg.)
Johor 36.0 36.0 36.1 379 36.8 34.6 38.0 362 517 53.1 32.6 33.8 34.0
Kedah 36.3 35.8 353 415 35.9 34.0 423 349  60.6 53.9 35.8 33.8 34.7
Kelantan 51.6 50.8 50.1 62.6 54.9 54.1 62.6 499 937 82.2 68.1 56.7 59.5
Kuala Lumpur and Putrajaya 35.7 35.8 355 38.0 345 327 35.8 352 510 59.1 36.0 325 329
Labuan 73.6 74.1 76.0 66.4 777 78.0 84.8 789 106.5 151.3 148.7 82.7 78.8
Malacca - - - 373 34.1 31.3 34.6 - - 56.8 36.8 31.4 313
Negeri Sembilan 29.1 29.1 29.0 30.1 28.9 29.3 30.0 290 382 484 328 294 30.8
Pahang 339 33.8 331 378 329 347 35.9 325 509 62.7 40.0 36.0 36.1
Perak 31.2 31.2 30.8 30.1 30.1 35.4 29.1 303 395 95.1 52.4 37.5 39.7
Perlis 62.7 62.7 616 629 47.7 53.5 65.7 60.7  90.2 1224 96.7 515 51.4
Pulau Pinang - - - 386 36.1 36.9 35.5 - - 95.0 46.3 36.6 37.1
Sabah 36.7 36.4 379 403 40.6 376 426 395 735 488 35.6 38.0 37.5
Sarawak 33.1 33.1 341 312 30.3 37.3 27.3 359 438 81.7 39.8 39.7 39.2
Selangor 33.1 32.7 33.1 343 33.2 32.6 34.0 334 504 57.5 34.6 321 33.0
Terengganu 483 485 473 45.6 46.7 521 471 464 573 1712 83.2 542 55.0

Table 18: 2-month ahead percent absolute errors in Malaysia for optimized models. Best per-
forming models in each location are bolded. Lower values indicate stronger performance.

location AR ARGO ARGONet ETS Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal StackedML VAR (Clust., Reg.) VAR (Reg.)
Aguascalientes 132.8 132.8 129.1 1094 123.4 1156  169.7 1254 158.8 153.9 182.4 111.8 105.9
Baja California 359.1  359.1 350.1 173.3 104.7 2125 1444 3411 183.3 2130.2 1957.2 103.2 206.3
Baja California Sur ~ 92.4 92.5 86.8 1349 115.2 1074 1353 89.8 183.7 2255.8 1891.9 128.3 130.1
Campeche 79.9 79.9 853 80.8 74.4 81.4 75.2 90.7 838 421.1 1128 81.2 80.4
Chiapas 57.9 57.5 547 702 49.4 50.3 70.3 546 893 128.0 729 43.3 54.8
Chihuahua 129.8 1302 1275 181.6 115.8 119.0 1854 1249 2942 146.6 159.1 109.5 120.1
Coahuila 86.6 87.0 88.5 143.6 88.4 89.2 1436 91.1 127.7 76.5 82.8 94.8 95.2
Colima 71.2 71.2 69.3  89.1 63.8 63.5 89.1 70.0 979 194.5 90.7 61.3 64.9
Durango 138.6 138.8 1353 1622 129.7 1339 188.2 131.8 2185 317.5 320.9 124.4 146.6
Guanajuato 194.8 193.2 185.7 276.7 156.7 1733 267.3 181.5 268.1 539.7 626.3 188.1 148.3
Guerrero 67.4 66.9 66.8 76.8 66.4 63.9 76.9 681 862 143.7 82.7 64.9 66.1
Hidalgo 93.7 93.8 942 1282 80.9 81.0 1282 94.8 151.2 96.4 102.4 84.3 70.7
Jalisco 70.5 85.7 68.2 1023 61.7 59.7 1022 60.0 105.9 87.3 73.8 71.3 58.5
Mexico 113.9 113.7 1134 1185 115.5 1129 1594 113.1  250.0 138.7 153.2 108.0 117.5
Mexico City - - - - - - - - - - - - -
Michoacan 63.7 62.3 56.0 71.0 57.9 57.4 71.0 623  79.8 75.6 60.1 61.3 61.6
Morelos 69.8 70.0 69.9 958 62.6 64.1 95.8 69.9 105.6 61.8 68.4 64.8 62.6
Nayarit 79.0 79.0 73.6  90.0 62.8 66.6 90.0 724 120.1 95.0 83.5 65.2 64.1
Nuevo Leon 85.3 80.5 95.2 1437 91.1 83.7 1433 118.3 147.0 128.1 118.4 78.6 84.2
Oaxaca 715 80.1 69.4  93.0 58.3 59.8 92.9 624 1084 96.2 99.0 68.9 57.2
Puebla 76.5 76.4 71.8 1105 69.2 712 1105 67.6 121.0 79.4 81.7 75.3 67.1
Queretaro 99.5  102.0 100.5 123.7 96.6 99.2 1075 100.6 133.7 114.3 117.3 99.4 97.6
Quintana Roo 69.3 69.3 679 643 61.0 61.2 64.4 66.6  63.9 135.9 78.6 62.4 54.0
San Luis Potosi 89.8 89.8 86.2 106.7 78.5 79.2  106.7 82.7 140.7 92.4 94.8 76.2 75.7
Sinaloa 80.7 80.9 835 945 87.7 87.4 93.4 864 748 87.9 84.7 92.7 88.9
Sonora 90.3 91.2 90.9 1374 94.8 958 1373 94.8 1279 505.9 279.0 106.3 90.2
Tabasco 78.7 85.2 794 743 77.1 78.0 74.2 76.8 113.3 234.2 72.7 79.4 76.8
Tamaulipas 90.0 89.9 89.5 1124 78.1 79.1 1124 89.4 103.6 144.6 104.0 76.2 82.5
Tlaxcala - - - - - - - - - - - - -
Veracruz 57.7 54.6 547 805 49.1 52.9 80.5 55.8 781 106.4 82.7 69.0 45.7
Yucatan 74.2 73.2 714 865 61.3 67.8 86.9 832 747 286.4 134.5 79.5 60.1
Zacatecas 1231 1239 1223 1117 118.3 1171 1929 120.7 304.8 190.9 201.2 111.2 118.8

Table 19: 2-month ahead percent absolute errors in Mexico for optimized models. Best per-
forming models in each location are bolded. Lower values indicate stronger performance.

location AR ARGO ARGONet ETS Ensemble (Country) Ensemble (Overall Naive NetModel SIR Seasonal StackedML VAR (Clust., Reg.) VAR (Reg.)
Iquitos  72.5 72.3 68.7 101.8 52.8 - 1013 68.8 132.6 80.6 82.6 - -

Table 20: 2-month ahead percent absolute errors in Peru for optimized models. Best performing
models in each location are bolded. Lower values indicate stronger performance.

location AR ARGO ARGONet ETS Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal StackedML VAR (Clust., Reg.) VAR (Reg.)
SanJuan 79.3 67.1 540 551 31.7 - 55.1 475 420 60.6 39.7 - -

Table 21: 2-month ahead percent absolute errors in Puerto Rico for optimized models. Best
performing models in each location are bolded. Lower values indicate stronger performance.
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location AR ARGO ARGONet ETS Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal StackedML VAR (Clust., Reg.) VAR (Reg.)
Amnat Charoen 57.6 57.7 715 877 82.0 73.3 87.7 921 945 99.7 87.3 75.9 74.7
Ang Thong 58.1 58.1 58.0 752 55.8 55.6 74.8 60.0 919 785 80.2 58.1 53.4
Bangkok 48.7 48.3 433 60.0 38.7 39.5 60.0 40.1 711 76.2 62.5 39.7 38.4
Bungkan 87.6 87.6 884 118.8 116.4 109.5 1188 922 1869 89.0 145.2 100.5 140.9
Buri Ram 45.8 47.2 46.7 721 49.2 45.8 72.1 521 1052 81.5 73.4 49.9 46.8
Chachoengsao 452 452 415 540 44.7 47.0 54.0 405 53.0 1409 76.0 54.4 49.7
Chai Nat 63.9 63.9 58.6 768 57.2 584 762 574 853 73.0 56.1 60.3 57.6
Chaiyaphum 55.3 55.3 55.0 783 58.3 59.8 78.3 547 706 88.5 79.8 66.8 62.5
Chanthaburi 383 38.3 362 793 38.5 40.8 79.3 367 781 81.2 40.3 51.9 424
Chiang Mai 46.2 46.7 39.8 870 38.7 40.2 87.0 434 859 68.9 55.4 48.5 36.0
Chiang Rai 59.9 60.0 483 932 50.0 57.4 93.2 412 1245 77.2 60.1 66.4 59.6
Chon Buri 45.2 45.2 454 539 48.2 47.0 53.9 455 674 66.7 43.2 46.5 55.5
Chumphon 50.6 499 477 524 43.2 453 52.4 46.1 633 80.2 54.2 482 41.1
Kalasin 432 43.2 405 740 43.2 43.3 74.0 411 959 71.9 62.5 50.6 46.2
Kamphaeng Phet 68.9 63.2 495 725 41.1 52.5 725 415 931 141.6 84.1 67.2 46.4
Kanchanaburi 54.8 51.9 49.7 702 48.2 50.4 70.2 492 791 86.8 57.6 59.4 47.3
Khon Kaen 59.2 59.2 53.2 622 55.7 55.8 62.2 538 838 86.0 68.6 58.7 57.7
Krabi 62.2 62.2 623 50.0 52.2 51.5 50.0 625 67.7 198.3 63.2 51.5 43.1
Lampang 56.6 56.7 46.8 107.4 47.0 50.0 1074 46.2 106.1 69.3 64.8 59.8 49.7
Lamphun 62.9 63.3 389 90.1 35.0 39.2 90.1 329 1136 130.4 113.2 45.7 42.8
Loei 52.3 52.4 519 982 57.1 59.2 98.2 54.6 1003 79.1 62.7 69.3 62.2
Lop Buri 57.9 57.9 51.6  66.9 45.1 46.0 66.9 477 812 73.8 49.7 46.9 43.7
Mae Hong Son 62.8 62.8 65.8 107.8 73.5 66.3 107.8 753 136.0 64.2 60.7 64.8 72.9
Maha Sarakham 59.4 59.5 56.5 79.6 52.0 55.0 79.6 56.1 994 80.6 76.0 62.1 48.2
Mukdahan 54.8 54.8 48.2 949 60.1 57.4 949 57.7 1156 79.3 62.8 65.3 64.4
Nakhon Nayok 80.2 80.2 747 918 71.6 74.2 95.6 71.8 140.1 138.0 95.7 77.6 71.9
Nakhon Pathom 34.1 34.0 29.7 494 271 26.2 49.4 29.7 423 54.5 324 25.3 25.6
Nakhon Phanom 58.9 58.9 60.2 1108 72.1 702 110.8 633 969 71.0 77.9 714 81.3
Nakhon Ratchasima 51.3 51.4 519 728 54.1 53.2 72.8 539 858 81.5 69.8 55.4 54.6
Nakhon Sawan 452 45.0 39.6 559 38.5 38.2 55.9 39.7 675 76.2 49.2 414 39.6
Nakhon Si Thammarat  32.7 32.6 30.6 405 29.3 294 405 29.9 489 86.5 45.4 30.9 29.0
Nan 76.0 76.0 671 879 66.1 69.0 87.9 704 1484 64.5 70.3 79.2 70.7
Narathiwat 515 51.6 421 603 35.4 40.2 60.3 37.0 853 89.3 60.3 45.8 35.3
Nong Bua Lam Phu 62.9 63.0 59.7 904 59.3 64.7 904 56.6 124.8 78.8 76.9 72.6 62.2
Nong Khai 61.1 61.2 544 843 54.1 57.8 84.3 521 867 79.4 63.2 64.5 57.2
Nonthaburi 441 4.1 369 66.7 36.0 33.6 66.7 402 628 92.4 63.3 35.2 329
P.Nakhon S.Ayutthaya 44.1 44.1 39.6 582 38.3 38.7 582 37.8 545 77.7 51.0 39.0 39.5
Pathum Thani 51.4 51.4 436 594 36.2 38.4 59.2 375  56.0 121.0 68.1 39.0 36.2
Pattani 46.8 46.8 478 555 48.1 443 55.5 56.3 734 84.8 60.2 444 42.1
Phangnga 489 489 474 60.6 44.7 457  60.7 458 842 62.6 482 46.1 43.9
Phatthalung 57.2 57.2 51.7 57.0 48.7 50.5 57.0 51.1 827 128.3 81.4 53.4 489
Phayao 822 82.1 772 107.7 68.2 69.6 107.7 774 119.2 79.6 77.3 719 60.8
Phetchabun 55.8 62.2 583 884 53.4 58.3 88.4 547 922 76.3 39.7 65.8 52.8
Phetchaburi 438 44.0 430 407 40.8 40.2 40.7 433 56.6 100.9 47.8 38.9 39.6
Phichit 85.3 85.6 722 845 62.1 66.2 84.5 67.3 1053 167.8 132.7 72.8 60.0
Phitsanulok 54.0 53.7 453 728 425 41.4 72.8 471 813 75.2 62.7 52.5 39.0
Phrae 88.7 87.7 66.5 120.3 54.6 60.8 120.3 574 1257 1419 111.4 69.7 52.6
Phuket 46.8 46.8 451 516 42.0 42.1 51.6 436 708 113.1 66.1 413 41.7
Prachin Buri 50.2 50.2 462 735 43.0 443 73.5 438 80.1 76.7 61.7 45.8 42.6
Prachuap Khiri Khan 452 45.5 381 468 33.6 38.2 46.8 359 540 81.7 60.9 45.4 33.0
Ranong 54.9 54.9 56.3  69.2 55.1 53.9 68.3 605 101.8 49.4 51.5 57.7 50.9
Ratchaburi 359 36.9 333 403 33.0 31.0 40.3 347 425 66.7 35.6 27.8 32.6
Rayong 429 43.1 412 611 39.6 433 61.1 403 784 63.0 49.1 51.4 40.1
Roi Et 50.4 50.9 438 80.5 421 47.7 80.5 40.0 87.0 732 56.2 54.0 46.9
Sa Kaeo 56.8 59.1 59.1 738 56.0 56.7  73.8 59.2 753 84.2 642 58.6 53.1
Sakon Nakhon 59.0 59.1 62.8 1084 64.2 65.1 108.4 67.3 116.6 73.6 60.6 70.7 63.3
Samut Prakan 49.6 48.8 404 528 35.8 39.7 52.8 345 627 92.3 529 419 38.2
Samut Sakhon 36.3 36.3 333 415 30.0 31.1 415 314 506 68.8 34.3 31.1 30.0
Samut Songkhram 67.6 67.3 64.8  68.0 63.0 60.8 67.7 624  68.0 140.6 79.1 54.2 63.5
Saraburi 55.2 55.3 48.3  66.8 40.9 433 66.8 419 735 65.5 52.9 41.8 40.7
Satun 84.0 84.0 831 874 74.1 76.0 87.4 823 117.5 2223 87.3 79.2 67.3
Si Sa Ket 412 40.7 38.8 744 40.8 39.9 74.4 404 914 87.9 64.2 45.7 41.5
Sing Buri 86.8 86.8 87.4 1049 84.9 84.1 1187 88.1 135.9 91.8 77.4 83.9 82.1
Songkhla 485 48.2 488 53.0 45.6 433 53.0 499 672 86.8 54.2 421 413
Sukhothai 54.6 54.6 496 734 46.2 48.9 734 454 652 58.5 48.6 51.6 47.1
Suphan Buri 36.9 36.9 328 529 314 30.6 52.3 329 554 46.7 35.2 29.9 30.4
Surat Thani 59.7 60.6 548 592 49.1 53.4 59.2 50.7  70.0 186.7 80.6 61.0 48.6
Surin 51.2 51.2 438 743 413 4.1 74.3 441 903 64.2 51.2 48.6 41.2
Tak 45.4 46.4 40.0 841 36.9 455 84.1 371 106.6 43.0 38.1 62.5 37.9
Trang 50.4 49.0 438 694 44.7 46.0 69.4 462 904 69.9 57.0 54.0 45.4
Trat 524 52.5 51.8 739 49.3 49.3 73.9 522 736 88.8 66.5 49.0 48.0
Ubon Ratchathani 54.8 56.2 533 858 55.2 55.1 85.7 59.2 801 81.7 67.2 64.2 54.7
Udon Thani 60.7 62.9 56.9 104.7 58.9 59.5 1047 65.0 1347 85.7 71.0 63.2 59.9
Uthai Thani 61.9 62.0 553 742 50.5 54.1 74.2 52.7 108.6 86.6 63.1 63.8 48.9
Uttaradit 49.1 49.2 455  83.0 47.4 495 83.0 477 1123 50.3 44.7 54.3 51.4
Yala 40.6 409 415 624 4.1 4.5 62.4 441 714 79.0 49.7 46.2 44.0
Yasothon 54.7 54.3 50.7 783 493 53.8 78.3 49.8 109.8 81.1 63.5 63.5 50.6

