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Dengue fever, a tropical vector-borne disease, is a leading cause of hospitaliza-

tion and death in many parts of the world, especially in Asia and Latin America.

In places where timely and accurate dengue activity surveillance is available,

decision-makers possess valuable information that may allow them to better de-
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sign and implement public health measures, and improve the allocation of lim-

ited public health resources. In addition, robust and reliable near-term forecasts

of likely epidemic outcomes may further help anticipate increased demand on

healthcare infrastructure and may promote a culture of preparedness. Here, we

propose ensemble modeling approaches that combine forecasts produced with a

variety of independent mechanistic, statistical, and machine learning component

models to forecast reported dengue case counts 1-, 2-, and 3-months ahead of cur-

rent time at the province level in multiple countries. We assess the ensemble

and each component models’ monthly predictive ability in a fully out-of-sample

and retrospective fashion, in over 180 locations around the world — all provinces

of Brazil, Colombia, Malaysia, Mexico, and Thailand, as well as Iquitos, Peru,

and San Juan, Puerto Rico — during at least 2-3 years. Additionally, we evaluate

ensemble approaches in a multi-model, real-time, and prospective dengue fore-

casting platform — where issues of data availability and data completeness intro-

duce important limitations — during an 11-month time period in the years 2022

and 2023. We show that our ensemble modeling approaches lead to reliable and

robust prediction estimates when compared to baseline estimates produced with

available information at the time of prediction. This can be contrasted with the

high variability in the forecasting ability of each individual component model,

across locations and time. Furthermore, we find that no individual model leads

to optimal and robust predictions across time horizons and locations, and while

the ensemble models do not always achieve the best prediction performance in

any given location, they consistently provide reliable disease estimates — they

rank in the top 3 performing models across locations and time periods — both

retrospectively and prospectively.
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1 Introduction

Dengue fever is a tropical vector-borne disease threatening an estimated 3.9 billion people [62]

over 141 countries [2], with cases doubling every ten years since 1990 [26]. Over 390 million in-

fections arise each year worldwide, with severe dengue causing 25,000 deaths annually, mostly

in children [2, 3]. For many parts of Asia and Latin America, dengue is a leading cause of

hospitalization and death, especially among children [16]. It also causes more morbidity and

mortality than any other arthropod-borne virus [9]. While dengue infections often presents

with flu-like or otherwise mild symptoms [1], about 1 in 20 people infected with dengue will

develop severe dengue, which can further develop into dengue hemorrhagic fever [3] — a very

serious condition marked by capillary leakage leading to potentially significant organ impair-

ment, multiorgan failure, and death [1, 3, 21, 28]. The ability to forecast dengue fever cases

can provide public health officials with a more accurate picture of future disease dynamics,

empowering decision-makers to implement public health measures and better allocate limited

resources.

Over the past few decades, multiple approaches have been developed for dengue forecast-

ing. Dynamic, mathematical models that incorporate knowledge of dengue virus transmission

biology, historical incidence, and climatological factors have been developed to predict the evo-

lution of dengue epidemics [11, 64, 20, 51]. However, the intricate nature of dengue dynamics

poses a significant challenge, as mechanistic assumptions usually remain unclear — or hard to

quantify —, and acquiring the data to parameterize models often proves impossible. More re-

cently, data-driven methodologies to predict the severity of an upcoming seasonal outbreak —

a classification problem — have experienced a surge in popularity due to the increasing avail-

ability of epidemiological and exogenous dengue-related data. These include methods such as

k-Nearest-Neighbors, Logistic Regression, and various boosting methods [44]; or the identifi-

cation of weather (temperature, rain frequency) patterns that may help anticipate years with

high incidence [35, 57, 56]. Additionally, classical time series methods like SARIMA (and its

variants) have been widely explored to forecast confirmed case counts over time[6, 18, 46, 59],

as well as more complex, non-linear methods such as generalized additive models, artificial
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neural networks, and exponential smoothing approaches [5, 6, 29, 46]. Other studies have ex-

plored the feasibility of leveraging Internet-based data sources such as Dengue-related Google

search data [27, 50, 62], social media data [17, 33], and Wikipedia access logs [33] as additional

predictors of Dengue activity.

The abundance of dengue forecasting methodologies presents a significant challenge for decision-

makers and stakeholders who ultimately need a single set of reliable predictions to make in-

formed decisions to protect their communities. Factors such as data availability, computational

resources, and the desired level of accuracy further complicate the decision-making process.

Therefore, navigating the array of forecasting methodologies requires careful consideration

and expertise to ensure effective dengue prediction and response. Additionally, each model

has its own limitations [18, 43], including robustness to variability in data quality and sensitiv-

ity to different outbreak phases, which can lead to inconsistent predictions.

Ensemble methods that intelligently and adaptively combine the predictions of multiple com-

ponent models into a single prediction may be more robust alternatives for disease forecasting.

For example, previous studies have used averaged and weighted-averaged ensembles com-

bining models such as SARIMA, vector autoregression, neural networks, and linear regression

to nowcast and forecast dengue in Brazil and India [23, 53]. Similar ensembling approaches

combining models such as the Method of Analogues, Holt-Winter models, and Bayesian gen-

eralized linear mixed models, among other historical models, have shown promising results in

Iquitos, Peru [8], and Vietnam [12]. Chakraborty et al. directly combined ARIMA and neural

networks to forecast dengue in San Juan, Iquitos, and the Philippines as a composition of linear

and non-linear signals [10]. Mahajan et al. use a gradient-boosting super-ensemble to combine

ARIMA, exponential smoothing, and neural network for forecasting dengue in Hong Kong

[32]. Ensemble models intentionally involving strong and weak learners to reduce over-fitting

have also shown good predictive performance in Bangkok and Chiang Mai, Thailand [24].

However, the studies referenced above are (1) individually limited in their geographic scope
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–to study a few locations within a country at a time–, (2) they only focus on a few model choices

as potential ensemble components, and (3) they were in all cases implemented retrospectively.

The latter implies that issues of data availability, data completeness, and other challenges that

emerge in real-time forecasting efforts were not at all considered [34]. As such, the approaches

described are not guaranteed to generalize as robust, ready-to-use methodologies globally, in

real-time and prospective forecasting efforts.

We would like to highlight that the challenges of the real-time implementation of disease fore-

casting systems have been documented extensively, and they are still the backbone that moti-

vate multiple research studies ([37, 31, 54]). In fact, public health systems typically experience

severe lags in reporting [13, 36], and reported case counts for a given month may be updated

many times in the following months (this is commonly referred to as “backfill”) [50]. While

some methods for addressing these data quality and backfill issues have been proposed [15],

for example — methods that attempt to learn backfill patterns [22, 37] and methods that in-

troduce auxiliary data sources [45] to improve forecasts; we did not include in our real-time

prediction pipeline a comprehensive set of approaches to address these issues. Instead, we

evaluated the ability of our machine learning-based ensemble methods to lead to improved or

consistent forecasts in the presence of these challenges.

The primary prediction task addressed by this manuscript is the short-term forecast of reported

dengue fever case counts one to three months ahead in province-sized localities. The main con-

tributions of this work are twofold. First, we retrospectively formulate a family of ensemble

system pipelines — comprised of multiple structurally heterogeneous individual component

models — that generate more robust and accurate forecasts compared to their individual com-

ponent models. Specifically, we include the following 11 diverse classes of individual compo-

nent models as potential inputs to our ensembling pipelines: autoregressive (AR); autoregres-

sive with Google Trends data as exogenous covariates (ARGO [63]); three variants of vector

autoregression (NetModel and two variants of VAR [41] — VAR (Reg.) and VAR (Clust., Reg.);

a combination of ARGO and NetModel (ARGONet [31]); a novel, mechanistic, repurposed

dynamically-trained SIR; a classical error-trend-seasonality model (ETS); a mini-ensemble of
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machine learning methods (Stacked ML); a baseline naive persistence model; and a baseline

seasonal model. We exhaustively demonstrate across 180+ province-sized locations that our

ensemble models not only incur lower percent absolute errors on average compared to their in-

dividual component models (though such improvements may be modest), but also, and more

importantly, they produce top performing forecasts (typically in the top three) more consis-

tently than any individual model.

The second contribution of this study is the evaluation of a real-time dengue activity forecasting

platform implemented as a prospective tool to identify when and where an upcoming dengue

outbreak would be experienced 1, 2 and 3 months into the future. These predictive efforts

were implemented as a decision-making support tool to guide the allocation of resources for

prospective clinical trials in all provinces of Brazil, Colombia, Malaysia, Mexico, and Thailand.

The ensemble techniques were assessed using a different set of component models that were

chosen based on their suitability to be implemented in the presence of multiple data avail-

ability and data incompleteness issues. These models included: KNN, VAR (Reg.), Support

Vector Machines (SVM), and SARIMA. The scope of our study and the consistency of our an-

alyzes suggests that our ensemble approaches are generalizable across geographically diverse

locations and individual component models, and thus may become a reliable first choice for

forecasting teams who are interested in communicating concisely with public health officials

and other decision makers[54].

Results

We evaluated the performances of eleven optimized component models and two selected en-

semble models on forecasting reported dengue cases in over 180 province-sized locations world-

wide in Brazil, Colombia, Malaysia, Mexico, and Thailand. Specifically, we retrospectively as-

sessed each model’s ability to forecast reported dengue cases 1-, 2-, and 3-months ahead into

the future, with performance quantified using Percent Absolute Error (see Supplementary Ma-
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terials).

For each location, we partitioned the available data into distinct training and test periods. Dur-

ing the training phase, we engaged in a hyperparameter optimization for each component

model, and two versions of optimal hyperparameters for our ensembles: a ’Country’ set of hy-

perparameters (using the same set of hyperparameter with best on-average performance across

all locations within a country), and a ’Overall’ (using the set of hyperparameters that, on aver-

age, best performed within all the locations in the study). Following this stage, we proceeded

to generate out-of-sample forecasts utilizing the designated test period. It is important to note

that due to the varied availability of epidemiological data across different regions, the time pe-

riods for analysis varied from country to country. For specific details on the analysis period for

each country, please consult Table 2.

We present our main results in the following way: First, we observe the heterogeneity in the

performance of each of our component models in Figure 1, which presents a summary of the

performance of each model across each country, and each horizon of prediction. Then, in Fig-

ure 2 we focus specifically on the capacity of the ensemble models to consistently succeed in

generating reliable forecasts, independent of the location where they are trained on. Finally,

we present an overview of the error reduction of each component model, emphasizing the

consistency of the ensemble techniques to reduce error across locations.

Component model performance were significantly dependent on the location. Our results,

summarized in Figure 1, present a table with the percent absolute error ranking (PAE) distri-

bution for each model within Sections B through F (one for each country). Each row within

the table represents a distinct model, while columns denote their respective rankings (1st, 2nd,

3rd, etc.). For instance, for Brazil, the first entry of the table indicates that the model ’Ensem-

ble (Country, EW)’ secured the lowest PAE, achieving first place in 7 out of 27 locations across

the country. The tables showcase the top-performing model in terms of this ranking, listed in

descending order. We found that our ensembles, including the ’Country’ and ’Optimized’ ver-

sions of the ’Equal Weights’ (EW) ensemble, and ’Country’ and ’Overall’ ’Performance Based

Weights’ (PBW) tended to be in the top positions within our ranking tables across all hori-

7

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 23, 2024. ; https://doi.org/10.1101/2024.10.22.24315925doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.22.24315925
http://creativecommons.org/licenses/by/4.0/


zons for Brazil, Colombia, Mexico, and Thailand (see the Methods section for details on the

ensemble approaches). In the case of Malaysia, the EW ensemble appeared in the 6th position

(almost half of the participating models). The Vector Autoregression (VAR) also consistently

appeared in top positions for each of the ranking matrices for each country. On the other hand,

the positioning of each of our component models varied from country to country. A country-

by-country description, along with additional results for San Juan, Puerto Rico, and Iquitos,

Peru can be found in the Supplementary Materials. We relegate Puerto Rico and Peru to the

Supplementary Materials, since we only have one location in each of these regions, which does

not facilitate interprovince analyses.
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Figure 1: Country-specific optimized individual and ensemble model performance rankings.
(A) Graphical representations of the 1-, 2-, and 3-month forecast horizons that we explore in
this paper. The red X marks our forecasting target n-months ahead, the blue dots represent the
historical cases that we are using as our observed training data (in this case, a 5-month sliding
window), the vertical blue dotted lines represent the limits of our training data range, and the
grey silhouette represents the ground truth reported case counts. (B) - (F) Within each country
and forecast horizon, the heatmaps show the rankings distribution for each individual and
ensemble model’s forecasts in terms of percent absolute error. The geographic maps next to
each heatmap indicate the best-performing model in each province, color-coded by the legend
at the bottom of the figure.
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Ensemble models consistently achieve the most top performance rankings com-

pared to any individual model.

Our second main result is that the country-specific and overall ensembles consistently perform

among the top 3 relative to the individual component models. Moreover, averaged across all

locations, two ensemble variants incurred the lowest prediction error compared to all other

component models. Fig. 2 shows the forecasting performance of both individual and ensemble

models across all 187 tested locations. In panel (A), we provide one example emphasizing the

advantages of using ensembles over component models. For the 1- and 2-month ahead hori-

zons, the best country-specific ensemble used equal weights (EW) for all component models

when producing an ensemble forecast at each timestep, while at the 3-month ahead horizon,

the best country-specific ensemble used performance-based weights (PBW), where the weight-

ings of the component models were determined based on which component models performed

the best in the recent past. Specifically, at the 1- and 2-month ahead forecast horizons, the en-

semble model predicted the ground truth (grey silhouette) much more closely and with less

variance than that of its component models, which tended to display more significant oscilla-

tion relative to the ground truth. At the 3-month ahead horizon, the ensemble and its com-

ponent models tended to produce less accurate predictions in this specific example. Given

the broad geographical scope of our study, these findings suggest that ensemble models are a

suitable default choice for generalizable and robust forecasts.

The heatmaps in Fig. 2 (B) show that the country-specific and overall ensembles had the most

locations where they performed in the top 3 rankings in terms of percent absolute error, fol-

lowed by regularized VAR and clustered + regularized VAR, out of the 187 tested locations. At

the 2-month ahead horizon, country-specific ensembles still garnered the most top 3 rankings,

but regularized VAR seemed to garner more top 3 rankings than the overall ensemble. At the

3-month ahead horizon, the country-specific and overall ensembles again attained the great-

est number of top 3 rankings, followed by regularized VAR. While ensembles may not always

be the absolute winner in every tested location, overall, they consistently placed on the top 3

rankings, being reliable and robust model choices. From the geographical maps in panel (C),
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ensemble models performed in the top 3 rankings in a vast majority of all 187 locations tested,

as indicated by most of the maps being colored yellow. We found only a few consistent excep-

tions to this rule primarily in central Brazil and Colombia. These maps again corroborate the

finding that ensembles are an effective option for stakeholders.
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Figure 2: A summary of our prediction tasks and optimized model performances across 187
locations. (A) An example of our fine-tuned country-specific ensemble variants’ forecasts com-
pared to their optimized component models in one selected location — Bahia, Brazil. The gold
standard ground truth of reported dengue cases is shown as the grey silhouette. Ensemble
predictions are shown in thick, bolded lines, while component models are shown in thinner,
colored lines.(B) Heatmaps of the number of locations where each model attained a specific
ranking in terms of mean absolute error with respect to the ground truth reported dengue case
counts across all 187 locations. (C) Geographical maps of Brazil, Colombia, Malaysia, Mexico,
and Thailand showing provinces where either the country-specific or overall ensemble per-
formed in the top 3 rankings for each location (in yellow) and where they did not (in grey).
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Ensembling also yields improvement in error distributions across locations.

We analyzed the potential error reduction of our ensemble models with respect to individual

models. Our results are displayed in 3, which shows the percent absolute error distributions

for the individual and the ensemble models in the 187 locations tested. Fig. 4 shows the same

percent absolute error distributions of the individual and ensemble models within each country

and forecast horizon.

Overall performances Despite the minor reduction in some cases, the country-specific and

overall ensembles had the lowest mean percent absolute errors compared to all other models

across all forecast horizons. Fig. 3 (A) to (C) displays the error distributions for each model,

across the 3 different horizons of forecast. In all cases, we can observe that the Ensemble models

were placed as the top performers, reaching values of 38.5%, 54.5% and 62.7% in terms of Per-

cent Absolute Error (% AE). The next best model were there VAR variants (one incorporating

regularization, and other implementing both regularization and clustering), reaching values of

40%, 55% 64%, for each respective task.

Performance by country Fig. 4 shows the performance per country. Notably, an ensemble

variant achieved the lowest mean percent absolute error in 14 out of 15 tested combinations of

forecast horizon and country. The sole exception was Colombia at 2-months ahead, with clus-

tered + regularized VAR having achieved the lowest mean percent absolute error. However,

the mean percent absolute errors and the shapes of the errors’ distributions are very similar for

the top-performing models. Nonetheless, our analyses shown in this figure still confirm that

the ensembles were greater than the sum of their component models, even when looking only

within a particular country.
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Figure 3: Overall error distributions for optimized individual and ensemble models across
all 187 tested locations. (A) - (C) Ridgeline plots show percent absolute error distributions at
the 1-month, 2-month, and 3-month horizons, respectively. Side tables record the mean percent
absolute error incurred.
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Figure 4: Country-specific error distributions for optimized individual and ensemble mod-
els, organized by country and forecast horizon. Ridgeline plots show percent absolute error
distributions at the 1-month, 2-month, and 3-month horizons. Side tables record the mean per-
cent absolute error incurred. 15
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Prospective Study: a real-life application and analysis of our methodology

In this section, we evaluate the performance of our forecasts generated by a real-time dengue

activity forecasting platform. This platform was designed as a prospective tool to predict where

dengue outbreak activity would occur 1, 2, and 3 months into the future. There are two primary

differences between our retrospective and prospective studies. First, the prospective study was

conducted in a real-world scenario where future ground truth data was unknown, whereas, in

the retrospective study, we had access to the entire time series beforehand. Second, due to re-

porting delays in dengue case data, our prospective predictions did not utilize the most up-to-

date epidemiological data. In contrast, the retrospective predictions were made using the most

complete datasets available. This evaluation covered various locations in Brazil, Colombia,

Mexico, Thailand, and Panama from May 2022 to July 2023. The forecasting models included

Support Vector Machine (SVM), K-Nearest Neighbors (KNN), a regularized version of Vector

Autoregression (VAR), and Seasonal Autoregressive Integrated Moving Average (SARIMA).

Our ensemble models comprised a weighted ensemble, which assigned weights based on the

mean squared error score of each model over the past six months, and a winner-takes-all en-

semble, which selected the prediction from the ’best’ base model with the least mean squared

error over the past 3 months. Additionally, we used Persistence as our baseline model.

Figure 5 and Table 1 show a summary of the number of times our ensemble’s Mean Squared Er-

ror was among the top 3 best over all the locations within a Country (the analysis was repeated

over each forecasting horizon). We also present the overall error reduction of each model with

respect to persistence( ERRORmodel
ERRORpersistence

) using a set of violin plots. We conducted the analysis

for each location and each country (Figure 6).

Top 3 Analysis

Figure 5 shows the number of times a model reached within the top 3 Mean Squared Error

reductions, for each country and each horizon. Each barplot represents the performance of a

model within a Country, for a different prediction horizon. We can see VAR appearing eight
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Top 3 overview

Weighted Ensemble 3318
VAR (regularized) 2989
Winner Takes All 2310
SARIMA 1638
KNN 1519
SVM 1512
Persistence 658

Table 1: Summary of the number of times a model scored a Mean Squared Value among the top
3 best, across every location, and every horizon. Our results show that our weighted ensemble,
VAR and Winner takes all approach are among the top performers.

times on the leftmost side (40%), and our Weighted Ensemble appearing seven times(35%).

Our Winner-Takes-all approach appeared only two times on the leftmost side (10%), but had

a comparable count with the top model whenever it was on second position (see Thailand in

horizon 1, Panama in Horizon 1 and 4, Brazil in horizon 1, and Mexico in Horizon 1 and 2).

Overall, most of our base models and ensembles had a higher count than persistence, with

exception to Colombia in horizon 1, Panama in horizon 2, and Mexico in Horizon 1. Table 1

shows a total count over all locations, and all horizons. Our weighted ensemble had a total of

3318 counts, followed by VAR with 2989 and Winner-Takes-All with 2310 counts.
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Figure 5: Top performer count. A visualization of the number of times a model scored a value
of MSE rated among the top 3 best, ordered from left (models with the highest count) to right
(models with the lowest count). Our results show that the Weighted Ensemble (blue), VAR
(green), and the Winner-Takes-All approach are frequently among the top performers (leftmost
side).
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1.0.1 Overall Error reduction

Figure 6 exhibits a summary of the error reduction for the analyzed models with respect to the

Persistence model ( ERRORmodel
ERRORpersistence

). The violin plots are ordered so that the best model is to

the rightmost side, and a dashed horizontal line plotted at y = 1 (y = 1 means the error of our

model is equal to the error of Persistence) serves as a reference to know if a model consistently

beat persistence or not.

The weighted ensemble (WE), vector autoregression and the winner-takes-all (WTA) ensemble

were the three models that most frequently scored within top-3 error reduction. We observe

that the weighted ensemble had median error reduction within the top 3 at every location and

time horizon, except Panama in horizon 1. Regularized VAR scored the biggest error reduction

in Colombia and Thailand for horizons 1,2, and 3, 4. Although less frequently, the Winner-

Takes-All ensemble also remained within the top 3 performances with exception to Thailand in

horizon 4, Panama in horizon 3 and 4, and Mexico in horizon 3 and 4.
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Figure 6: Error reduction with respect to the Persistence model. Summary of the error re-
duction of each model with respect to the Persistence baseline model. Each plot represents a
different horizon (columns) and country (rows). Each violin plot visualizes a summary of the
error reduction scores ( ERRORmodel

ERRORpersistence
) for a single model. Models are ordered from worst

(left) to best (right). The gray dashed line represents the value of persistence and serves as a
reference to validate if a model improved over the baseline.
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Impact of reporting delays in our model’s performance

In conducting the prospective analysis, our forecasts were generated in a real-time scenario

where the ground truth for each location was not fully reported at the time of prediction. The

performance of our models were therefore likely affected by backfill issues in the data. Figure 7

illustrates our forecasts within the region of Sergipe, Brazil. At the time of prediction, the avail-

able information on confirmed cases (depicted in dark gray) differed from the most recently

reported data (shown in light gray), which we employed as our ground truth for final metrics

and error scores. Such backfill issues significantly impact real world applications as our models

are trained solely on the information available at the given point in time.
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Figure 7: Visualization of the bias embedded in our models given reporting delays. The offi-
cial reports known at the time of prediction, shown in dark gray, is the only information avail-
able to our models at the time of prediction. After several months, the ground truth changes
due to backfill efforts based on the most recent reports are shown in light gray.
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Discussion

Dengue is a leading cause of hospitalization and death for many people around the world [16],

and with cases doubling every ten years [26]. An essential component of dengue control is

disease forecasting. Enhancing the accuracy and robustness of predictive models, particularly

across multiple diverse geographical localities, empowers public health institutions to adopt a

more proactive approach towards curbing the spread of the disease.

We tackled the task of predicting reported dengue fever case counts one, two, and three months

ahead in various province-sized locations around the worldwide. Since individual model per-

formances typically fluctuate across locations, there is a need for more robust and generaliz-

able forecast models. In this context, our first contribution was the development of a family

of ensemble models that retrospectively produced more accurate forecasts than their compo-

nents across a broad range of geographically and socially diverse locations. Specifically, we

investigated eleven types of data-driven, statistical, and mechanistic models as potential com-

ponents of our ensemble. We also explored three ensembling mechanisms — performance-

based weights, winner-takes-all, and simple average — and found that our ensemble mod-

els achieved lower percent absolute errors across 180+ geographically diverse locations. Our

second contribution was a real-time dengue forecasting platform to predict when and where

outbreaks will occur 1, 2, and 3 months in advance. Our forecasts were made in real-time with-

out complete ground truth for each location. In fact, this task is not the same as performing

retrospective studies, since dengue case data are typically updated months later (a problem

commonly referred to as “backfill”). In this challenging scenario, our ensemble models still

emerged as the top performers, producing better forecasts and reducing error compared to

individual components.

Our ensemble models were robust predictors of dengue across the world. This fact is espe-

cially relevant because, as shown in Fig. 1, no individual model consistently achieved the

lowest error. By contrast, while country-specific and overall ensembles were not always the

best-performing models at a given location and forecast horizon, they almost always incurred
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the most top 3 performers compared to any of the component models. As shown in Fig. 3, our

ensemble variants incurred the lowest error averaged across all 180+ tested locations in terms

of percent absolute error compared to the component models. Even looking within a partic-

ular country and forecast horizon, as shown in Fig 4, ensemble models achieved the lowest

error averaged across all locations within that country in 13 out of 15 combinations of country

and forecast horizon. The two exceptions were Colombia at 2-months and 3-months ahead.

Furthermore, in 9 out of 15 country-horizon combinations, both the country-specific and over-

all ensembles achieved the top 2 lowest errors averaged across locations. In our prospective

study, the weighted ensemble (WE) model was overall the top performer in terms of low mean

squared error, followed by VAR and the Winner Takes All (WTA) ensemble (Table 1). In terms

of error reduction with respect to the persistence model, WE and WTA also consistently per-

formed within top-3 performers across locations.

It is worth addressing the excellent performance of our VAR model in both retrospective and

prospective studies. Examining our results more granularly, from Fig. 4, we observe that in

Colombia, at the 2-month ahead horizon, VAR (Clust., Reg.) achieved more top 3 rankings

than both ensemble variants. At the 3-month ahead horizon, VAR (Clust., Reg.) not only out-

performs the overall ensemble in terms of the number of top 3 rankings but achieves more top

1 rankings than both ensemble variants. Similarly, at least one VAR model also outperforms at

least one ensemble variant in terms of the number of top 3 rankings in all three forecast hori-

zons of both Malaysia and Thailand. We hypothesize that VAR’s stellar performance in Colom-

bia, Malaysia, and Thailand can be significantly attributed to the fact that these three countries

are “province-dense” in the sense that individual provinces are relatively geographically small

and, by extension, extremely close to each other. For example, Thailand has 77 provinces com-

pacted into a relatively-small total surface area. In contrast, Brazil has 27 provinces spread out

across a much larger area. The consequence of this geographical difference is that population

centers between Brazilian provinces are much farther apart, and thus network effects are much

weaker than their Thai counterparts. As such, VAR is much more effective in Thailand than

Brazil because there are significantly stronger network effects between provinces to capture in

our models.
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We also investigated component models that were not exhaustively hyperparameter tuned but

rather deployed straight out of the box, which we refer to as “standard” models. For details,

we refer the reader to our Supplementary Information. As shown in Figs. 12 and 14, while our

standard component models are nearly all unable to outperform our naive persistence baseline

in terms of percent absolute error as averaged across locations, our ensemble models comprised

of these standard component models outperformed the naive persistence baseline consistently.

As such, our ensembling approach can take relatively weak, unoptimized learners and output

a much stronger and more robust prediction. In this sense, the ensemble still performs better

than its components.

From Tables 6 - 8 in the Supplemental Materials, we observe that when forecasting 1-month

and 2-months ahead, the ensembling method most commonly employed (albeit plurality, not

majority) was the equal weights method, followed by the performance-based weights model.

At 3-months ahead, however, the performance-based weights mechanism was employed in

most countries, including the overall ensemble. There does not appear to be a clear trend with

respect to the ensemble training window sizes used to fit the performance-based weights and

winner-takes-all ensembles.

Since the success of our forecasts is measured by achieving a lower percent absolute error than

the naive persistence baseline model, ensembling enables us to include the naive persistence

model itself as a component. As shown in our standard model results in the Supplementary

Materials, we observe that when working with standard, non-fine-tuned component models,

nearly all of the best country-specific and overall ensembles were comprised of the naive and

seasonal basic models, coupled with one or two other models. From a bias-variance tradeoff

perspective, the naive persistence model has very low variance, given its absence of tunable

parameters. While other component models may overfit to noise and thus incur large errors,

the naive persistence, by being simple, provides a stable component to the ensemble and thus

allows the ensemble to outperform the other models, including its components.

One limitation of our work is that of the eight non-basic models that we include as potential

components into the ensemble, six of them — AR, ARGO, ARGONet, NetModel, VAR (regular-
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ized), VAR (clustered + regularized) — can be interpreted as belonging to a common family tree

of linear models involving autoregressive terms. In fact, we did not include many models in

our analyses that were non-linear with respect to historical (logged) reported case counts, and

our resultant ensembles may not be expressive enough. In the future, one could consider in-

cluding more expressive but also more heavily-parameterized models such as Random Forests

[65] and neural networks [4, 65] into our ensemble lineup to potentially increase performance.