Table 22: 2-month ahead percent absolute errors in Thailand for optimized models. Best per-
forming models in each location are bolded. Lower values indicate stronger performance.
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3.4.3 3-Month Ahead

location AR ARGO ARGONet ETS Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal StackedML VAR (Clust., Reg.) VAR (Reg.)
Acre 63.6 65.7 63.9 104.1 60.0 629  104.1 64.3 1012 97.0 74.6 68.0 69.3
Alagoas 68.7 69.0 60.1 1013 60.9 633 101.3 574 79.8 119.1 80.9 72.0 67.0
Amapa 93.2 93.6 100.8  68.7 97.5 111.2 68.6 111.6 1118 544.3 264.7 1149 117.7
Amazonas 479 47.6 429  60.6 42.0 39.1 60.6 437 773 116.9 96.3 40.8 437
Bahia 47.1 44.2 53.6 97.8 54.6 57.3 97.8 66.2  106.8 51.4 442 67.6 61.7
Ceara 40.2 412 408 912 43.1 45.6 91.2 423 905 90.2 87.1 57.7 50.5
Distrito Federal 69.2 67.0 51.3 108.8 54.8 522 108.8 522 96.6 66.2 63.8 70.2 57.1
Espirito Santo 61.2 60.9 60.0 874 60.1 61.5 87.4 59.1  90.8 122.1 94.3 59.7 64.8
Goias 38.9 33.9 28.6 883 31.0 30.6 88.3 36.6 922 58.1 47.9 43.6 35.5
Maranhao 724 729 713 957 58.3 68.8 95.7 742 1427 178.7 96.4 67.6 63.7
Mato Grosso 54.5 54.8 67.3  86.8 56.8 59.8 86.8 86.8 104.6 52.9 46.1 54.6 55.7
Mato Grosso do Sul ~ 67.6 67.5 68.1 123.1 69.5 659 123.1 722 1283 55.6 57.5 69.6 66.7
Minas Gerais 713 70.2 69.9 1287 68.4 745 128.7 76.6 120.6 86.9 80.2 73.1 76.6
Para 41.5 428 403 777 45.1 43.6 77.7 40.0 121.6 125.2 67.4 73.7 45.0
Paraiba 474 47.1 53.7 829 479 529 829 679 755 74.6 59.6 4.4 523
Parana 74.0 72.9 65.6 120.0 70.0 66.3  120.0 70.1 945 67.0 60.8 74.0 68.2
Pernambuco 435 43.4 427 822 449 43.1 822 56.8 949 64.3 59.0 53.8 45.6
Piaui 51.8 51.6 57.7 1015 55.5 55.6 101.5 68.6 107.0 104.8 96.7 56.6 56.3
Rio Grande do Norte  65.6 65.0 62.1 818 59.0 56.7 81.8 66.0 821 106.8 107.2 60.9 55.7
Rio Grande do Sul 80.0 76.2 741 148.0 78.6 76.5 148.0 735 127.8 71.0 81.8 80.7 82.5
Rio de Janeiro 76.6 74.2 82.3 1022 68.3 743 102.2 102.8 109.4 415.6 216.8 52.7 63.3
Rondonia 45.1 46.9 50.6 719 47.5 49.9 719 58.2  81.0 140.3 69.6 54.5 47.6
Roraima 59.2 59.3 60.6  55.7 61.4 62.6 55.7 734 679 229.7 90.8 58.3 60.3
Santa Catarina 77.5 76.9 49.8 1222 55.4 643 1222 53.3 1322 77.0 73.9 77.1 78.0
Sao Paulo 67.4 68.0 66.8 113.2 64.5 625 1132 73.8 1233 44.0 53.7 64.9 62.8
Sergipe 74.8 71.0 714 96.1 76.0 69.8 96.1 789 1023 68.9 66.6 69.6 69.5
Tocantins 61.9 62.3 68.8 919 63.0 64.5 91.9 78.0 776 86.0 64.4 62.2 62.4

Table 23: 3-month ahead percent absolute errors in Brazil for optimized models. Best perform-
ing models in each location are bolded. Lower values indicate stronger performance.

location AR ARGO ARGONet ETS Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal StackedML VAR (Clust, Reg.) VAR (Reg.)
Amazonas 64.8 64.8 63.3 - 56.8 65.6 67.3 745 821 111.8 94.5 53.1 55.8
Antioquia 43.7 435 4.1 - 39.4 43.0 51.8 46.6 436 74.5 42.7 432 46.2
Arauca 43.0 43.0 41.2 - 50.8 439 49.4 417 827 127.3 102.1 474 47.4
Atlantico 65.9 65.9 59.9 - 69.6 62.7 96.6 58.7 1125 85.5 67.0 70.7 69.5
Bogota 75.6 721 110.0 - 63.2 91.0 80.0 148.0 1187 230.6 210.1 52.1 59.5
Bolivar 58.5 64.2 57.1 - 52.0 56.8 66.8 535 635 70.7 54.7 55.0 55.5
Boyaca 54.9 552 53.0 - 54.2 53.5 58.0 571 740 74.8 53.0 57.5 53.6
Caldas 37.3 373 352 - 33.3 34.1 39.9 371 579 60.7 423 352 35.7
Caqueta 60.4 60.4 50.9 - 63.2 539 74.6 52.3 1058 728 57.6 62.1 583
Casanare 78.0 78.0 548 - 48.0 59.6 62.6 387 899 137.3 84.7 438 65.9
Cauca 49.8 49.8 53.9 - 50.1 48.9 49.6 59.0 68.1 64.6 52.5 512 50.3
Cesar 51.1 51.2 46.5 - 434 46.5 57.7 492 811 80.4 51.4 417 49.6
Choco 48.6 48.6 44.6 - 443 422 54.5 469 762 61.0 60.5 428 44.8
Cordoba 63.1 58.8 65.7 - 53.2 56.8 62.7 72.7 638 64.7 95.4 523 51.0
Cundinamarca 38.2 382 34.7 - 38.6 35.6 471 374 541 48.8 39.7 405 402
Guainia 69.7 69.7 66.1 - 72.6 721 1054 66.5 109.8 94.5 102.6 76.2 724
Guajira 60.3 59.0 69.3 - 55.0 66.0 66.2 80.1 869 110.8 92.8 58.9 54.2
Guaviare 60.8 60.8 56.3 - 58.6 54.7 70.9 551 899 73.5 65.4 57.4 53.8
Huila 56.2 56.1 54.1 - 51.2 474 51.8 542 809 69.2 56.4 - 47.8
Magdalena 64.7 64.1 63.1 - 61.2 64.3 76.9 67.7 909 100.2 94.6 59.7 63.3
Meta 46.2 46.2 33.6 - 36.1 35.6 46.4 274 559 73.7 56.7 432 424
Naria 421 421 36.1 - 38.4 38.5 486 427 626 56.9 59.0 375 37.9
Norte Santander ~ 37.3 36.5 39.0 - 354 40.1 37.8 453 549 63.5 419 32.8 37.0
Putumayo 499 49.5 39.2 - 38.2 38.6 57.1 465 66.8 572 57.8 49.8 405
Quindio 427 43.1 421 - 39.1 39.3 45.0 427 615 53.7 56.3 40.1 38.2
Risaralda 46.0 46.1 55.6 - 46.8 55.8 57.0 66.7 55.8 84.4 67.0 498 50.9
San Andres 74.5 783 81.9 - 159.4 819 130.1 87.6 159.4 922 93.3 - -
Santander 30.5 30.5 28.7 - 26.1 28.2 29.9 312 332 712 39.9 25.1 28.6
Sucre 62.0 62.2 519 - 47.1 56.3 62.8 523 761 66.9 75.8 471 483
Tolima 36.9 36.9 37.0 - 329 36.5 39.6 39.0 642 40.2 383 33.1 32.7
Valle 42.6 41.7 43.8 - 42.8 423 50.6 544 694 61.4 419 452 45.1
Vaupes 1744 1744 207.0 - 151.3 1559 125.0 2437 134.4 356.8 350.3 139.7 139.7
Vichada 70.9 70.9 77.4 - 57.4 62.6 78.6 88.8 133.7 106.4 114.8 60.1 56.3

Table 24: 3-month ahead percent absolute errors in Colombia for optimized models. Best per-
forming models in each location are bolded. Lower values indicate stronger performance.
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location AR ARGO ARGONet ETS Ensemble (Country) Ensemble (Overall Naive NetModel SIR Seasonal StackedML VAR (Clust, Reg.) VAR (Reg.)
Johor 42.1 42.1 411 439 34.0 40.0 45.0 40.5 675 51.9 36.2 37.9 38.7
Kedah 41.8 41.5 39.8 439 43.7 39.1 52.7 39.7 719 50.0 46.1 38.2 37.9
Kelantan 61.0 59.5 57.5 74.0 58.8 62.7 74.0 58.4 108.5 81.4 74.2 63.7 63.8
Kuala Lumpur and Putrajaya  39.9 428 387 422 357 387 426 353 662 57.9 36.8 38.0 37.5
Labuan 88.9 88.3 90.5 73.8 90.7 98.4 99.9 94.8 1420 173.3 142.1 100.6 104.0
Malacca - - - 437 37.2 36.6 41.6 - - 55.9 40.7 37.0 36.6
Negeri Sembilan 339 34.0 327 349 30.9 326 353 331 511 4.7 326 30.8 314
Pahang 41.7 42.0 41.3 46.6 41.1 41.2 45.8 405 619 60.9 449 41.0 40.5
Perak 38.6 38.6 394 35.6 41.8 40.6 35.1 432 53.0 89.3 55.9 43.3 46.2
Perlis 69.4 69.4 69.1 67.4 61.3 63.7 70.4 68.9 116.4 1121 915 624 62.5
Pulau Pinang - - - 498 43.3 45.1 50.0 - - 88.3 49.2 43.4 45.1
Sabah 382 38.4 40.0 421 36.8 43.0 483 437 856 49.6 378 409 422
Sarawak 45.5 45.6 45.0 423 38.1 46.0 39.0 479 576 81.1 40.0 51.0 49.0
Selangor 37.0 37.0 36.4 36.1 35.7 37.7 38.1 36.1 63.6 54.0 35.6 35.9 36.6
Terengganu 59.4 65.2 61.0 55.2 54.6 62.5 56.9 56.8 725 179.3 132.8 62.2 62.9