However, as explored in [4], heavily-overparameterized neural networks may underperform

compared to simpler regression models at short-term disease forecasting tasks. One could also

include additional traditional time series forecasting techniques like Holt-Winter, as explored

in [52], into the ensemble lineup for extra non-linear models. With the exception of ARGO and

ARGONet, all of our models were trained exclusively using historical dengue-reported case

counts. Future work could include models that leverage climate data and earth observations

into our ensemble lineup, as explored in [12].

Despite our efforts to forecast dengue cases in over 180 locations worlwide, there are still many

other countries, especially in the Americas and Asia, where we can retrospectively and prospec-

tively test our individual and ensemble models. Our methodology can also be easily extended

to support uncertainty quantification. Please see our Supplementary Materials for additional

details and proofs-of-concept of such an extension. Future studies could explore classification

tasks of predicting whether a given location will experience an outbreak by thresholding our

case count predictions. Methods like DT-SIR, while prone to over-predicting at outbreak peaks,

are still excellent at capturing the outbreak progression trend. Another interesting research av-

enue involves combining regression and classification components together within ensembles.

For example, one can consider an ensemble setup containing both regression models (predict-

ing the number of dengue reported case counts) and classification models (predicting whether

an outbreak will occur in the next months). Future work could also involve combining ensem-

bles together into superensembles to further reduce variance.
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2 Methods

2.1 Data Sources

In this section, we present our data collection and processing routines.

Reported Case Counts

We used two primary modalities of data to train our models. Raw weekly and monthly re-

ported dengue case counts at the city and province levels were obtained from the following

sources. For Brazil, data was obtained from SINAN (using the Datasus package in R) and

from the Info Dengue website API (at https://info.dengue.mat.br). Data from both sources

were reformatted and merged into a single data set. Area codes were translated to state and

municipality names. For Thailand, National Disease Surveillance Reports were downloaded

from http://doe.moph.go.th. Separate files are available for dengue fever, DHF, and DHF

shock syndrome. Files were processed in R, reformatted and combined into a single data set.

For all other countries, PDF-formatted reports were downloaded from the Ministry of Health

websites (for Colombia: https://www.ins.gov.co; for Malaysia: https://www.moh.gov.my;

for Mexico: https://www.gob.mx; for Peru: https://www.dge.gob.pe and for Puerto Rico:

https://www.salud.gov.pr). Tables containing dengue case data on a regional level were iden-

tified and extracted using ABBYY FineReader PDF software, applying OCR where required,

and saved to excel. Extracted tables were then processed in R, checking extracted region names

and count values using regular expressions and verifying table totals where available. All ta-

bles were time-stamped with the date of the report they were extracted from, reformatted and

combined into a single data set per country. Data at the city level were aggregated via sum-

mation into province-level resolution before input into our model training pipeline. All data at

the weekly level were also aggregated via summation into monthly values before the start of

model training.

Google Trends
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We used the Google Health Trends API to obtain monthly dengue-related search terms’ fre-

quencies at the province level for all of our locations. For a small number of locations where

Google Trends data was not available at the provincial level, we used the Google Trends data of

the dengue-related search terms at the country level as a proxy. Within each country, we used

the same set of dengue-related search terms for each province. Country-specific lists of all the

dengue-related search terms we used can be found in our Supplementary Materials.

To maintain consistency, we chose only the top 10 most useful dengue-related search terms in

each country as input into the ARGO and ARGONet models that required Google Trends data.

Specifically, we determined each term’s “usefulness” in a particular location by computing

the Pearson correlation of these term’s search frequencies with the reported case counts on a

time window directly preceding our model evaluation time window to avoid signal leakage.

We ordered the Google Trends terms in decreasing order of Pearson correlation and used this

ordered data as input into the ARGO and ARGONet models. Country-specific time windows

for the Pearson correlation analyses can be found in our Supplementary Materials under the

“Training Period” column of Table 2.

2.2 Fitting Methods

Fig. 8 illustrates our two methods for fitting our individual models at each timestep.
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Figure 8: Schematics of model-fitting techniques. (A) Sliding window model-fitting. (B) Ex-
panding window model-fitting.

Fig. 8 shows our two mechanisms for model-fitting. Panel (A) shows the sliding window

mechanism for model fitting. For example, if the current time is February 2019, our prediction

task is to forecast one month ahead — March 2019. And suppose, for example, that we are us-

ing a 9-month sliding window. Then, when fitting a given model to forecast for March 2019, a

9-month sliding window fitting method implies that we will only use the reported case counts

data between June 2018 and February 2019 (inclusive) as target variables in our training set, as

indicated by the green shaded region inside of the two dotted green lines. After March 2019,

our new prediction task will be to forecast for April 2019, and we will slide our fitting window

to fit our model using only the reported case counts data from July 2018 to March 2019 (now

observed) as the target variables in our training set, as indicated by the blue shaded region

inside of the two solid blue lines. To emphasize, because of the “sliding” operation, June 2018

is no longer contributing to our model fit. The assumption behind the sliding window mech-

anism is that infectious disease dynamics change across time, and thus, relationships between

reported case counts in the distant past are likely not very informative of the current dynamics

of the disease.

In contrast, panel (B) shows the expanding window mechanism for model fitting. Suppose

that the earliest date in our dataset of reported case counts for which we can assemble a full
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set of covariate features is April 2018. Suppose that the current time is December 2018, and our

goal is to forecast one month ahead — January 2019. Then, when fitting the model using an

expanding window mechanism, we will use all of the reported case counts between April 2018

and December 2018 as target variables in our training set, as indicated by the region shaded in

green inside of the two green dotted lines. After January 2019, our new prediction task will be

to forecast for February 2019, and we will “expand” our fitting window to use all reported case

counts from April 2018 to January 2019 as target variables in the training set, with the expansion

region shaded in blue and bound by the solid blue line. In contrast to the sliding window, April

2018 is still in our training set. The underlying assumption behind the expanding window

mechanism is that there exists some stationary distribution / ground-truth autoregressive data-

generating process that holds across all time.

2.3 Individual Models

In this section, we describe the individual, fine-tuned component models that we will later

ensemble together for more robust forecasts.

2.3.1 Autoregression (AR)

As explained by [55], a k-month-ahead autoregressive model reported case counts in a specific

location at month t+ k as a linear combination of reported case counts at months t through t−

L+1 in said location, with a bias term. The hyperparameter L is the number of lags that we are

using when forecasting. Initial experiments suggested that autoregressive models experienced

significant performance boosts when working with log-transformed case counts, so we define

yt as the log-transformed reported case counts of dengue in a given location at month t. An

AR(L) model for k-month-ahead forecasting can thus be expressed as the following, where ϵ is

an irreducible error term:

yt+k = µ+

L∑
l=1

βlyt−l+1 + ϵ.
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Standard Variant

For the standard variant, at all forecast horizons and locations, we used a generic AR(4) model

fitted using Ordinary Least Squares, with no log-transformation of the reported case counts.

We use an expanding window for model-fitting.

Optimized Variant

For the optimized variant, at all forecast horizons, we found that setting L = 24 yielded the best

performance. We also trained all AR models in all locations and horizons using an expanding

window approach. Computationally, we used the glmnet package [14] to minimize the L2

error subject to LASSO regularization (with regularization strength determined using cross-

validation) to fit our model at each simulated month. From initial testing, we did not regularize

the first two lags. For 2- and 3-months ahead forecasting, in addition to our choice of L = 24,

we manually chose the specific lags of 1, 2, 3, 12, 13, 14, 15, and 24.

2.3.2 AutoRegression with Google Search Data (ARGO)

As introduced in [63], ARGO builds on the classical AR model and incorporates the most-

recently-available Google Trends search frequencies of dengue-related keywords as covariates

into the linear model architecture. While ARGO was originally designed for flu incidence fore-

casting, it has also been adopted by [27] for dengue forecasting in 20 Brazilian cities. Let xm,t

be the log-transformed Google Trends search frequency of term m (for m = 1 to m = 10) at

month t. Then, the ARGO model with L epidemiological lags can be given by

yt+k = µ+

L∑
l=1

βlyt−l+1 +

10∑
m=1

γmxm,t + ϵ.

Standard Variant

For all forecast horizons, we used AR(4) coupled with the most recently observed Google

Trends data as our features. We did use LASSO regularization via glmnet [14], but we did

not protect any features from regularization. We also did not log-transform either the autore-
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gressive features or the Google Trends features. We used an expanding window approach for

model fitting.

Optimized Variant

Just as in AR, for all forecast horizons, we set L = 24 for maximum performance and use

the same expanding window approach. We also use glmnet [14] with the same settings for

model-fitting at each simulated month, with the first two epidemiological lags not subject to

regularization. Unlike AR, we did not perform any manual selection of autoregressive lags and

simply used all L = 24 lags as covariates.

2.3.3 NetModel

To model the network effects of dengue spreading between nearby provinces, we extend the

original AR linear model by modeling log-transformed reported case counts for location j dur-

ing month t + k as a linear combination of only recent reported case counts in location j, but

also recently reported case counts for all provinces j′ ∈ J , where J is the set of all provinces in

a given country. A similar approach was implemented for flu forecasting in [31].

Let La be the number of lags from location j itself (local lags) and Lb be the number of lags

from each of the other locations j′ ∈ J (neighbor lags) that we will be adding into our linear

model. Let yj,t be the log-transformed reported case counts in location j at month t. Then, our

NetModel is given by

yj,t = µ+

La∑
la=1

βlayj,t−la+1 +

J∑
j′=1,j′ ̸=j

Lb∑
lb=1

γj′,lbyj′,t−lb+1 + ϵ.

Standard Variant

For all forecast horizons, we used La = 4 and Lb = 1. We used LASSO via glmnet for model-

fitting, but did not protect any lags from regularization. We used the expanding window fitting

scheme for all locations and horizons. We did not log-transform the local lags nor the neighbor
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lags.

Optimized Variant

For 1-month ahead forecasting, we chose La = 24, with manual feature-selection of the lags

1, 2, 3, 12, 13, 14, 15, and 24, and chose Lb = 1, log-transforming both the local and neighbor lag

features. We used glmnet with LASSO to fit our model, using an expanding window scheme,

and refrained from regularizing the first two local lags.

For 2-months ahead forecasting, we chose La = 12 and Lb = 1, log-transforming both the

local and neighbor lag features. We also used glmnet with LASSO to fit our model, using an

expanding window scheme, and refrained from regularizing the first two local lags.

For 3-months ahead forecasting, we chose La = 12, with manual feature-selection of the lags

1, 2, 3, and 12, and chose Lb = 2, log-transforming both the local and neighbor lag features. We

used glmnetwith LASSO to fit our model, using an expanding window scheme, and refrained

from regularizing only the first local lags.

2.3.4 ARGONet

As introduced in [31], we also include ARGONet with two-component models — ARGO and

NetModel — into our list of component models. Specifically, across all forecast horizons and

locations, ARGONet returns the mean of the individual ARGO and NetModel predictions as

its ensemble prediction. While ARGONet was also implemented in [31] with a winner-takes-all

approach, we found that for the prediction task of forecasting monthly dengue-reported case

counts, such a scheme was not as effective as simply returning the mean.

We implemented the standard / optimized variants of ARGONet by taking the mean of the

corresponding standard / optimized ARGO and NetModel predictions, respectively.
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2.3.5 Exponential Smoothing

To implement exponential smoothing (ETS), we used the sktime [30] toolbox in Python. We

used the pipeline functionality available within sktimewith three different input-transforming

preprocessors. The preprocessors we used were a power transformation, a robust scaler, and a

min-max scaler. We then used AutoETS with a period of 12 (the number of months in a season)

as the model in the pipeline. The pipeline was grid searched for the optimal input transforma-

tion using cross-validation with an expanding window splitter on the training data. After the

pipeline hyperparameters were trained, it was used to make out-of-sample predictions in the

usual manner with sequential addition of data, retraining parameters (not hyperparameters),

and subsequent prediction.

2.3.6 Vector Autoregression

We implemented multiple vector autoregression (VAR) models with varying degrees of regu-

larization and clustering. Prior to modeling, the data were transformed with a standard log

transformation. As with other components of the manuscript, we tested several transforma-

tion approaches, but none were consistently better than a log transformation. As the nature

of VAR requires that data be available for all time points in every time series included in the

model, we decided to individually implement a different VAR model for each country in the

data. This allowed us to use nearly the entire time series available in each country. The alterna-

tive approach would be to combine all countries into a single model. Unfortunately, this would

have seriously compromised the length of the time series in several countries as historical data

varies considerably by country.

For modeling, we began with the most common method implemented in R through the VARS

package [49]. Unfortunately, with the amount of data available, a standard VAR model in some

countries (e.g., Thailand) would not converge even with a lag order of 1. However, much of the

diminished performance could be resolved by implementing geographic clustering (discussed

below), suggesting that the issue was primarily a result of some degree of underdetermination.

34

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 23, 2024. ; https://doi.org/10.1101/2024.10.22.24315925doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.22.24315925
http://creativecommons.org/licenses/by/4.0/


Nevertheless, the regularized models uniformly outperformed their unregularized counter-

parts, whether clustered or unclustered, so we proceeded with exclusively regularized models.

In an effort to simplify the process of lag selection, we decided to standardize all regularized

VAR models to use a lag order of 4. Any selection greater than 4 seemed to make no difference

to the out-of-sample accuracy of the model.

For regularized VAR, we used primarily the BigVAR package made available in R [42]. We

trialed several regularization frameworks, including (in the terminology of the package) Ba-

sic Lasso, Basic Elastic Net, Lag, Own/Other, Sparse Lag, Sparse Own/Other, Hierarchical

Componentwise, Hierarchical Elementwise, and Hierarchical Own/Other. We used the stan-

dard rolling cross-validation method, expanding window, and adjusted the train/test window.

However, there was no benefit to altering these from the default selections. We tested several

lambda grid depth values and selected 100 as a good tradeoff between sufficient depth and

reasonable compute time. We refer to this model in our figures and tables as “VAR (Reg.).”

2.3.7 Vector Autoregression with Geographic Clustering

Next, we investigated to what extent geographic clustering could improve predictions. To that

end, we obtained the latitude and longitude of every city in the data. We used the sp [7, 47] and

geosphere packages available in R to compute the within-country distance matrix between

all cities using the Haversine distance. The cities were then grouped with hierarchical clus-

tering. The tree was produced using hclust and the clusters were produced using cutree

as the highest number of clusters that allowed two or more cities in every cluster (which is a

requirement for the application of VAR.

After within-country geographic clustering, VAR and regularized VAR were applied in the

same manner as above. In all figures and tables, we refer to this model using the abbreviation

“VAR (Clust., Reg.).”
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2.3.8 Stacked Machine Learning

We produced a stacked regression (stackedML) model using sktime [30] and scikit-learn

[48]. We constructed it as an ensemble of several available machine-learning models in the

toolboxes.

Given the challenges posed by underdetermination for these data when using higher lag orders

on univariate time series, before implementing the model, we utilized a simple pipeline with a

preprocessor and an elastic network (EN) base model that we optimized for the best L1 ratio.

We then used this model to trim higher lag orders that seemed to improve this simple model.

After trimming the higher lag orders, we implemented the stackedML model again as a pipeline

to allow comprehensive hyperparameter selection via grid-searched cross-validation. For pre-

processing, we included the standard scaler, the min-max scaler, and a log transformation. For

base models, we included an EN model, a k-nearest neighbors model (KNN), a support vector

machine model (SVM), and a gradient-boosted machine (GBM) model. The pipeline was en-

sembled with an independently cross-validated elastic network model allowing only positive

covariates. Hyperparameters in the base models were optimized via a grid search of the entire

pipeline at once; the hyperparameters that we tuned included the number of neighbors in the

KNN base model, the C-parameter in the SVM base model, and the number of leaves in the

base GBM model.

After extensive testing, there were a few obvious limitations. First, optimizing the pipeline was

extremely computationally intensive and became exponentially complex as more hyperparam-

eters were searched. Second, the first issue was particularly challenging when combined with

rolling optimization and leave-one-out (out-of-sample) cross-validation. Third, the data of a

single-city univariate time series was clearly insufficient to tune an extremely large hyperpa-

rameter space. As a result, we pared the base models to remove the GBM. The GBM alone

requires tuning of so many hyperparameters for optimal predictions that it was not improving

the model with its inclusion. Then, we observed that the KNN was essentially never used by

the ensembling model, so it was removed as well. As a result, we were left with an EN and an
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SVM model stacked together.

2.3.9 Dynamically-Trained SIR

We introduce a novel, dynamically-trained SIR (DT-SIR) interpolator model for forecasting re-

ported dengue cases. This model borrows the mathematical behaviors and properties of the tra-

ditional SIR dynamical system as introduced by Kermack and McKendrick [25] but re-purposes

it for forecasting tasks.

As presented in [39], the traditional SIR model is governed by the following system of differ-

ential equations, parameterized by time t, where S is the number of susceptible individuals,

I is the number of currently-infected individuals, R is the number of recovered (including de-

ceased) individuals in a given population:

dS

dt
= −βSI

N
,

dI

dt
=

βSI

N
− γI,

dR

dt
= γI.

Here, N is the total number of people in the population, which we assume to be fixed. The

parameter β governs the rate at which susceptible individuals (in S) become infected, and the

parameter γ governs the rate at which infected individuals (in I) become recovered (or de-

ceased). Mathematically, we can define any set of solution trajectory curves for S(t), I(t), R(t)

for any interval of time starting with t = 0 by specifying β and γ, as well as specifying our ini-

tial conditions S0 and I0 for the numbers of susceptible and infected individuals at our initial

point of reference t = 0. Since the SIR model assumes for all timesteps t that S + I + R = N ,

R0 is always uniquely determined by S0 and I0.

We acknowledge that the SIR model, originally designed for modeling direct transmission-type

diseases, is an oversimplified model for dengue, given the complex combination of mosquito

vector-borne transmission dynamics and intricate systems of partial immunity acquisition to

different serotypes. However, for the sole purpose of forecasting case counts, our empirical re-

sults suggest that the basic SIR model is still sufficient. In fact, the mechanisms of the mosquito
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intermediary between infected humans for dengue transmission can be absorbed into / suit-

ably approximated by the basic SIR model. It is also worth noting that using more complex

models with more compartments and parameters risks over parameterization and overfitting,

which could be undesirable regarding bias-variance tradeoff considerations.

It is important to note that our public health data provides new infected cases per month and

not the total infected number of infected people within a population at a given time. However,

because the recovery period of dengue is almost always less than a month [1], we can assume

that all individuals who become newly infected in month m will also become recovered in

the same month m. With this train of thought, it follows that we can treat new infected cases

at month m as interchangeable with total infected people within the population at month m.

However, from previous works in the literature, we know that dengue case reporting rates are

very low. This is due in part to the reality that dengue fever oftentimes manifests no symptoms

and that even when symptoms are present, they are oftentimes similar to that of the common

flu. As such, reporting rates tend to be low. To accommodate this underreporting, we introduce

a learnable report rate parameter r ∈ (0, 1) that captures the proportion of infected individuals

who are recorded by public health authorities. Given S(t), I(t), R(t), let us define C(t) = r×I(t)

to represent the number of reported infectious people within the population at month t, which

we clarified above is interchangeable with the reported number of new infections at month t.

For each month m, DT-SIR outputs reported case count predictions for the month m + h at a

single location through the following algorithm. For simplicity, suppose we are forecasting 1-

month ahead, with h = 1. But, we can output forecasts for the 2- and 3-month-ahead horizons

analogously.

1. We query the historical dengue reported case counts for the past T months: m − T +

1,m−T +2, . . . ,m−1, and m. In practice, we found through extensive testing that T = 5

performed the best across all locations and horizons, and thus we set T = 5 for both our

standard and optimized DT-SIR variants. Let us denote these historical case counts as

ym−T+1, ym−T+2, . . . , ym−1, and ym.
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2. Using the scipy.integrate.odeint numerical integration package from SciPy [60]

and the non-linear least-squares curve-fitting package lmfit [40], we find the best set of

parameters β, γ, S0, I0, r such that the resultant integrated C(t) curve (always calibrated

to start mathematically from t = 0, corresponding to month m − T + 1) best fits the

historical dengue reported case counts in the past T months. To emphasize, the solution

curves to our SIR differential equations systems will always be plotted mathematically

starting with t = 0, regardless of what month m we are in. We can do this because our

initial conditions of S0 and I0 render our resultant trajectory curves agnostic to the real-

time month/phase of an outbreak that we are in. We define “best fit” as minimizing the

RMSE of the resultant C(t) curve (evaluated at t = 0, 1, 2, . . . , T − 1) with respect to the

historical dengue case counts observed at months m−T +1,m−T +2, . . . ,m−1, and m.

Because this objective function is almost certainly non-convex, we cannot guarantee that

our curve-fitting algorithm will find the global minima. The best we can do is find a very

good local optimum.

Given that we are only using the most recent T months’ observations as input data for

fitting our SIR system parameters, in other words, we are using a sliding window ap-

proach and shifting our sliding window after each prediction timestep. The reason for

using a sliding window as opposed to an expanding window that we use for the other

component models is because the SIR model, by nature, can only model one outbreak

peak at a time. If we used an expanding window approach, we may have multiple peaks

in our fitting data, and our resultant SIR parameter fit would be very poor. The sliding

window approach is especially attractive if we accept the assumption that disease out-

break dynamics vary significantly across time and various historical outbreak cycles. As

such, we must re-estimate our model parameters at each timestep to remain up-to-date

with current transmission dynamics.

When fitting our C(t) curve to the observed monthly data, it should be noted that we limit

the plausible range for β ∈ [0, 500] and γ ∈ [0, 8.5]. We limited β to a still sizeable range

mainly for practicality and reproducibility. From existing literature [1], we know that the

average human infectious period for dengue fever is 4-5 days. Canonically, we know that
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γ represents 1
average infectious period . As such, converting to months, we find corresponding γ

values of 6 and 7.5. We expand the upper bound of our parameter interval by 1 to account

for some possible anomalies. Of course, we also restrict S0 and I0 to never exceed N , the

total population. We restrict r ∈ [0, 1].

To avoid being confined to one local optima, we perform 500 independent fits for β, γ, S0, I0, r,

selecting the estimated parameters corresponding to our ”best” fit (in terms of RMSE) for

our forecasting purposes. For 250 of these fits, we randomly initialize our parameter

guesses across their entire permitted intervals. For the other 250 fits, we initialize the

starting parameter guesses to be distributed uniformly on an interval that is within 20%

of the previous timestep’s fitted optimal parameter values, to enforce some “continuity”

of our disease dynamic parameters over time. For S0 and I0, we initialize S0 during each

fit to a starting guess of N , the total population, because intuitively, the proportion of

people with dengue in a population is relatively low.

3. Using our best-estimated parameters of β, γ, S0, and I0, and r, we evaluate C(t) at t =

T − 1 + h to produce our provisional prediction for the number of reported dengue case

counts at month m+ h. Let us call our provisional prediction ŷm+h.

However, as observed in [58], SIR-type models are prone to “overshooting,” or signifi-

cantly overestimating the number of reported dengue cases at outbreak peaks. Our DT-

SIR, without modification, also experiences such limitations. To mitigate this potential in-

accuracy, we implement an anti-overshooting mechanism at each prediction timestep m,

comprising of a ”threshold” and a ”compensator”. We will explain this anti-overshooting

mechanism for the 1-month-ahead forecasting task (i.e., h = 1), but the 2-month and 3-

month-ahead setups are analogous.

(a) Threshold: We calculate yt − yt−h, the observed h-month-apart differences between

reported dengue case counts, for the past n months. Next, we calculate the mean

observed historical differences in these past n months and add s standard deviations
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to this value. This computed value is our threshold k. Formally, we have

k =

(
1

n

m−n+1∑
t=m

(yt − yt−h)

)
+ s ·

√√√√ 1

n

m−n+1∑
t=m

((yt − yt−h)− ȳ)2

where ȳ is the sample mean of the yt−yt−h, for t = m to t = m−n+1. From extensive

testing, we found that n = 24 and s = 4 were the most suitable and generalizable

hyperparameter settings across all of our locations and forecast horizons.

(b) Compensator: If the difference between our provisional prediction for month m+h,

ŷm+h, and the true reported case count for our most recently observed month, ym,

is greater than our threshold k, then our threshold is triggered and we adjust our

prediction. Define ȳ+ to be the mean positive h-month-apart differences between

reported dengue case counts for the past n months:

ȳ+ =
1∑m−n+1

t=m 1 (yt − yt−h > 0)

m−n+1∑
t=m

(yt − yt−h)1 (yt − yt−h > 0) ,

where 1 is an indicator function. Our compensator value is formulated as the sum of

ȳ+ and s times the standard deviation of the positive h-month-apart differences be-

tween reported dengue case counts for the past n months. Let δ be our compensator

value, which is formally defined as

δ = ȳ+ + s ·

√√√√ 1∑m−n+1
t=m 1 (yt − yt−h > 0)

m−n+1∑
t=m

(yt − yt−h − ȳ+)2 1 (yt − yt−h > 0).

With our compensator value computed, we output the following adjusted prediction

for month m+ h, ŷ′m+h:

ŷ′m+h = ym + δ.

Intuitively, it would make sense to set δ = k. However, this alternative adjustment is

suboptimal because setting it renders it very difficult for our model to predict an out-

break that is truly significantly more intense (in terms of peak reported case counts)
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than it has historically seen in its training data. In contrast, using our compensator

formulation with the historical positive differences allows us to better capture the

intuition that cases will indeed increase rapidly during outbreak peaks.

4. Finally, to predict reported case counts for the next month, month m+h+1, we slide our

fitting window forward by one month and repeat the steps enumerated above.

We use similar DT-SIR model settings in both our standard and optimized ensembling tests,

for all locations and all forecast horizons — specifically, we use the most recent T = 5 months

of observations as our sliding training window. However, for the standard model setting, we

disable the anti-overshooting mechanism.

2.3.10 Basic Models

In addition to the more complex individual models described above, we also include two

relatively-simple baselines as potential component models in our ensemble.

Naive Persistence

If we are simulating being in month t and forecasting k months ahead, the naive persistence

model will return the number of reported cases currently observed in month t as its forecast

for month t+ k. We use the same naive persistence model in both our standard and optimized

ensembling tests.

Seasonal

Suppose we are simulating being in month t and forecasting k months ahead. Without loss

of generality, suppose that month t + k is January. Then, the seasonal model will query our

historical reported case counts for all observed January reported case counts, and return the

mean of all the historical January dengue case counts as its forecast for month t + k. The idea

behind the seasonal model is that dengue has been found to be seasonal in many locations

around the world (see [19], [38], [61]). We use the same seasonal model in both our standard

and optimized ensembling tests.
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2.4 Ensemble Systems

Figure 9: Schematics of the three ensembling methods. (A) Graphical representations of three
individual models’ predictions during the ensemble fitting window. The ground truth reported
case counts during the ensemble fitting window are depicted using the blue points. Each in-
dividual model’s predictions during the ensemble fitting window are shown with the con-
nected lines. (B) Performance-Based Weights (PBW) ensemble fitting and prediction output.
(C) Winner-Takes-All (WTA) ensemble fitting and prediction output. (D) Equal Weights (EW)
ensemble prediction output.

Fig. 9 illustrates the three ensembling methods that we tested. Let ŷi,t refer to the prediction

generated by model i for time t, ŷt represent our component models’ predictions for time t

stored as a vector, and yt be the ground-truth reported case counts at time t. Panel (B) illus-
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trates the Performance-Based Weights (PBW) ensemble. In our toy example shown in Fig. 9,

for this prediction timestep and our choice of a 5-month ensemble fitting window, the PBW

ensemble finds the optimal set of non-negative weights w that minimizes the following objec-

tive function, if we calibrate t = 5 to correspond to the last observed timestep of April 2021:

L(w) =
∑5

t=1

(
yt −wT ŷt

)2
, subject to the constraint that 1Tw = 1. Such optimization was per-

formed using the scikit-learn [48] package. To make our ensemble prediction for time t+1,

we output said prediction as wT ŷt+1, where ŷt+1 is the vector of our individual models’ pre-

dictions for time t + 1. Panel (C) illustrates the Winner-Takes-All (WTA) ensemble. Extending

the notation from our discussion of the PBW ensemble, the WTA ensemble outputs ŷi∗,t+1 as

our ensemble prediction, where i∗ = argmini
∑5

t=1 (yt − ŷi,t)
2 encodes the index correspond-

ing to the component model that outputted the most accurate predictions during the ensemble

fitting window. Panel (D) represents the Equal Weights (EW) ensemble, which simply outputs

the unweighted mean of the components’ predictions at time t+ 1 as the ensemble prediction.

Please see Tables 3-5 and 6-8 in the Supplementary Materials for the best ensemble variants us-

ing the standard and optimized individual models, respectively, at each forecast horizon and

within each country.

2.5 Model Evaluation

All individual and ensemble models were evaluated on the time periods under “Test Period” in

Table 2 in the Supplementary Materials. While available data timeframes differed significantly

across countries, we aimed to secure at least 3 years (the most recent years) of evaluation data

points for each country. The remainder of the data were binned as training data, whether that

be used directly for model-fitting, and/or for feature engineering.

To compare model performances, we used percent absolute error (PAE) on the predicted versus

ground-truth reported case counts as our evaluation metrics. The “percent” implies that we

divided the raw mean absolute errors for each model in a given location by the mean number

of cases present in said location during the evaluation period.
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3 Supplementary Materials

3.1 Extension of methodology for uncertainty quantification

Though not the focus of our main manuscript, our methodology can be easily extended to in-

corporate uncertainty quantification via approximate 95% predictive intervals for our forecasts.

Our predictive interval generation algorithm is as follows:

1. Suppose today is month m and we would like to provide uncertainty quantification inter-

vals for our h-month-ahead ensemble forecast. In practice, the ensemble can be replaced

with any individual component model, too.

2. We can compute the predictive residuals ϵt = ŷt − yt for previously-observed months

t = 1 through t = m, where yt was the true reported dengue case count at month t and ŷt

was our h-month-ahead dengue forecast for that month (i.e., generated in month t − h).

Let us name our expanding-each-month vector of residuals at month m as ϵm.

3. Using our ensemble, we can generate our point-forecast for month m + h, and denote it

as ŷm+h. To provide uncertainty quantification, we can compute the standard deviation

of this model’s historical residuals stored in ϵm and, assuming approximate Normality,

multiply by 1.96 to obtain the width of an approximate 95% predictive interval.

4. Then, our uncertainty-quantified ensemble forecast for month m+ h would be

ŷm+h ± 1.96× SD(ϵm).

5. Because case counts cannot be negative, we may also clip our forecast intervals to be

strictly non-negative.

Below, we demonstrate this uncertainty quantification algorithm on 1-, 2-, and 3-month country-

specific ensemble forecasts in Ceara, Brazil, with approximate 95% predictive intervals gener-

ated for January, May, and September of 2020 and 2021.
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Figure 10: Demonstration of uncertainty quantification interval algorithm in Ceara, Brazil.
The green points indicate the reference months m, and each set of subsequent three black points
marks the 1-, 2-, and 3-month ahead point forecasts. The error bars corresponding to each point
forecast quantify our 95% approximate predictive intervals. The blue cones emphasize how
the uncertainty in our forecasts evolves over forecast horizon. The grey silhouette shows the
ground truth reported dengue case counts.

No one individual model is best across all locations: model performance is signifi-

cantly dependent on location.

Fig. 1 summarizes the comparative performances of our optimized individual and ensemble

models’ within each of the five countries, tested across the three prediction tasks of forecasting

1-, 2-, and 3-months ahead. The reader can find additional details on our fine-tuning and

optimization processes in the Supplementary Information.

Panel (A) illustrates our three forecasting tasks of forecasting 1-, 2-, and 3-months ahead. Pan-

els (B) to (F) show the models’ performances within each country in two ways. On the left of

each panel, we present a heatmap where each row represents a model, and each column en-

codes the number of locations within the country of interest where a model achieved a certain

rank in terms of percent absolute error (PAE) compared to the other individual component and

ensemble models (1st through 13th rankings). The models in each heatmap are listed in de-

creasing order by the sum of the number of locations where each model performed in the first,

second, or third ranks. As an example, “Ensemble (Country, EW)” having a value of 7 corre-

46

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 23, 2024. ; https://doi.org/10.1101/2024.10.22.24315925doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.22.24315925
http://creativecommons.org/licenses/by/4.0/


sponding to Ranking 1 in Brazil (1-Month Ahead) means that the country-specific ensemble

incurred the lowest (best) PAE compared to all other individual and ensemble models in 7 out

of the 27 provinces of Brazil. On the right of each panel, we have a geographical map where

each province is colored according to the model that incurred the lowest PAE in that province,

with the legend displayed at the bottom of the overall figure. Overall, ensemble models were

robust within any of our tested countries. They demonstrated the most or nearly the most top-3

rankings compared to other models.

Formally, we define percent absolute error (PAE) on the predicted versus ground-truth reported

case counts as the raw mean absolute error divided by the mean number of monthly reported

cases observed in a given location during the evaluation period. Mathematically, let y1 . . . yT

be the ground-truth reported case counts, and ŷ1 . . . ŷT be our predicted case counts. Then,

PAE =

∑T
t=1 |ŷt − yt|∑T

t=1 yt
.

On the right of panels (B) - (F), we plot a map of each country along with the best-performing

model for each province. We observed that no particular model consistently performs the best

across all locations and prediction tasks within a country. Our findings thus suggest that,

in practice, it is not feasible to train, evaluate, and find the best-performing models for ev-

ery single province in every single country. Instead, using an out-of-the-box ensemble setup

would require significantly less computation and optimization while still effectively guaran-

teeing strong performance. In what follows, we present the results for each country.

Brazil

Fig. 1 (B) shows that, within the 27 provinces of Brazil, the country-specific ensemble achieved

the most top 3 rankings compared to any other model, with the overall ensemble having

reached the second most top 3 rankings at the 1-month and 2-month horizons. However, at

the 3-month horizon, ARGONet and AR outperformed the overall ensemble in the number of
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top 3 rankings. From the accompanying color-coded geographical maps, we observed that at

any forecast horizon for Brazil, the ensemble did not rank first in many locations - the winning

model varied widely across sites.

Colombia

Fig. 1 (C) shows our 13 models’ ranking in the 33 provinces of Colombia. While the country-

specific and overall ensembles achieved the most top 3 rankings at the 1-month ahead fore-

cast horizon, clustered + regularized VAR achieved the most top 3 rankings, superseding the

two ensemble variants, at 2-month ahead. At 3-months ahead, the country-specific ensemble

achieved the top 3 rankings, but the overall ensemble was still outperformed by clustered +

regularized VAR.

Malaysia

Fig. 1 (D) shows our results for the 15 provinces in Malaysia. While the country-specific ensem-

ble achieved the most top 3 rankings at the 1-month and 3-month ahead horizons, clustered +

regularized VAR achieved the most top 3 rankings at the 2-month horizon. Notably, the overall

ensemble did not generalize very well in Malaysia, being ranked even below the naive persis-

tence baseline at the 1-month ahead horizon. We note, however, that the two easternmost (and

largest) Malaysian provinces both saw the country-specific ensemble performing the best out

of all 13 models at the 1-month and 3-month horizons.

Mexico

Fig. 1(E) shows our 13 models’ rankings in the 32 provinces of Mexico. Regularized VAR

achieved the top 3 rankings at the 1-month ahead forecast horizon, followed by the country-

specific ensemble. At the 2-month ahead horizon, the two ensembles achieved the top 3 rank-

ings, though at 3-months ahead. In contrast, the overall ensemble maintained the top 3 rank-
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ings, regularized VAR overtook the country-specific ensemble for the second most top 3 rank-

ings. From the geographical maps, we see that no individual model achieved the top rank

across most of locations.

Thailand

In Fig. 1(F), we show the results in the 77 provinces of Thailand. From the heatmaps, we

observed that the country-specific ensemble achieved the most top 3 rankings at the 1-month

and 2-month horizons. By comparison, regularized VAR superseded both ensembles for the

most top 3 rankings at the 3-month horizon. Notably, at the 2-month horizon, regularized VAR

achieved more first-place rankings than both ensembles. At the 1-month horizon, regularized

VAR achieved the same number of first-place rankings as the overall ensemble and significantly

more first-place rankings than the country-specific ensemble. The geographical maps show that

no particular model performed the best across most Thailand provinces.

]

No one individual model is best across all locations: model performance is signifi-

cantly dependent on location.

Fig. 1 summarizes the comparative performances of our optimized individual and ensemble

models’ within each of the five countries, tested across the three prediction tasks of forecasting

1-, 2-, and 3-months ahead. The reader can find additional details on our fine-tuning and

optimization processes in the Supplementary Information.

Panel (A) illustrates our three forecasting tasks of forecasting 1-, 2-, and 3-months ahead. Pan-

els (B) to (F) show the models’ performances within each country in two ways. On the left of

each panel, we present a heatmap where each row represents a model, and each column en-

codes the number of locations within the country of interest where a model achieved a certain

rank in terms of percent absolute error (PAE) compared to the other individual component and
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ensemble models (1st through 13th rankings). The models in each heatmap are listed in de-

creasing order by the sum of the number of locations where each model performed in the first,

second, or third ranks. As an example, “Ensemble (Country, EW)” having a value of 7 corre-

sponding to Ranking 1 in Brazil (1-Month Ahead) means that the country-specific ensemble

incurred the lowest (best) PAE compared to all other individual and ensemble models in 7 out

of the 27 provinces of Brazil. On the right of each panel, we have a geographical map where

each province is colored according to the model that incurred the lowest PAE in that province,

with the legend displayed at the bottom of the overall figure. Overall, ensemble models were

robust within any of our tested countries. They demonstrated the most or nearly the most top-3

rankings compared to other models.

Formally, we define percent absolute error (PAE) on the predicted versus ground-truth reported

case counts as the raw mean absolute error divided by the mean number of monthly reported

cases observed in a given location during the evaluation period. Mathematically, let y1 . . . yT

be the ground-truth reported case counts, and ŷ1 . . . ŷT be our predicted case counts. Then,

PAE =

∑T
t=1 |ŷt − yt|∑T

t=1 yt
.

On the right of panels (B) - (F), we plot a map of each country along with the best-performing

model for each province. We observed that no particular model consistently performs the best

across all locations and prediction tasks within a country. Our findings thus suggest that,

in practice, it is not feasible to train, evaluate, and find the best-performing models for ev-

ery single province in every single country. Instead, using an out-of-the-box ensemble setup

would require significantly less computation and optimization while still effectively guaran-

teeing strong performance. In what follows, we present the results for each country.
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Brazil

Fig. 1 (B) shows that, within the 27 provinces of Brazil, the country-specific ensemble achieved

the most top 3 rankings compared to any other model, with the overall ensemble having

reached the second most top 3 rankings at the 1-month and 2-month horizons. However, at

the 3-month horizon, ARGONet and AR outperformed the overall ensemble in the number of

top 3 rankings. From the accompanying color-coded geographical maps, we observed that at

any forecast horizon for Brazil, the ensemble did not rank first in many locations - the winning

model varied widely across sites.

Colombia

Fig. 1 (C) shows our 13 models’ ranking in the 33 provinces of Colombia. While the country-

specific and overall ensembles achieved the most top 3 rankings at the 1-month ahead fore-

cast horizon, clustered + regularized VAR achieved the most top 3 rankings, superseding the

two ensemble variants, at 2-month ahead. At 3-months ahead, the country-specific ensemble

achieved the top 3 rankings, but the overall ensemble was still outperformed by clustered +

regularized VAR.

Malaysia

Fig. 1 (D) shows our results for the 15 provinces in Malaysia. While the country-specific ensem-

ble achieved the most top 3 rankings at the 1-month and 3-month ahead horizons, clustered +

regularized VAR achieved the most top 3 rankings at the 2-month horizon. Notably, the overall

ensemble did not generalize very well in Malaysia, being ranked even below the naive persis-

tence baseline at the 1-month ahead horizon. We note, however, that the two easternmost (and

largest) Malaysian provinces both saw the country-specific ensemble performing the best out

of all 13 models at the 1-month and 3-month horizons.
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Mexico

Fig. 1(E) shows our 13 models’ rankings in the 32 provinces of Mexico. Regularized VAR

achieved the top 3 rankings at the 1-month ahead forecast horizon, followed by the country-

specific ensemble. At the 2-month ahead horizon, the two ensembles achieved the top 3 rank-

ings, though at 3-months ahead. In contrast, the overall ensemble maintained the top 3 rank-

ings, regularized VAR overtook the country-specific ensemble for the second most top 3 rank-

ings. From the geographical maps, we see that no individual model achieved the top rank

across most of locations.

Thailand

In Fig. 1(F), we show the results in the 77 provinces of Thailand. From the heatmaps, we

observed that the country-specific ensemble achieved the most top 3 rankings at the 1-month

and 2-month horizons. By comparison, regularized VAR superseded both ensembles for the

most top 3 rankings at the 3-month horizon. Notably, at the 2-month horizon, regularized VAR

achieved more first-place rankings than both ensembles. At the 1-month horizon, regularized

VAR achieved the same number of first-place rankings as the overall ensemble and significantly

more first-place rankings than the country-specific ensemble. The geographical maps show that

no particular model performed the best across most Thailand provinces.

3.2 Forecasting performance of ensemble models built from standard non-optimized

individual components

It is not always feasible to fine-tune the hyperparameters of each individual component model

into their most optimized, highest-performing variants, as we did in this study. In many sit-

uations, the lack of high-quality epidemiological data and/or computational resources may

impose significant challenges, likely forcing users to apply standard, off-the-shelf models and

systems without significant fine-tuning. In this section, we demonstrate that even in such a
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situation, ensembling is a very effective and robust solution for short-term forecasting.

We present the performances of 11 standard component models and two ensemble variants

on forecasting dengue in our tested province-level locations. The forecasting tasks, evaluation

ranges and metrics, data sources, and training processes are identical to those of the results that

we present in the main manuscript for the optimized models. We also refer the reader to our

Methods section and the Additional Methods Details in our Supplementary Information for

specific details on our standard individual component models, intended to replicate off-the-

shelf deployment.

Our key findings from this section not only corroborate but also, in fact, enhance our reported

findings in the main manuscript. First, we find that there does not exist one standard model

that consistently outperforms all others in all locations, reinforcing our corresponding finding

in the main manuscript with optimized models. Second, and most importantly, even though

our standard individual component models are overall markedly inferior to the naive persis-

tence baseline model, combining such weak individual component models together produces

ensemble models that consistently and significantly outperform the naive persistence baseline.

Indeed, even when given weak individual learners, our ensemble methods are robust and gen-

eralizable forecasting tools. Fig. 11 summarizes our standard individual and ensemble models’

comparative performances within each of the five tested countries, across our three prediction

tasks of forecasting 1-, 2-, and 3-months ahead. The individual models presented here are de-

ployed with standard off-the-shelf settings and are not fully-optimized.
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Figure 11: Country-specific standard individual and ensemble model performance rankings.
(A) Graphical representations of the 1-, 2-, and 3-month forecast horizons. The red X marks our
forecasting target n-months ahead, the blue dots represent the historical cases that we are using
as our observed training data (in this case, a 5-month window), the vertical blue dotted lines
represent the limits of our training data range. The grey silhouette represents the ground truth
reported case counts. (B) - (F) Within each country and forecast horizon, the heatmaps show the
rankings distribution for each individual and ensemble model’s forecasts in terms of percent
absolute error. The geographic maps next to each heatmap indicate the best-performing model
in each province, color-coded by the legend at the bottom of the figure.

The heatmaps on Fig. 11 represent the distribution of rankings for each model in each coun-

try, with models listed in decreasing order by the number of top 3 rankings accrued. We ob-

serve that in all combinations of country and forecast horizon presented, an ensemble model
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achieved the most top 3 rankings. This corroborates our finding in the main manuscript that

the ensembles, while not always the top 1 ranked model, are generally very high-performing

and robust.

From the geographical color-coded maps encoding the top 1 model in each province, we ob-

serve that no one model — standard individual nor ensemble — consistently outperformed the

rest of the models. This result mirrors our finding in the main manuscript that no individual

model performs the best across all locations consistently. Finally, the heatmaps and geograph-

ical maps emphasize that our standard individual component models are indeed very weak

learners, being mostly outperformed by the naive persistence model.
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Figure 12: A summary of our prediction tasks and standard models’ overall performances
across 187 locations. (A) An example of our standard country-specific ensemble variants’ fore-
casts compared to their standard, non-optimized component models in one selected location —
Chachoengsao, Thailand. The gold standard ground truth of reported dengue cases is shown
as the grey silhouette. Ensemble predictions are shown in thick, bolded lines, while standard
component models are shown in thinner, colored lines.(B) Heatmaps of the number of locations
where each model attained a specific ranking in terms of mean absolute error with respect to the
ground truth reported dengue case counts across all 187 locations. (C) Geographical maps of
Brazil, Colombia, Malaysia, Mexico, and Thailand showing provinces where either the country-
specific or overall ensemble performed in the top 3 rankings for each location (in yellow) and
where they did not (in grey).

Fig. 12 shows the forecasting performances of our standard individual and ensemble models

across all 187 tested locations. Panel (A) emphasizes the primary advantage of ensemble mod-
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els over their individual component models: while the individual component models fluctuate

wildly in underpredicting and overpredicting, the ensemble model is much more invariant to

such fluctuations and much more closely matches the ground truth.

From panel (B), we observe that for all three forecast horizons, both ensemble models achieved

the most top 3 rankings compared to any other model, including the naive persistence baseline,

which is ranked higher than all other standard individual component models. Indeed, one

main advantage of the ensemble models is that they can take in the naive persistence models’

inputs as a component model, absorbing the robustness of the naive persistence model in times

when the more complex data-driven models fail to perform well.

Panel (C) corroborates the main message in panel (B): the presence of only a few sparse patches

of grey indicates that the ensemble models performed in the top 3 rankings for almost all tested

locations. It should be mentioned that there are more yellow patches on this grid of maps than

the corresponding grid presented in the main manuscript (see Fig. 2) — which is to be expected,

as the standard individual models are consistently weaker than their optimized counterparts.

Fig. 13 displays the percent absolute error distributions for all of our standard individual com-

ponent and ensemble models across all 187 tested locations. The ensemble models incurred the

best mean percent absolute error across all locations compared to all other models. If compared

to the optimized model results in the main manuscript, the improvements from individual

component models to ensemble models were much larger when working with standard mod-

els. Finally, while all of the individual component models, at any forecast horizon, incurred

significantly worse errors than the naive persistence model, the resultant ensemble models —

taking as input these very same weak learners — were generally able to outperform the naive

persistence baseline.
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Figure 13: Overall error distributions for standard individual and ensemble models across
all 187 tested locations. (A) - (C) Ridgeline plots show percent absolute error distributions at
the 1-month, 2-month, and 3-month horizons, respectively. Side tables record the mean percent
absolute error incurred.

Fig. 14 provides more granular, country-specific summaries of the standard individual and

component models’ percent absolute error distributions within each country and forecast hori-

zon. Corroborating our findings in the main manuscript, an ensemble model achieved the

lowest mean percent absolute error in 12 out of 15 tested combinations of forecast horizon and

country. The only exceptions were Malaysia at 1- and 2-months ahead, and Mexico at 1-month

ahead, where the ensembles were still unable to outperform the naive persistence model in

terms of mean percent absolute error. Nonetheless, even when the naive persistence model
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ranks higher, the error distributions of the two ensembles are visually very similar to that of

the naive persistence.

Compared to Fig. 4, we observe that the differences in variance between the two ensembles and

the standard individual component models, as measured through the spread of their ridgeline

distributions, were much more pronounced. This corroborates our continual finding that en-

sembles yield relatively larger performance improvements when provided with weaker learn-

ers as input.
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Figure 14: Country-specific error distributions for standard individual and ensemble mod-
els, organized by country and forecast horizon. Ridgeline plots show percent absolute error
distributions at the 1-month, 2-month, and 3-month horizons. Side tables record the mean per-
cent absolute error incurred. 60
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3.3 Additional Methods Details

Figure 15: Country-specific Google Trends search terms.

Country Training Period Test Period
Brazil January 2010 - December 2017 January 2018 - December 2021
Colombia January 2007 - December 2013 January 2014 - December 2017
Malaysia January 2010 - December 2017 January 2018 - December 2021
Mexico January 2013 - December 2017 January 2018 - December 2021
Peru January 2001 - December 2008 January 2009 - December 2012
Puerto Rico January 1991 - December 2008 January 2009 - December 2012
Thailand January 2003 - December 2017 January 2018 - December 2021

Table 2: Country-specific train and test periods. Specifically, the “Test Period” column denotes
the range of dates for which predictions were generated by individual component models.
Because ensemble models require an extra ensemble training window range, we generated
ensemble model predictions starting one year after the individual component model start date.
All metrics for both individual component and ensemble models presented in this paper are
computed across the ensembles models’ test prediction ranges.
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Country Ensembling Method ETW Component Models
Brazil Winner-Takes-All 2 AR, Naive, NetModel
Colombia Performance-Based Weights 3 AR, Naive
Malaysia Performance-Based Weights 1 ARGO, Naı̈ve, NetModel
Mexico Performance-Based Weights 2 AR, Naive, Seasonal
Peru Performance-Based Weights 3 Naive, Seasonal
Puerto Rico Equal Weights 0 AR, SIR
Thailand Performance-Based Weights 1 AR, ARGONet, Naive, NetModel, Seasonal
Overall Performance-Based Weights 2 AR, Naive, NetModel

Table 3: Best ensemble variants in each country for forecasting 1-month ahead using standard
component models. “ETW” refers to ensemble training window.

Country Ensembling Method ETW Component Models
Brazil Winner-Takes-All 1 AR, Naive
Colombia Winner-Takes-All 4 AR, Naive
Malaysia Performance-Based Weights 4 AR, Naive
Mexico Performance-Based Weights 1 AR, Naive, Seasonal
Peru Performance-Based Weights 1 SIR, Seasonal
Puerto Rico Equal Weights 0 SIR, Seasonal
Thailand Performance-Based Weights 3 Naive, Seasonal
Overall Performance-Based Weights 1 AR, Naive, Seasonal

Table 4: Best ensemble variants in each country for forecasting 2-months ahead using standard
component models. “ETW” refers to ensemble training window.

Country Ensembling Method ETW Component Models
Brazil Performance-Based Weights 6 Naive, Seasonal
Colombia Performance-Based Weights 3 Naive, NetModel
Malaysia Winner-Takes-All 2 AR, Naive
Mexico Performance-Based Weights 1 ARGONet, Naive, Seasonal
Peru Performance-Based Weights 1 Naı̈ve, SIR, Seasonal
Puerto Rico Performance-Based Weights 1 SIR, Seasonal
Thailand Performance-Based Weights 2 Naive, Seasonal
Overall Performance-Based Weights 2 Naive, Seasonal

Table 5: Best ensemble variants in each country for forecasting 3-months ahead using standard
component models. “ETW” refers to ensemble training window.
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Country Ensembling Method ETW Component Models
Brazil Equal Weights 0 AR, NetModel, SIR, VAR (Clust., Reg.), VAR (Reg.)
Colombia Equal Weights 0 ARGONet, SIR, VAR (Clust., Reg.), VAR (Reg.)
Malaysia Performance-Based Weights 1 ARGO, ARGONet, Naı̈ve, Seasonal, VAR (Clust., Reg.), VAR (Reg.)
Mexico Performance-Based Weights 1 ARGO, VAR (Clust., Reg.), VAR (Reg.)
Peru Performance-Based Weights 5 ARGO, NetModel, Seasonal
Puerto Rico Equal Weights 0 SIR, StackedML
Thailand Performance-Based Weights 12 NetModel, VAR (Clust., Reg.), VAR (Reg.)
Overall Equal Weights 0 ARGO, NetModel, SIR, VAR (Clust., Reg.), VAR (Reg.)

Table 6: Best ensemble variants in each country for forecasting 1-month ahead using optimized
component models. “ETW” refers to ensemble training window.

Country Ensembling Method ETW Component Models
Brazil Equal Weights 0 AR, ARGONet, SIR, StackedML, VAR (Clust., Reg.), VAR (Reg.)
Colombia Equal Weights 0 ARGONet, SIR, VAR (Clust., Reg.), VAR (Reg.)
Malaysia Equal Weights 0 AR, ARGO, ARGONet, ETS, Naı̈ve, NetModel, SIR, VAR (Clust., Reg.)
Mexico Winner-Takes-All 4 ARGONet, VAR (Clust., Reg.), VAR (Reg.)
Peru Performance-Based Weights 1 SIR, Seasonal
Puerto Rico Equal Weights 0 SIR, StackedML
Thailand Equal Weights 0 NetModel, VAR (Reg.)
Overall Equal Weights 0 ARGONet, VAR (Clust., Reg.), VAR (Reg.)

Table 7: Best ensemble variants in each country for forecasting 2-months ahead using optimized
component models. “ETW” refers to ensemble training window.

Country Ensembling Method ETW Component Models
Brazil Performance-Based Weights 12 ARGO, ARGONet, VAR (Clust., Reg.)
Colombia Performance-Based Weights 12 SIR, VAR (Clust., Reg.), VAR (Reg.)
Malaysia Performance-Based Weights 4 NetModel, StackedML, VAR (Clust., Reg.)
Mexico Winner-Takes-All 1 VAR (Clust., Reg.), VAR (Reg.)
Peru Performance-Based Weights 1 Naı̈ve, SIR, Seasonal
Puerto Rico Winner-Takes-All 12 SIR, StackedML
Thailand Performance-Based Weights 6 NetModel, StackedML, VAR (Reg.)
Overall Performance-Based Weights 1 ARGONet, VAR (Reg.)

Table 8: Best ensemble variants in each country for forecasting 3-months ahead using optimized
component models. “ETW” refers to ensemble training window.
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3.4 Optimized Models’ PAE by Country

3.4.1 1-Month Ahead

location AR ARGO ARGONet ETS Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal StackedML VAR (Clust., Reg.) VAR (Reg.)

Acre 40.0 40.0 40.2 42.9 38.2 38.2 42.9 40.5 57.2 98.9 45.9 30.3 32.8
Alagoas 26.7 26.7 25.6 38.4 24.3 24.3 38.4 24.8 31.3 121.0 28.2 26.0 28.1
Amapa 41.1 42.0 42.0 39.9 42.0 42.4 39.9 42.1 59.1 539.3 128.8 46.2 53.7
Amazonas 23.1 22.6 23.0 27.1 23.5 23.4 27.1 23.6 30.1 119.0 45.2 21.2 27.2
Bahia 22.4 23.0 20.6 42.1 24.9 24.7 42.1 20.6 33.2 51.4 33.0 33.7 31.7
Ceara 17.4 17.8 18.0 35.6 17.7 17.8 35.6 18.3 28.8 90.5 58.3 23.9 25.7
Distrito Federal 32.7 32.0 25.2 45.8 26.5 26.4 45.8 22.3 40.3 66.3 42.4 38.5 27.7
Espirito Santo 24.9 24.0 25.7 35.4 25.7 25.6 35.4 27.8 40.5 125.7 37.8 26.2 29.2
Goias 20.5 21.2 20.2 35.8 18.1 18.0 35.8 20.7 26.8 60.0 22.7 22.7 19.6
Maranhao 41.5 42.9 42.0 41.8 36.7 37.0 41.8 41.2 50.2 183.5 126.0 35.4 35.5
Mato Grosso 25.9 26.5 27.8 34.1 25.8 25.8 34.1 31.0 42.6 52.5 22.0 24.3 25.0
Mato Grosso do Sul 28.4 28.4 28.4 49.9 26.3 26.3 49.9 28.4 44.4 57.0 28.6 29.1 33.2
Minas Gerais 32.7 32.7 35.1 50.8 34.1 34.1 50.8 39.0 33.4 87.5 45.3 40.2 49.7
Para 24.7 25.7 26.1 35.5 28.1 28.2 35.5 27.2 40.4 132.7 43.3 36.7 26.4
Paraiba 25.4 25.3 24.8 37.9 22.7 22.7 37.9 24.7 29.0 75.6 37.4 23.4 32.4
Parana 29.0 29.0 29.0 50.7 25.0 25.0 50.7 29.0 34.1 67.2 40.1 32.7 35.1
Pernambuco 26.4 26.4 26.8 36.5 26.2 26.2 36.5 27.1 35.8 64.2 26.8 28.9 22.2
Piaui 27.8 27.8 26.9 44.6 23.7 23.7 44.6 26.2 34.0 109.2 53.2 29.3 32.9
Rio Grande do Norte 29.1 28.0 32.3 35.0 25.6 25.4 35.0 36.8 31.9 103.5 46.0 26.6 28.6
Rio Grande do Sul 53.0 53.0 49.1 77.1 48.6 48.6 77.1 48.1 55.9 71.1 53.2 52.8 55.2
Rio de Janeiro 33.0 30.1 33.3 45.5 30.1 30.3 45.5 38.0 40.0 420.0 120.8 34.1 39.1
Rondonia 30.2 30.1 30.1 31.2 26.2 26.2 31.2 30.1 35.6 144.8 39.5 26.6 24.6
Roraima 29.6 29.7 30.2 28.9 30.0 30.0 29.0 30.7 36.7 241.7 52.4 32.5 34.6
Santa Catarina 38.1 38.1 36.4 53.5 30.1 30.1 53.5 44.0 40.7 77.3 38.9 44.2 41.2
Sao Paulo 26.3 26.1 26.5 45.6 26.1 26.1 45.6 27.1 32.6 44.4 25.6 29.3 32.5
Sergipe 29.9 29.9 29.9 42.9 29.3 29.3 42.9 29.9 35.6 69.6 41.1 31.0 35.6
Tocantins 24.9 25.0 24.0 38.1 23.2 23.2 38.1 23.0 33.9 89.7 31.9 26.5 30.1

Table 9: 1-month ahead percent absolute errors in Brazil for optimized models. Best performing
models in each location are bolded. Lower values indicate stronger performance.

location AR ARGO ARGONet ETS Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal StackedML VAR (Clust., Reg.) VAR (Reg.)