Table 25: 3-month ahead percent absolute errors in Malaysia for optimized models. Best per-
forming models in each location are bolded. Lower values indicate stronger performance.

location AR ARGO ARGONet ETS Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal StackedML VAR (Clust., Reg.) VAR (Reg.)
Aguascalientes 1359 1359 1333 115.0 117.6 103.8 1882 130.7 195.8 153.9 186.3 117.6 111.8
Baja California 521.6  521.6 530.5 2233 117.9 2029  255.6 635.6 281.7 2029.3 1974.3 2752 196.6
Baja California Sur ~ 67.4 67.3 77.1 1615 124.1 1029 1617 92.5 174.0 1944.7 1699.5 130.9 143.5
Campeche 91.5 91.5 952 100.1 83.4 90.1 104.1 99.6 127.1 420.2 132.5 89.9 83.4
Chiapas 58.4 59.0 480 89.0 59.5 59.6 89.1 483 1139 118.8 88.6 50.7 62.1
Chihuahua 1461 1466 1379 209.4 121.6 131.5 2150 129.2 3445 155.4 168.7 118.8 127.3
Coahuila 94.4 94.1 90.1 146.6 102.9 923 1467 87.7 157.7 77.0 81.3 101.2 103.0
Colima 75.8 75.8 70.2  107.9 72.2 774 1079 723 129.8 189.6 77.1 66.1 76.9
Durango 221.4 220.8 220.0 280.8 199.3 216.6  319.5 2193 4276 483.8 617.6 197.4 2213
Guanajuato 334.1 330.5 335.1 5389 274.7 2908  546.7 3477 7214 812.1 945.2 313.7 258.9
Guerrero 86.9 81.7 782 941 79.2 757 942 826 1184 146.9 118.8 78.0 74.5
Hidalgo 94.6 94.7 925 147.6 83.0 89.8 1476 92.3 196.6 101.3 110.9 97.1 83.0
Jalisco 77.1 74.5 65.7 140.2 72.0 66.6 140.3 59.7 133.6 85.6 87.7 81.9 71.5
Mexico 113.7 114.5 111.7 1221 113.5 1048 156.9 1124 2426 142.0 163.6 112.4 106.1
Mexico City - - - - - - - - - - - - -
Michoacan 68.7 70.1 762  97.7 74.0 755 97.8 86.5 100.6 74.4 61.9 75.1 72.9
Morelos 77.9 77.7 742 1175 73.1 716 1175 731 1595 61.7 72.6 73.6 73.3
Nayarit 81.4 81.4 80.0 111.1 72.9 76.1 1121 81.7 170.3 93.8 91.6 71.6 70.7
Nuevo Leon 946  102.2 102.6 189.1 98.1 911 1886 108.3 203.1 140.6 136.5 96.2 95.6
Oaxaca 81.8 829 750 116.2 711 67.3 1162 69.8 1437 91.2 94.8 74.7 65.9
Puebla 94.8 94.0 945 1443 88.2 87.6 1444 97.0 177.7 81.4 92.0 91.1 86.1
Queretaro 111.7 1110 1103 157.6 106.0 107.6 1416 109.7 1311 114.2 116.9 105.4 106.5
Quintana Roo 85.5 85.5 747 920 71.8 66.3 92.0 77.0  69.9 134.7 88.6 68.1 67.2
San Luis Potosi 96.7 96.5 87.8 115.1 83.3 83.5 115.1 84.7 110.3 93.6 103.3 81.6 84.5
Sinaloa 89.4 90.0 871 1158 99.1 902 1173 853 109.2 88.1 101.4 100.5 95.1
Sonora 1139 1139 1123 167.5 117.7 113.8 1675 111.7 1622 535.1 160.1 133.1 108.1
Tabasco 82.8 81.0 78.8 822 79.0 79.1 82.2 78.8 116.9 237.4 89.0 86.7 84.9
Tamaulipas 99.4 99.4 1025 139.7 88.3 941 139.7 105.7 145.1 143.9 106.5 87.9 94.5
Tlaxcala - - - - - - - - - - - - -
Veracruz 72.1 59.4 55.0 1089 59.8 544 1089 553 739 107.7 89.6 75.3 53.2
Yucatan 93.8 93.8 96.8 124.4 77.0 85.6 1244 103.8 1158 288.2 173.1 91.8 78.4
Zacatecas 1193  119.3 1172 1143 112.2 1134 1964 1154 308.5 189.6 204.0 111.0 115.7

Table 26: 3-month ahead percent absolute errors in Mexico for optimized models. Best per-
forming models in each location are bolded. Lower values indicate stronger performance.

location AR ARGO ARGONet ETS Ensemble (Country) Ensemble (Overall Naive NetModel SIR Seasonal StackedML VAR (Clust., Reg.) VAR (Reg.)
Iquitos  86.3 85.0 78.1 1209 69.7 - 1203 82.8 1653 81.4 86.2 - -

Table 27: 3-month ahead percent absolute errors in Peru for optimized models. Best performing
models in each location are bolded. Lower values indicate stronger performance.

location AR ARGO ARGONet ETS Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal StackedML VAR (Clust., Reg.) VAR (Reg.)
San Juan 106.6 89.7 792 76.8 43.9 - 76.8 741 67.6 59.9 43.9 - -

Table 28: 3-month ahead percent absolute errors in Puerto Rico for optimized models. Best
performing models in each location are bolded. Lower values indicate stronger performance.
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location AR ARGO ARGONet ETS Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal StackedML VAR (Clust., Reg.) VAR (Reg.)
Amnat Charoen 68.8 68.8 63.6 107.1 64.4 66.6 107.1 65.6 143.0 100.9 95.1 91.1 73.6
Ang Thong 63.7 64.8 629  88.0 71.7 60.0 91.6 63.2 1242 81.5 82.6 63.1 59.1
Bangkok 65.8 65.1 538 75.6 49.6 43.8 75.6 452 904 74.6 725 47.2 43.9
Bungkan 98.1 98.0 1079 1511 106.8 1428 1511 118.1 205.3 88.7 147.7 115.3 147.8
Buri Ram 56.2 57.4 53.8 944 56.6 55.9 94.4 551 131.2 82.2 81.2 70.7 55.9
Chachoengsao 64.3 64.4 496 743 52.4 49.0 74.3 428 858 148.0 101.3 81.4 63.3
Chai Nat 67.5 66.9 64.7 1029 624 618 103.8 66.1 119.4 723 66.5 66.3 62.8
Chaiyaphum 66.5 66.6 59.6 102.7 63.8 614  102.7 553 888 88.2 70.0 80.1 72.4
Chanthaburi 50.0 50.0 51.3 106.5 51.2 56.9 106.5 545 127.0 81.3 47.7 70.1 55.8
Chiang Mai 57.9 58.3 449 1199 37.5 485 1199 53.6 1254 68.8 68.7 63.1 50.9
Chiang Rai 73.9 74.2 59.0 128.8 64.6 61.1 1288 55.0 165.0 75.7 80.3 78.5 70.7
Chon Buri 55.3 55.3 555 653 54.8 56.8 65.3 557 876 65.0 46.5 55.8 64.9
Chumphon 54.8 54.9 50.1  65.0 45.1 45.9 65.0 477 797 74.3 68.2 53.8 48.1
Kalasin 55.3 55.6 48.9 1019 56.8 51.6 101.9 521 1229 727 61.1 715 60.7
Kamphaeng Phet 93.0 82.4 63.6 958 57.1 59.9 95.8 49.9 130.8 152.2 105.4 88.5 58.8
Kanchanaburi 66.3 62.4 56.6  85.5 63.7 58.8 85.5 54.5 1139 93.3 76.5 734 57.6
Khon Kaen 67.5 67.8 59.9 878 67.8 62.9 87.8 57.7 100.7 85.6 822 76.2 70.5
Krabi 90.9 90.9 785 654 73.0 69.3 65.4 722 976 208.6 112.9 71.5 61.7
Lampang 79.0 78.6 67.7 133.8 63.9 59.9 133.8 642 1454 69.9 733 77.8 67.8
Lamphun 74.4 74.5 499 1129 38.3 346 1129 48.7 1448 136.0 122.2 55.5 29.1
Loei 64.0 64.2 622 1219 58.7 645 1219 624 1483 79.5 63.5 85.4 71.6
Lop Buri 66.0 66.6 55.0 858 55.9 52.1 85.8 47.9 106.0 76.2 60.8 53.8 49.9
Mae Hong Son 65.0 65.1 78.1 133.4 70.2 747 1334 96.9 160.4 64.1 67.5 77.1 84.6
Maha Sarakham 70.5 70.4 61.0 105.4 66.9 579 1054 535 121.7 79.6 83.0 76.5 59.8
Mukdahan 66.8 66.8 68.4 1265 77.4 705 126.5 745 149.7 79.9 72.6 88.1 78.8
Nakhon Nayok 93.3 91.1 81.6 111.6 90.3 83.0 112.6 75.4 1926 140.2 109.0 83.6 82.8
Nakhon Pathom 44.4 444 384 635 26.9 33.5 63.5 36.6 56.8 52.5 37.3 30.8 30.8
Nakhon Phanom 64.8 64.8 67.3 1384 86.0 719 1384 842 140.6 71.5 79.5 81.4 81.9
Nakhon Ratchasima 63.6 62.6 624 940 64.6 61.3 94.0 63.8 109.4 82.4 73.7 70.3 65.8
Nakhon Sawan 58.3 57.2 490 752 45.3 49.6 75.2 488  89.0 75.2 58.1 49.4 45.7
Nakhon Si Thammarat ~ 42.6 425 411 533 35.6 372 53.3 417 639 83.6 39.3 39.3 36.4
Nan 714 71.4 635 1147 75.7 733 1147 89.8 1859 65.8 77.8 92.1 754
Narathiwat 57.0 56.8 474 729 54.5 43.3 729 46.9 109.4 84.7 68.0 49.1 45.2
Nong Bua Lam Phu 75.3 75.4 68.8 1109 70.1 725 1109 66.5 169.6 78.8 87.0 91.6 74.2
Nong Khai 69.5 69.4 60.1 108.9 53.9 609 1089 53.6 102.7 78.8 70.6 80.8 66.7
Nonthaburi 56.3 56.4 46.5 88.1 40.5 39.8 88.1 523 859 87.5 69.7 419 39.1
P.Nakhon S.Ayutthaya ~ 56.3 56.3 523 771 52.7 45.0 77.1 548 739 77.2 66.2 45.2 44.0
Pathum Thani 61.3 61.3 499 817 49.5 45.8 81.6 431 823 1225 89.7 47.2 43.4
Pattani 55.3 55.5 631 711 64.4 60.5 71.1 82.2 100.6 85.0 57.5 58.6 54.9
Phangnga 60.9 60.9 51.3 767 40.1 53.3 77.0 426 937 63.2 519 56.0 51.3
Phatthalung 65.7 65.7 57.6 743 60.8 59.4 743 558 105.3 1255 101.9 66.0 59.9
Phayao 70.6 70.1 63.4 141.0 637 64.8  141.0 64.1 1381 82.4 824 83.8 75.8
Phetchabun 67.0 71.7 60.5 117.7 41.0 62.0 1177 50.2 1348 75.5 43.3 83.3 67.7
Phetchaburi 50.5 50.5 499 525 47.8 46.2 52.5 51.8 594 93.3 79.9 43.1 44.1
Phichit 103.4 98.9 780  96.9 64.7 64.6 96.9 69.2 120.1 178.7 134.2 88.1 61.9
Phitsanulok 65.3 65.1 59.1  99.0 44.3 52.5 99.0 56.6 1282 75.5 70.6 71.5 46.2
Phrae 1069  107.2 90.9 147.8 85.0 824 1478 80.6 1782 143.1 137.7 81.8 70.8
Phuket 53.9 53.9 56.5 554 489 56.4 56.1 64.8 894 99.0 53.7 46.8 47.5
Prachin Buri 68.8 68.9 619 97.0 47.0 60.2 97.0 56.5 117.4 77.3 64.4 61.3 56.1
Prachuap Khiri Khan 55.9 56.2 446 481 37.0 379 481 39.0 655 89.3 58.9 51.8 38.6
Ranong 55.3 55.3 534 797 51.7 53.9 847 523 1343 48.5 50.3 56.2 56.8
Ratchaburi 44.2 445 39.8 515 33.7 38.3 51.5 375  56.6 66.7 44.7 36.9 372
Rayong 50.0 50.0 46.6 777 37.9 48.6 77.7 47.7 1023 62.8 44.2 57.9 47.0
Roi Et 55.5 58.2 44.1 106.5 48.1 479  106.5 47.1 1256 734 68.4 73.7 56.0
Sa Kaeo 72.1 74.4 67.0 100.9 55.9 65.1  100.9 59.9 1117 84.5 74.9 77.1 65.7
Sakon Nakhon 67.6 68.3 638 1325 64.7 66.3 1325 653 156.1 74.6 62.3 86.9 73.0
Samut Prakan 61.1 59.4 48.6 654 47.9 46.6 65.4 40.7 713 90.8 65.0 47.9 42.7
Samut Sakhon 429 429 346 513 26.5 34.7 51.3 348 638 69.5 442 33.9 329
Samut Songkhram 82.0 81.9 735 827 73.5 69.8 827 654 857 135.4 93.4 64.9 718
Saraburi 66.8 66.6 58.0 878 47.1 521 87.8 525  96.1 65.3 57.9 51.4 47.2
Satun 82.9 829 854 851 80.5 82.9 89.0 89.6 128.8 209.7 109.0 81.0 79.6
Si Sa Ket 58.3 56.8 48.1 985 43.0 46.9 98.5 499 1225 89.6 68.2 64.4 47.5
Sing Buri 87.5 87.5 86.8 1125 85.6 845 1249 87.0 1272 91.8 93.6 87.7 85.5
Songkhla 63.7 63.1 631 678 56.6 55.8 67.8 669 92.6 84.7 66.6 50.9 50.4
Sukhothai 60.2 60.3 544 943 55.7 554 943 55.0  96.6 59.7 56.7 65.3 53.8
Suphan Buri 435 435 411 67.6 36.1 35.9 67.3 408 652 46.5 41.9 30.4 32.7
Surat Thani 76.7 73.9 67.9 709 64.1 60.7 70.9 724 899 190.0 76.6 77.3 58.2
Surin 60.5 60.4 499 103.5 43.3 479 1035 50.3 1259 63.6 57.6 68.0 45.8
Tak 47.1 471 383 109.2 43.8 49.1  109.2 394 1523 43.7 50.5 715 51.7
Trang 54.7 54.2 46.6  88.1 55.3 50.2 88.1 43.0 120.0 68.9 56.6 63.1 55.6
Trat 57.1 56.6 50.0 86.2 47.3 50.2 86.2 46.4 100.1 86.0 67.4 57.6 52.1
Ubon Ratchathani 69.6 72.0 65.2 1125 63.7 67.8 1125 814 107.0 83.2 66.0 85.2 69.5
Udon Thani 67.9 76.6 672 1272 51.2 67.1  127.2 693 129.6 85.5 527 79.6 73.1
Uthai Thani 734 73.4 61.1 86.0 60.7 57.5 86.0 56.0 1185 84.9 774 71.6 59.7
Uttaradit 55.3 55.1 524 1044 52.5 553  104.4 57.1 130.5 51.0 47.3 617 58.7
Yala 58.2 58.7 571  80.1 52.2 53.5 80.1 60.6 91.1 79.1 57.3 59.9 55.0
Yasothon 71.8 70.4 548 104.8 51.7 56.0 104.8 544 1203 82.4 76.1 90.4 63.4