Amazonas 39.8 39.8 40.1 - 42.6 41.9 42.8 40.4 60.4 148.3 99.8 45.2 43.8
Antioquia 17.3 17.3 17.6 - 16.7 16.6 20.5 18.0 20.0 80.8 25.7 18.8 20.6
Arauca 32.8 32.8 33.2 - 34.1 33.8 33.7 33.7 44.5 126.0 52.9 35.4 38.8
Atlantico 31.1 31.1 31.1 - 32.0 31.6 44.1 31.1 32.8 103.0 43.4 37.5 37.1
Bogota 100.3 100.3 100.3 - 111.6 109.4 103.9 100.3 158.3 612.7 528.8 89.0 98.9
Bolivar 25.8 25.8 25.8 - 25.4 25.4 30.9 25.8 30.1 83.2 31.1 32.0 34.1
Boyaca 35.5 35.5 34.9 - 32.9 33.2 34.4 35.3 33.7 80.9 36.6 37.2 38.4
Caldas 29.3 29.3 29.7 - 27.2 27.6 31.2 30.8 35.2 64.0 33.1 25.4 26.6
Caqueta 34.6 34.6 34.4 - 35.8 35.3 36.5 34.3 46.9 78.6 43.5 38.0 32.9
Casanare 30.2 30.2 29.7 - 25.3 25.6 29.3 29.7 36.7 116.7 47.9 21.4 25.6
Cauca 25.3 25.3 25.3 - 25.4 25.1 25.6 25.3 29.0 67.5 32.1 27.8 30.4
Cesar 23.8 23.9 24.9 - 24.7 24.4 27.4 27.4 29.6 86.4 27.5 25.1 30.1
Choco 27.9 27.9 27.9 - 25.8 26.0 30.0 27.9 34.3 63.7 37.5 26.9 29.5
Cordoba 31.2 32.0 31.7 - 29.7 30.0 31.0 31.4 34.8 81.1 49.2 30.4 36.6
Cundinamarca 19.2 19.2 18.9 - 18.7 18.6 21.1 19.1 26.1 56.5 17.8 22.0 20.0
Guainia 50.7 50.7 50.2 - 47.0 47.3 54.5 49.8 57.7 97.4 62.4 50.5 47.7
Guajira 38.6 38.5 38.5 - 36.4 36.5 38.4 38.7 41.0 145.2 46.4 37.7 38.9
Guaviare 38.0 38.0 38.0 - 34.3 34.4 41.0 38.0 52.4 76.2 42.8 36.2 34.2
Huila 24.7 24.7 24.7 - 22.1 22.5 23.6 24.7 28.6 67.7 28.4 - 23.7
Magdalena 36.3 36.3 35.5 - 33.3 33.7 37.5 34.7 37.2 103.6 39.9 35.1 35.8
Meta 17.3 17.3 17.6 - 17.2 17.1 20.7 17.9 21.5 78.8 19.6 20.8 19.7
Naria 30.1 30.1 30.1 - 31.1 30.5 32.0 30.1 43.7 59.0 36.0 30.7 32.0
Norte Santander 19.8 19.8 19.8 - 19.8 19.8 20.6 19.8 25.8 77.3 27.8 19.9 22.2
Putumayo 21.9 21.9 21.3 - 20.7 20.5 24.8 26.5 29.9 56.6 27.7 24.6 19.0
Quindio 16.5 16.5 16.5 - 17.4 17.2 21.4 16.5 22.0 55.4 17.7 18.7 17.8
Risaralda 24.5 24.5 24.7 - 23.3 23.6 25.7 24.9 27.9 90.9 68.5 23.9 27.0
San Andres 55.7 56.9 57.9 - 60.2 55.0 74.1 59.0 78.2 90.8 63.0 - -
Santander 13.3 13.3 13.3 - 12.0 12.0 14.2 13.3 16.4 76.6 14.4 12.9 12.5
Sucre 34.2 34.2 34.2 - 30.9 31.6 33.2 34.2 33.1 98.3 67.5 34.7 38.8
Tolima 16.4 16.4 16.4 - 18.9 18.3 19.4 16.5 28.3 46.4 18.0 18.8 18.5
Valle 18.4 18.4 18.4 - 19.8 19.5 22.5 18.4 28.3 61.7 19.5 18.6 18.4
Vaupes 160.9 160.9 160.9 - 132.0 137.8 150.0 160.9 133.5 364.0 316.9 120.0 120.0
Vichada 50.6 50.6 50.6 - 46.5 45.8 54.2 50.6 62.7 117.0 73.8 51.6 55.7

Table 10: 1-month ahead percent absolute errors in Colombia for optimized models. Best per-
forming models in each location are bolded. Lower values indicate stronger performance.
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location AR ARGO ARGONet ETS Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal StackedML VAR (Clust., Reg.) VAR (Reg.)

Johor 24.3 24.3 24.3 24.2 21.5 22.4 21.8 24.3 28.4 52.6 29.9 22.0 21.4
Kedah 26.0 26.0 26.0 29.7 25.8 24.0 28.2 26.0 36.4 49.9 36.9 23.5 24.4
Kelantan 36.7 36.7 36.1 41.8 33.2 38.1 41.8 35.6 51.1 82.8 59.8 40.4 40.1
Kuala Lumpur and Putrajaya 24.9 24.9 24.9 25.1 21.8 21.9 23.4 24.9 28.3 58.9 29.8 22.8 22.3
Labuan 56.8 56.8 56.8 53.9 58.6 61.2 65.8 56.8 71.9 109.9 103.4 60.5 66.0
Malacca - - - 25.0 20.8 20.5 21.0 - - 54.8 24.7 21.7 19.4
Negeri Sembilan 21.3 21.3 21.3 21.9 19.9 21.1 20.4 21.3 24.9 47.6 25.1 26.1 25.0
Pahang 25.1 25.0 24.8 25.9 19.7 21.7 20.3 24.6 30.0 64.3 29.0 23.3 23.8
Perak 22.9 22.9 22.9 20.4 19.9 21.0 19.4 22.9 23.2 103.3 34.1 23.8 24.1
Perlis 44.7 44.7 44.7 44.5 46.9 35.6 52.5 44.7 66.1 116.8 55.3 31.6 34.1
Pulau Pinang - - - 28.8 21.3 28.7 27.4 - - 106.3 33.4 29.1 28.2
Sabah 32.0 32.0 32.0 31.8 27.5 34.4 31.6 31.9 53.4 48.7 34.0 31.0 30.9
Sarawak 24.8 24.8 24.8 22.6 19.5 23.6 20.6 24.9 27.6 85.0 26.8 28.7 29.0
Selangor 24.4 24.4 24.4 23.2 21.7 22.7 20.8 24.4 32.5 57.6 31.2 22.4 21.6
Terengganu 38.5 38.5 38.5 38.8 41.4 37.7 39.0 38.5 45.2 172.5 64.1 38.3 38.0

Table 11: 1-month ahead percent absolute errors in Malaysia for optimized models. Best per-
forming models in each location are bolded. Lower values indicate stronger performance.

location AR ARGO ARGONet ETS Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal StackedML VAR (Clust., Reg.) VAR (Reg.)

Aguascalientes 103.2 103.2 103.2 97.6 84.7 95.4 100.8 103.3 88.1 153.9 129.4 94.1 88.2
Baja California 212.6 212.6 212.6 111.1 164.2 179.1 111.1 212.6 192.3 1911.7 1622.6 148.1 166.7
Baja California Sur 68.5 68.5 60.1 79.4 76.3 81.9 78.8 54.3 135.3 2126.3 1606.1 89.0 77.3
Campeche 68.3 68.3 71.0 70.8 66.7 68.5 74.2 73.8 91.8 418.7 101.5 60.7 61.3
Chiapas 46.8 46.8 46.9 49.6 39.2 45.3 49.7 48.5 71.7 139.8 68.3 36.5 44.5
Chihuahua 110.0 110.0 110.0 137.2 111.1 132.2 140.7 110.0 253.6 137.3 132.6 89.6 102.1
Coahuila 56.0 58.1 59.0 90.6 48.0 58.0 90.6 60.0 64.0 76.8 79.1 70.9 72.0
Colima 54.2 54.2 54.2 62.0 51.9 52.1 62.0 54.2 76.4 195.3 71.5 50.3 48.2
Durango 100.0 100.0 100.0 106.0 118.1 102.2 98.8 100.0 125.9 282.8 324.7 78.6 130.5
Guanajuato 71.2 71.2 71.1 93.7 55.1 63.1 86.4 71.1 98.0 308.3 398.6 66.8 62.2
Guerrero 51.7 51.7 51.9 56.0 53.0 44.2 56.0 52.1 56.0 151.6 90.2 47.6 55.9
Hidalgo 75.4 75.4 75.6 87.2 60.8 67.5 87.2 75.8 112.6 96.6 91.0 70.9 59.9
Jalisco 44.5 40.1 35.8 55.2 33.8 32.0 55.2 44.8 67.3 88.1 58.4 44.6 38.7
Mexico 117.9 118.1 118.0 118.7 119.5 115.7 136.3 117.9 185.1 145.6 173.5 115.5 117.3
Mexico City - - - - - - - - - - - - -
Michoacan 42.2 31.9 36.9 39.2 26.3 35.9 39.2 44.0 50.3 77.9 50.8 40.7 42.2
Morelos 48.7 47.6 48.3 61.2 46.9 48.7 61.3 49.2 73.6 62.6 48.2 47.0 46.9
Nayarit 62.1 62.1 62.1 64.0 49.8 57.1 64.3 62.1 80.3 95.3 73.0 48.5 47.7
Nuevo Leon 48.5 47.8 45.0 87.8 50.9 60.8 87.4 44.4 110.6 122.8 93.7 51.2 67.5
Oaxaca 54.3 54.3 53.3 58.8 47.9 44.9 58.7 53.2 83.4 100.4 61.1 54.1 50.6
Puebla 52.9 52.7 51.1 58.0 48.7 45.7 58.1 50.6 57.8 78.2 94.9 53.4 45.9
Queretaro 73.6 73.6 82.9 76.5 76.7 73.6 76.0 92.3 118.0 110.4 110.7 81.9 75.9
Quintana Roo 45.5 45.5 45.5 41.6 47.0 42.7 41.6 45.5 46.0 142.1 67.4 52.2 42.5
San Luis Potosi 62.9 62.9 62.9 78.8 54.5 59.5 78.7 62.9 100.2 90.4 93.5 56.7 56.5
Sinaloa 54.2 53.6 54.0 63.7 49.7 50.0 63.7 54.6 32.2 89.0 57.8 67.1 70.6
Sonora 53.9 53.9 54.6 72.6 58.6 54.0 72.5 55.2 75.7 507.9 412.1 63.5 52.6
Tabasco 53.1 53.1 53.2 54.2 52.5 53.1 54.2 53.3 66.6 233.6 57.8 50.4 51.1
Tamaulipas 63.4 63.4 63.4 62.8 58.6 50.8 62.8 63.5 68.9 147.1 132.1 55.8 55.1
Tlaxcala - - - - - - - - - - - - -
Veracruz 48.9 48.4 47.1 52.1 44.4 43.3 52.0 45.9 49.6 104.6 73.2 49.5 36.6
Yucatan 61.4 61.4 58.9 53.1 52.7 53.2 53.2 56.6 51.1 285.2 93.3 60.9 42.7
Zacatecas 113.5 113.5 113.7 105.9 102.3 96.2 107.8 113.8 214.1 192.2 206.0 103.7 109.7

Table 12: 1-month ahead percent absolute errors in Mexico for optimized models. Best per-
forming models in each location are bolded. Lower values indicate stronger performance.

location AR ARGO ARGONet ETS Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal StackedML VAR (Clust., Reg.) VAR (Reg.)

Iquitos 67.5 67.7 67.6 79.8 53.6 - 79.2 67.5 119.3 80.6 74.4 - -

Table 13: 1-month ahead percent absolute errors in Peru for optimized models. Best performing
models in each location are bolded. Lower values indicate stronger performance.

location AR ARGO ARGONet ETS Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal StackedML VAR (Clust., Reg.) VAR (Reg.)

San Juan 27.4 28.4 27.9 30.7 16.8 - 30.7 27.4 22.2 60.7 22.5 - -

Table 14: 1-month ahead percent absolute errors in Puerto Rico for optimized models. Best
performing models in each location are bolded. Lower values indicate stronger performance.
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location AR ARGO ARGONet ETS Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal StackedML VAR (Clust., Reg.) VAR (Reg.)

Amnat Charoen 43.2 43.2 43.1 56.6 49.5 49.1 56.6 44.9 65.7 99.2 62.5 56.5 58.1
Ang Thong 51.1 51.1 50.8 53.3 47.0 46.7 53.3 50.6 52.4 80.5 53.6 47.9 46.5
Bangkok 29.9 30.2 28.0 35.7 25.9 28.2 35.7 25.9 39.5 73.4 52.2 28.2 27.4
Bungkan 69.4 70.8 72.2 80.5 87.0 80.2 80.4 73.6 115.6 87.0 98.1 77.9 85.8
Buri Ram 35.0 34.3 34.0 45.8 33.6 36.5 45.8 33.9 55.7 79.1 48.6 31.1 31.2
Chachoengsao 27.8 27.8 25.9 31.5 27.2 29.5 31.5 27.2 32.7 146.7 52.1 35.2 36.9
Chai Nat 48.4 48.4 48.4 49.1 47.9 46.4 49.0 48.3 56.7 76.7 52.6 47.1 50.1
Chaiyaphum 39.1 39.0 37.0 43.6 36.7 36.5 43.6 34.9 43.0 89.3 47.3 45.0 46.8
Chanthaburi 27.6 27.6 23.5 43.3 23.2 27.1 43.3 22.4 38.8 83.2 39.7 33.6 26.1
Chiang Mai 29.1 29.1 24.6 45.1 23.1 25.8 45.1 22.8 43.8 68.5 35.1 29.2 25.7
Chiang Rai 38.6 38.6 35.0 49.6 32.0 38.9 49.6 32.9 68.3 76.9 56.0 39.5 43.8
Chon Buri 29.4 29.4 29.4 33.5 30.1 29.4 33.5 29.4 40.2 67.9 28.2 29.0 37.9
Chumphon 37.2 37.6 37.5 39.3 33.7 34.5 39.3 37.5 43.6 85.9 46.7 35.7 32.2
Kalasin 35.7 35.8 34.1 46.8 31.1 31.0 46.8 35.6 51.7 69.9 44.6 30.9 32.1
Kamphaeng Phet 45.0 43.3 37.4 42.6 33.9 35.5 42.6 33.3 47.9 132.2 69.4 40.8 33.8
Kanchanaburi 41.1 41.1 38.7 44.8 37.3 34.9 44.8 37.6 48.7 91.7 40.6 37.7 35.2
Khon Kaen 41.5 41.5 41.4 40.4 44.5 43.5 40.4 41.3 59.7 83.8 42.3 42.0 42.3
Krabi 34.0 34.0 34.0 31.5 26.7 29.3 31.5 34.0 38.9 178.0 37.3 30.2 26.1
Lampang 41.8 42.0 39.0 63.2 34.2 38.9 63.2 36.3 73.1 68.3 55.9 37.5 30.6
Lamphun 49.5 49.5 47.0 59.1 38.4 45.4 59.1 44.7 70.8 136.3 78.2 36.2 39.5
Loei 41.3 41.3 38.3 52.3 36.6 34.1 52.3 35.4 44.4 80.0 50.1 48.2 41.8
Lop Buri 41.4 41.4 41.3 41.6 40.3 39.5 41.6 41.2 54.8 72.6 47.5 39.5 39.4
Mae Hong Son 40.7 40.7 41.7 62.0 41.4 42.3 62.0 43.0 73.9 63.9 50.7 40.5 51.7
Maha Sarakham 38.8 38.8 37.7 47.3 39.8 37.0 47.3 38.3 61.8 81.4 51.3 41.5 38.8
Mukdahan 40.4 40.3 37.8 57.9 36.3 39.5 57.9 35.4 62.3 78.1 45.8 44.2 43.6
Nakhon Nayok 54.1 54.1 54.1 55.4 49.9 55.8 55.4 54.1 77.4 124.5 75.6 57.7 51.1
Nakhon Pathom 18.1 18.0 16.6 28.6 16.1 15.7 28.6 15.9 23.1 58.3 19.3 17.5 18.0
Nakhon Phanom 48.4 48.5 48.3 65.4 54.6 42.6 65.4 48.1 45.0 71.1 58.7 50.8 49.1
Nakhon Ratchasima 35.4 35.4 35.0 45.7 36.3 36.1 45.7 35.6 48.7 82.8 45.2 36.8 37.3
Nakhon Sawan 29.6 29.6 26.7 31.2 25.3 27.9 31.2 24.3 42.7 74.7 31.0 29.4 27.7
Nakhon Si Thammarat 21.1 21.1 19.9 25.1 18.7 21.4 25.1 18.8 31.0 87.2 28.8 19.9 19.2
Nan 51.0 51.0 50.8 57.0 52.5 55.0 57.0 50.6 90.6 56.2 48.4 53.7 46.6
Narathiwat 34.8 35.1 31.8 38.6 30.8 33.7 38.6 31.5 54.3 94.5 46.6 29.3 29.7
Nong Bua Lam Phu 47.3 47.6 49.4 58.9 50.6 46.5 58.9 51.3 64.2 82.8 85.2 54.3 47.9
Nong Khai 43.0 43.0 38.1 53.1 38.7 37.5 53.1 35.9 56.2 79.2 47.4 42.1 38.4
Nonthaburi 25.1 25.1 25.1 35.4 23.3 22.9 35.4 25.1 30.1 99.5 33.7 23.0 23.6
P.Nakhon S.Ayutthaya 32.7 32.7 32.4 37.1 29.1 27.2 37.1 32.0 41.6 85.3 40.0 28.9 29.9
Pathum Thani 40.1 40.1 39.8 40.1 34.0 34.1 39.9 39.4 44.2 127.9 45.7 36.2 34.9
Pattani 30.9 30.9 30.6 34.7 29.8 30.6 34.7 32.3 40.7 84.4 38.5 29.2 28.3
Phangnga 31.1 31.1 31.1 39.3 30.6 31.1 39.3 31.1 48.0 62.5 38.5 31.8 30.4
Phatthalung 43.5 43.5 43.7 47.2 39.3 43.9 47.2 44.2 63.7 135.7 57.4 38.9 40.4
Phayao 56.1 56.2 54.4 69.7 39.8 45.0 69.7 52.7 66.1 82.7 73.7 51.3 39.3
Phetchabun 37.2 38.3 34.4 51.2 32.4 33.8 51.2 30.5 53.2 77.6 40.3 39.6 36.3
Phetchaburi 32.5 32.5 32.1 29.8 31.0 29.7 29.8 32.2 35.1 94.9 34.3 29.4 30.4
Phichit 47.4 47.4 47.3 52.7 41.7 44.0 52.7 47.4 63.2 163.0 50.5 38.2 43.0
Phitsanulok 37.5 37.5 37.6 40.9 30.4 30.9 40.9 37.8 49.7 74.8 38.6 32.3 30.9
Phrae 51.6 51.5 50.4 68.2 37.4 41.6 68.2 50.0 64.3 139.2 71.5 41.9 27.3
Phuket 32.5 32.5 32.4 34.9 29.0 31.3 34.9 32.2 39.0 110.5 49.7 27.6 30.0
Prachin Buri 30.4 30.5 29.4 41.2 31.1 25.6 41.2 28.9 34.9 76.3 39.7 29.1 30.5
Prachuap Khiri Khan 31.7 31.8 31.0 32.2 27.8 29.1 32.2 30.3 35.3 83.2 38.3 32.4 27.0
Ranong 44.3 44.3 44.5 47.0 41.7 42.1 45.3 44.8 58.5 48.3 40.8 46.1 42.2
Ratchaburi 27.7 27.8 27.0 27.1 23.1 25.1 27.1 26.2 29.9 68.3 26.7 20.7 24.9
Rayong 28.9 29.0 28.9 38.0 29.8 28.7 38.0 28.9 40.4 67.2 36.3 34.8 31.1
Roi Et 30.0 30.1 29.6 44.5 29.0 31.4 44.5 29.3 52.1 74.8 38.0 29.1 28.9
Sa Kaeo 35.3 35.2 35.5 42.4 38.3 33.0 42.4 35.7 38.8 83.7 36.7 36.6 39.4
Sakon Nakhon 40.8 40.8 39.6 64.1 38.8 39.1 64.1 38.3 72.0 74.7 42.9 40.2 37.9
Samut Prakan 28.3 28.1 27.4 30.3 26.7 27.1 30.3 27.2 37.1 95.3 30.6 29.2 28.7
Samut Sakhon 24.9 24.9 24.8 28.9 24.3 24.6 28.9 24.8 39.2 73.0 29.6 23.4 24.1
Samut Songkhram 41.0 41.0 39.7 40.9 34.1 33.4 40.5 38.4 40.1 137.8 48.7 32.9 39.9
Saraburi 35.0 35.0 34.7 37.5 32.2 31.7 37.5 34.4 46.2 66.0 35.2 30.5 31.0
Satun 70.9 70.9 70.9 73.3 62.4 68.5 73.3 70.9 99.8 226.0 125.7 59.7 68.4
Si Sa Ket 31.9 31.9 30.9 42.8 32.5 33.1 42.8 30.3 54.0 85.2 43.1 30.8 31.2
Sing Buri 76.9 76.9 76.8 83.0 77.4 75.2 85.0 76.7 95.4 95.3 91.0 75.3 75.5
Songkhla 29.4 29.4 29.4 31.2 28.8 29.2 31.2 29.7 38.6 95.4 34.6 27.3 28.9
Sukhothai 37.4 37.4 35.3 43.5 34.8 31.2 43.5 34.6 39.1 56.3 31.9 35.0 36.7
Suphan Buri 24.7 24.7 24.6 31.6 23.7 22.7 31.6 24.5 33.8 45.1 26.4 24.9 23.1
Surat Thani 37.1 36.9 34.9 37.4 33.5 32.6 37.4 33.2 39.3 184.0 42.9 37.3 31.8
Surin 34.3 34.3 31.6 40.4 33.0 29.1 40.4 32.3 57.7 65.5 29.6 31.2 32.0
Tak 34.7 34.7 32.8 51.1 28.8 33.2 51.1 31.9 58.0 41.8 36.1 38.4 27.0
Trang 30.9 29.1 26.9 41.8 28.2 29.0 41.8 27.1 46.5 68.3 43.2 29.4 30.1
Trat 42.0 42.1 41.6 43.4 41.3 36.6 43.4 41.2 46.5 95.3 45.0 40.6 39.4
Ubon Ratchathani 32.9 33.1 32.6 50.7 34.0 34.9 50.7 33.0 45.1 81.3 43.3 40.7 35.7
Udon Thani 45.9 45.5 43.7 67.3 38.6 45.8 67.3 42.0 87.4 87.2 56.4 45.5 38.0
Uthai Thani 42.7 42.7 41.6 48.0 37.8 46.4 48.0 41.1 74.7 81.6 51.2 45.0 36.2
Uttaradit 44.2 44.3 40.3 55.3 38.0 42.9 55.3 37.0 73.6 49.3 45.4 42.7 39.7
Yala 31.3 31.3 31.3 34.5 30.5 28.8 34.5 31.3 40.5 77.8 35.3 32.7 30.2
Yasothon 38.2 38.1 37.1 47.1 38.6 39.2 47.1 36.2 64.6 79.1 43.4 38.1 36.2

Table 15: 1-month ahead percent absolute errors in Thailand for optimized models. Best per-
forming models in each location are bolded. Lower values indicate stronger performance.
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3.4.2 2-Month Ahead

location AR ARGO ARGONet ETS Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal StackedML VAR (Clust., Reg.) VAR (Reg.)

Acre 55.5 55.9 58.1 76.8 52.9 53.0 76.8 61.3 74.1 96.5 62.7 49.2 54.3
Alagoas 49.8 50.2 57.3 73.2 47.7 50.8 73.2 65.4 52.9 119.7 72.5 49.6 49.7
Amapa 68.6 70.2 73.6 58.6 69.6 74.0 58.5 82.4 82.7 540.8 132.4 80.5 78.6
Amazonas 35.4 33.6 33.9 44.4 33.6 31.7 44.4 40.1 51.9 116.4 99.7 29.4 35.1
Bahia 37.1 36.7 36.7 73.4 39.8 46.1 73.4 44.6 70.3 51.4 39.4 54.0 50.3
Ceara 31.7 31.9 31.6 65.6 34.2 35.3 65.6 33.1 61.9 90.7 70.4 42.8 39.6
Distrito Federal 53.8 53.7 35.1 79.6 47.4 44.0 79.6 44.5 68.8 66.2 55.3 60.4 44.9
Espirito Santo 45.3 45.3 46.3 64.8 50.4 47.4 64.8 51.5 57.8 123.6 73.0 46.2 50.7
Goias 31.1 30.5 31.9 63.6 25.4 26.0 63.6 39.6 53.0 57.8 37.8 35.0 29.3
Maranhao 69.5 70.5 60.7 72.6 63.7 56.0 72.6 52.6 97.4 180.4 138.6 58.8 57.5
Mato Grosso 48.8 49.1 61.8 62.1 47.1 47.6 62.1 80.3 80.0 52.7 39.0 45.0 41.8
Mato Grosso do Sul 50.9 51.2 53.4 92.1 46.8 47.5 92.1 57.8 81.0 56.0 59.8 52.0 53.6
Minas Gerais 55.9 57.3 70.8 99.1 61.7 63.4 99.1 86.6 74.4 86.9 70.9 60.5 67.5
Para 39.9 41.4 40.9 59.0 43.3 43.4 59.0 40.7 85.8 127.6 83.9 59.1 38.7
Paraiba 39.0 38.8 43.2 61.2 36.9 42.0 61.2 49.1 50.1 75.0 47.4 38.1 47.3
Parana 59.0 59.0 49.0 96.3 48.6 50.9 96.3 53.9 61.6 67.0 56.1 58.8 57.0
Pernambuco 40.2 40.0 40.3 63.3 39.4 40.0 63.2 41.7 65.4 64.5 60.2 44.5 37.3
Piaui 41.8 40.7 44.7 73.6 37.5 39.2 73.7 50.6 58.7 104.9 85.2 45.6 41.5
Rio Grande do Norte 47.8 47.9 47.5 61.5 45.4 44.1 61.5 47.3 62.0 103.9 93.5 43.4 45.6
Rio Grande do Sul 77.4 76.1 70.4 117.5 70.6 72.1 117.5 68.2 100.6 71.0 77.8 73.7 76.5
Rio de Janeiro 57.8 53.5 59.4 81.6 84.6 51.0 81.6 70.1 73.8 410.4 325.9 44.3 52.2
Rondonia 35.5 35.7 38.8 53.3 34.4 34.5 53.3 49.8 53.9 139.7 52.8 38.7 36.7
Roraima 42.9 42.8 50.5 42.2 44.5 46.1 42.2 58.5 53.9 228.3 82.3 43.6 48.0
Santa Catarina 66.4 65.9 42.2 100.5 57.2 55.6 100.5 46.4 86.2 77.1 66.6 66.1 64.9
Sao Paulo 54.1 56.1 58.2 85.6 50.1 53.1 85.6 64.0 76.2 44.0 60.2 51.0 53.5
Sergipe 52.3 52.3 51.6 70.2 51.8 52.9 70.2 51.0 66.7 69.2 59.0 52.2 55.5
Tocantins 46.2 45.7 46.9 68.9 44.2 46.6 68.9 51.3 61.1 87.1 57.1 48.5 51.4

Table 16: 2-month ahead percent absolute errors in Brazil for optimized models. Best perform-
ing models in each location are bolded. Lower values indicate stronger performance.

location AR ARGO ARGONet ETS Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal StackedML VAR (Clust., Reg.) VAR (Reg.)