Table 29: 3-month ahead percent absolute errors in Thailand for optimized models. Best per-
forming models in each location are bolded. Lower values indicate stronger performance.
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3.5 PAE of Optimized Models versus Naive Persistence Baseline

It is made available under a CC-BY 4.0 International license .

country no. of locations | AR ARGO ARGONet ETS Ensemble (Country) Ensemble (Overall) NetModel SIR Seasonal StackedML VAR (Clust., Reg.) VAR (Reg.)
Brazil 27| 25 24 24 5 25 25 24 18 2 15 24 24
Colombia 33| 26 26 26 0 31 31 25 7 0 7 22 18
Malaysia 15 5 5 5 3 12 7 5 0 0 0 7 8
Mexico 32| 22 23 2 13 26 25 21 6 2 4 23 24
Peru 1 1 1 1 0 1 0 1 0 0 1 0 0
Puerto Rico 1 1 1 1 0 1 0 1 1 0 1 0 0
Thailand 77 | 70 70 74 14 74 75 74 15 3 36 71 69
Overall 186 | 150 150 153 35 170 163 151 47 7 64 147 143

Table 30: Number of locations per country where optimized models outperformed the naive
persistence baseline at the 1-month ahead horizon, as measured through percent absolute error.
Best performing models in each location are bolded. Higher values indicate stronger perfor-
mance.

country no. of locations | AR ARGO ARGONet ETS Ensemble (Country) Ensemble (Overall) NetModel SIR Seasonal StackedML VAR (Clust, Reg.) VAR (Reg.)

Brazil 27| 25 25 25 7 24 25 24 18 11 17 24 25
Colombia 33| 26 25 23 0 29 29 20 5 1 7 28 22
Malaysia 15| 10 10 10 7 12 11 11 0 0 3 10 9
Mexico 32| 26 26 26 15 29 27 26 8 12 14 28 27
Peru 1 1 1 1 0 1 0 1 0 1 1 0 0
Puerto Rico 1 0 0 1 0 1 0 1 1 0 1 0 0
Thailand 77 | 72 72 75 24 75 76 73 13 27 52 74 75
Overall 186 | 160 159 161 53 171 168 156 45 52 95 164 158

Table 31: Number of locations per country where optimized models outperformed the naive
persistence baseline at the 2-month ahead horizon, as measured through percent absolute error.
Best performing models in each location are bolded. Higher values indicate stronger perfor-
mance.

country no. of locations | AR ARGO ARGONet ETS Ensemble (Country) Ensemble (Overall) NetModel SIR Seasonal StackedML VAR (Clust, Reg.) VAR (Reg.)

Brazil 27| 25 25 25 9 25 25 24 9 16 20 25 25
Colombia 33| 27 28 26 0 29 30 21 3 4 12 29 29
Malaysia 15| 10 9 0 1 14 12 11 0 1 9 11 11
Mexico 32| 28 29 29 25 30 30 29 8 17 20 28 29
Peru 1 1 1 1 0 1 0 1 0 1 1 0 0
Puerto Rico 1 0 0 0 0 1 0 1 1 1 1 0 0
Thailand 77| 73 73 75 41 76 75 72 8 52 64 73 77
Overall 186 | 164 165 166 86 176 172 159 29 92 127 166 171

Table 32: Number of locations per country where optimized models outperformed the naive
persistence baseline at the 3-month ahead horizon, as measured through percent absolute error.
Best performing models in each location are bolded. Higher values indicate stronger perfor-
mance.
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3.6 Standard Models’ PAE by Country

3.6.1 1-Month Ahead

location AR ARGO ARGONet Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal
Acre 425 60.8 60.0 41.2 46.4 429 60.1 79.5 98.9
Alagoas 31.9 50.1 42.6 27.9 28.8 38.4 39.8 36.0 121.0
Amapa 109.2  328.8 326.0 453 46.9 39.9 3269 8438 539.3
Amazonas 442 90.0 34.2 25.3 24.3 27.1 29.2 305 119.0
Bahia 30.6 389 389 31.9 33.6 42.1 40.1 332 51.4
Ceara 40.3 76.4 51.0 31.2 33.2 35.6 523 30.1 90.5
Distrito Federal 36.2 46.5 415 37.5 35.6 45.8 36.4 437 66.3
Espirito Santo 39.6 47.2 46.4 31.6 35.2 354 56.5 39.7 125.7
Goias 26.6 31.5 28.6 25.4 26.8 35.8 31.1 269 60.0
Maranhao 58.7 84.2 824 37.7 42.7 418 76.2 58.6 183.5
Mato Grosso 22.9 35.2 30.6 25.5 28.0 34.1 30.2 53.6 52.5
Mato Grosso do Sul 36.3 64.1 62.4 36.8 43.2 49.9 623 67.1 57.0
Minas Gerais 43.9 74.7 67.7 37.5 51.6 50.8 71.8 38.1 87.5
Para 43.5 52.1 50.8 34.2 33.9 35.5 49.7 404 132.7
Paraiba 284 449 39.6 30.1 27.6 379 426 303 75.6
Parana 35.7 423 425 34.8 424 50.7 573 362 67.2
Pernambuco 28.7 40.5 36.4 28.9 30.8 36.5 36.3 379 64.2
Piaui 53.8 74.8 67.7 38.7 374 44.6 65.9 34.7 109.2
Rio de Janeiro 129.3 168.0 117.9 36.1 79.9 45.5 116.2 44.0 420.0
Rio Grande do Norte ~ 39.7 64.3 64.2 23.0 343 35.0 62.5 35.6 103.5
Rio Grande do Sul 69.9 76.4 78.7 81.3 65.4 77.1 67.0 61.6 71.1
Rondonia 36.7 47.0 425 31.1 33.2 31.2 416 352 144.8
Roraima 46.2 138.8 120.1 27.3 28.4 29.0 119.7 36.7 241.7
Santa Catarina 45.6 38.5 371 51.7 413 53.5 405 49.2 773
Sao Paulo 29.7 47.6 46.8 28.0 38.6 45.6 46.6 343 444
Sergipe 36.1 435 434 38.1 39.3 429 439 385 69.6
Tocantins 28.7 40.8 39.4 24.6 27.7 38.1 404 438 89.7

Table 33: 1-month ahead percent absolute errors in Brazil for optimized models. Best perform-
ing models in each location are bolded. Lower values indicate stronger performance.
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location AR ARGO ARGONet Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal
Amazonas 44.5 62.4 63.5 46.6 38.5 42.8 711  60.4 148.3
Antioquia 16.8 30.9 29.1 17.2 19.0 20.5 28.0 20.0 80.8
Arauca 45.1 64.5 48.3 37.5 37.5 33.7 519 445 126.0
Atlantico 41.7 61.4 45.3 35.4 34.1 441 442 328 103.0
Bogota 2524 4282 328.3 107.7 104.8  103.9 337.7 158.3 612.7
Bolivar 31.3 40.0 40.0 29.9 29.6 30.9 40.6  30.1 83.2
Boyaca 38.1 38.0 36.8 33.5 36.4 34.4 383 337 80.9
Caldas 36.8 38.1 27.8 32.3 31.8 31.2 278 352 64.0
Caqueta 39.8 46.3 443 38.5 38.3 36.5 436 469 78.6
Casanare 43.3 47.3 45.0 28.5 29.2 29.3 470 36.7 116.7
Cauca 26.6 45.7 45.8 243 24.1 25.6 455 29.0 67.5
Cesar 26.1 40.7 38.9 24.5 25.5 27.4 38.7 29.6 86.4
Choco 29.2 49.9 46.4 30.4 30.0 30.0 371 343 63.7
Cordoba 36.6 54.5 52.9 32.6 33.0 31.0 528 348 81.1
Cundinamarca 18.0 244 23.0 18.8 20.1 21.1 214 261 56.5
Guainia 56.3 70.6 64.0 47.6 50.5 54.5 63.7 78.0 97.4
Guajira 45.6 77.1 75.8 41.6 43.6 384 754 410 145.2
Guaviare 441 64.8 61.0 442 44.6 41.0 624 524 76.2
Huila 26.8 321 28.8 24.6 21.6 23.6 282 286 67.7
Magdalena 36.8 48.7 38.0 35.8 36.1 37.5 379 372 103.6
Meta 18.3 27.4 23.5 18.0 18.8 20.7 255 215 78.8
Naria 34.1 35.6 33.7 33.6 34.5 32.0 329 437 59.0
Norte Santander ~ 23.1 30.0 30.1 21.1 21.8 20.6 314 258 77.3
Putumayo 243 34.3 21.7 23.1 21.6 24.8 211 299 56.6
Quindio 20.6 421 30.7 18.3 18.3 214 374 220 55.4
Risaralda 313 52.3 37.1 26.1 25.8 25.7 412 279 90.9
San Andres 68.3 80.2 74.6 71.7 73.1 74.1 743 156.2 90.8
Santander 154 194 15.7 13.3 16.5 14.2 163 164 76.6
Sucre 47.2 68.3 64.7 33.6 33.9 332 649 331 98.3
Tolima 19.3 21.2 19.1 20.1 17.6 194 178 283 46.4
Valle 20.2 25.4 20.4 19.6 19.6 22.5 19.8 284 61.7
Vaupes 2248  340.0 340.0 1444 154.7  150.0 340.0 133.5 364.0
Vichada 762  119.3 119.3 51.9 55.0 54.2 1193 627 117.0

Table 34: 1-month ahead percent absolute errors in Colombia for optimized models. Best per-
forming models in each location are bolded. Lower values indicate stronger performance.

location AR ARGO ARGONet Ensemble (Country) Ensemble (Overall Naive NetModel SIR Seasonal
Johor 25.0 314 314 19.6 21.3 21.8 314 284 52.6
Kedah 25.5 27.8 27.8 26.9 26.1 28.2 27.2 364 49.9
Kelantan 58.5 85.6 85.6 49.7 45.5 41.8 85.6 51.1 82.8
Kuala Lumpur and Putrajaya 24.4 25.8 25.1 20.8 24.0 23.4 245 283 58.9
Labuan 67.0 85.5 75.7 61.1 58.7 65.8 727 719 109.9
Malacca - - - - - 21.0 - - 54.8
Negeri Sembilan 22.7 30.8 31.0 19.1 20.3 20.4 33.1 249 47.6
Pahang 25.7 36.5 33.7 19.8 21.7 20.3 33.6 30.0 64.3
Perak 36.0 73.8 70.1 19.6 21.2 19.4 70.0 23.2 103.3
Perlis 51.5 84.5 79.4 47.8 46.0 52.5 79.1 66.6 116.8
Pulau Pinang - - - - - 27.4 - 235 106.3
Sabah 33.9 35.2 335 27.7 32.2 31.6 340 53.0 48.7
Sarawak 26.1 51.5 51.8 20.9 22.6 20.6 56.5 27.6 85.0
Selangor 26.8 29.9 28.0 21.8 24.6 20.8 279 325 57.6
Terengganu 63.1 112.3 1125 42.6 443 39.0 116.8 45.2 172.5