Amazonas 49.4 49.4 58.1 - 51.3 52.9 55.0 69.4 68.1 119.2 77.6 50.3 50.6
Antioquia 32.9 32.9 37.7 - 28.5 33.9 37.5 51.2 32.9 76.3 40.5 32.0 35.7
Arauca 42.8 42.8 41.6 - 48.4 45.4 46.4 41.9 71.0 128.5 88.7 45.9 51.2
Atlantico 53.4 53.6 54.1 - 51.6 56.8 74.4 55.1 68.5 90.7 55.6 62.3 55.1
Bogota 108.6 111.4 118.8 - 115.2 103.5 96.1 126.2 163.8 431.6 368.3 87.1 104.5
Bolivar 45.3 46.3 49.6 - 41.2 48.8 50.9 54.5 47.2 79.2 45.8 48.0 49.1
Boyaca 46.8 46.5 46.8 - 43.0 45.9 45.9 51.5 54.7 78.0 42.7 47.3 48.3
Caldas 36.0 36.0 31.6 - 31.0 29.0 39.6 30.5 45.9 59.9 41.1 29.2 30.1
Caqueta 51.8 51.8 36.8 - 47.1 42.2 59.4 37.8 83.1 75.8 71.9 52.4 42.3
Casanare 53.0 53.0 40.5 - 37.0 33.5 46.6 36.8 64.4 134.3 57.5 30.2 37.5
Cauca 38.1 38.1 42.2 - 41.6 44.0 39.8 47.5 54.8 65.9 42.1 42.2 48.2
Cesar 41.2 41.2 45.8 - 42.2 44.3 44.7 53.9 57.8 84.6 50.5 39.1 48.7
Choco 40.9 40.9 40.4 - 36.0 36.3 42.3 39.9 52.1 61.5 44.3 33.9 39.1
Cordoba 46.3 51.5 49.9 - 43.0 47.9 49.2 52.5 46.2 77.7 118.5 43.7 51.5
Cundinamarca 32.1 32.1 27.9 - 28.4 29.5 35.7 27.8 42.6 50.0 32.7 33.2 29.7
Guainia 60.6 60.6 59.7 - 63.0 61.9 82.7 62.2 86.0 97.6 84.4 66.5 62.6
Guajira 57.2 56.6 58.3 - 54.9 58.8 58.4 62.4 67.9 129.4 97.0 59.1 59.4
Guaviare 52.9 52.9 50.0 - 45.9 48.4 59.3 51.7 70.8 73.3 50.0 50.8 48.1
Huila 41.0 43.5 38.9 - 37.9 37.6 40.0 35.9 55.1 66.4 44.1 - 37.8
Magdalena 58.9 58.9 59.3 - 51.9 55.5 62.0 60.9 66.1 103.3 63.5 55.2 54.7
Meta 32.0 32.0 27.7 - 26.9 29.8 34.6 24.9 38.8 75.7 44.4 33.8 29.9
Naria 36.3 36.3 33.2 - 36.7 31.7 40.9 38.6 58.4 58.9 59.2 32.9 33.4
Norte Santander 32.1 32.1 32.8 - 29.7 31.6 32.1 34.6 44.1 71.8 36.7 29.9 32.9
Putumayo 40.7 40.7 33.5 - 31.7 32.1 43.1 32.2 52.9 58.1 50.5 39.1 26.3
Quindio 29.9 29.6 29.8 - 28.8 28.7 35.2 30.7 38.9 53.2 43.8 30.4 27.0
Risaralda 38.2 37.4 43.5 - 37.3 40.2 42.8 49.7 44.2 86.0 67.5 37.9 39.9
San Andres 67.1 67.9 67.3 - 89.9 67.3 110.4 66.8 125.2 90.8 91.2 - -
Santander 22.6 22.6 21.0 - 18.2 19.5 22.3 21.4 25.7 72.6 25.8 19.4 18.9
Sucre 50.8 51.0 50.6 - 41.7 49.1 51.4 51.8 47.9 82.5 67.7 46.9 50.2
Tolima 28.8 28.8 28.0 - 29.2 27.1 30.8 28.1 50.8 41.7 32.4 27.8 27.3
Valle 33.1 33.1 32.1 - 34.0 32.4 37.6 36.2 54.8 61.8 37.2 34.5 31.3
Vaupes 176.2 176.2 160.5 - 147.1 145.3 141.7 171.6 168.0 381.9 360.5 133.8 141.7
Vichada 61.0 61.0 60.6 - 61.9 59.1 66.8 60.3 99.7 109.9 102.0 55.0 67.0

Table 17: 2-month ahead percent absolute errors in Colombia for optimized models. Best per-
forming models in each location are bolded. Lower values indicate stronger performance.
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location AR ARGO ARGONet ETS Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal StackedML VAR (Clust., Reg.) VAR (Reg.)

Johor 36.0 36.0 36.1 37.9 36.8 34.6 38.0 36.2 51.7 53.1 32.6 33.8 34.0
Kedah 36.3 35.8 35.3 41.5 35.9 34.0 42.3 34.9 60.6 53.9 35.8 33.8 34.7
Kelantan 51.6 50.8 50.1 62.6 54.9 54.1 62.6 49.9 93.7 82.2 68.1 56.7 59.5
Kuala Lumpur and Putrajaya 35.7 35.8 35.5 38.0 34.5 32.7 35.8 35.2 51.0 59.1 36.0 32.5 32.9
Labuan 73.6 74.1 76.0 66.4 77.7 78.0 84.8 78.9 106.5 151.3 148.7 82.7 78.8
Malacca - - - 37.3 34.1 31.3 34.6 - - 56.8 36.8 31.4 31.3
Negeri Sembilan 29.1 29.1 29.0 30.1 28.9 29.3 30.0 29.0 38.2 48.4 32.8 29.4 30.8
Pahang 33.9 33.8 33.1 37.8 32.9 34.7 35.9 32.5 50.9 62.7 40.0 36.0 36.1
Perak 31.2 31.2 30.8 30.1 30.1 35.4 29.1 30.3 39.5 95.1 52.4 37.5 39.7
Perlis 62.7 62.7 61.6 62.9 47.7 53.5 65.7 60.7 90.2 122.4 96.7 51.5 51.4
Pulau Pinang - - - 38.6 36.1 36.9 35.5 - - 95.0 46.3 36.6 37.1
Sabah 36.7 36.4 37.9 40.3 40.6 37.6 42.6 39.5 73.5 48.8 35.6 38.0 37.5
Sarawak 33.1 33.1 34.1 31.2 30.3 37.3 27.3 35.9 43.8 81.7 39.8 39.7 39.2
Selangor 33.1 32.7 33.1 34.3 33.2 32.6 34.0 33.4 50.4 57.5 34.6 32.1 33.0
Terengganu 48.3 48.5 47.3 45.6 46.7 52.1 47.1 46.4 57.3 171.2 83.2 54.2 55.0

Table 18: 2-month ahead percent absolute errors in Malaysia for optimized models. Best per-
forming models in each location are bolded. Lower values indicate stronger performance.

location AR ARGO ARGONet ETS Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal StackedML VAR (Clust., Reg.) VAR (Reg.)

Aguascalientes 132.8 132.8 129.1 109.4 123.4 115.6 169.7 125.4 158.8 153.9 182.4 111.8 105.9
Baja California 359.1 359.1 350.1 173.3 104.7 212.5 144.4 341.1 183.3 2130.2 1957.2 103.2 206.3
Baja California Sur 92.4 92.5 86.8 134.9 115.2 107.4 135.3 89.8 183.7 2255.8 1891.9 128.3 130.1
Campeche 79.9 79.9 85.3 80.8 74.4 81.4 75.2 90.7 83.8 421.1 112.8 81.2 80.4
Chiapas 57.9 57.5 54.7 70.2 49.4 50.3 70.3 54.6 89.3 128.0 72.9 43.3 54.8
Chihuahua 129.8 130.2 127.5 181.6 115.8 119.0 185.4 124.9 294.2 146.6 159.1 109.5 120.1
Coahuila 86.6 87.0 88.5 143.6 88.4 89.2 143.6 91.1 127.7 76.5 82.8 94.8 95.2
Colima 71.2 71.2 69.3 89.1 63.8 63.5 89.1 70.0 97.9 194.5 90.7 61.3 64.9
Durango 138.6 138.8 135.3 162.2 129.7 133.9 188.2 131.8 218.5 317.5 320.9 124.4 146.6
Guanajuato 194.8 193.2 185.7 276.7 156.7 173.3 267.3 181.5 268.1 539.7 626.3 188.1 148.3
Guerrero 67.4 66.9 66.8 76.8 66.4 63.9 76.9 68.1 86.2 143.7 82.7 64.9 66.1
Hidalgo 93.7 93.8 94.2 128.2 80.9 81.0 128.2 94.8 151.2 96.4 102.4 84.3 70.7
Jalisco 70.5 85.7 68.2 102.3 61.7 59.7 102.2 60.0 105.9 87.3 73.8 71.3 58.5
Mexico 113.9 113.7 113.4 118.5 115.5 112.9 159.4 113.1 250.0 138.7 153.2 108.0 117.5
Mexico City - - - - - - - - - - - - -
Michoacan 63.7 62.3 56.0 71.0 57.9 57.4 71.0 62.3 79.8 75.6 60.1 61.3 61.6
Morelos 69.8 70.0 69.9 95.8 62.6 64.1 95.8 69.9 105.6 61.8 68.4 64.8 62.6
Nayarit 79.0 79.0 73.6 90.0 62.8 66.6 90.0 72.4 120.1 95.0 83.5 65.2 64.1
Nuevo Leon 85.3 80.5 95.2 143.7 91.1 83.7 143.3 118.3 147.0 128.1 118.4 78.6 84.2
Oaxaca 71.5 80.1 69.4 93.0 58.3 59.8 92.9 62.4 108.4 96.2 99.0 68.9 57.2
Puebla 76.5 76.4 71.8 110.5 69.2 71.2 110.5 67.6 121.0 79.4 81.7 75.3 67.1
Queretaro 99.5 102.0 100.5 123.7 96.6 99.2 107.5 100.6 133.7 114.3 117.3 99.4 97.6
Quintana Roo 69.3 69.3 67.9 64.3 61.0 61.2 64.4 66.6 63.9 135.9 78.6 62.4 54.0
San Luis Potosi 89.8 89.8 86.2 106.7 78.5 79.2 106.7 82.7 140.7 92.4 94.8 76.2 75.7
Sinaloa 80.7 80.9 83.5 94.5 87.7 87.4 93.4 86.4 74.8 87.9 84.7 92.7 88.9
Sonora 90.3 91.2 90.9 137.4 94.8 95.8 137.3 94.8 127.9 505.9 279.0 106.3 90.2
Tabasco 78.7 85.2 79.4 74.3 77.1 78.0 74.2 76.8 113.3 234.2 72.7 79.4 76.8
Tamaulipas 90.0 89.9 89.5 112.4 78.1 79.1 112.4 89.4 103.6 144.6 104.0 76.2 82.5
Tlaxcala - - - - - - - - - - - - -
Veracruz 57.7 54.6 54.7 80.5 49.1 52.9 80.5 55.8 78.1 106.4 82.7 69.0 45.7
Yucatan 74.2 73.2 71.4 86.5 61.3 67.8 86.9 83.2 74.7 286.4 134.5 79.5 60.1
Zacatecas 123.1 123.9 122.3 111.7 118.3 117.1 192.9 120.7 304.8 190.9 201.2 111.2 118.8

Table 19: 2-month ahead percent absolute errors in Mexico for optimized models. Best per-
forming models in each location are bolded. Lower values indicate stronger performance.

location AR ARGO ARGONet ETS Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal StackedML VAR (Clust., Reg.) VAR (Reg.)

Iquitos 72.5 72.3 68.7 101.8 52.8 - 101.3 68.8 132.6 80.6 82.6 - -

Table 20: 2-month ahead percent absolute errors in Peru for optimized models. Best performing
models in each location are bolded. Lower values indicate stronger performance.

location AR ARGO ARGONet ETS Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal StackedML VAR (Clust., Reg.) VAR (Reg.)

San Juan 79.3 67.1 54.0 55.1 31.7 - 55.1 47.5 42.0 60.6 39.7 - -

Table 21: 2-month ahead percent absolute errors in Puerto Rico for optimized models. Best
performing models in each location are bolded. Lower values indicate stronger performance.
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location AR ARGO ARGONet ETS Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal StackedML VAR (Clust., Reg.) VAR (Reg.)

Amnat Charoen 57.6 57.7 71.5 87.7 82.0 73.3 87.7 92.1 94.5 99.7 87.3 75.9 74.7
Ang Thong 58.1 58.1 58.0 75.2 55.8 55.6 74.8 60.0 91.9 78.5 80.2 58.1 53.4
Bangkok 48.7 48.3 43.3 60.0 38.7 39.5 60.0 40.1 71.1 76.2 62.5 39.7 38.4
Bungkan 87.6 87.6 88.4 118.8 116.4 109.5 118.8 92.2 186.9 89.0 145.2 100.5 140.9
Buri Ram 45.8 47.2 46.7 72.1 49.2 45.8 72.1 52.1 105.2 81.5 73.4 49.9 46.8
Chachoengsao 45.2 45.2 41.5 54.0 44.7 47.0 54.0 40.5 53.0 140.9 76.0 54.4 49.7
Chai Nat 63.9 63.9 58.6 76.8 57.2 58.4 76.2 57.4 85.3 73.0 56.1 60.3 57.6
Chaiyaphum 55.3 55.3 55.0 78.3 58.3 59.8 78.3 54.7 70.6 88.5 79.8 66.8 62.5
Chanthaburi 38.3 38.3 36.2 79.3 38.5 40.8 79.3 36.7 78.1 81.2 40.3 51.9 42.4
Chiang Mai 46.2 46.7 39.8 87.0 38.7 40.2 87.0 43.4 85.9 68.9 55.4 48.5 36.0
Chiang Rai 59.9 60.0 48.3 93.2 50.0 57.4 93.2 41.2 124.5 77.2 60.1 66.4 59.6
Chon Buri 45.2 45.2 45.4 53.9 48.2 47.0 53.9 45.5 67.4 66.7 43.2 46.5 55.5
Chumphon 50.6 49.9 47.7 52.4 43.2 45.3 52.4 46.1 63.3 80.2 54.2 48.2 41.1
Kalasin 43.2 43.2 40.5 74.0 43.2 43.3 74.0 41.1 95.9 71.9 62.5 50.6 46.2
Kamphaeng Phet 68.9 63.2 49.5 72.5 41.1 52.5 72.5 41.5 93.1 141.6 84.1 67.2 46.4
Kanchanaburi 54.8 51.9 49.7 70.2 48.2 50.4 70.2 49.2 79.1 86.8 57.6 59.4 47.3
Khon Kaen 59.2 59.2 53.2 62.2 55.7 55.8 62.2 53.8 83.8 86.0 68.6 58.7 57.7
Krabi 62.2 62.2 62.3 50.0 52.2 51.5 50.0 62.5 67.7 198.3 63.2 51.5 43.1
Lampang 56.6 56.7 46.8 107.4 47.0 50.0 107.4 46.2 106.1 69.3 64.8 59.8 49.7
Lamphun 62.9 63.3 38.9 90.1 35.0 39.2 90.1 32.9 113.6 130.4 113.2 45.7 42.8
Loei 52.3 52.4 51.9 98.2 57.1 59.2 98.2 54.6 100.3 79.1 62.7 69.3 62.2
Lop Buri 57.9 57.9 51.6 66.9 45.1 46.0 66.9 47.7 81.2 73.8 49.7 46.9 43.7
Mae Hong Son 62.8 62.8 65.8 107.8 73.5 66.3 107.8 75.3 136.0 64.2 60.7 64.8 72.9
Maha Sarakham 59.4 59.5 56.5 79.6 52.0 55.0 79.6 56.1 99.4 80.6 76.0 62.1 48.2
Mukdahan 54.8 54.8 48.2 94.9 60.1 57.4 94.9 57.7 115.6 79.3 62.8 65.3 64.4
Nakhon Nayok 80.2 80.2 74.7 91.8 71.6 74.2 95.6 71.8 140.1 138.0 95.7 77.6 71.9
Nakhon Pathom 34.1 34.0 29.7 49.4 27.1 26.2 49.4 29.7 42.3 54.5 32.4 25.3 25.6
Nakhon Phanom 58.9 58.9 60.2 110.8 72.1 70.2 110.8 63.3 96.9 71.0 77.9 71.4 81.3
Nakhon Ratchasima 51.3 51.4 51.9 72.8 54.1 53.2 72.8 53.9 85.8 81.5 69.8 55.4 54.6
Nakhon Sawan 45.2 45.0 39.6 55.9 38.5 38.2 55.9 39.7 67.5 76.2 49.2 41.4 39.6
Nakhon Si Thammarat 32.7 32.6 30.6 40.5 29.3 29.4 40.5 29.9 48.9 86.5 45.4 30.9 29.0
Nan 76.0 76.0 67.1 87.9 66.1 69.0 87.9 70.4 148.4 64.5 70.3 79.2 70.7
Narathiwat 51.5 51.6 42.1 60.3 35.4 40.2 60.3 37.0 85.3 89.3 60.3 45.8 35.3
Nong Bua Lam Phu 62.9 63.0 59.7 90.4 59.3 64.7 90.4 56.6 124.8 78.8 76.9 72.6 62.2
Nong Khai 61.1 61.2 54.4 84.3 54.1 57.8 84.3 52.1 86.7 79.4 63.2 64.5 57.2
Nonthaburi 44.1 44.1 36.9 66.7 36.0 33.6 66.7 40.2 62.8 92.4 63.3 35.2 32.9
P.Nakhon S.Ayutthaya 44.1 44.1 39.6 58.2 38.3 38.7 58.2 37.8 54.5 77.7 51.0 39.0 39.5
Pathum Thani 51.4 51.4 43.6 59.4 36.2 38.4 59.2 37.5 56.0 121.0 68.1 39.0 36.2
Pattani 46.8 46.8 47.8 55.5 48.1 44.3 55.5 56.3 73.4 84.8 60.2 44.4 42.1
Phangnga 48.9 48.9 47.4 60.6 44.7 45.7 60.7 45.8 84.2 62.6 48.2 46.1 43.9
Phatthalung 57.2 57.2 51.7 57.0 48.7 50.5 57.0 51.1 82.7 128.3 81.4 53.4 48.9
Phayao 82.2 82.1 77.2 107.7 68.2 69.6 107.7 77.4 119.2 79.6 77.3 71.9 60.8
Phetchabun 55.8 62.2 58.3 88.4 53.4 58.3 88.4 54.7 92.2 76.3 39.7 65.8 52.8
Phetchaburi 43.8 44.0 43.0 40.7 40.8 40.2 40.7 43.3 56.6 100.9 47.8 38.9 39.6
Phichit 85.3 85.6 72.2 84.5 62.1 66.2 84.5 67.3 105.3 167.8 132.7 72.8 60.0
Phitsanulok 54.0 53.7 45.3 72.8 42.5 41.4 72.8 47.1 81.3 75.2 62.7 52.5 39.0
Phrae 88.7 87.7 66.5 120.3 54.6 60.8 120.3 57.4 125.7 141.9 111.4 69.7 52.6
Phuket 46.8 46.8 45.1 51.6 42.0 42.1 51.6 43.6 70.8 113.1 66.1 41.3 41.7
Prachin Buri 50.2 50.2 46.2 73.5 43.0 44.3 73.5 43.8 80.1 76.7 61.7 45.8 42.6
Prachuap Khiri Khan 45.2 45.5 38.1 46.8 33.6 38.2 46.8 35.9 54.0 81.7 60.9 45.4 33.0
Ranong 54.9 54.9 56.3 69.2 55.1 53.9 68.3 60.5 101.8 49.4 51.5 57.7 50.9
Ratchaburi 35.9 36.9 33.3 40.3 33.0 31.0 40.3 34.7 42.5 66.7 35.6 27.8 32.6
Rayong 42.9 43.1 41.2 61.1 39.6 43.3 61.1 40.3 78.4 63.0 49.1 51.4 40.1
Roi Et 50.4 50.9 43.8 80.5 42.1 47.7 80.5 40.0 87.0 73.2 56.2 54.0 46.9
Sa Kaeo 56.8 59.1 59.1 73.8 56.0 56.7 73.8 59.2 75.3 84.2 64.2 58.6 53.1
Sakon Nakhon 59.0 59.1 62.8 108.4 64.2 65.1 108.4 67.3 116.6 73.6 60.6 70.7 63.3
Samut Prakan 49.6 48.8 40.4 52.8 35.8 39.7 52.8 34.5 62.7 92.3 52.9 41.9 38.2
Samut Sakhon 36.3 36.3 33.3 41.5 30.0 31.1 41.5 31.4 50.6 68.8 34.3 31.1 30.0
Samut Songkhram 67.6 67.3 64.8 68.0 63.0 60.8 67.7 62.4 68.0 140.6 79.1 54.2 63.5
Saraburi 55.2 55.3 48.3 66.8 40.9 43.3 66.8 41.9 73.5 65.5 52.9 41.8 40.7
Satun 84.0 84.0 83.1 87.4 74.1 76.0 87.4 82.3 117.5 222.3 87.3 79.2 67.3
Si Sa Ket 41.2 40.7 38.8 74.4 40.8 39.9 74.4 40.4 91.4 87.9 64.2 45.7 41.5
Sing Buri 86.8 86.8 87.4 104.9 84.9 84.1 118.7 88.1 135.9 91.8 77.4 83.9 82.1
Songkhla 48.5 48.2 48.8 53.0 45.6 43.3 53.0 49.9 67.2 86.8 54.2 42.1 41.3
Sukhothai 54.6 54.6 49.6 73.4 46.2 48.9 73.4 45.4 65.2 58.5 48.6 51.6 47.1
Suphan Buri 36.9 36.9 32.8 52.9 31.4 30.6 52.3 32.9 55.4 46.7 35.2 29.9 30.4
Surat Thani 59.7 60.6 54.8 59.2 49.1 53.4 59.2 50.7 70.0 186.7 80.6 61.0 48.6
Surin 51.2 51.2 43.8 74.3 41.3 44.1 74.3 44.1 90.3 64.2 51.2 48.6 41.2
Tak 45.4 46.4 40.0 84.1 36.9 45.5 84.1 37.1 106.6 43.0 38.1 62.5 37.9
Trang 50.4 49.0 43.8 69.4 44.7 46.0 69.4 46.2 90.4 69.9 57.0 54.0 45.4
Trat 52.4 52.5 51.8 73.9 49.3 49.3 73.9 52.2 73.6 88.8 66.5 49.0 48.0
Ubon Ratchathani 54.8 56.2 53.3 85.8 55.2 55.1 85.7 59.2 80.1 81.7 67.2 64.2 54.7
Udon Thani 60.7 62.9 56.9 104.7 58.9 59.5 104.7 65.0 134.7 85.7 71.0 63.2 59.9
Uthai Thani 61.9 62.0 55.3 74.2 50.5 54.1 74.2 52.7 108.6 86.6 63.1 63.8 48.9
Uttaradit 49.1 49.2 45.5 83.0 47.4 49.5 83.0 47.7 112.3 50.3 44.7 54.3 51.4
Yala 40.6 40.9 41.5 62.4 44.1 42.5 62.4 44.1 71.4 79.0 49.7 46.2 44.0
Yasothon 54.7 54.3 50.7 78.3 49.3 53.8 78.3 49.8 109.8 81.1 63.5 63.5 50.6

Table 22: 2-month ahead percent absolute errors in Thailand for optimized models. Best per-
forming models in each location are bolded. Lower values indicate stronger performance.
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3.4.3 3-Month Ahead

location AR ARGO ARGONet ETS Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal StackedML VAR (Clust., Reg.) VAR (Reg.)

Acre 63.6 65.7 63.9 104.1 60.0 62.9 104.1 64.3 101.2 97.0 74.6 68.0 69.3
Alagoas 68.7 69.0 60.1 101.3 60.9 63.3 101.3 57.4 79.8 119.1 80.9 72.0 67.0
Amapa 93.2 93.6 100.8 68.7 97.5 111.2 68.6 111.6 111.8 544.3 264.7 114.9 117.7
Amazonas 47.9 47.6 42.9 60.6 42.0 39.1 60.6 43.7 77.3 116.9 96.3 40.8 43.7
Bahia 47.1 44.2 53.6 97.8 54.6 57.3 97.8 66.2 106.8 51.4 44.2 67.6 61.7
Ceara 40.2 41.2 40.8 91.2 43.1 45.6 91.2 42.3 90.5 90.2 87.1 57.7 50.5
Distrito Federal 69.2 67.0 51.3 108.8 54.8 52.2 108.8 52.2 96.6 66.2 63.8 70.2 57.1
Espirito Santo 61.2 60.9 60.0 87.4 60.1 61.5 87.4 59.1 90.8 122.1 94.3 59.7 64.8
Goias 38.9 33.9 28.6 88.3 31.0 30.6 88.3 36.6 92.2 58.1 47.9 43.6 35.5
Maranhao 72.4 72.9 71.3 95.7 58.3 68.8 95.7 74.2 142.7 178.7 96.4 67.6 63.7
Mato Grosso 54.5 54.8 67.3 86.8 56.8 59.8 86.8 86.8 104.6 52.9 46.1 54.6 55.7
Mato Grosso do Sul 67.6 67.5 68.1 123.1 69.5 65.9 123.1 72.2 128.3 55.6 57.5 69.6 66.7
Minas Gerais 71.3 70.2 69.9 128.7 68.4 74.5 128.7 76.6 120.6 86.9 80.2 73.1 76.6
Para 41.5 42.8 40.3 77.7 45.1 43.6 77.7 40.0 121.6 125.2 67.4 73.7 45.0
Paraiba 47.4 47.1 53.7 82.9 47.9 52.9 82.9 67.9 75.5 74.6 59.6 44.4 52.3
Parana 74.0 72.9 65.6 120.0 70.0 66.3 120.0 70.1 94.5 67.0 60.8 74.0 68.2
Pernambuco 43.5 43.4 42.7 82.2 44.9 43.1 82.2 56.8 94.9 64.3 59.0 53.8 45.6
Piaui 51.8 51.6 57.7 101.5 55.5 55.6 101.5 68.6 107.0 104.8 96.7 56.6 56.3
Rio Grande do Norte 65.6 65.0 62.1 81.8 59.0 56.7 81.8 66.0 82.1 106.8 107.2 60.9 55.7
Rio Grande do Sul 80.0 76.2 74.1 148.0 78.6 76.5 148.0 73.5 127.8 71.0 81.8 80.7 82.5
Rio de Janeiro 76.6 74.2 82.3 102.2 68.3 74.3 102.2 102.8 109.4 415.6 216.8 52.7 63.3
Rondonia 45.1 46.9 50.6 71.9 47.5 49.9 71.9 58.2 81.0 140.3 69.6 54.5 47.6
Roraima 59.2 59.3 60.6 55.7 61.4 62.6 55.7 73.4 67.9 229.7 90.8 58.3 60.3
Santa Catarina 77.5 76.9 49.8 122.2 55.4 64.3 122.2 53.3 132.2 77.0 73.9 77.1 78.0
Sao Paulo 67.4 68.0 66.8 113.2 64.5 62.5 113.2 73.8 123.3 44.0 53.7 64.9 62.8
Sergipe 74.8 71.0 71.4 96.1 76.0 69.8 96.1 78.9 102.3 68.9 66.6 69.6 69.5
Tocantins 61.9 62.3 68.8 91.9 63.0 64.5 91.9 78.0 77.6 86.0 64.4 62.2 62.4

Table 23: 3-month ahead percent absolute errors in Brazil for optimized models. Best perform-
ing models in each location are bolded. Lower values indicate stronger performance.

location AR ARGO ARGONet ETS Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal StackedML VAR (Clust., Reg.) VAR (Reg.)

Amazonas 64.8 64.8 63.3 - 56.8 65.6 67.3 74.5 82.1 111.8 94.5 53.1 55.8
Antioquia 43.7 43.5 42.1 - 39.4 43.0 51.8 46.6 43.6 74.5 42.7 43.2 46.2
Arauca 43.0 43.0 41.2 - 50.8 43.9 49.4 41.7 82.7 127.3 102.1 47.4 47.4
Atlantico 65.9 65.9 59.9 - 69.6 62.7 96.6 58.7 112.5 85.5 67.0 70.7 69.5
Bogota 75.6 72.1 110.0 - 63.2 91.0 80.0 148.0 118.7 230.6 210.1 52.1 59.5
Bolivar 58.5 64.2 57.1 - 52.0 56.8 66.8 53.5 63.5 70.7 54.7 55.0 55.5
Boyaca 54.9 55.2 53.0 - 54.2 53.5 58.0 57.1 74.0 74.8 53.0 57.5 53.6
Caldas 37.3 37.3 35.2 - 33.3 34.1 39.9 37.1 57.9 60.7 42.3 35.2 35.7
Caqueta 60.4 60.4 50.9 - 63.2 53.9 74.6 52.3 105.8 72.8 57.6 62.1 58.3
Casanare 78.0 78.0 54.8 - 48.0 59.6 62.6 38.7 89.9 137.3 84.7 43.8 65.9
Cauca 49.8 49.8 53.9 - 50.1 48.9 49.6 59.0 68.1 64.6 52.5 51.2 50.3
Cesar 51.1 51.2 46.5 - 43.4 46.5 57.7 49.2 81.1 80.4 51.4 41.7 49.6
Choco 48.6 48.6 44.6 - 44.3 42.2 54.5 46.9 76.2 61.0 60.5 42.8 44.8
Cordoba 63.1 58.8 65.7 - 53.2 56.8 62.7 72.7 63.8 64.7 95.4 52.3 51.0
Cundinamarca 38.2 38.2 34.7 - 38.6 35.6 47.1 37.4 54.1 48.8 39.7 40.5 40.2
Guainia 69.7 69.7 66.1 - 72.6 72.1 105.4 66.5 109.8 94.5 102.6 76.2 72.4
Guajira 60.3 59.0 69.3 - 55.0 66.0 66.2 80.1 86.9 110.8 92.8 58.9 54.2
Guaviare 60.8 60.8 56.3 - 58.6 54.7 70.9 55.1 89.9 73.5 65.4 57.4 53.8
Huila 56.2 56.1 54.1 - 51.2 47.4 51.8 54.2 80.9 69.2 56.4 - 47.8
Magdalena 64.7 64.1 63.1 - 61.2 64.3 76.9 67.7 90.9 100.2 94.6 59.7 63.3
Meta 46.2 46.2 33.6 - 36.1 35.6 46.4 27.4 55.9 73.7 56.7 43.2 42.4
Naria 42.1 42.1 36.1 - 38.4 38.5 48.6 42.7 62.6 56.9 59.0 37.5 37.9
Norte Santander 37.3 36.5 39.0 - 35.4 40.1 37.8 45.3 54.9 63.5 41.9 32.8 37.0
Putumayo 49.9 49.5 39.2 - 38.2 38.6 57.1 46.5 66.8 57.2 57.8 49.8 40.5
Quindio 42.7 43.1 42.1 - 39.1 39.3 45.0 42.7 61.5 53.7 56.3 40.1 38.2
Risaralda 46.0 46.1 55.6 - 46.8 55.8 57.0 66.7 55.8 84.4 67.0 49.8 50.9
San Andres 74.5 78.3 81.9 - 159.4 81.9 130.1 87.6 159.4 92.2 93.3 - -
Santander 30.5 30.5 28.7 - 26.1 28.2 29.9 31.2 33.2 71.2 39.9 25.1 28.6
Sucre 62.0 62.2 51.9 - 47.1 56.3 62.8 52.3 76.1 66.9 75.8 47.1 48.3
Tolima 36.9 36.9 37.0 - 32.9 36.5 39.6 39.0 64.2 40.2 38.3 33.1 32.7
Valle 42.6 41.7 43.8 - 42.8 42.3 50.6 54.4 69.4 61.4 41.9 45.2 45.1
Vaupes 174.4 174.4 207.0 - 151.3 155.9 125.0 243.7 134.4 356.8 350.3 139.7 139.7
Vichada 70.9 70.9 77.4 - 57.4 62.6 78.6 88.8 133.7 106.4 114.8 60.1 56.3

Table 24: 3-month ahead percent absolute errors in Colombia for optimized models. Best per-
forming models in each location are bolded. Lower values indicate stronger performance.
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location AR ARGO ARGONet ETS Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal StackedML VAR (Clust., Reg.) VAR (Reg.)

Johor 42.1 42.1 41.1 43.9 34.0 40.0 45.0 40.5 67.5 51.9 36.2 37.9 38.7
Kedah 41.8 41.5 39.8 43.9 43.7 39.1 52.7 39.7 71.9 50.0 46.1 38.2 37.9
Kelantan 61.0 59.5 57.5 74.0 58.8 62.7 74.0 58.4 108.5 81.4 74.2 63.7 63.8
Kuala Lumpur and Putrajaya 39.9 42.8 38.7 42.2 35.7 38.7 42.6 35.3 66.2 57.9 36.8 38.0 37.5
Labuan 88.9 88.3 90.5 73.8 90.7 98.4 99.9 94.8 142.0 173.3 142.1 100.6 104.0
Malacca - - - 43.7 37.2 36.6 41.6 - - 55.9 40.7 37.0 36.6
Negeri Sembilan 33.9 34.0 32.7 34.9 30.9 32.6 35.3 33.1 51.1 44.7 32.6 30.8 31.4
Pahang 41.7 42.0 41.3 46.6 41.1 41.2 45.8 40.5 61.9 60.9 44.9 41.0 40.5
Perak 38.6 38.6 39.4 35.6 41.8 40.6 35.1 43.2 53.0 89.3 55.9 43.3 46.2
Perlis 69.4 69.4 69.1 67.4 61.3 63.7 70.4 68.9 116.4 112.1 91.5 62.4 62.5
Pulau Pinang - - - 49.8 43.3 45.1 50.0 - - 88.3 49.2 43.4 45.1
Sabah 38.2 38.4 40.0 42.1 36.8 43.0 48.3 43.7 85.6 49.6 37.8 40.9 42.2
Sarawak 45.5 45.6 45.0 42.3 38.1 46.0 39.0 47.9 57.6 81.1 40.0 51.0 49.0
Selangor 37.0 37.0 36.4 36.1 35.7 37.7 38.1 36.1 63.6 54.0 35.6 35.9 36.6
Terengganu 59.4 65.2 61.0 55.2 54.6 62.5 56.9 56.8 72.5 179.3 132.8 62.2 62.9

Table 25: 3-month ahead percent absolute errors in Malaysia for optimized models. Best per-
forming models in each location are bolded. Lower values indicate stronger performance.

location AR ARGO ARGONet ETS Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal StackedML VAR (Clust., Reg.) VAR (Reg.)

Aguascalientes 135.9 135.9 133.3 115.0 117.6 103.8 188.2 130.7 195.8 153.9 186.3 117.6 111.8
Baja California 521.6 521.6 530.5 223.3 117.9 202.9 255.6 635.6 281.7 2029.3 1974.3 275.2 196.6
Baja California Sur 67.4 67.3 77.1 161.5 124.1 102.9 161.7 92.5 174.0 1944.7 1699.5 130.9 143.5
Campeche 91.5 91.5 95.2 100.1 83.4 90.1 104.1 99.6 127.1 420.2 132.5 89.9 83.4
Chiapas 58.4 59.0 48.0 89.0 59.5 59.6 89.1 48.3 113.9 118.8 88.6 50.7 62.1
Chihuahua 146.1 146.6 137.9 209.4 121.6 131.5 215.0 129.2 344.5 155.4 168.7 118.8 127.3
Coahuila 94.4 94.1 90.1 146.6 102.9 92.3 146.7 87.7 157.7 77.0 81.3 101.2 103.0
Colima 75.8 75.8 70.2 107.9 72.2 77.4 107.9 72.3 129.8 189.6 77.1 66.1 76.9
Durango 221.4 220.8 220.0 280.8 199.3 216.6 319.5 219.3 427.6 483.8 617.6 197.4 221.3
Guanajuato 334.1 330.5 335.1 538.9 274.7 290.8 546.7 347.7 721.4 812.1 945.2 313.7 258.9
Guerrero 86.9 81.7 78.2 94.1 79.2 75.7 94.2 82.6 118.4 146.9 118.8 78.0 74.5
Hidalgo 94.6 94.7 92.5 147.6 83.0 89.8 147.6 92.3 196.6 101.3 110.9 97.1 83.0
Jalisco 77.1 74.5 65.7 140.2 72.0 66.6 140.3 59.7 133.6 85.6 87.7 81.9 71.5
Mexico 113.7 114.5 111.7 122.1 113.5 104.8 156.9 112.4 242.6 142.0 163.6 112.4 106.1
Mexico City - - - - - - - - - - - - -
Michoacan 68.7 70.1 76.2 97.7 74.0 75.5 97.8 86.5 100.6 74.4 61.9 75.1 72.9
Morelos 77.9 77.7 74.2 117.5 73.1 71.6 117.5 73.1 159.5 61.7 72.6 73.6 73.3
Nayarit 81.4 81.4 80.0 111.1 72.9 76.1 112.1 81.7 170.3 93.8 91.6 71.6 70.7
Nuevo Leon 94.6 102.2 102.6 189.1 98.1 91.1 188.6 108.3 203.1 140.6 136.5 96.2 95.6
Oaxaca 81.8 82.9 75.0 116.2 71.1 67.3 116.2 69.8 143.7 91.2 94.8 74.7 65.9
Puebla 94.8 94.0 94.5 144.3 88.2 87.6 144.4 97.0 177.7 81.4 92.0 91.1 86.1
Queretaro 111.7 111.0 110.3 157.6 106.0 107.6 141.6 109.7 131.1 114.2 116.9 105.4 106.5
Quintana Roo 85.5 85.5 74.7 92.0 71.8 66.3 92.0 77.0 69.9 134.7 88.6 68.1 67.2
San Luis Potosi 96.7 96.5 87.8 115.1 83.3 83.5 115.1 84.7 110.3 93.6 103.3 81.6 84.5
Sinaloa 89.4 90.0 87.1 115.8 99.1 90.2 117.3 85.3 109.2 88.1 101.4 100.5 95.1
Sonora 113.9 113.9 112.3 167.5 117.7 113.8 167.5 111.7 162.2 535.1 160.1 133.1 108.1
Tabasco 82.8 81.0 78.8 82.2 79.0 79.1 82.2 78.8 116.9 237.4 89.0 86.7 84.9
Tamaulipas 99.4 99.4 102.5 139.7 88.3 94.1 139.7 105.7 145.1 143.9 106.5 87.9 94.5
Tlaxcala - - - - - - - - - - - - -
Veracruz 72.1 59.4 55.0 108.9 59.8 54.4 108.9 55.3 73.9 107.7 89.6 75.3 53.2
Yucatan 93.8 93.8 96.8 124.4 77.0 85.6 124.4 103.8 115.8 288.2 173.1 91.8 78.4
Zacatecas 119.3 119.3 117.2 114.3 112.2 113.4 196.4 115.4 308.5 189.6 204.0 111.0 115.7

Table 26: 3-month ahead percent absolute errors in Mexico for optimized models. Best per-
forming models in each location are bolded. Lower values indicate stronger performance.

location AR ARGO ARGONet ETS Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal StackedML VAR (Clust., Reg.) VAR (Reg.)

Iquitos 86.3 85.0 78.1 120.9 69.7 - 120.3 82.8 165.3 81.4 86.2 - -

Table 27: 3-month ahead percent absolute errors in Peru for optimized models. Best performing
models in each location are bolded. Lower values indicate stronger performance.

location AR ARGO ARGONet ETS Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal StackedML VAR (Clust., Reg.) VAR (Reg.)

San Juan 106.6 89.7 79.2 76.8 43.9 - 76.8 74.1 67.6 59.9 43.9 - -

Table 28: 3-month ahead percent absolute errors in Puerto Rico for optimized models. Best
performing models in each location are bolded. Lower values indicate stronger performance.
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location AR ARGO ARGONet ETS Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal StackedML VAR (Clust., Reg.) VAR (Reg.)

Amnat Charoen 68.8 68.8 63.6 107.1 64.4 66.6 107.1 65.6 143.0 100.9 95.1 91.1 73.6
Ang Thong 63.7 64.8 62.9 88.0 71.7 60.0 91.6 63.2 124.2 81.5 82.6 63.1 59.1
Bangkok 65.8 65.1 53.8 75.6 49.6 43.8 75.6 45.2 90.4 74.6 72.5 47.2 43.9
Bungkan 98.1 98.0 107.9 151.1 106.8 142.8 151.1 118.1 205.3 88.7 147.7 115.3 147.8
Buri Ram 56.2 57.4 53.8 94.4 56.6 55.9 94.4 55.1 131.2 82.2 81.2 70.7 55.9
Chachoengsao 64.3 64.4 49.6 74.3 52.4 49.0 74.3 42.8 85.8 148.0 101.3 81.4 63.3
Chai Nat 67.5 66.9 64.7 102.9 62.4 61.8 103.8 66.1 119.4 72.3 66.5 66.3 62.8
Chaiyaphum 66.5 66.6 59.6 102.7 63.8 61.4 102.7 55.3 88.8 88.2 70.0 80.1 72.4
Chanthaburi 50.0 50.0 51.3 106.5 51.2 56.9 106.5 54.5 127.0 81.3 47.7 70.1 55.8
Chiang Mai 57.9 58.3 44.9 119.9 37.5 48.5 119.9 53.6 125.4 68.8 68.7 63.1 50.9
Chiang Rai 73.9 74.2 59.0 128.8 64.6 61.1 128.8 55.0 165.0 75.7 80.3 78.5 70.7
Chon Buri 55.3 55.3 55.5 65.3 54.8 56.8 65.3 55.7 87.6 65.0 46.5 55.8 64.9
Chumphon 54.8 54.9 50.1 65.0 45.1 45.9 65.0 47.7 79.7 74.3 68.2 53.8 48.1
Kalasin 55.3 55.6 48.9 101.9 56.8 51.6 101.9 52.1 122.9 72.7 61.1 71.5 60.7
Kamphaeng Phet 93.0 82.4 63.6 95.8 57.1 59.9 95.8 49.9 130.8 152.2 105.4 88.5 58.8
Kanchanaburi 66.3 62.4 56.6 85.5 63.7 58.8 85.5 54.5 113.9 93.3 76.5 73.4 57.6
Khon Kaen 67.5 67.8 59.9 87.8 67.8 62.9 87.8 57.7 100.7 85.6 82.2 76.2 70.5
Krabi 90.9 90.9 78.5 65.4 73.0 69.3 65.4 72.2 97.6 208.6 112.9 71.5 61.7
Lampang 79.0 78.6 67.7 133.8 63.9 59.9 133.8 64.2 145.4 69.9 73.3 77.8 67.8
Lamphun 74.4 74.5 49.9 112.9 38.3 34.6 112.9 48.7 144.8 136.0 122.2 55.5 29.1
Loei 64.0 64.2 62.2 121.9 58.7 64.5 121.9 62.4 148.3 79.5 63.5 85.4 71.6
Lop Buri 66.0 66.6 55.0 85.8 55.9 52.1 85.8 47.9 106.0 76.2 60.8 53.8 49.9
Mae Hong Son 65.0 65.1 78.1 133.4 70.2 74.7 133.4 96.9 160.4 64.1 67.5 77.1 84.6
Maha Sarakham 70.5 70.4 61.0 105.4 66.9 57.9 105.4 53.5 121.7 79.6 83.0 76.5 59.8
Mukdahan 66.8 66.8 68.4 126.5 77.4 70.5 126.5 74.5 149.7 79.9 72.6 88.1 78.8
Nakhon Nayok 93.3 91.1 81.6 111.6 90.3 83.0 112.6 75.4 192.6 140.2 109.0 83.6 82.8
Nakhon Pathom 44.4 44.4 38.4 63.5 26.9 33.5 63.5 36.6 56.8 52.5 37.3 30.8 30.8
Nakhon Phanom 64.8 64.8 67.3 138.4 86.0 71.9 138.4 84.2 140.6 71.5 79.5 81.4 81.9
Nakhon Ratchasima 63.6 62.6 62.4 94.0 64.6 61.3 94.0 63.8 109.4 82.4 73.7 70.3 65.8
Nakhon Sawan 58.3 57.2 49.0 75.2 45.3 49.6 75.2 48.8 89.0 75.2 58.1 49.4 45.7
Nakhon Si Thammarat 42.6 42.5 41.1 53.3 35.6 37.2 53.3 41.7 63.9 83.6 39.3 39.3 36.4
Nan 71.4 71.4 63.5 114.7 75.7 73.3 114.7 89.8 185.9 65.8 77.8 92.1 75.4
Narathiwat 57.0 56.8 47.4 72.9 54.5 43.3 72.9 46.9 109.4 84.7 68.0 49.1 45.2
Nong Bua Lam Phu 75.3 75.4 68.8 110.9 70.1 72.5 110.9 66.5 169.6 78.8 87.0 91.6 74.2
Nong Khai 69.5 69.4 60.1 108.9 53.9 60.9 108.9 53.6 102.7 78.8 70.6 80.8 66.7
Nonthaburi 56.3 56.4 46.5 88.1 40.5 39.8 88.1 52.3 85.9 87.5 69.7 41.9 39.1
P.Nakhon S.Ayutthaya 56.3 56.3 52.3 77.1 52.7 45.0 77.1 54.8 73.9 77.2 66.2 45.2 44.0
Pathum Thani 61.3 61.3 49.9 81.7 49.5 45.8 81.6 43.1 82.3 122.5 89.7 47.2 43.4
Pattani 55.3 55.5 63.1 71.1 64.4 60.5 71.1 82.2 100.6 85.0 57.5 58.6 54.9
Phangnga 60.9 60.9 51.3 76.7 40.1 53.3 77.0 42.6 93.7 63.2 51.9 56.0 51.3
Phatthalung 65.7 65.7 57.6 74.3 60.8 59.4 74.3 55.8 105.3 125.5 101.9 66.0 59.9
Phayao 70.6 70.1 63.4 141.0 63.7 64.8 141.0 64.1 138.1 82.4 82.4 83.8 75.8
Phetchabun 67.0 71.7 60.5 117.7 41.0 62.0 117.7 50.2 134.8 75.5 43.3 83.3 67.7
Phetchaburi 50.5 50.5 49.9 52.5 47.8 46.2 52.5 51.8 59.4 93.3 79.9 43.1 44.1
Phichit 103.4 98.9 78.0 96.9 64.7 64.6 96.9 69.2 120.1 178.7 134.2 88.1 61.9
Phitsanulok 65.3 65.1 59.1 99.0 44.3 52.5 99.0 56.6 128.2 75.5 70.6 71.5 46.2
Phrae 106.9 107.2 90.9 147.8 85.0 82.4 147.8 80.6 178.2 143.1 137.7 81.8 70.8
Phuket 53.9 53.9 56.5 55.4 48.9 56.4 56.1 64.8 89.4 99.0 53.7 46.8 47.5
Prachin Buri 68.8 68.9 61.9 97.0 47.0 60.2 97.0 56.5 117.4 77.3 64.4 61.3 56.1
Prachuap Khiri Khan 55.9 56.2 44.6 48.1 37.0 37.9 48.1 39.0 65.5 89.3 58.9 51.8 38.6
Ranong 55.3 55.3 53.4 79.7 51.7 53.9 84.7 52.3 134.3 48.5 50.3 56.2 56.8
Ratchaburi 44.2 44.5 39.8 51.5 33.7 38.3 51.5 37.5 56.6 66.7 44.7 36.9 37.2
Rayong 50.0 50.0 46.6 77.7 37.9 48.6 77.7 47.7 102.3 62.8 44.2 57.9 47.0
Roi Et 55.5 58.2 44.1 106.5 48.1 47.9 106.5 47.1 125.6 73.4 68.4 73.7 56.0
Sa Kaeo 72.1 74.4 67.0 100.9 55.9 65.1 100.9 59.9 111.7 84.5 74.9 77.1 65.7
Sakon Nakhon 67.6 68.3 63.8 132.5 64.7 66.3 132.5 65.3 156.1 74.6 62.3 86.9 73.0
Samut Prakan 61.1 59.4 48.6 65.4 47.9 46.6 65.4 40.7 71.3 90.8 65.0 47.9 42.7
Samut Sakhon 42.9 42.9 34.6 51.3 26.5 34.7 51.3 34.8 63.8 69.5 44.2 33.9 32.9
Samut Songkhram 82.0 81.9 73.5 82.7 73.5 69.8 82.7 65.4 85.7 135.4 93.4 64.9 71.8
Saraburi 66.8 66.6 58.0 87.8 47.1 52.1 87.8 52.5 96.1 65.3 57.9 51.4 47.2
Satun 82.9 82.9 85.4 85.1 80.5 82.9 89.0 89.6 128.8 209.7 109.0 81.0 79.6
Si Sa Ket 58.3 56.8 48.1 98.5 43.0 46.9 98.5 49.9 122.5 89.6 68.2 64.4 47.5
Sing Buri 87.5 87.5 86.8 112.5 85.6 84.5 124.9 87.0 127.2 91.8 93.6 87.7 85.5
Songkhla 63.7 63.1 63.1 67.8 56.6 55.8 67.8 66.9 92.6 84.7 66.6 50.9 50.4
Sukhothai 60.2 60.3 54.4 94.3 55.7 55.4 94.3 55.0 96.6 59.7 56.7 65.3 53.8
Suphan Buri 43.5 43.5 41.1 67.6 36.1 35.9 67.3 40.8 65.2 46.5 41.9 30.4 32.7
Surat Thani 76.7 73.9 67.9 70.9 64.1 60.7 70.9 72.4 89.9 190.0 76.6 77.3 58.2
Surin 60.5 60.4 49.9 103.5 43.3 47.9 103.5 50.3 125.9 63.6 57.6 68.0 45.8
Tak 47.1 47.1 38.3 109.2 43.8 49.1 109.2 39.4 152.3 43.7 50.5 71.5 51.7
Trang 54.7 54.2 46.6 88.1 55.3 50.2 88.1 43.0 120.0 68.9 56.6 63.1 55.6
Trat 57.1 56.6 50.0 86.2 47.3 50.2 86.2 46.4 100.1 86.0 67.4 57.6 52.1
Ubon Ratchathani 69.6 72.0 65.2 112.5 63.7 67.8 112.5 81.4 107.0 83.2 66.0 85.2 69.5
Udon Thani 67.9 76.6 67.2 127.2 51.2 67.1 127.2 69.3 129.6 85.5 52.7 79.6 73.1
Uthai Thani 73.4 73.4 61.1 86.0 60.7 57.5 86.0 56.0 118.5 84.9 77.4 71.6 59.7
Uttaradit 55.3 55.1 52.4 104.4 52.5 55.3 104.4 57.1 130.5 51.0 47.3 61.7 58.7
Yala 58.2 58.7 57.1 80.1 52.2 53.5 80.1 60.6 91.1 79.1 57.3 59.9 55.0
Yasothon 71.8 70.4 54.8 104.8 51.7 56.0 104.8 54.4 120.3 82.4 76.1 90.4 63.4

Table 29: 3-month ahead percent absolute errors in Thailand for optimized models. Best per-
forming models in each location are bolded. Lower values indicate stronger performance.
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3.5 PAE of Optimized Models versus Naive Persistence Baseline

country no. of locations AR ARGO ARGONet ETS Ensemble (Country) Ensemble (Overall) NetModel SIR Seasonal StackedML VAR (Clust., Reg.) VAR (Reg.)

Brazil 27 25 24 24 5 25 25 24 18 2 15 24 24
Colombia 33 26 26 26 0 31 31 25 7 0 7 22 18
Malaysia 15 5 5 5 3 12 7 5 0 0 0 7 8
Mexico 32 22 23 22 13 26 25 21 6 2 4 23 24
Peru 1 1 1 1 0 1 0 1 0 0 1 0 0
Puerto Rico 1 1 1 1 0 1 0 1 1 0 1 0 0
Thailand 77 70 70 74 14 74 75 74 15 3 36 71 69
Overall 186 150 150 153 35 170 163 151 47 7 64 147 143

Table 30: Number of locations per country where optimized models outperformed the naive
persistence baseline at the 1-month ahead horizon, as measured through percent absolute error.
Best performing models in each location are bolded. Higher values indicate stronger perfor-
mance.

country no. of locations AR ARGO ARGONet ETS Ensemble (Country) Ensemble (Overall) NetModel SIR Seasonal StackedML VAR (Clust., Reg.) VAR (Reg.)

Brazil 27 25 25 25 7 24 25 24 18 11 17 24 25
Colombia 33 26 25 23 0 29 29 20 5 1 7 28 22
Malaysia 15 10 10 10 7 12 11 11 0 0 3 10 9
Mexico 32 26 26 26 15 29 27 26 8 12 14 28 27
Peru 1 1 1 1 0 1 0 1 0 1 1 0 0
Puerto Rico 1 0 0 1 0 1 0 1 1 0 1 0 0
Thailand 77 72 72 75 24 75 76 73 13 27 52 74 75
Overall 186 160 159 161 53 171 168 156 45 52 95 164 158

Table 31: Number of locations per country where optimized models outperformed the naive
persistence baseline at the 2-month ahead horizon, as measured through percent absolute error.
Best performing models in each location are bolded. Higher values indicate stronger perfor-
mance.

country no. of locations AR ARGO ARGONet ETS Ensemble (Country) Ensemble (Overall) NetModel SIR Seasonal StackedML VAR (Clust., Reg.) VAR (Reg.)