Table 35: 1-month ahead percent absolute errors in Malaysia for optimized models. Best per-
forming models in each location are bolded. Lower values indicate stronger performance.
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location AR ARGO ARGONet Ensemble (Country) Ensemble (Overall) Naive NetModel SIR  Seasonal
Aguascalientes 145.7  181.7 149.2 120.5 105.6  100.8 1424 749 153.9
Baja California Sur 7032  2081.2 1594.4 88.4 85.9 78.8 1839.6 191.0 2126.3
Baja California 739.6 1836.8 1836.8 139.0 1034 111.1 1880.2 221.2 1911.7
Campeche 106.3  200.5 162.2 88.5 75.4 74.2 160.8 107.0 418.7
Chiapas 79.7 97.2 95.3 54.6 50.0 49.7 952 749 139.8
Chihuahua 190.9 148.5 148.5 129.1 137.0 1407 1485 623.6 137.3
Coahuila 772 1173 110.4 73.2 72.0 90.6 1104 775 76.8
Colima 77.5 96.4 77.5 54.7 61.0 62.0 80.2 95.1 195.3
Durango 278.8  355.6 355.6 122.0 116.1 98.8 355.6 130.0 282.8
Guanajuato 122.1 3218 239.5 77.1 89.2 86.4 326.0 1485 308.3
Guerrero 59.8  103.1 96.6 57.0 54.0 56.0 959 1209 151.6
Hidalgo 93.6  106.6 94.8 73.1 82.3 87.2 96.0 1435 96.6
Jalisco 62.0 98.8 88.2 45.6 46.4 55.2 741 93.0 88.1
Mexico City - - - - - - - - -
Mexico 1444 1549 154.9 128.6 1342  136.3 1549 2919 145.6
Michoacan 38.6 55.2 60.0 36.6 40.6 39.2 729 674 77.9
Morelos 60.7 59.9 67.4 52.0 65.4 61.3 67.1 799 62.6
Nayarit 72.7 934 72.0 58.1 61.5 64.3 59.8 954 95.3
Nuevo Leon 101.7  128.0 125.2 71.7 89.5 87.4 134.0 2123 122.8
Oaxaca 58.0 75.0 65.5 63.4 53.3 58.7 65.6 105.8 100.4
Puebla 57.8 66.3 69.6 55.0 55.0 58.1 753  66.3 78.2
Queretaro 108.1 100.8 98.3 75.0 79.0 76.0 979 130.6 110.4
Quintana Roo 52.0 62.7 65.3 439 424 41.6 91.0 46.1 142.1
San Luis Potosi 75.7 83.5 713 75.9 75.5 78.7 734 1579 90.4
Sinaloa 66.2 894 89.7 55.6 59.4 63.7 1029 453 89.0
Sonora 264.1 280.8 339.3 90.6 145.8 72.5 457.7 1237 507.9
Tabasco 684  106.4 106.4 63.0 58.4 54.2 107.0  66.4 233.6
Tamaulipas 70.9 133.6 125.7 57.1 55.8 62.8 1331 96.1 147.1
Tlaxcala - - - - - - - - -
Veracruz 67.9 81.2 78.5 51.1 51.3 52.0 759 531 104.6
Yucatan 98.5 165.5 162.1 51.1 524 53.2 178.6  100.3 285.2
Zacatecas 2003 2059 205.9 132.0 143.7 107.8 2059 269.2 192.2

Table 36: 1-month ahead percent absolute errors in Mexico for optimized models. Best per-
forming models in each location are bolded. Lower values indicate stronger performance.

location AR ARGO ARGONet Ensemble (Country) Ensemble (Overall) Naive NetModel  SIR Seasonal
Iquitos - - - 63.8 - 79.2 - 204.6 80.6

Table 37: 1-month ahead percent absolute errors in Peru for optimized models. Best performing
models in each location are bolded. Lower values indicate stronger performance.

location AR ARGO ARGONet Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal
San Juan 23.8 345 342 20.1 23.0 30.7 36.8 229 60.7

Table 38: 1-month ahead percent absolute errors in Puerto Rico for optimized models. Best
performing models in each location are bolded. Lower values indicate stronger performance.
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location AR ARGO ARGONet Ensemble (Country) Ensemble (Overall) Naive NetModel SIR  Seasonal
Amnat Charoen 58.3 65.2 57.0 49.3 53.5 56.6 56.0 76.7 99.2
Ang Thong 53.9 63.0 57.0 55.4 54.0 53.3 56.3  56.9 80.5
Bangkok 43.0 87.6 773 46.1 40.8 35.7 768 395 734
Bungkan 95.9 99.9 105.7 86.8 96.2 80.4 106.6 142.4 87.0
Buri Ram 47.9 50.2 379 345 33.7 45.8 349 581 79.1
Chachoengsao 48.1 54.8 54.1 28.5 28.3 31.5 614 327 146.7
Chai Nat 48.5 55.5 45.8 46.8 445 490 425 619 76.7
Chaiyaphum 40.7 49.5 48.8 42.4 43.1 43.6 51.1 423 89.3
Chanthaburi 40.5 47.6 40.3 28.1 329 43.3 424 437 83.2
Chiang Mai 39.5 51.0 30.3 21.5 18.8 45.1 46.6  59.9 68.5
Chiang Rai 62.0 53.2 45.0 40.6 37.1 49.6 36.3 86.2 76.9
Chon Buri 31.6 324 322 30.3 31.9 33.5 31.7 402 67.9
Chumphon 41.6 56.6 449 34.3 40.7 39.3 435 436 85.9
Kalasin 42.7 57.1 38.1 31.3 35.8 46.8 372 532 69.9
Kamphaeng Phet 63.3 66.8 59.9 48.0 46.8 42.6 51.3 479 132.2
Kanchanaburi 49.0 529 414 45.6 40.2 44.8 37.6 554 91.7
Khon Kaen 458 44.0 46.6 40.9 40.8 404 51.0 60.2 83.8
Krabi 487 57.4 498 31.9 32.6 31.5 50.5 389 178.0
Lampang 59.1 70.8 61.2 38.7 52.1 63.2 575 837 68.3
Lamphun 749 111.0 65.1 53.7 53.2 59.1 796 875 136.3
Loei 52.6 53.8 49.4 41.5 46.3 52.3 496 499 80.0
Lop Buri 48.0 51.1 424 42.3 427 41.6 458 57.7 72.6
Mae Hong Son 52.3 53.7 51.7 59.2 53.9 62.0 59.6 904 63.9
Maha Sarakham 41.9 52.9 47.5 43.8 46.3 47.3 437 618 81.4
Mukdahan 55.1 70.2 68.5 51.7 529 57.9 687 664 78.1
Nakhon Nayok 71.6 86.7 67.4 59.4 57.7 55.4 743 779 124.5
Nakhon Pathom 17.7 25.0 234 17.5 19.5 28.6 225 231 583
Nakhon Phanom 61.2 69.4 70.7 52.6 58.9 65.4 733  63.0 71.1
Nakhon Ratchasima 45.7 435 46.7 37.3 409 45.7 422 531 82.8
Nakhon Sawan 32.8 43.5 38.7 29.8 29.6 312 379 512 74.7
Nakhon Si Thammarat ~ 30.2 45.8 35.3 25.6 25.3 25.1 343 310 87.2
Nan 55.9 55.7 48.0 52.1 50.3 57.0 45.8 102.5 56.2
Narathiwat 444 44.0 36.7 31.2 38.0 38.6 336 529 94.5
Nong Bua Lam Phu 64.0 725 57.1 55.0 53.7 58.9 534 639 82.8
Nong Khai 54.2 72.1 59.0 43.3 42.4 53.1 553  61.6 79.2
Nonthaburi 40.0 67.2 69.1 314 35.4 35.4 777 301 99.5
P.Nakhon S.Ayutthaya  40.5 52.6 53.3 29.9 31.8 37.1 53.6 41.6 85.3
Pathum Thani 51.8 715 719 47.3 40.0 39.9 759 442 127.9
Pattani 37.2 50.6 477 27.1 34.0 347 440 407 84.4
Phangnga 43.6 58.2 50.8 33.0 365 393 513 480 62.5
Phatthalung 60.0 77.4 77.9 42.6 44.6 472 77.8 647 135.7
Phayao 79.2 105.0 87.3 60.0 55.9 69.7 59.8 784 82.7
Phetchabun 52.6 53.3 30.8 30.8 33.1 512 31.0 599 77.6
Phetchaburi 418 424 40.1 33.0 33.1 29.8 468  35.1 94.9
Phichit 583 67.3 63.5 50.9 59.9 52.7 674 632 163.0
Phitsanulok 419 47.6 40.9 40.6 36.7 409 492 497 74.8
Phrae 85.1 93.5 72.9 49.3 53.9 68.2 69.4 1005 139.2
Phuket 439 56.3 56.1 29.9 33.8 349 614 39.0 110.5
Prachin Buri 40.6 42.0 26.1 23.2 31.0 41.2 259  36.0 76.3
Prachuap Khiri Khan 40.8 45.2 424 29.2 35.3 322 429 353 83.2
Ranong 49.2 56.9 574 415 52.8 453 579 585 483
Ratchaburi 29.6 35.8 32.0 29.1 27.4 271 323 299 68.3
Rayong 36.0 40.1 34.3 31.0 29.2 38.0 295 404 67.2
Roi Et 37.6 39.9 29.9 27.7 31.0 445 316  65.1 74.8
Sa Kaeo 39.0 443 34.8 34.1 32.6 424 353 385 83.7
Sakon Nakhon 58.4 70.0 715 47.2 57.4 64.1 79.7 884 74.7
Samut Prakan 38.8 457 47.6 25.6 31.8 30.3 584 371 95.3
Samut Sakhon 38.6 442 43.8 25.6 285 289 459 392 73.0
Samut Songkhram 54.5 73.1 61.1 40.4 39.2 40.5 58.7 40.1 137.8
Saraburi 33.1 47.0 33.8 33.5 342 375 334 454 66.0
Satun 100.0 157.5 136.2 70.8 77.2 73.3 136.1  99.9 226.0
Si Sa Ket 42.1 48.6 29.5 26.7 27.8 42.8 264 569 85.2
Sing Buri 104.7 108.8 102.7 92.2 86.0 85.0 1035 166.4 95.3
Songkhla 33.7 39.3 35.2 29.8 31.6 312 332 386 95.4
Sukhothai 38.6 443 36.6 39.8 38.4 43.5 35.6 43.6 56.3
Suphan Buri 27.3 31.2 249 28.0 23.5 31.6 23.0 344 45.1
Surat Thani 589 69.1 71.1 385 41.0 37.4 928 393 184.0
Surin 33.1 38.1 25.6 28.3 28.7 404 244 635 65.5
Tak 485 475 4.1 35.3 383 511 370 59.6 41.8
Trang 42.1 59.0 53.3 33.2 37.5 41.8 535 489 68.3
Trat 56.4 64.2 63.6 43.2 452 434 67.3 504 95.3
Ubon Ratchathani 50.8 51.8 479 38.6 43.1 50.7 56.1 483 81.3
Udon Thani 72.9 64.5 49.4 46.2 42.8 67.3 469 1414 87.2
Uthai Thani 53.9 54.1 48.8 44.6 47.7 48.0 438 747 81.6
Uttaradit 51.8 51.5 53.4 52.3 48.2 55.3 562 776 49.3
Yala 35.0 40.9 35.3 34.1 29.5 345 345 419 77.8
Yasothon 454 57.4 38.0 35.9 44.6 47.1 356 64.6 79.1

Table 39: 1-month ahead percent absolute errors in Thailand for optimized models. Best per-
forming models in each location are bolded. Lower values indicate stronger performance.
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3.6.2 2-Month Ahead

location AR ARGO ARGONet Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal
Acre 69.6 97.4 97.3 67.4 68.1 76.8 97.0 211.7 96.5
Alagoas 67.3 85.4 65.5 56.5 69.5 73.2 53.5 100.1 119.7
Amapa 179.0  475.6 394.2 68.7 108.2 58.5 3904 187.1 540.8
Amazonas 75.5 104.6 82.0 42.5 61.7 44.4 769 57.7 116.4
Bahia 51.2 69.8 58.2 64.8 54.6 73.4 575 80.8 51.4
Ceara 78.8 93.7 73.4 63.3 57.1 65.6 56.1 82.0 90.7
Distrito Federal 64.5 85.6 73.2 81.8 64.7 79.6 66.0 975 66.2
Espirito Santo 78.3 92.9 91.5 59.7 80.8 64.8 103.8  68.8 123.6
Goias 49.3 50.0 45.0 59.2 39.3 63.6 65.7 53.1 57.8
Maranhao 125.1 163.9 149.0 75.3 100.5 72.6 141.1 229.6 180.4
Mato Grosso 41.8 58.1 48.2 529 47.1 62.1 493 152.8 52.7
Mato Grosso do Sul 66.2 894 90.3 79.1 56.5 92.1 86.7 256.9 56.0
Minas Gerais 89.5 108.8 92.4 96.9 80.0 99.1 875 101.7 86.9
Para 75.7 91.1 66.9 68.6 70.3 59.0 619 920 127.6
Paraiba 44.5 72.2 64.7 449 48.0 61.2 583 67.7 75.0
Parana 62.9 80.9 85.2 63.2 56.9 96.3 88.6 121.7 67.0
Pernambuco 49.0 61.2 66.7 51.4 40.7 63.2 685 934 64.5
Piaui 1080 1322 56.9 69.1 63.0 73.7 48.1 782 104.9
Rio de Janeiro 300.1 420.8 284.1 88.2 213.8 81.6 2129 104.0 4104
Rio Grande do Norte 848 1104 105.8 51.6 74.3 61.5 105.7  90.8 103.9
Rio Grande do Sul 89.8 774 81.0 116.7 103.2 1175 83.7 2022 71.0
Rondonia 59.4 82.3 80.6 439 40.6 53.3 81.2 612 139.7
Roraima 694  119.8 119.1 38.7 76.0 422 126.1  56.1 228.3
Santa Catarina 74.5 71.0 73.1 73.0 754  100.5 73.7 168.5 77.1
Sao Paulo 60.3 80.5 80.0 73.0 54.6 85.6 788 943 44.0
Sergipe 62.7 66.7 66.3 67.8 59.5 70.2 639 886 69.2
Tocantins 56.4 76.4 69.1 46.4 62.5 68.9 66.8 113.8 87.1