Brazil 27 25 25 25 9 25 25 24 9 16 20 25 25
Colombia 33 27 28 26 0 29 30 21 3 4 12 29 29
Malaysia 15 10 9 10 11 14 12 11 0 1 9 11 11
Mexico 32 28 29 29 25 30 30 29 8 17 20 28 29
Peru 1 1 1 1 0 1 0 1 0 1 1 0 0
Puerto Rico 1 0 0 0 0 1 0 1 1 1 1 0 0
Thailand 77 73 73 75 41 76 75 72 8 52 64 73 77
Overall 186 164 165 166 86 176 172 159 29 92 127 166 171

Table 32: Number of locations per country where optimized models outperformed the naive
persistence baseline at the 3-month ahead horizon, as measured through percent absolute error.
Best performing models in each location are bolded. Higher values indicate stronger perfor-
mance.
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3.6 Standard Models’ PAE by Country

3.6.1 1-Month Ahead

location AR ARGO ARGONet Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal

Acre 42.5 60.8 60.0 41.2 46.4 42.9 60.1 79.5 98.9
Alagoas 31.9 50.1 42.6 27.9 28.8 38.4 39.8 36.0 121.0
Amapa 109.2 328.8 326.0 45.3 46.9 39.9 326.9 84.8 539.3
Amazonas 44.2 90.0 34.2 25.3 24.3 27.1 29.2 30.5 119.0
Bahia 30.6 38.9 38.9 31.9 33.6 42.1 40.1 33.2 51.4
Ceara 40.3 76.4 51.0 31.2 33.2 35.6 52.3 30.1 90.5
Distrito Federal 36.2 46.5 41.5 37.5 35.6 45.8 36.4 43.7 66.3
Espirito Santo 39.6 47.2 46.4 31.6 35.2 35.4 56.5 39.7 125.7
Goias 26.6 31.5 28.6 25.4 26.8 35.8 31.1 26.9 60.0
Maranhao 58.7 84.2 82.4 37.7 42.7 41.8 76.2 58.6 183.5
Mato Grosso 22.9 35.2 30.6 25.5 28.0 34.1 30.2 53.6 52.5
Mato Grosso do Sul 36.3 64.1 62.4 36.8 43.2 49.9 62.3 67.1 57.0
Minas Gerais 43.9 74.7 67.7 37.5 51.6 50.8 71.8 38.1 87.5
Para 43.5 52.1 50.8 34.2 33.9 35.5 49.7 40.4 132.7
Paraiba 28.4 44.9 39.6 30.1 27.6 37.9 42.6 30.3 75.6
Parana 35.7 42.3 42.5 34.8 42.4 50.7 57.3 36.2 67.2
Pernambuco 28.7 40.5 36.4 28.9 30.8 36.5 36.3 37.9 64.2
Piaui 53.8 74.8 67.7 38.7 37.4 44.6 65.9 34.7 109.2
Rio de Janeiro 129.3 168.0 117.9 36.1 79.9 45.5 116.2 44.0 420.0
Rio Grande do Norte 39.7 64.3 64.2 23.0 34.3 35.0 62.5 35.6 103.5
Rio Grande do Sul 69.9 76.4 78.7 81.3 65.4 77.1 67.0 61.6 71.1
Rondonia 36.7 47.0 42.5 31.1 33.2 31.2 41.6 35.2 144.8
Roraima 46.2 138.8 120.1 27.3 28.4 29.0 119.7 36.7 241.7
Santa Catarina 45.6 38.5 37.1 51.7 41.3 53.5 40.5 49.2 77.3
Sao Paulo 29.7 47.6 46.8 28.0 38.6 45.6 46.6 34.3 44.4
Sergipe 36.1 43.5 43.4 38.1 39.3 42.9 43.9 38.5 69.6
Tocantins 28.7 40.8 39.4 24.6 27.7 38.1 40.4 43.8 89.7

Table 33: 1-month ahead percent absolute errors in Brazil for optimized models. Best perform-
ing models in each location are bolded. Lower values indicate stronger performance.
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location AR ARGO ARGONet Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal

Amazonas 44.5 62.4 63.5 46.6 38.5 42.8 71.1 60.4 148.3
Antioquia 16.8 30.9 29.1 17.2 19.0 20.5 28.0 20.0 80.8
Arauca 45.1 64.5 48.3 37.5 37.5 33.7 51.9 44.5 126.0
Atlantico 41.7 61.4 45.3 35.4 34.1 44.1 44.2 32.8 103.0
Bogota 252.4 428.2 328.3 107.7 104.8 103.9 337.7 158.3 612.7
Bolivar 31.3 40.0 40.0 29.9 29.6 30.9 40.6 30.1 83.2
Boyaca 38.1 38.0 36.8 33.5 36.4 34.4 38.3 33.7 80.9
Caldas 36.8 38.1 27.8 32.3 31.8 31.2 27.8 35.2 64.0
Caqueta 39.8 46.3 44.3 38.5 38.3 36.5 43.6 46.9 78.6
Casanare 43.3 47.3 45.0 28.5 29.2 29.3 47.0 36.7 116.7
Cauca 26.6 45.7 45.8 24.3 24.1 25.6 45.5 29.0 67.5
Cesar 26.1 40.7 38.9 24.5 25.5 27.4 38.7 29.6 86.4
Choco 29.2 49.9 46.4 30.4 30.0 30.0 37.1 34.3 63.7
Cordoba 36.6 54.5 52.9 32.6 33.0 31.0 52.8 34.8 81.1
Cundinamarca 18.0 24.4 23.0 18.8 20.1 21.1 21.4 26.1 56.5
Guainia 56.3 70.6 64.0 47.6 50.5 54.5 63.7 78.0 97.4
Guajira 45.6 77.1 75.8 41.6 43.6 38.4 75.4 41.0 145.2
Guaviare 44.1 64.8 61.0 44.2 44.6 41.0 62.4 52.4 76.2
Huila 26.8 32.1 28.8 24.6 21.6 23.6 28.2 28.6 67.7
Magdalena 36.8 48.7 38.0 35.8 36.1 37.5 37.9 37.2 103.6
Meta 18.3 27.4 23.5 18.0 18.8 20.7 25.5 21.5 78.8
Naria 34.1 35.6 33.7 33.6 34.5 32.0 32.9 43.7 59.0
Norte Santander 23.1 30.0 30.1 21.1 21.8 20.6 31.4 25.8 77.3
Putumayo 24.3 34.3 21.7 23.1 21.6 24.8 21.1 29.9 56.6
Quindio 20.6 42.1 30.7 18.3 18.3 21.4 37.4 22.0 55.4
Risaralda 31.3 52.3 37.1 26.1 25.8 25.7 41.2 27.9 90.9
San Andres 68.3 80.2 74.6 71.7 73.1 74.1 74.3 156.2 90.8
Santander 15.4 19.4 15.7 13.3 16.5 14.2 16.3 16.4 76.6
Sucre 47.2 68.3 64.7 33.6 33.9 33.2 64.9 33.1 98.3
Tolima 19.3 21.2 19.1 20.1 17.6 19.4 17.8 28.3 46.4
Valle 20.2 25.4 20.4 19.6 19.6 22.5 19.8 28.4 61.7
Vaupes 224.8 340.0 340.0 144.4 154.7 150.0 340.0 133.5 364.0
Vichada 76.2 119.3 119.3 51.9 55.0 54.2 119.3 62.7 117.0

Table 34: 1-month ahead percent absolute errors in Colombia for optimized models. Best per-
forming models in each location are bolded. Lower values indicate stronger performance.

location AR ARGO ARGONet Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal

Johor 25.0 31.4 31.4 19.6 21.3 21.8 31.4 28.4 52.6
Kedah 25.5 27.8 27.8 26.9 26.1 28.2 27.2 36.4 49.9
Kelantan 58.5 85.6 85.6 49.7 45.5 41.8 85.6 51.1 82.8
Kuala Lumpur and Putrajaya 24.4 25.8 25.1 20.8 24.0 23.4 24.5 28.3 58.9
Labuan 67.0 85.5 75.7 61.1 58.7 65.8 72.7 71.9 109.9
Malacca - - - - - 21.0 - - 54.8
Negeri Sembilan 22.7 30.8 31.0 19.1 20.3 20.4 33.1 24.9 47.6
Pahang 25.7 36.5 33.7 19.8 21.7 20.3 33.6 30.0 64.3
Perak 36.0 73.8 70.1 19.6 21.2 19.4 70.0 23.2 103.3
Perlis 51.5 84.5 79.4 47.8 46.0 52.5 79.1 66.6 116.8
Pulau Pinang - - - - - 27.4 - 23.5 106.3
Sabah 33.9 35.2 33.5 27.7 32.2 31.6 34.0 53.0 48.7
Sarawak 26.1 51.5 51.8 20.9 22.6 20.6 56.5 27.6 85.0
Selangor 26.8 29.9 28.0 21.8 24.6 20.8 27.9 32.5 57.6
Terengganu 63.1 112.3 112.5 42.6 44.3 39.0 116.8 45.2 172.5

Table 35: 1-month ahead percent absolute errors in Malaysia for optimized models. Best per-
forming models in each location are bolded. Lower values indicate stronger performance.
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location AR ARGO ARGONet Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal

Aguascalientes 145.7 181.7 149.2 120.5 105.6 100.8 142.4 74.9 153.9
Baja California Sur 703.2 2081.2 1594.4 88.4 85.9 78.8 1839.6 191.0 2126.3
Baja California 739.6 1836.8 1836.8 139.0 103.4 111.1 1880.2 221.2 1911.7
Campeche 106.3 200.5 162.2 88.5 75.4 74.2 160.8 107.0 418.7
Chiapas 79.7 97.2 95.3 54.6 50.0 49.7 95.2 74.9 139.8
Chihuahua 190.9 148.5 148.5 129.1 137.0 140.7 148.5 623.6 137.3
Coahuila 77.2 117.3 110.4 73.2 72.0 90.6 110.4 77.5 76.8
Colima 77.5 96.4 77.5 54.7 61.0 62.0 80.2 95.1 195.3
Durango 278.8 355.6 355.6 122.0 116.1 98.8 355.6 130.0 282.8
Guanajuato 122.1 321.8 239.5 77.1 89.2 86.4 326.0 148.5 308.3
Guerrero 59.8 103.1 96.6 57.0 54.0 56.0 95.9 120.9 151.6
Hidalgo 93.6 106.6 94.8 73.1 82.3 87.2 96.0 143.5 96.6
Jalisco 62.0 98.8 88.2 45.6 46.4 55.2 74.1 93.0 88.1
Mexico City - - - - - - - - -
Mexico 144.4 154.9 154.9 128.6 134.2 136.3 154.9 291.9 145.6
Michoacan 38.6 55.2 60.0 36.6 40.6 39.2 72.9 67.4 77.9
Morelos 60.7 59.9 67.4 52.0 65.4 61.3 67.1 79.9 62.6
Nayarit 72.7 93.4 72.0 58.1 61.5 64.3 59.8 95.4 95.3
Nuevo Leon 101.7 128.0 125.2 71.7 89.5 87.4 134.0 212.3 122.8
Oaxaca 58.0 75.0 65.5 63.4 53.3 58.7 65.6 105.8 100.4
Puebla 57.8 66.3 69.6 55.0 55.0 58.1 75.3 66.3 78.2
Queretaro 108.1 100.8 98.3 75.0 79.0 76.0 97.9 130.6 110.4
Quintana Roo 52.0 62.7 65.3 43.9 42.4 41.6 91.0 46.1 142.1
San Luis Potosi 75.7 83.5 71.3 75.9 75.5 78.7 73.4 157.9 90.4
Sinaloa 66.2 89.4 89.7 55.6 59.4 63.7 102.9 45.3 89.0
Sonora 264.1 280.8 339.3 90.6 145.8 72.5 457.7 123.7 507.9
Tabasco 68.4 106.4 106.4 63.0 58.4 54.2 107.0 66.4 233.6
Tamaulipas 70.9 133.6 125.7 57.1 55.8 62.8 133.1 96.1 147.1
Tlaxcala - - - - - - - - -
Veracruz 67.9 81.2 78.5 51.1 51.3 52.0 75.9 53.1 104.6
Yucatan 98.5 165.5 162.1 51.1 52.4 53.2 178.6 100.3 285.2
Zacatecas 200.3 205.9 205.9 132.0 143.7 107.8 205.9 269.2 192.2

Table 36: 1-month ahead percent absolute errors in Mexico for optimized models. Best per-
forming models in each location are bolded. Lower values indicate stronger performance.

location AR ARGO ARGONet Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal

Iquitos - - - 63.8 - 79.2 - 204.6 80.6

Table 37: 1-month ahead percent absolute errors in Peru for optimized models. Best performing
models in each location are bolded. Lower values indicate stronger performance.

location AR ARGO ARGONet Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal

San Juan 23.8 34.5 34.2 20.1 23.0 30.7 36.8 22.9 60.7

Table 38: 1-month ahead percent absolute errors in Puerto Rico for optimized models. Best
performing models in each location are bolded. Lower values indicate stronger performance.

76

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 23, 2024. ; https://doi.org/10.1101/2024.10.22.24315925doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.22.24315925
http://creativecommons.org/licenses/by/4.0/


location AR ARGO ARGONet Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal

Amnat Charoen 58.3 65.2 57.0 49.3 53.5 56.6 56.0 76.7 99.2
Ang Thong 53.9 63.0 57.0 55.4 54.0 53.3 56.3 56.9 80.5
Bangkok 43.0 87.6 77.3 46.1 40.8 35.7 76.8 39.5 73.4
Bungkan 95.9 99.9 105.7 86.8 96.2 80.4 106.6 142.4 87.0
Buri Ram 47.9 50.2 37.9 34.5 33.7 45.8 34.9 58.1 79.1
Chachoengsao 48.1 54.8 54.1 28.5 28.3 31.5 61.4 32.7 146.7
Chai Nat 48.5 55.5 45.8 46.8 44.5 49.0 42.5 61.9 76.7
Chaiyaphum 40.7 49.5 48.8 42.4 43.1 43.6 51.1 42.3 89.3
Chanthaburi 40.5 47.6 40.3 28.1 32.9 43.3 42.4 43.7 83.2
Chiang Mai 39.5 51.0 30.3 21.5 18.8 45.1 46.6 59.9 68.5
Chiang Rai 62.0 53.2 45.0 40.6 37.1 49.6 36.3 86.2 76.9
Chon Buri 31.6 32.4 32.2 30.3 31.9 33.5 31.7 40.2 67.9
Chumphon 41.6 56.6 44.9 34.3 40.7 39.3 43.5 43.6 85.9
Kalasin 42.7 57.1 38.1 31.3 35.8 46.8 37.2 53.2 69.9
Kamphaeng Phet 63.3 66.8 59.9 48.0 46.8 42.6 51.3 47.9 132.2
Kanchanaburi 49.0 52.9 41.4 45.6 40.2 44.8 37.6 55.4 91.7
Khon Kaen 45.8 44.0 46.6 40.9 40.8 40.4 51.0 60.2 83.8
Krabi 48.7 57.4 49.8 31.9 32.6 31.5 50.5 38.9 178.0
Lampang 59.1 70.8 61.2 38.7 52.1 63.2 57.5 83.7 68.3
Lamphun 74.9 111.0 65.1 53.7 53.2 59.1 79.6 87.5 136.3
Loei 52.6 53.8 49.4 41.5 46.3 52.3 49.6 49.9 80.0
Lop Buri 48.0 51.1 42.4 42.3 42.7 41.6 45.8 57.7 72.6
Mae Hong Son 52.3 53.7 51.7 59.2 53.9 62.0 59.6 90.4 63.9
Maha Sarakham 41.9 52.9 47.5 43.8 46.3 47.3 43.7 61.8 81.4
Mukdahan 55.1 70.2 68.5 51.7 52.9 57.9 68.7 66.4 78.1
Nakhon Nayok 71.6 86.7 67.4 59.4 57.7 55.4 74.3 77.9 124.5
Nakhon Pathom 17.7 25.0 23.4 17.5 19.5 28.6 22.5 23.1 58.3
Nakhon Phanom 61.2 69.4 70.7 52.6 58.9 65.4 73.3 63.0 71.1
Nakhon Ratchasima 45.7 43.5 46.7 37.3 40.9 45.7 42.2 53.1 82.8
Nakhon Sawan 32.8 43.5 38.7 29.8 29.6 31.2 37.9 51.2 74.7
Nakhon Si Thammarat 30.2 45.8 35.3 25.6 25.3 25.1 34.3 31.0 87.2
Nan 55.9 55.7 48.0 52.1 50.3 57.0 45.8 102.5 56.2
Narathiwat 44.4 44.0 36.7 31.2 38.0 38.6 33.6 52.9 94.5
Nong Bua Lam Phu 64.0 72.5 57.1 55.0 53.7 58.9 53.4 63.9 82.8
Nong Khai 54.2 72.1 59.0 43.3 42.4 53.1 55.3 61.6 79.2
Nonthaburi 40.0 67.2 69.1 31.4 35.4 35.4 77.7 30.1 99.5
P.Nakhon S.Ayutthaya 40.5 52.6 53.3 29.9 31.8 37.1 53.6 41.6 85.3
Pathum Thani 51.8 71.5 71.9 47.3 40.0 39.9 75.9 44.2 127.9
Pattani 37.2 50.6 47.7 27.1 34.0 34.7 44.0 40.7 84.4
Phangnga 43.6 58.2 50.8 33.0 36.5 39.3 51.3 48.0 62.5
Phatthalung 60.0 77.4 77.9 42.6 44.6 47.2 77.8 64.7 135.7
Phayao 79.2 105.0 87.3 60.0 55.9 69.7 59.8 78.4 82.7
Phetchabun 52.6 53.3 30.8 30.8 33.1 51.2 31.0 59.9 77.6
Phetchaburi 41.8 42.4 40.1 33.0 33.1 29.8 46.8 35.1 94.9
Phichit 58.3 67.3 63.5 50.9 59.9 52.7 67.4 63.2 163.0
Phitsanulok 41.9 47.6 40.9 40.6 36.7 40.9 49.2 49.7 74.8
Phrae 85.1 93.5 72.9 49.3 53.9 68.2 69.4 100.5 139.2
Phuket 43.9 56.3 56.1 29.9 33.8 34.9 61.4 39.0 110.5
Prachin Buri 40.6 42.0 26.1 23.2 31.0 41.2 25.9 36.0 76.3
Prachuap Khiri Khan 40.8 45.2 42.4 29.2 35.3 32.2 42.9 35.3 83.2
Ranong 49.2 56.9 57.4 41.5 52.8 45.3 57.9 58.5 48.3
Ratchaburi 29.6 35.8 32.0 29.1 27.4 27.1 32.3 29.9 68.3
Rayong 36.0 40.1 34.3 31.0 29.2 38.0 29.5 40.4 67.2
Roi Et 37.6 39.9 29.9 27.7 31.0 44.5 31.6 65.1 74.8
Sa Kaeo 39.0 44.3 34.8 34.1 32.6 42.4 35.3 38.5 83.7
Sakon Nakhon 58.4 70.0 71.5 47.2 57.4 64.1 79.7 88.4 74.7
Samut Prakan 38.8 45.7 47.6 25.6 31.8 30.3 58.4 37.1 95.3
Samut Sakhon 38.6 44.2 43.8 25.6 28.5 28.9 45.9 39.2 73.0
Samut Songkhram 54.5 73.1 61.1 40.4 39.2 40.5 58.7 40.1 137.8
Saraburi 33.1 47.0 33.8 33.5 34.2 37.5 33.4 45.4 66.0
Satun 100.0 157.5 136.2 70.8 77.2 73.3 136.1 99.9 226.0
Si Sa Ket 42.1 48.6 29.5 26.7 27.8 42.8 26.4 56.9 85.2
Sing Buri 104.7 108.8 102.7 92.2 86.0 85.0 103.5 166.4 95.3
Songkhla 33.7 39.3 35.2 29.8 31.6 31.2 33.2 38.6 95.4
Sukhothai 38.6 44.3 36.6 39.8 38.4 43.5 35.6 43.6 56.3
Suphan Buri 27.3 31.2 24.9 28.0 23.5 31.6 23.0 34.4 45.1
Surat Thani 58.9 69.1 71.1 38.5 41.0 37.4 92.8 39.3 184.0
Surin 33.1 38.1 25.6 28.3 28.7 40.4 24.4 63.5 65.5
Tak 48.5 47.5 44.1 35.3 38.3 51.1 37.0 59.6 41.8
Trang 42.1 59.0 53.3 33.2 37.5 41.8 53.5 48.9 68.3
Trat 56.4 64.2 63.6 43.2 45.2 43.4 67.3 50.4 95.3
Ubon Ratchathani 50.8 51.8 47.9 38.6 43.1 50.7 56.1 48.3 81.3
Udon Thani 72.9 64.5 49.4 46.2 42.8 67.3 46.9 141.4 87.2
Uthai Thani 53.9 54.1 48.8 44.6 47.7 48.0 43.8 74.7 81.6
Uttaradit 51.8 51.5 53.4 52.3 48.2 55.3 56.2 77.6 49.3
Yala 35.0 40.9 35.3 34.1 29.5 34.5 34.5 41.9 77.8
Yasothon 45.4 57.4 38.0 35.9 44.6 47.1 35.6 64.6 79.1

Table 39: 1-month ahead percent absolute errors in Thailand for optimized models. Best per-
forming models in each location are bolded. Lower values indicate stronger performance.
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3.6.2 2-Month Ahead

location AR ARGO ARGONet Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal

Acre 69.6 97.4 97.3 67.4 68.1 76.8 97.0 211.7 96.5
Alagoas 67.3 85.4 65.5 56.5 69.5 73.2 53.5 100.1 119.7
Amapa 179.0 475.6 394.2 68.7 108.2 58.5 390.4 187.1 540.8
Amazonas 75.5 104.6 82.0 42.5 61.7 44.4 76.9 57.7 116.4
Bahia 51.2 69.8 58.2 64.8 54.6 73.4 57.5 80.8 51.4
Ceara 78.8 93.7 73.4 63.3 57.1 65.6 56.1 82.0 90.7
Distrito Federal 64.5 85.6 73.2 81.8 64.7 79.6 66.0 97.5 66.2
Espirito Santo 78.3 92.9 91.5 59.7 80.8 64.8 103.8 68.8 123.6
Goias 49.3 50.0 45.0 59.2 39.3 63.6 65.7 53.1 57.8
Maranhao 125.1 163.9 149.0 75.3 100.5 72.6 141.1 229.6 180.4
Mato Grosso 41.8 58.1 48.2 52.9 47.1 62.1 49.3 152.8 52.7
Mato Grosso do Sul 66.2 89.4 90.3 79.1 56.5 92.1 86.7 256.9 56.0
Minas Gerais 89.5 108.8 92.4 96.9 80.0 99.1 87.5 101.7 86.9
Para 75.7 91.1 66.9 68.6 70.3 59.0 61.9 92.0 127.6
Paraiba 44.5 72.2 64.7 44.9 48.0 61.2 58.3 67.7 75.0
Parana 62.9 80.9 85.2 63.2 56.9 96.3 88.6 121.7 67.0
Pernambuco 49.0 61.2 66.7 51.4 40.7 63.2 68.5 93.4 64.5
Piaui 108.0 132.2 56.9 69.1 63.0 73.7 48.1 78.2 104.9
Rio de Janeiro 300.1 420.8 284.1 88.2 213.8 81.6 212.9 104.0 410.4
Rio Grande do Norte 84.8 110.4 105.8 51.6 74.3 61.5 105.7 90.8 103.9
Rio Grande do Sul 89.8 77.4 81.0 116.7 103.2 117.5 83.7 202.2 71.0
Rondonia 59.4 82.3 80.6 43.9 40.6 53.3 81.2 61.2 139.7
Roraima 69.4 119.8 119.1 38.7 76.0 42.2 126.1 56.1 228.3
Santa Catarina 74.5 71.0 73.1 73.0 75.4 100.5 73.7 168.5 77.1
Sao Paulo 60.3 80.5 80.0 73.0 54.6 85.6 78.8 94.3 44.0
Sergipe 62.7 66.7 66.3 67.8 59.5 70.2 63.9 88.6 69.2
Tocantins 56.4 76.4 69.1 46.4 62.5 68.9 66.8 113.8 87.1

Table 40: 2-month ahead percent absolute errors in Brazil for optimized models. Best perform-
ing models in each location are bolded. Lower values indicate stronger performance.
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location AR ARGO ARGONet Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal

Amazonas 67.3 105.8 88.1 56.3 76.4 55.0 78.2 68.1 119.2
Antioquia 31.5 53.0 40.6 31.8 37.7 37.5 40.2 32.8 76.3
Arauca 69.2 87.2 56.5 55.5 67.3 46.4 62.8 71.0 128.5
Atlantico 80.8 93.4 70.6 68.0 60.8 74.4 66.9 68.5 90.7
Bogota 214.3 367.9 257.3 87.0 142.7 96.1 235.2 163.8 431.6
Bolivar 54.4 61.3 59.0 51.4 51.0 50.9 59.8 60.7 79.2
Boyaca 50.3 53.6 50.2 48.7 49.4 45.9 53.9 54.7 78.0
Caldas 46.1 52.5 34.8 41.2 38.5 39.6 35.7 45.9 59.9
Caqueta 58.9 69.1 49.5 60.2 59.5 59.4 43.4 83.1 75.8
Casanare 85.2 92.7 77.3 44.2 47.3 46.6 70.3 64.4 134.3
Cauca 43.3 63.6 56.2 42.2 38.6 39.8 53.9 55.4 65.9
Cesar 50.8 68.7 59.1 47.8 47.1 44.7 58.5 57.8 84.6
Choco 47.4 62.2 52.1 45.6 45.0 42.3 52.9 52.1 61.5
Cordoba 65.8 71.5 64.0 54.0 47.1 49.2 65.2 46.2 77.7
Cundinamarca 31.7 33.8 40.3 32.2 30.9 35.7 33.5 42.6 50.0
Guainia 87.5 110.5 85.1 74.9 72.5 82.7 83.9 226.6 97.6
Guajira 69.8 98.9 81.7 63.8 65.2 58.4 74.9 67.9 129.4
Guaviare 59.7 75.1 52.3 60.4 57.1 59.3 56.0 70.8 73.3
Huila 46.0 52.4 47.8 39.7 39.6 40.0 43.8 55.1 66.4
Magdalena 67.9 79.7 72.3 58.4 66.6 62.0 70.8 66.1 103.3
Meta 36.6 53.4 43.0 35.3 35.5 34.6 44.3 38.7 75.7
Naria 42.6 42.9 35.4 41.2 40.7 40.9 32.8 58.4 58.9
Norte Santander 37.7 46.9 41.4 33.6 31.7 32.1 45.8 44.1 71.8
Putumayo 47.9 61.4 40.2 40.0 41.5 43.1 33.5 52.9 58.1
Quindio 37.8 63.8 40.2 31.1 27.4 35.2 36.2 38.9 53.2
Risaralda 50.5 86.7 53.9 43.5 44.4 42.8 45.9 46.7 86.0
San Andres 85.4 92.1 92.8 77.1 88.1 110.4 91.0 666.6 90.8
Santander 27.2 31.8 18.9 22.2 29.4 22.3 22.4 25.7 72.6
Sucre 72.8 80.6 58.6 53.2 51.2 51.4 67.1 47.9 82.5
Tolima 30.6 31.2 32.8 30.2 29.3 30.8 27.0 50.3 41.7
Valle 35.9 41.0 37.8 37.4 36.5 37.6 35.1 59.7 61.8
Vaupes 298.9 363.1 363.1 165.1 171.0 141.7 363.1 168.0 381.9
Vichada 104.8 111.8 96.4 65.5 75.8 66.8 116.2 99.7 109.9

Table 41: 2-month ahead percent absolute errors in Colombia for optimized models. Best per-
forming models in each location are bolded. Lower values indicate stronger performance.

location AR ARGO ARGONet Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal

Johor 40.5 42.6 42.5 40.4 43.1 38.0 42.4 51.7 53.1
Kedah 37.0 40.5 38.5 40.5 40.3 42.3 38.7 60.6 53.9
Kelantan 77.9 85.6 85.6 57.0 47.0 62.6 85.6 94.3 82.2
Kuala Lumpur and Putrajaya 39.6 38.2 35.6 38.5 33.3 35.8 33.9 51.0 59.1
Labuan 97.0 145.6 131.2 83.8 95.6 84.8 122.1 146.4 151.3
Malacca - - - - - 34.6 - - 56.8
Negeri Sembilan 31.8 38.4 37.9 31.4 30.4 30.0 36.3 38.2 48.4
Pahang 37.0 48.4 47.0 38.0 40.4 35.9 47.6 54.3 62.7
Perak 45.9 77.0 77.2 31.5 33.1 29.1 81.8 39.5 95.1
Perlis 78.3 115.5 115.6 69.4 71.6 65.7 116.2 108.1 122.4
Pulau Pinang - - - - - 35.5 - 38.7 95.0
Sabah 40.1 40.3 37.0 41.7 37.9 42.6 35.4 83.4 48.8
Sarawak 38.1 55.7 56.3 30.2 34.6 27.3 59.2 44.5 81.7
Selangor 34.7 36.4 36.4 32.5 35.4 34.0 36.5 50.4 57.5
Terengganu 103.9 168.6 168.4 50.3 53.4 47.1 168.4 57.3 171.2

Table 42: 2-month ahead percent absolute errors in Malaysia for optimized models. Best per-
forming models in each location are bolded. Lower values indicate stronger performance.
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location AR ARGO ARGONet Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal

Aguascalientes 182.6 184.8 184.8 100.9 100.9 169.7 184.8 142.4 153.9
Baja California Sur 1630.5 2262.8 2000.3 150.4 150.4 135.3 2092.4 928.8 2255.8
Baja California 1705.8 2148.1 2162.0 177.5 177.5 144.4 1878.8 225.1 2130.2
Campeche 150.2 263.0 193.5 109.6 109.6 75.2 183.0 192.5 421.1
Chiapas 107.9 127.2 111.6 47.6 47.6 70.3 104.4 135.7 128.0
Chihuahua 183.1 161.1 161.1 122.2 122.2 185.4 161.1 4778.4 146.6
Coahuila 117.7 120.5 117.0 86.5 86.5 143.6 113.7 208.3 76.5
Colima 112.5 148.3 128.8 90.1 90.1 89.1 118.7 224.7 194.5
Durango 404.6 407.4 407.4 146.0 146.0 188.2 407.4 230.1 317.5
Guanajuato 435.9 639.9 639.9 200.1 200.1 267.3 639.9 1000.9 539.7
Guerrero 85.2 127.9 84.3 82.4 82.4 76.9 87.8 259.2 143.7
Hidalgo 107.4 110.3 110.7 101.3 101.3 128.2 110.7 437.5 96.4
Jalisco 83.7 104.8 93.1 83.9 83.9 102.2 90.7 259.7 87.3
Mexico City - - - - - - - - -
Mexico 149.6 149.6 149.6 122.4 122.4 159.4 149.6 732.3 138.7
Michoacan 67.7 85.2 80.6 68.4 68.4 71.0 78.6 198.0 75.6
Morelos 90.2 82.5 - 80.9 80.9 95.8 82.5 157.9 61.8
Nayarit 102.0 112.1 80.5 72.2 72.2 90.0 74.4 213.8 95.0
Nuevo Leon 154.4 165.5 148.7 102.2 102.2 143.3 145.8 1032.6 128.1
Oaxaca 84.0 133.4 106.9 64.2 64.2 92.9 87.4 310.1 96.2
Puebla 90.7 106.3 - 97.3 97.3 110.5 104.3 201.6 79.4
Queretaro 182.5 118.2 118.2 100.5 100.5 107.5 118.2 214.1 114.3
Quintana Roo 74.8 94.3 81.9 63.3 63.3 64.4 77.7 84.7 135.9
San Luis Potosi 100.6 99.6 102.3 111.4 111.4 106.7 98.5 671.9 92.4
Sinaloa 108.8 139.7 137.8 82.3 82.3 93.4 139.8 230.8 87.9
Sonora 488.8 552.5 552.5 123.5 123.5 137.3 552.5 540.3 505.9
Tabasco 97.4 135.5 - 98.9 98.9 74.2 139.3 173.0 234.2
Tamaulipas 125.6 164.2 152.5 90.1 90.1 112.4 151.2 357.9 144.6
Tlaxcala - - - - - - - - -
Veracruz 88.1 107.9 71.9 69.0 69.0 80.5 62.6 113.0 106.4
Yucatan 179.9 262.2 209.0 88.1 88.1 86.9 201.6 427.9 286.4
Zacatecas 214.8 207.3 207.3 149.8 149.8 192.9 207.3 1048.1 190.9

Table 43: 2-month ahead percent absolute errors in Mexico for optimized models. Best per-
forming models in each location are bolded. Lower values indicate stronger performance.

location AR ARGO ARGONet Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal

Iquitos 114.2 110.4 110.4 52.0 67.9 101.3 110.4 772.8 80.6

Table 44: 2-month ahead percent absolute errors in Peru for optimized models. Best performing
models in each location are bolded. Lower values indicate stronger performance.