Table 40: 2-month ahead percent absolute errors in Brazil for optimized models. Best perform-
ing models in each location are bolded. Lower values indicate stronger performance.
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location AR ARGO ARGONet Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal
Amazonas 67.3 105.8 88.1 56.3 76.4 55.0 782 681 119.2
Antioquia 31.5 53.0 40.6 31.8 37.7 37.5 402 328 76.3
Arauca 69.2 87.2 56.5 55.5 67.3 46.4 628 71.0 128.5
Atlantico 80.8 93.4 70.6 68.0 60.8 744 669  68.5 90.7
Bogota 2143 3679 257.3 87.0 142.7 96.1 235.2 163.8 431.6
Bolivar 54.4 61.3 59.0 51.4 51.0 50.9 59.8  60.7 79.2
Boyaca 50.3 53.6 50.2 48.7 494 45.9 539 547 78.0
Caldas 46.1 52.5 34.8 41.2 38.5 39.6 357 459 59.9
Caqueta 58.9 69.1 49.5 60.2 59.5 59.4 434 831 75.8
Casanare 85.2 92.7 77.3 44.2 47.3 46.6 703 644 134.3
Cauca 43.3 63.6 56.2 422 38.6 39.8 539 554 65.9
Cesar 50.8 68.7 59.1 47.8 471 44.7 58.5 57.8 84.6
Choco 47.4 62.2 52.1 45.6 45.0 42.3 529 521 61.5
Cordoba 65.8 71.5 64.0 54.0 47.1 49.2 65.2  46.2 77.7
Cundinamarca 31.7 33.8 40.3 32.2 30.9 35.7 335 426 50.0
Guainia 87.5 110.5 85.1 749 72.5 82.7 839 226.6 97.6
Guajira 69.8 98.9 81.7 63.8 65.2 58.4 749 679 129.4
Guaviare 59.7 75.1 52.3 60.4 57.1 59.3 56.0 708 73.3
Huila 46.0 52.4 47.8 39.7 39.6 40.0 438 55.1 66.4
Magdalena 67.9 79.7 723 58.4 66.6 62.0 70.8  66.1 103.3
Meta 36.6 53.4 43.0 353 35.5 34.6 443 387 75.7
Naria 42.6 429 35.4 41.2 40.7 409 328 584 58.9
Norte Santander ~ 37.7 46.9 414 33.6 31.7 32.1 458 441 71.8
Putumayo 47.9 61.4 40.2 40.0 41.5 43.1 335 529 58.1
Quindio 37.8 63.8 40.2 31.1 27.4 35.2 362 389 53.2
Risaralda 50.5 86.7 53.9 43.5 44.4 42.8 459 467 86.0
San Andres 85.4 92.1 92.8 77.1 88.1 1104 91.0 666.6 90.8
Santander 27.2 31.8 18.9 22.2 29.4 22.3 224 257 72.6
Sucre 72.8 80.6 58.6 53.2 51.2 51.4 671 479 82.5
Tolima 30.6 31.2 32.8 30.2 29.3 30.8 27.0 503 41.7
Valle 35.9 41.0 37.8 374 36.5 37.6 351 59.7 61.8
Vaupes 2989  363.1 363.1 165.1 171.0 1417 363.1 168.0 381.9
Vichada 1048 1118 96.4 65.5 75.8 66.8 1162 99.7 109.9

Table 41: 2-month ahead percent absolute errors in Colombia for optimized models. Best per-
forming models in each location are bolded. Lower values indicate stronger performance.

location AR ARGO ARGONet Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal
Johor 40.5 42.6 425 404 43.1 38.0 424 517 53.1
Kedah 37.0 40.5 385 40.5 40.3 42.3 38.7 60.6 53.9
Kelantan 77.9 85.6 85.6 57.0 47.0 62.6 85.6 943 82.2
Kuala Lumpur and Putrajaya  39.6 38.2 35.6 38.5 33.3 35.8 339 510 59.1
Labuan 97.0  145.6 131.2 83.8 95.6 84.8 122.1 146.4 151.3
Malacca - - - - - 34.6 - - 56.8
Negeri Sembilan 31.8 38.4 379 314 30.4 30.0 363 382 48.4
Pahang 37.0 48.4 47.0 38.0 404 35.9 476 543 62.7
Perak 459 77.0 77.2 315 33.1 29.1 81.8 395 95.1
Perlis 783 1155 115.6 69.4 71.6 65.7 116.2 108.1 1224
Pulau Pinang - - - - - 35.5 - 387 95.0
Sabah 40.1 40.3 37.0 41.7 379 42.6 354 834 48.8
Sarawak 38.1 55.7 56.3 30.2 34.6 27.3 59.2 445 81.7
Selangor 34.7 36.4 36.4 32,5 354 34.0 365 504 57.5
Terengganu 103.9 168.6 168.4 50.3 53.4 47.1 1684 57.3 171.2

Table 42: 2-month ahead percent absolute errors in Malaysia for optimized models. Best per-
forming models in each location are bolded. Lower values indicate stronger performance.
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location AR ARGO ARGONet Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal
Aguascalientes 182.6  184.8 184.8 100.9 1009 169.7 184.8 1424 153.9
Baja California Sur  1630.5 2262.8 2000.3 150.4 1504 135.3 20924 9288 2255.8
Baja California 1705.8 2148.1 2162.0 177.5 1775 1444 1878.8  225.1 2130.2
Campeche 150.2  263.0 193.5 109.6 109.6 75.2 183.0 1925 421.1
Chiapas 107.9 127.2 111.6 47.6 47.6 70.3 1044 1357 128.0
Chihuahua 183.1 161.1 161.1 1222 1222 1854 161.1 47784 146.6
Coahuila 117.7 120.5 117.0 86.5 86.5 143.6 113.7  208.3 76.5
Colima 1125 1483 128.8 90.1 90.1 89.1 118.7 2247 194.5
Durango 404.6 4074 4074 146.0 146.0 1882 4074 2301 3175
Guanajuato 435.9 639.9 639.9 200.1 200.1 267.3 639.9 1000.9 539.7
Guerrero 852 1279 84.3 824 824 76.9 87.8 2592 143.7
Hidalgo 107.4 110.3 110.7 101.3 101.3 1282 110.7 4375 96.4
Jalisco 83.7  104.8 93.1 83.9 839 1022 90.7  259.7 87.3
Mexico City - - - - - - - - -
Mexico 149.6  149.6 149.6 1224 1224 1594 149.6 7323 138.7
Michoacan 67.7 85.2 80.6 68.4 68.4 71.0 786  198.0 75.6
Morelos 90.2 82.5 - 80.9 80.9 95.8 825 1579 61.8
Nayarit 102.0 1121 80.5 722 722 90.0 744 2138 95.0
Nuevo Leon 154.4 165.5 148.7 102.2 102.2 1433 1458 1032.6 128.1
Oaxaca 84.0 1334 106.9 64.2 64.2 929 874 3101 96.2
Puebla 90.7 106.3 - 97.3 97.3 110.5 1043 201.6 79.4
Queretaro 1825 1182 118.2 100.5 1005 107.5 1182  214.1 114.3
Quintana Roo 74.8 94.3 81.9 63.3 63.3 64.4 777 84.7 135.9
San Luis Potosi 100.6 99.6 102.3 111.4 1114  106.7 985 6719 924
Sinaloa 108.8  139.7 137.8 823 82.3 934 139.8  230.8 879
Sonora 488.8  552.5 552.5 123.5 123.5 1373 5525  540.3 505.9
Tabasco 974 1355 - 98.9 98.9 74.2 139.3  173.0 2342
Tamaulipas 125.6 164.2 152.5 90.1 90.1 1124 1512 3579 144.6
Tlaxcala - - - - - - - - -
Veracruz 88.1 107.9 719 69.0 69.0 80.5 62.6 113.0 106.4
Yucatan 1799 2622 209.0 88.1 88.1 86.9 201.6 4279 286.4
Zacatecas 2148 2073 207.3 149.8 149.8 1929 207.3 1048.1 190.9

Table 43: 2-month ahead percent absolute errors in Mexico for optimized models. Best per-
forming models in each location are bolded. Lower values indicate stronger performance.

location AR ARGO ARGONet Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal
Iquitos 1142 1104 1104 52.0 679 1013 1104 7728 80.6

Table 44: 2-month ahead percent absolute errors in Peru for optimized models. Best performing
models in each location are bolded. Lower values indicate stronger performance.

location AR ARGO ARGONet Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal
San Juan 53.0 71.3 71.3 38.7 51.3 55.1 68.5 513 60.6

Table 45: 2-month ahead percent absolute errors in Puerto Rico for optimized models. Best
performing models in each location are bolded. Lower values indicate stronger performance.
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location AR ARGO ARGONet Ensemble (Country) Ensemble (Overall) Naive NetModel SIR  Seasonal
Amnat Charoen 99.7 109.0 103.2 69.8 81.2 87.7 113.7 174.8 99.7
Ang Thong 75.9 77.3 73.8 61.7 68.8 74.8 720 117.1 78.5
Bangkok 66.8 915 82.8 52.5 67.7 60.0 744 749 76.2
Bungkan 114.2 118.2 117.0 73.4 85.0 118.8 115.7 5158 89.0
Buri Ram 72.0 77.7 64.5 53.0 51.9 721 59.3 1265 815
Chachoengsao 86.7 96.6 92.5 44.4 46.4 54.0 822 531 1409
Chai Nat 72.5 75.6 60.9 88.3 85.8 76.2 58.1 1259 73.0
Chaiyaphum 79.2 76.9 82.6 77.9 85.1 78.3 80.4 90.6 88.5
Chanthaburi 74.2 83.3 69.8 50.7 56.1 79.3 694 1241 812
Chiang Mai 78.8 1152 54.9 56.3 57.1 87.0 50.3 210.2 68.9
Chiang Rai 84.2 103.3 56.7 62.3 60.0 93.2 50.0 299.2 77.2
Chon Buri 50.1 50.3 49.9 47.4 48.5 53.9 46.0 713 66.7
Chumphon 63.2 65.2 62.7 45.4 42.8 524 60.1 633 80.2
Kalasin 65.3 85.1 63.2 51.7 60.7 74.0 594 12238 719
Kamphaeng Phet 121.3 132.0 93.3 66.1 69.7 72.5 89.6  93.1 141.6
Kanchanaburi 79.3 779 65.6 60.6 65.7 70.2 579 117.3 86.8
Khon Kaen 64.2 82.3 72.5 71.1 64.4 62.2 72.5 105.5 86.0
Krabi 1153 1183 95.1 55.9 55.2 50.0 92 677 198.3
Lampang 98.5 1244 93.6 51.3 50.5 107.4 84.7 180.7 69.3
Lamphun 1209 152.9 143.2 68.0 60.6 90.1 118.6 266.9 130.4
Loei 83.4 85.3 81.2 58.4 60.6 98.2 77.3 1441 79.1
Lop Buri 74.9 81.6 68.9 56.5 56.9 66.9 66.9 103.8 73.8
Mae Hong Son 82.0 88.4 87.1 64.1 739 107.8 80.9 307.3 64.2
Maha Sarakham 71.3 86.4 56.0 85.8 77.8 79.6 521 116.5 80.6
Mukdahan 727 106.1 101.0 62.3 67.2 94.9 943 1724 793
Nakhon Nayok 128.0 1414 152.4 86.0 89.9 95.6 1482 140.1 138.0
Nakhon Pathom 314 43.3 32.0 38.8 35.6 49.4 30.0 423 545
Nakhon Phanom 95.8 105.3 103.8 57.0 604 110.8 98.0 261.5 71.0
Nakhon Ratchasima 713 728 62.9 624 62.7 72.8 60.5 121.4 815
Nakhon Sawan 59.5 68.5 60.9 44.7 46.9 55.9 59.1 1424 76.2
Nakhon Si Thammarat ~ 51.7 76.9 39.5 404 411 40.5 344 517 86.5
Nan 80.8 97.0 85.2 75.7 75.9 87.9 72.0 3223 64.5
Narathiwat 71.1 76.3 52.7 56.9 62.4 60.3 39.5 109.1 89.3
Nong Bua Lam Phu 89.0 96.8 76.8 48.5 543 90.4 81.8 1458 78.8
Nong Khai 79.2 106.8 89.4 55.8 60.6 84.3 81.1 134.8 79.4
Nonthaburi 72.5 94.5 843 58.8 66.0 66.7 766 629 92.4
P.Nakhon S.Ayutthaya ~ 59.9 69.1 61.1 429 43.9 58.2 63.0 711 77.7
Pathum Thani 72.6 834 815 55.0 59.2 592 91.0 56.0 121.0
Pattani 62.9 77.4 87.5 49.5 50.2 55.5 90.0 823 84.8
Phangnga 68.7 80.7 67.9 43.4 46.4 60.7 620 880 62.6
Phatthalung 84.4 109.2 94.0 51.6 56.8 57.0 875 99.6 1283
Phayao 1154 133.6 98.9 61.7 70.6  107.7 81.1 230.7 79.6
Phetchabun 82.7 107.2 87.3 51.7 65.8 88.4 87.0 156.6 76.3
Phetchaburi 65.8 68.3 73.1 45.0 49.3 40.7 838 56.6 100.9
Phichit 115.2 130.7 128.7 95.9 94.7 84.5 109.5 1053 167.8
Phitsanulok 68.3 82.9 70.5 47.9 46.1 72.8 772 983 75.2
Phrae 166.8 187.2 136.0 85.8 716 1203 1304 468.6 1419
Phuket 71.8 86.7 66.3 45.5 59.1 51.6 735 70.8 113.1
Prachin Buri 71.0 73.7 47.3 59.6 50.0 735 421 9.8 76.7
Prachuap Khiri Khan 63.5 58.9 57.1 44.1 39.7 46.8 60.3 54.0 81.7
Ranong 63.8 65.6 67.5 47.0 58.1 68.3 66.3 101.9 49.4
Ratchaburi 438 49.7 52.1 35.3 36.8 40.3 56.6 425 66.7
Rayong 61.3 61.9 51.1 47.0 49.6 61.1 478 852 63.0
Roi Et 66.5 66.9 49.9 60.1 52.5 80.5 46.0 164.3 73.2
Sa Kaeo 65.3 73.5 57.5 72.8 66.6 73.8 541 893 84.2
Sakon Nakhon 91.6  106.8 105.0 58.7 65.6 1084 103.0 2133 73.6
Samut Prakan 64.8 67.6 73.8 51.3 46.0 52.8 739 722 92.3
Samut Sakhon 54.7 61.6 40.1 339 328 415 388 506 68.8
Samut Songkhram 92.4 1185 87.2 76.1 71.8 67.7 725 725 140.6
Saraburi 56.3 71.5 52.0 51.9 55.5 66.8 415 893 65.5
Satun 129.1 229.1 143.5 84.7 72.1 87.4 1359 1455 2223
Si Sa Ket 75.6 89.4 82.8 49.7 47.8 74.4 69.1 1342 87.9
Sing Buri 124.1 93.8 89.0 1179 1135 1187 91.8 521.7 91.8
Songkhla 59.6 73.9 58.8 40.9 45.7 53.0 59.7 739 86.8
Sukhothai 579 68.5 60.6 55.3 57.8 734 56.9 1042 58.5
Suphan Buri 39.1 44.5 414 40.9 42.0 52.3 37.7 63.1 46.7
Surat Thani 110.1 136.4 117.9 728 62.4 59.2 1159  70.0 186.7
Surin 60.8 78.0 57.6 55.9 55.9 74.3 454 151.6 64.2
Tak 65.5 75.1 69.1 46.1 56.9 84.1 57.0 162.6 43.0
Trang 73.3 92.5 79.9 45.0 43.2 69.4 76.5 116.0 69.9
Trat 82.1 842 107.3 51.3 56.6 73.9 104.2  100.0 88.8
Ubon Ratchathani 67.5 84.2 68.5 70.7 51.8 85.7 68.9 119.6 81.7
Udon Thani 93.4 93.7 82.0 79.3 67.4 1047 76.3 638.0 85.7
Uthai Thani 79.1 75.8 84.0 67.7 74.0 74.2 74.3 1442 86.6
Uttaradit 65.0 65.9 70.4 46.6 52.1 83.0 64.4 160.5 50.3
Yala 58.1 613 65.4 48.7 51.1 624 646 877 79.0
Yasothon 73.0 100.3 73.1 55.0 59.6 78.3 589 132.1 81.1

Table 46: 2-month ahead percent absolute errors in Thailand for optimized models. Best per-
forming models in each location are bolded. Lower values indicate stronger performance.
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3.6.3 3-Month Ahead

location AR ARGO ARGONet Ensemble (Country) Ensemble (Overall) Naive NetModel SIR  Seasonal
Acre 94.3 98.1 98.1 89.5 86.0 104.1 98.1 5472 97.0
Alagoas 93.7 108.0 69.2 92.1 85.7 101.3 63.2 2305 119.1
Amapa 261.0 506.7 508.2 71.6 81.7 68.6 503.3 239.1 544.3
Amazonas 100.9 106.4 106.4 77.5 69.1 60.6 1064  104.8 116.9
Bahia 60.6 72.0 68.8 59.3 65.9 97.8 69.1 151.0 51.4
Ceara 107.0 94.3 82.3 62.9 62.1 91.2 662 1728 90.2
Distrito Federal 73.0 73.6 75.8 77.0 83.0 108.8 76.1  205.1 66.2
Espirito Santo 107.8 129.7 129.8 97.0 99.8 87.4 127.3 1206 122.1
Goias 66.0 68.6 65.1 43.2 459 88.3 82.1 92.1 58.1
Maranhao 184.8 190.8 1784 110.9 110.0 95.7 192.3 1043.6 178.7
Mato Grosso 51.4 62.7 64.3 49.9 46.6 86.8 62.8 3895 52.9
Mato Grosso do Sul 78.8 89.3 89.3 71.5 723 1231 89.3 7858 55.6
Minas Gerais 100.9 108.3 114.1 90.5 88.9 1287 1104  196.9 86.9
Para 101.5 109.1 94.3 81.5 67.6 77.7 90.6  160.9 125.2
Paraiba 59.2 724 74.8 57.2 62.6 82.9 735 1350 74.6
Parana 72.5 82.6 83.8 79.2 80.5 120.0 81.4 303.8 67.0
Pernambuco 58.8 60.6 61.8 54.5 55.9 82.2 79.7  182.0 64.3
Piaui 147.2 132.2 91.2 83.0 722 1015 841 1609 104.8
Rio de Janeiro 4384  431.0 301.3 190.4 1915 102.2 2447 2194 415.6
Rio Grande do Norte 112.3 114.6 105.5 73.2 83.2 81.8 1055 1759 106.8
Rio Grande do Sul 83.9 84.5 84.5 100.9 103.7 148.0 869 6239 71.0
Rondonia 80.3 85.0 98.8 59.6 75.0 71.9 106.8  105.2 140.3
Roraima 85.3 1245 163.2 68.4 90.0 55.7 198.9 74.2 229.7
Santa Catarina 82.0 76.5 76.4 84.8 85.8 1222 75.7  336.2 77.0
Sao Paulo 68.3 80.8 80.8 56.7 62.7 1132 80.8 2043 44.0
Sergipe 77.0 70.0 69.2 73.8 80.8 96.1 73.7 2034 68.9
Tocantins 76.5 97.1 96.3 69.0 79.0 91.9 974  265.6 86.0

Table 47: 3-month ahead percent absolute errors in Brazil for optimized models. Best perform-
ing models in each location are bolded. Lower values indicate stronger performance.
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location AR ARGO ARGONet Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal
Amazonas 91.5 101.1 96.3 79.5 76.7 67.3 109.8 82.1 111.8
Antioquia 40.9 63.3 48.7 40.9 50.3 51.8 46.5 443 74.5
Arauca 84.0 109.4 81.4 54.2 73.7 49.4 90.7 93.7 127.3
Atlantico 98.7 97.8 74.9 63.3 50.3 96.6 70.3 1887 85.5
Bogota 144.2 169.9 173.1 89.9 63.3 80.0 1905 1187 230.6
Bolivar 67.5 71.1 64.4 68.3 60.8 66.8 69.6 99.9 70.7
Boyaca 64.7 60.7 57.5 62.0 63.5 58.0 57.2 79.4 74.8
Caldas 49.1 64.0 51.9 37.2 40.3 39.9 447 57.9 60.7
Caqueta 69.7 80.7 64.0 46.0 73.3 74.6 448 1146 72.8
Casanare 120.7 1293 108.5 67.8 66.6 62.6 100.4 89.9 137.3
Cauca 53.6 70.3 68.0 58.8 59.9 49.6 70.8 79.3 64.6
Cesar 65.2 774 739 72.3 61.1 57.7 77.8 83.4 80.4
Choco 54.4 62.1 60.8 59.2 56.4 54.5 60.5 80.3 61.0
Cordoba 90.8 88.7 83.2 78.8 65.2 62.7 83.9 63.8 64.7
Cundinamarca 414 482 40.7 425 49.3 471 36.7 58.2 48.8
Guainia 104.7  108.3 100.5 82.6 674 1054 102.7  602.8 94.5
Guajira 78.4 92.2 101.2 84.7 69.0 66.2 100.6 86.9 110.8
Guaviare 76.7 88.5 54.0 68.5 67.0 70.9 55.0 89.9 73.5
Huila 60.5 61.4 52.6 54.7 51.9 51.8 56.5 85.3 69.2
Magdalena 87.4 95.6 85.0 76.5 59.3 76.9 83.8 97.8 100.2
Meta 52.0 68.2 56.3 42.6 49.2 46.4 57.2 55.9 73.7
Naria 46.6 48.2 46.1 38.5 444 48.6 38.9 71.2 56.9
Norte Santander ~ 43.2 51.5 50.8 43.3 36.8 37.8 51.4 54.9 63.5
Putumayo 60.9 72.1 46.4 41.1 44.2 57.1 48.7 75.3 57.2
Quindio 53.0 65.0 52.8 4.7 31.7 45.0 51.0 61.6 53.7
Risaralda 65.3 90.7 72.8 56.4 71.1 57.0 66.0 68.6 84.4
San Andres 90.6 94.2 95.2 87.0 879 130.1 96.2 1493.5 92.2
Santander 37.6 46.5 27.7 26.5 37.1 29.9 34.6 33.2 71.2
Sucre 85.5 73.2 54.9 65.9 68.4 62.8 59.1 92.5 66.9
Tolima 37.6 37.8 29.9 31.7 38.0 39.6 23.4 68.4 40.2
Valle 46.2 54.0 49.5 46.9 47.4 50.6 46.1 89.4 61.4
Vaupes 3342 3456 345.6 138.6 169.3  125.0 3456 1347 356.8
Vichada 122.0 108.0 108.6 72.9 83.7 78.6 108.6  153.2 106.4

Table 48: 3-month ahead percent absolute errors in Colombia for optimized models. Best per-
forming models in each location are bolded. Lower values indicate stronger performance.

location AR ARGO ARGONet Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal
Johor 454 45.9 46.3 413 39.7 45.0 461 707 51.9
Kedah 442 46.7 41.7 51.7 47.1 52.7 437 719 50.0
Kelantan 832 85.3 85.3 59.5 55.4 74.0 85.3 1182 814
Kuala Lumpur and Putrajaya  46.9 47.5 43.7 45.7 40.8 42.6 43.6 689 579
Labuan 109.6 167.6 167.6 85.5 130.3 99.9 168.7 370.7 173.3
Malacca - - - - 51.7 41.6 - - 55.9
Negeri Sembilan 36.6 42.2 41.5 36.2 36.4 35.3 39.6 511 44.7
Pahang 45.7 54.5 48.7 44.5 45.1 458 485 76.6 60.9
Perak 56.4 86.1 86.4 38.0 384 35.1 923 53.0 89.3
Perlis 83.2 107.6 107.6 76.8 72.4 70.4 107.6 165.0 112.1
Pulau Pinang - - - - 52.6 50.0 - 648 88.3
Sabah 419 43.2 40.9 44.1 48.7 48.3 39.5 113.7 49.6
Sarawak 52.1 65.7 64.7 423 46.8 39.0 639 613 81.1
Selangor 39.6 42.8 39.2 37.0 374 38.1 388 657 54.0
Terengganu 1382 179.8 180.1 57.7 73.0 56.9 1809 725 179.3

Table 49: 3-month ahead percent absolute errors in Malaysia for optimized models. Best per-
forming models in each location are bolded. Lower values indicate stronger performance.
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location AR ARGO ARGONet Ensemble (Country) Ensemble (Overall) Naive NetModel SIR  Seasonal
Aguascalientes 1843  186.7 186.7 105.8 104.3 188.2 186.7 212.2 153.9
Baja California Sur  2079.4  2000.1 1935.2 199.9 204.6 1617 1827.1 29403 1944.7
Baja California 21659 2099.1 2099.1 296.6 2849  255.6 2099.1 274.3 2029.3
Campeche 206.4 343.6 311.8 142.7 165.8 104.1 312.6 321.2 420.2
Chiapas 121.7 123.5 118.3 72.4 68.9 89.1 113.7 241.6 118.8
Chihuahua 1683  173.0 173.0 129.1 123.8 215.0 173.0 26487.9 155.4
Coahuila 1165 1218 1245 1044 934 1467 1245 268.3 77.0
Colima 140.5 190.3 - - 1114 1079 128.1 829.7 189.6
Durango 688.6  633.0 633.0 241.1 2512 319.5 633.0 427.0 483.8
Guanajuato 9423 9831 983.1 389.5 624.0 546.7 983.1 71119 812.1
Guerrero 101.5 1420 98.7 1004 101.0 94.2 107.4 3442 146.9
Hidalgo 109.3 116.5 116.5 115.1 105.7 1476 116.5 1773.2 101.3
Jalisco 95.1 102.7 99.4 91.2 100.8 1403 98.4 752.8 85.6
Mexico City - - - - - - - - -
Mexico 155.8 1549 154.9 118.0 1232 156.9 154.9 576.4 142.0
Michoacan 80.6 108.1 103.0 97.3 86.1 97.8 94.1 639.8 74.4
Morelos 95.4 94.3 - - 69.1 1175 98.9 348.4 61.7
Nayarit 108.9 111.0 - - 78.1 1121 96.9 628.4 93.8
Nuevo Leon 181.7 1821 192.6 134.1 140.3  188.6 200.7 5245.7 140.6
Oaxaca 102.4 115.1 96.3 73.6 721 116.2 88.0 1547.1 91.2
Puebla 101.5 109.1 109.1 114.1 825 1444 109.1 690.3 814
Queretaro 214.6 121.2 122.7 159.6 1458 141.6 122.7 386.5 114.2
Quintana Roo 1069 1322 - - 108.7 92.0 103.8 138.8 134.7
San Luis Potosi 95.0 99.0 - - 97.7 1151 106.3  3112.7 93.6
Sinaloa 135.8 141.9 139.9 102.7 101.3 1173 1399 11139 88.1
Sonora 6034  597.7 597.7 154.5 1559 1675 597.7 1867.8 535.1
Tabasco 109.8  161.1 159.6 94.0 120.7 82.2 159.6 490.1 2374
Tamaulipas 145.1 160.9 156.3 94.3 1012  139.7 155.6  1127.7 143.9
Tlaxcala - - - - - - - - -
Veracruz 92.3 117.0 98.2 96.6 91.3 108.9 91.9 2444 107.7
Yucatan 251.6  306.0 - - 1282 1244 154.9 740.3 288.2
Zacatecas 208.8  207.6 207.6 149.8 186.4 196.4 207.6 29285 189.6

Table 50: 3-month ahead percent absolute errors in Mexico for optimized models. Best per-
forming models in each location are bolded. Lower values indicate stronger performance.

location AR ARGO ARGONet Ensemble (Country) Ensemble (Overall) Naive NetModel SIR  Seasonal
Iquitos 1195  112.0 112.0 69.7 774 1203 112.0 3230.7 81.4

Table 51: 3-month ahead percent absolute errors in Peru for optimized models. Best performing
models in each location are bolded. Lower values indicate stronger performance.

location AR ARGO ARGONet Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal
San Juan 73.2 71.8 71.8 49.8 71.8 76.8 71.8 878 59.9

Table 52: 3-month ahead percent absolute errors in Puerto Rico for optimized models. Best
performing models in each location are bolded. Lower values indicate stronger performance.
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location AR ARGO ARGONet Ensemble (Country) Ensemble (Overall) Naive NetModel SIR  Seasonal
Amnat Charoen 117.9 121.3 152.6 80.2 80.2 107.1 145.0 4349 100.9
Ang Thong 91.1 83.8 86.7 65.7 65.7 91.6 852 2165 81.5
Bangkok 78.7 90.2 773 65.6 65.6 75.6 63.5 105.4 74.6
Bungkan 117.5 118.4 183.2 79.2 79.2 1511 182.4 15325 88.7
Buri Ram 86.4 94.8 78.9 65.3 65.3 94.4 67.8 2204 82.2
Chachoengsao 1282 133.0 135.6 56.4 56.4 74.3 1225 85.8 148.0
Chai Nat 81.6 73.5 67.1 77.3 77.3  103.8 67.8 2545 72.3
Chaiyaphum 91.4 87.2 92.3 74.7 74.7  102.7 92.6 1547 88.2
Chanthaburi 99.2 102.6 109.8 56.8 56.8 106.5 1029  266.6 81.3
Chiang Mai 101.1 115.7 87.5 71.5 715 1199 85.6  585.7 68.8
Chiang Rai 103.4 103.2 84.9 71.9 719 1288 67.8  998.1 75.7
Chon Buri 59.8 62.8 61.5 50.3 50.3 65.3 56.7  108.9 65.0
Chumphon 69.0 77.8 73.0 54.3 543  65.0 67.7 79.6 743
Kalasin 77.4 89.4 85.8 64.3 64.3 1019 79.0 2418 72.7
Kamphaeng Phet 161.1 164.6 151.1 96.2 96.2 95.8 1263 1537 152.2
Kanchanaburi 99.1 100.7 87.3 75.2 75.2 85.5 854 2422 933
Khon Kaen 79.5 87.7 75.4 84.5 84.5 87.8 709 1769 85.6
Krabi 174.6 225.1 146.5 75.8 75.8 65.4 140.8 97.6 208.6
Lampang 1155 1254 1203 59.8 59.8 1338 1109 3848 69.9
Lamphun 152.5 161.7 148.3 90.1 90.1 1129 129.0 7113 136.0
Loei 95.8 104.7 107.5 63.8 63.8 1219 1059  289.3 79.5
Lop Buri 91.2 90.4 76.2 60.8 60.8 85.8 747 1774 76.2
Mae Hong Son 80.3 90.6 91.3 68.7 68.7 133.4 86.1 841.6 64.1
Maha Sarakham 83.5 97.0 80.3 754 754 1054 66.4 197.3 79.6
Mukdahan 93.1 109.4 107.9 66.7 66.7 1265 119.6  353.0 79.9
Nakhon Nayok 144.1 143.9 148.9 101.5 101.5 1126 150.0 192.6 140.2
Nakhon Pathom 45.1 52.8 43.5 47.9 479 63.5 38.4 62.8 52.5
Nakhon Phanom 104.4 106.4 135.6 61.7 61.7 1384 1340 8943 71.5
Nakhon Ratchasima 879 82.6 76.1 743 74.3 94.0 73.6 2340 824
Nakhon Sawan 76.6 80.6 83.4 64.4 64.4 75.2 759 4333 75.2
Nakhon Si Thammarat ~ 65.7 85.2 714 46.6 46.6 53.3 69.1 76.6 83.6
Nan 85.4 99.1 95.6 90.7 90.7 1147 85.2 1047.5 65.8
Narathiwat 77.1 86.5 71.8 63.3 63.3 729 66.1 2179 84.7
Nong Bua Lam Phu 99.6 104.3 81.8 56.2 56.2 1109 97.7 2753 78.8
Nong Khai 972 106.1 95.7 70.7 70.7  108.9 84.0 2684 78.8
Nonthaburi 90.5 101.7 81.8 70.0 70.0 88.1 79.4 85.9 87.5
P.Nakhon S.Ayutthaya ~ 77.0 83.3 79.3 51.7 51.7 77.1 748 119.1 77.2
Pathum Thani 943 104.6 102.4 75.4 75.4 81.6 95.6 823 1225
Pattani 82.4 93.1 108.1 49.1 49.1 71.1 153.0 1349 85.0
Phangnga 79.8 81.9 80.6 45.3 45.3 77.0 1059 130.7 63.2
Phatthalung 106.9 1325 105.8 55.7 55.7 74.3 1032 159.1 1255
Phayao 136.6 137.7 108.5 65.7 65.7 141.0 97.1 6237 82.4
Phetchabun 94.7 106.2 107.3 58.4 584 117.7 103.1  358.0 75.5
Phetchaburi 777 86.3 103.0 544 544 52.5 108.3 59.4 933
Phichit 164.2 177.3 176.4 121.5 121.5 96.9 179.9  136.3 178.7
Phitsanulok 88.7 100.7 82.4 58.9 58.9 99.0 754  216.1 75.5
Phrae 211.8 210.8 - 109.9 109.9 1478 171.3 1863.8 143.1
Phuket 83.7 102.4 69.8 54.7 54.7 56.1 80.4 94.8 99.0
Prachin Buri 85.7 93.4 76.3 72.9 729 97.0 71.6  184.2 77.3
Prachuap Khiri Khan 80.8 824 88.8 50.0 50.0 48.1 83.5 69.6 89.3
Ranong 62.8 64.4 63.4 52.0 52.0 84.7 63.9 1524 48.5
Ratchaburi 57.2 67.2 65.0 44.2 44.2 51.5 68.5 56.6 66.7
Rayong 70.2 71.9 64.3 50.1 50.1 77.7 648 1262 62.8
Roi Et 78.9 90.3 68.2 73.5 73.5 106.5 63.8  406.5 73.4
Sa Kaeo 86.0 96.1 80.5 74.5 74.5 1009 759 1535 84.5
Sakon Nakhon 103.1 110.0 116.4 68.1 68.1 1325 115.7 5284 74.6
Samut Prakan 78.8 81.2 74.1 62.6 62.6 65.4 729 1019 90.8
Samut Sakhon 64.8 75.7 58.8 49.2 49.2 51.3 56.6 63.8 69.5
Samut Songkhram 114.8 1414 104.2 69.5 69.5 82.7 96.5 100.3 135.4
Saraburi 73.7 825 62.1 60.3 603  87.8 58.5 154.6 65.3
Satun 151.7 229.9 169.4 86.3 86.3 89.0 164.8  213.1 209.7
Si Sa Ket 96.4 1124 113.0 69.7 69.7 98.5 1152 276.1 89.6
Sing Buri 116.1 93.9 97.2 1209 1209 1249 97.1 9772 91.8
Songkhla 78.6 89.6 84.3 44.4 44.4 67.8 97.0 1169 84.7
Sukhothai 69.3 72.8 68.2 57.8 57.8 94.3 62.0 2252 59.7
Suphan Buri 46.0 50.6 59.0 50.7 50.7  67.3 56.7 89.9 46.5
Surat Thani 156.1 193.7 160.6 85.1 85.1 70.9 153.4 1152 190.0
Surin 75.8 89.9 61.2 67.0 67.0 103.5 56.9 333.1 63.6
Tak 69.8 81.7 69.1 52.1 521 109.2 653 3975 43.7
Trang 87.7 95.5 95.5 45.7 45.7 88.1 955 2140 68.9
Trat 92.5 99.8 105.2 61.9 61.9 86.2 949 1759 86.0
Ubon Ratchathani 87.1 93.3 90.6 79.0 79.0 1125 89.3 2275 83.2
Udon Thani 99.8 97.1 99.5 78.6 78.6  127.2 97.5 2897.3 85.5
Uthai Thani 85.7 90.6 100.4 75.8 75.8 86.0 92.6 2803 84.9
Uttaradit 70.2 73.4 70.1 51.4 514 1044 68.0 2952 51.0
Yala 70.9 80.1 73.5 61.9 61.9 80.1 76.0 1420 79.1
Yasothon 88.5 102.3 96.7 74.3 743 104.8 89.1 2029 82.4

Table 53: 3-month ahead percent absolute errors in Thailand for optimized models. Best per-
forming models in each location are bolded. Lower values indicate stronger performance.
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3.7 PAE of Standard Models versus Naive Persistence Baseline

country no. of locations ‘ AR ARGO ARGONet Ensemble (Country) Ensemble (Overall) NetModel SIR Seasonal
Brazil 27 | 16 5 7 25 21 7 14 2
Colombia 33| 12 0 4 18 17 4 7 0
Malaysia 15 2 1 1 8 5 1 1 0
Mexico 32 6 1 1 18 16 2 3 2
Peru 1 0 0 0 1 0 0 0 0
Puerto Rico 1 1 0 0 1 1 0 1 0
Thailand 77 | 26 11 30 62 54 33 9 3
Overall 186 | 63 18 43 133 114 47 35 7

Table 54: Number of locations per country where standard models outperformed the naive per-
sistence baseline at the 1-month ahead horizon, as measured through percent absolute error.
Best performing models in each location are bolded. Higher values indicate stronger perfor-
mance.

country no. of locations | AR ARGO ARGONet Ensemble (Country) Ensemble (Overall) NetModel SIR Seasonal

Brazil 27 | 16 10 13 22 19 15 1 11
Colombia 33 6 2 8 15 16 10 4 1
Malaysia 15 2 2 3 5 4 3 0 0
Mexico 32| 10 7 8 22 22 11 1 12
Peru 1 0 0 0 1 1 0 0 1
Puerto Rico 1 1 0 0 1 1 0 1 0
Thailand 77 | 36 20 41 69 65 44 4 27
Overall 186 | 71 41 73 135 128 83 11 52

Table 55: Number of locations per country where standard models outperformed the naive per-
sistence baseline at the 2-month ahead horizon, as measured through percent absolute error.
Best performing models in each location are bolded. Higher values indicate stronger perfor-
mance.

country no. of locations | AR ARGO ARGONet Ensemble (Country) Ensemble (Overall) NetModel SIR Seasonal

Brazil 27 | 16 14 17 20 19 17 0 16
Colombia 33 9 3 15 18 15 13 1 4
Malaysia 15 3 2 2 7 6 2 0 1
Mexico 32| 14 13 10 18 20 14 0 17
Peru 1 1 1 1 1 1 1 0 1
Puerto Rico 1 1 1 1 1 1 1 0 1
Thailand 77 | 46 40 43 71 71 47 2 52
Overall 186 | 90 74 89 136 133 95 3 92

Table 56: Number of locations per country where standard models outperformed the naive per-
sistence baseline at the 3-month ahead horizon, as measured through percent absolute error.
Best performing models in each location are bolded. Higher values indicate stronger perfor-
mance.
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