location AR ARGO ARGONet Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal

San Juan 53.0 71.3 71.3 38.7 51.3 55.1 68.5 51.3 60.6

Table 45: 2-month ahead percent absolute errors in Puerto Rico for optimized models. Best
performing models in each location are bolded. Lower values indicate stronger performance.
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location AR ARGO ARGONet Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal

Amnat Charoen 99.7 109.0 103.2 69.8 81.2 87.7 113.7 174.8 99.7
Ang Thong 75.9 77.3 73.8 61.7 68.8 74.8 72.0 117.1 78.5
Bangkok 66.8 91.5 82.8 52.5 67.7 60.0 74.4 74.9 76.2
Bungkan 114.2 118.2 117.0 73.4 85.0 118.8 115.7 515.8 89.0
Buri Ram 72.0 77.7 64.5 53.0 51.9 72.1 59.3 126.5 81.5
Chachoengsao 86.7 96.6 92.5 44.4 46.4 54.0 82.2 53.1 140.9
Chai Nat 72.5 75.6 60.9 88.3 85.8 76.2 58.1 125.9 73.0
Chaiyaphum 79.2 76.9 82.6 77.9 85.1 78.3 80.4 90.6 88.5
Chanthaburi 74.2 83.3 69.8 50.7 56.1 79.3 69.4 124.1 81.2
Chiang Mai 78.8 115.2 54.9 56.3 57.1 87.0 50.3 210.2 68.9
Chiang Rai 84.2 103.3 56.7 62.3 60.0 93.2 50.0 299.2 77.2
Chon Buri 50.1 50.3 49.9 47.4 48.5 53.9 46.0 71.3 66.7
Chumphon 63.2 65.2 62.7 45.4 42.8 52.4 60.1 63.3 80.2
Kalasin 65.3 85.1 63.2 51.7 60.7 74.0 59.4 122.8 71.9
Kamphaeng Phet 121.3 132.0 93.3 66.1 69.7 72.5 89.6 93.1 141.6
Kanchanaburi 79.3 77.9 65.6 60.6 65.7 70.2 57.9 117.3 86.8
Khon Kaen 64.2 82.3 72.5 71.1 64.4 62.2 72.5 105.5 86.0
Krabi 115.3 118.3 95.1 55.9 55.2 50.0 99.2 67.7 198.3
Lampang 98.5 124.4 93.6 51.3 50.5 107.4 84.7 180.7 69.3
Lamphun 120.9 152.9 143.2 68.0 60.6 90.1 118.6 266.9 130.4
Loei 83.4 85.3 81.2 58.4 60.6 98.2 77.3 144.1 79.1
Lop Buri 74.9 81.6 68.9 56.5 56.9 66.9 66.9 103.8 73.8
Mae Hong Son 82.0 88.4 87.1 64.1 73.9 107.8 80.9 307.3 64.2
Maha Sarakham 71.3 86.4 56.0 85.8 77.8 79.6 52.1 116.5 80.6
Mukdahan 72.7 106.1 101.0 62.3 67.2 94.9 94.3 172.4 79.3
Nakhon Nayok 128.0 141.4 152.4 86.0 89.9 95.6 148.2 140.1 138.0
Nakhon Pathom 31.4 43.3 32.0 38.8 35.6 49.4 30.0 42.3 54.5
Nakhon Phanom 95.8 105.3 103.8 57.0 60.4 110.8 98.0 261.5 71.0
Nakhon Ratchasima 71.3 72.8 62.9 62.4 62.7 72.8 60.5 121.4 81.5
Nakhon Sawan 59.5 68.5 60.9 44.7 46.9 55.9 59.1 142.4 76.2
Nakhon Si Thammarat 51.7 76.9 39.5 40.4 41.1 40.5 34.4 51.7 86.5
Nan 80.8 97.0 85.2 75.7 75.9 87.9 72.0 322.3 64.5
Narathiwat 71.1 76.3 52.7 56.9 62.4 60.3 39.5 109.1 89.3
Nong Bua Lam Phu 89.0 96.8 76.8 48.5 54.3 90.4 81.8 145.8 78.8
Nong Khai 79.2 106.8 89.4 55.8 60.6 84.3 81.1 134.8 79.4
Nonthaburi 72.5 94.5 84.3 58.8 66.0 66.7 76.6 62.9 92.4
P.Nakhon S.Ayutthaya 59.9 69.1 61.1 42.9 43.9 58.2 63.0 71.1 77.7
Pathum Thani 72.6 83.4 81.5 55.0 59.2 59.2 91.0 56.0 121.0
Pattani 62.9 77.4 87.5 49.5 50.2 55.5 90.0 82.3 84.8
Phangnga 68.7 80.7 67.9 43.4 46.4 60.7 62.0 88.0 62.6
Phatthalung 84.4 109.2 94.0 51.6 56.8 57.0 87.5 99.6 128.3
Phayao 115.4 133.6 98.9 61.7 70.6 107.7 81.1 230.7 79.6
Phetchabun 82.7 107.2 87.3 51.7 65.8 88.4 87.0 156.6 76.3
Phetchaburi 65.8 68.3 73.1 45.0 49.3 40.7 83.8 56.6 100.9
Phichit 115.2 130.7 128.7 95.9 94.7 84.5 109.5 105.3 167.8
Phitsanulok 68.3 82.9 70.5 47.9 46.1 72.8 77.2 98.3 75.2
Phrae 166.8 187.2 136.0 85.8 71.6 120.3 130.4 468.6 141.9
Phuket 71.8 86.7 66.3 45.5 59.1 51.6 73.5 70.8 113.1
Prachin Buri 71.0 73.7 47.3 59.6 50.0 73.5 42.1 96.8 76.7
Prachuap Khiri Khan 63.5 58.9 57.1 44.1 39.7 46.8 60.3 54.0 81.7
Ranong 63.8 65.6 67.5 47.0 58.1 68.3 66.3 101.9 49.4
Ratchaburi 43.8 49.7 52.1 35.3 36.8 40.3 56.6 42.5 66.7
Rayong 61.3 61.9 51.1 47.0 49.6 61.1 47.8 85.2 63.0
Roi Et 66.5 66.9 49.9 60.1 52.5 80.5 46.0 164.3 73.2
Sa Kaeo 65.3 73.5 57.5 72.8 66.6 73.8 54.1 89.3 84.2
Sakon Nakhon 91.6 106.8 105.0 58.7 65.6 108.4 103.0 213.3 73.6
Samut Prakan 64.8 67.6 73.8 51.3 46.0 52.8 73.9 72.2 92.3
Samut Sakhon 54.7 61.6 40.1 33.9 32.8 41.5 38.8 50.6 68.8
Samut Songkhram 92.4 118.5 87.2 76.1 71.8 67.7 72.5 72.5 140.6
Saraburi 56.3 71.5 52.0 51.9 55.5 66.8 41.5 89.3 65.5
Satun 129.1 229.1 143.5 84.7 72.1 87.4 135.9 145.5 222.3
Si Sa Ket 75.6 89.4 82.8 49.7 47.8 74.4 69.1 134.2 87.9
Sing Buri 124.1 93.8 89.0 117.9 113.5 118.7 91.8 521.7 91.8
Songkhla 59.6 73.9 58.8 40.9 45.7 53.0 59.7 73.9 86.8
Sukhothai 57.9 68.5 60.6 55.3 57.8 73.4 56.9 104.2 58.5
Suphan Buri 39.1 44.5 41.4 40.9 42.0 52.3 37.7 63.1 46.7
Surat Thani 110.1 136.4 117.9 72.8 62.4 59.2 115.9 70.0 186.7
Surin 60.8 78.0 57.6 55.9 55.9 74.3 45.4 151.6 64.2
Tak 65.5 75.1 69.1 46.1 56.9 84.1 57.0 162.6 43.0
Trang 73.3 92.5 79.9 45.0 43.2 69.4 76.5 116.0 69.9
Trat 82.1 84.2 107.3 51.3 56.6 73.9 104.2 100.0 88.8
Ubon Ratchathani 67.5 84.2 68.5 70.7 51.8 85.7 68.9 119.6 81.7
Udon Thani 93.4 93.7 82.0 79.3 67.4 104.7 76.3 638.0 85.7
Uthai Thani 79.1 75.8 84.0 67.7 74.0 74.2 74.3 144.2 86.6
Uttaradit 65.0 65.9 70.4 46.6 52.1 83.0 64.4 160.5 50.3
Yala 58.1 61.3 65.4 48.7 51.1 62.4 64.6 87.7 79.0
Yasothon 73.0 100.3 73.1 55.0 59.6 78.3 58.9 132.1 81.1

Table 46: 2-month ahead percent absolute errors in Thailand for optimized models. Best per-
forming models in each location are bolded. Lower values indicate stronger performance.
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3.6.3 3-Month Ahead

location AR ARGO ARGONet Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal

Acre 94.3 98.1 98.1 89.5 86.0 104.1 98.1 547.2 97.0
Alagoas 93.7 108.0 69.2 92.1 85.7 101.3 63.2 230.5 119.1
Amapa 261.0 506.7 508.2 71.6 81.7 68.6 503.3 239.1 544.3
Amazonas 100.9 106.4 106.4 77.5 69.1 60.6 106.4 104.8 116.9
Bahia 60.6 72.0 68.8 59.3 65.9 97.8 69.1 151.0 51.4
Ceara 107.0 94.3 82.3 62.9 62.1 91.2 66.2 172.8 90.2
Distrito Federal 73.0 73.6 75.8 77.0 83.0 108.8 76.1 205.1 66.2
Espirito Santo 107.8 129.7 129.8 97.0 99.8 87.4 127.3 120.6 122.1
Goias 66.0 68.6 65.1 43.2 45.9 88.3 82.1 92.1 58.1
Maranhao 184.8 190.8 178.4 110.9 110.0 95.7 192.3 1043.6 178.7
Mato Grosso 51.4 62.7 64.3 49.9 46.6 86.8 62.8 389.5 52.9
Mato Grosso do Sul 78.8 89.3 89.3 71.5 72.3 123.1 89.3 785.8 55.6
Minas Gerais 100.9 108.3 114.1 90.5 88.9 128.7 110.4 196.9 86.9
Para 101.5 109.1 94.3 81.5 67.6 77.7 90.6 160.9 125.2
Paraiba 59.2 72.4 74.8 57.2 62.6 82.9 73.5 135.0 74.6
Parana 72.5 82.6 83.8 79.2 80.5 120.0 81.4 303.8 67.0
Pernambuco 58.8 60.6 61.8 54.5 55.9 82.2 79.7 182.0 64.3
Piaui 147.2 132.2 91.2 83.0 72.2 101.5 84.1 160.9 104.8
Rio de Janeiro 438.4 431.0 301.3 190.4 191.5 102.2 244.7 219.4 415.6
Rio Grande do Norte 112.3 114.6 105.5 73.2 83.2 81.8 105.5 175.9 106.8
Rio Grande do Sul 83.9 84.5 84.5 100.9 103.7 148.0 86.9 623.9 71.0
Rondonia 80.3 85.0 98.8 59.6 75.0 71.9 106.8 105.2 140.3
Roraima 85.3 124.5 163.2 68.4 90.0 55.7 198.9 74.2 229.7
Santa Catarina 82.0 76.5 76.4 84.8 85.8 122.2 75.7 336.2 77.0
Sao Paulo 68.3 80.8 80.8 56.7 62.7 113.2 80.8 204.3 44.0
Sergipe 77.0 70.0 69.2 73.8 80.8 96.1 73.7 203.4 68.9
Tocantins 76.5 97.1 96.3 69.0 79.0 91.9 97.4 265.6 86.0

Table 47: 3-month ahead percent absolute errors in Brazil for optimized models. Best perform-
ing models in each location are bolded. Lower values indicate stronger performance.
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location AR ARGO ARGONet Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal

Amazonas 91.5 101.1 96.3 79.5 76.7 67.3 109.8 82.1 111.8
Antioquia 40.9 63.3 48.7 40.9 50.3 51.8 46.5 44.3 74.5
Arauca 84.0 109.4 81.4 54.2 73.7 49.4 90.7 93.7 127.3
Atlantico 98.7 97.8 74.9 63.3 50.3 96.6 70.3 188.7 85.5
Bogota 144.2 169.9 173.1 89.9 63.3 80.0 190.5 118.7 230.6
Bolivar 67.5 71.1 64.4 68.3 60.8 66.8 69.6 99.9 70.7
Boyaca 64.7 60.7 57.5 62.0 63.5 58.0 57.2 79.4 74.8
Caldas 49.1 64.0 51.9 37.2 40.3 39.9 44.7 57.9 60.7
Caqueta 69.7 80.7 64.0 46.0 73.3 74.6 44.8 114.6 72.8
Casanare 120.7 129.3 108.5 67.8 66.6 62.6 100.4 89.9 137.3
Cauca 53.6 70.3 68.0 58.8 59.9 49.6 70.8 79.3 64.6
Cesar 65.2 77.4 73.9 72.3 61.1 57.7 77.8 83.4 80.4
Choco 54.4 62.1 60.8 59.2 56.4 54.5 60.5 80.3 61.0
Cordoba 90.8 88.7 83.2 78.8 65.2 62.7 83.9 63.8 64.7
Cundinamarca 41.4 48.2 40.7 42.5 49.3 47.1 36.7 58.2 48.8
Guainia 104.7 108.3 100.5 82.6 67.4 105.4 102.7 602.8 94.5
Guajira 78.4 92.2 101.2 84.7 69.0 66.2 100.6 86.9 110.8
Guaviare 76.7 88.5 54.0 68.5 67.0 70.9 55.0 89.9 73.5
Huila 60.5 61.4 52.6 54.7 51.9 51.8 56.5 85.3 69.2
Magdalena 87.4 95.6 85.0 76.5 59.3 76.9 83.8 97.8 100.2
Meta 52.0 68.2 56.3 42.6 49.2 46.4 57.2 55.9 73.7
Naria 46.6 48.2 46.1 38.5 44.4 48.6 38.9 71.2 56.9
Norte Santander 43.2 51.5 50.8 43.3 36.8 37.8 51.4 54.9 63.5
Putumayo 60.9 72.1 46.4 41.1 44.2 57.1 48.7 75.3 57.2
Quindio 53.0 65.0 52.8 42.7 31.7 45.0 51.0 61.6 53.7
Risaralda 65.3 90.7 72.8 56.4 71.1 57.0 66.0 68.6 84.4
San Andres 90.6 94.2 95.2 87.0 87.9 130.1 96.2 1493.5 92.2
Santander 37.6 46.5 27.7 26.5 37.1 29.9 34.6 33.2 71.2
Sucre 85.5 73.2 54.9 65.9 68.4 62.8 59.1 92.5 66.9
Tolima 37.6 37.8 29.9 31.7 38.0 39.6 23.4 68.4 40.2
Valle 46.2 54.0 49.5 46.9 47.4 50.6 46.1 89.4 61.4
Vaupes 334.2 345.6 345.6 138.6 169.3 125.0 345.6 134.7 356.8
Vichada 122.0 108.0 108.6 72.9 83.7 78.6 108.6 153.2 106.4

Table 48: 3-month ahead percent absolute errors in Colombia for optimized models. Best per-
forming models in each location are bolded. Lower values indicate stronger performance.

location AR ARGO ARGONet Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal

Johor 45.4 45.9 46.3 41.3 39.7 45.0 46.1 70.7 51.9
Kedah 44.2 46.7 41.7 51.7 47.1 52.7 43.7 71.9 50.0
Kelantan 83.2 85.3 85.3 59.5 55.4 74.0 85.3 118.2 81.4
Kuala Lumpur and Putrajaya 46.9 47.5 43.7 45.7 40.8 42.6 43.6 68.9 57.9
Labuan 109.6 167.6 167.6 85.5 130.3 99.9 168.7 370.7 173.3
Malacca - - - - 51.7 41.6 - - 55.9
Negeri Sembilan 36.6 42.2 41.5 36.2 36.4 35.3 39.6 51.1 44.7
Pahang 45.7 54.5 48.7 44.5 45.1 45.8 48.5 76.6 60.9
Perak 56.4 86.1 86.4 38.0 38.4 35.1 92.3 53.0 89.3
Perlis 83.2 107.6 107.6 76.8 72.4 70.4 107.6 165.0 112.1
Pulau Pinang - - - - 52.6 50.0 - 64.8 88.3
Sabah 41.9 43.2 40.9 44.1 48.7 48.3 39.5 113.7 49.6
Sarawak 52.1 65.7 64.7 42.3 46.8 39.0 63.9 61.3 81.1
Selangor 39.6 42.8 39.2 37.0 37.4 38.1 38.8 65.7 54.0
Terengganu 138.2 179.8 180.1 57.7 73.0 56.9 180.9 72.5 179.3

Table 49: 3-month ahead percent absolute errors in Malaysia for optimized models. Best per-
forming models in each location are bolded. Lower values indicate stronger performance.
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location AR ARGO ARGONet Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal

Aguascalientes 184.3 186.7 186.7 105.8 104.3 188.2 186.7 212.2 153.9
Baja California Sur 2079.4 2000.1 1935.2 199.9 204.6 161.7 1827.1 2940.3 1944.7
Baja California 2165.9 2099.1 2099.1 296.6 284.9 255.6 2099.1 274.3 2029.3
Campeche 206.4 343.6 311.8 142.7 165.8 104.1 312.6 321.2 420.2
Chiapas 121.7 123.5 118.3 72.4 68.9 89.1 113.7 241.6 118.8
Chihuahua 168.3 173.0 173.0 129.1 123.8 215.0 173.0 26487.9 155.4
Coahuila 116.5 121.8 124.5 104.4 93.4 146.7 124.5 268.3 77.0
Colima 140.5 190.3 - - 111.4 107.9 128.1 829.7 189.6
Durango 688.6 633.0 633.0 241.1 251.2 319.5 633.0 427.0 483.8
Guanajuato 942.3 983.1 983.1 389.5 624.0 546.7 983.1 7111.9 812.1
Guerrero 101.5 142.0 98.7 100.4 101.0 94.2 107.4 344.2 146.9
Hidalgo 109.3 116.5 116.5 115.1 105.7 147.6 116.5 1773.2 101.3
Jalisco 95.1 102.7 99.4 91.2 100.8 140.3 98.4 752.8 85.6
Mexico City - - - - - - - - -
Mexico 155.8 154.9 154.9 118.0 123.2 156.9 154.9 576.4 142.0
Michoacan 80.6 108.1 103.0 97.3 86.1 97.8 94.1 639.8 74.4
Morelos 95.4 94.3 - - 69.1 117.5 98.9 348.4 61.7
Nayarit 108.9 111.0 - - 78.1 112.1 96.9 628.4 93.8
Nuevo Leon 181.7 182.1 192.6 134.1 140.3 188.6 200.7 5245.7 140.6
Oaxaca 102.4 115.1 96.3 73.6 72.1 116.2 88.0 1547.1 91.2
Puebla 101.5 109.1 109.1 114.1 82.5 144.4 109.1 690.3 81.4
Queretaro 214.6 121.2 122.7 159.6 145.8 141.6 122.7 386.5 114.2
Quintana Roo 106.9 132.2 - - 108.7 92.0 103.8 138.8 134.7
San Luis Potosi 95.0 99.0 - - 97.7 115.1 106.3 3112.7 93.6
Sinaloa 135.8 141.9 139.9 102.7 101.3 117.3 139.9 1113.9 88.1
Sonora 603.4 597.7 597.7 154.5 155.9 167.5 597.7 1867.8 535.1
Tabasco 109.8 161.1 159.6 94.0 120.7 82.2 159.6 490.1 237.4
Tamaulipas 145.1 160.9 156.3 94.3 101.2 139.7 155.6 1127.7 143.9
Tlaxcala - - - - - - - - -
Veracruz 92.3 117.0 98.2 96.6 91.3 108.9 91.9 244.4 107.7
Yucatan 251.6 306.0 - - 128.2 124.4 154.9 740.3 288.2
Zacatecas 208.8 207.6 207.6 149.8 186.4 196.4 207.6 2928.5 189.6

Table 50: 3-month ahead percent absolute errors in Mexico for optimized models. Best per-
forming models in each location are bolded. Lower values indicate stronger performance.

location AR ARGO ARGONet Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal

Iquitos 119.5 112.0 112.0 69.7 77.4 120.3 112.0 3230.7 81.4

Table 51: 3-month ahead percent absolute errors in Peru for optimized models. Best performing
models in each location are bolded. Lower values indicate stronger performance.

location AR ARGO ARGONet Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal

San Juan 73.2 71.8 71.8 49.8 71.8 76.8 71.8 87.8 59.9

Table 52: 3-month ahead percent absolute errors in Puerto Rico for optimized models. Best
performing models in each location are bolded. Lower values indicate stronger performance.
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location AR ARGO ARGONet Ensemble (Country) Ensemble (Overall) Naive NetModel SIR Seasonal

Amnat Charoen 117.9 121.3 152.6 80.2 80.2 107.1 145.0 434.9 100.9
Ang Thong 91.1 83.8 86.7 65.7 65.7 91.6 85.2 216.5 81.5
Bangkok 78.7 90.2 77.3 65.6 65.6 75.6 63.5 105.4 74.6
Bungkan 117.5 118.4 183.2 79.2 79.2 151.1 182.4 1532.5 88.7
Buri Ram 86.4 94.8 78.9 65.3 65.3 94.4 67.8 220.4 82.2
Chachoengsao 128.2 133.0 135.6 56.4 56.4 74.3 122.5 85.8 148.0
Chai Nat 81.6 73.5 67.1 77.3 77.3 103.8 67.8 254.5 72.3
Chaiyaphum 91.4 87.2 92.3 74.7 74.7 102.7 92.6 154.7 88.2
Chanthaburi 99.2 102.6 109.8 56.8 56.8 106.5 102.9 266.6 81.3
Chiang Mai 101.1 115.7 87.5 71.5 71.5 119.9 85.6 585.7 68.8
Chiang Rai 103.4 103.2 84.9 71.9 71.9 128.8 67.8 998.1 75.7
Chon Buri 59.8 62.8 61.5 50.3 50.3 65.3 56.7 108.9 65.0
Chumphon 69.0 77.8 73.0 54.3 54.3 65.0 67.7 79.6 74.3
Kalasin 77.4 89.4 85.8 64.3 64.3 101.9 79.0 241.8 72.7
Kamphaeng Phet 161.1 164.6 151.1 96.2 96.2 95.8 126.3 153.7 152.2
Kanchanaburi 99.1 100.7 87.3 75.2 75.2 85.5 85.4 242.2 93.3
Khon Kaen 79.5 87.7 75.4 84.5 84.5 87.8 70.9 176.9 85.6
Krabi 174.6 225.1 146.5 75.8 75.8 65.4 140.8 97.6 208.6
Lampang 115.5 125.4 120.3 59.8 59.8 133.8 110.9 384.8 69.9
Lamphun 152.5 161.7 148.3 90.1 90.1 112.9 129.0 711.3 136.0
Loei 95.8 104.7 107.5 63.8 63.8 121.9 105.9 289.3 79.5
Lop Buri 91.2 90.4 76.2 60.8 60.8 85.8 74.7 177.4 76.2
Mae Hong Son 80.3 90.6 91.3 68.7 68.7 133.4 86.1 841.6 64.1
Maha Sarakham 83.5 97.0 80.3 75.4 75.4 105.4 66.4 197.3 79.6
Mukdahan 93.1 109.4 107.9 66.7 66.7 126.5 119.6 353.0 79.9
Nakhon Nayok 144.1 143.9 148.9 101.5 101.5 112.6 150.0 192.6 140.2
Nakhon Pathom 45.1 52.8 43.5 47.9 47.9 63.5 38.4 62.8 52.5
Nakhon Phanom 104.4 106.4 135.6 61.7 61.7 138.4 134.0 894.3 71.5
Nakhon Ratchasima 87.9 82.6 76.1 74.3 74.3 94.0 73.6 234.0 82.4
Nakhon Sawan 76.6 80.6 83.4 64.4 64.4 75.2 75.9 433.3 75.2
Nakhon Si Thammarat 65.7 85.2 71.4 46.6 46.6 53.3 69.1 76.6 83.6
Nan 85.4 99.1 95.6 90.7 90.7 114.7 85.2 1047.5 65.8
Narathiwat 77.1 86.5 71.8 63.3 63.3 72.9 66.1 217.9 84.7
Nong Bua Lam Phu 99.6 104.3 81.8 56.2 56.2 110.9 97.7 275.3 78.8
Nong Khai 97.2 106.1 95.7 70.7 70.7 108.9 84.0 268.4 78.8
Nonthaburi 90.5 101.7 81.8 70.0 70.0 88.1 79.4 85.9 87.5
P.Nakhon S.Ayutthaya 77.0 83.3 79.3 51.7 51.7 77.1 74.8 119.1 77.2
Pathum Thani 94.3 104.6 102.4 75.4 75.4 81.6 95.6 82.3 122.5
Pattani 82.4 93.1 108.1 49.1 49.1 71.1 153.0 134.9 85.0
Phangnga 79.8 81.9 80.6 45.3 45.3 77.0 105.9 130.7 63.2
Phatthalung 106.9 132.5 105.8 55.7 55.7 74.3 103.2 159.1 125.5
Phayao 136.6 137.7 108.5 65.7 65.7 141.0 97.1 623.7 82.4
Phetchabun 94.7 106.2 107.3 58.4 58.4 117.7 103.1 358.0 75.5
Phetchaburi 77.7 86.3 103.0 54.4 54.4 52.5 108.3 59.4 93.3
Phichit 164.2 177.3 176.4 121.5 121.5 96.9 179.9 136.3 178.7
Phitsanulok 88.7 100.7 82.4 58.9 58.9 99.0 75.4 216.1 75.5
Phrae 211.8 210.8 - 109.9 109.9 147.8 171.3 1863.8 143.1
Phuket 83.7 102.4 69.8 54.7 54.7 56.1 80.4 94.8 99.0
Prachin Buri 85.7 93.4 76.3 72.9 72.9 97.0 71.6 184.2 77.3
Prachuap Khiri Khan 80.8 82.4 88.8 50.0 50.0 48.1 83.5 69.6 89.3
Ranong 62.8 64.4 63.4 52.0 52.0 84.7 63.9 152.4 48.5
Ratchaburi 57.2 67.2 65.0 44.2 44.2 51.5 68.5 56.6 66.7
Rayong 70.2 71.9 64.3 50.1 50.1 77.7 64.8 126.2 62.8
Roi Et 78.9 90.3 68.2 73.5 73.5 106.5 63.8 406.5 73.4
Sa Kaeo 86.0 96.1 80.5 74.5 74.5 100.9 75.9 153.5 84.5
Sakon Nakhon 103.1 110.0 116.4 68.1 68.1 132.5 115.7 528.4 74.6
Samut Prakan 78.8 81.2 74.1 62.6 62.6 65.4 72.9 101.9 90.8
Samut Sakhon 64.8 75.7 58.8 49.2 49.2 51.3 56.6 63.8 69.5
Samut Songkhram 114.8 141.4 104.2 69.5 69.5 82.7 96.5 100.3 135.4
Saraburi 73.7 82.5 62.1 60.3 60.3 87.8 58.5 154.6 65.3
Satun 151.7 229.9 169.4 86.3 86.3 89.0 164.8 213.1 209.7
Si Sa Ket 96.4 112.4 113.0 69.7 69.7 98.5 115.2 276.1 89.6
Sing Buri 116.1 93.9 97.2 120.9 120.9 124.9 97.1 977.2 91.8
Songkhla 78.6 89.6 84.3 44.4 44.4 67.8 97.0 116.9 84.7
Sukhothai 69.3 72.8 68.2 57.8 57.8 94.3 62.0 225.2 59.7
Suphan Buri 46.0 50.6 59.0 50.7 50.7 67.3 56.7 89.9 46.5
Surat Thani 156.1 193.7 160.6 85.1 85.1 70.9 153.4 115.2 190.0
Surin 75.8 89.9 61.2 67.0 67.0 103.5 56.9 333.1 63.6
Tak 69.8 81.7 69.1 52.1 52.1 109.2 65.3 397.5 43.7
Trang 87.7 95.5 95.5 45.7 45.7 88.1 95.5 214.0 68.9
Trat 92.5 99.8 105.2 61.9 61.9 86.2 94.9 175.9 86.0
Ubon Ratchathani 87.1 93.3 90.6 79.0 79.0 112.5 89.3 227.5 83.2
Udon Thani 99.8 97.1 99.5 78.6 78.6 127.2 97.5 2897.3 85.5
Uthai Thani 85.7 90.6 100.4 75.8 75.8 86.0 92.6 280.3 84.9
Uttaradit 70.2 73.4 70.1 51.4 51.4 104.4 68.0 295.2 51.0
Yala 70.9 80.1 73.5 61.9 61.9 80.1 76.0 142.0 79.1
Yasothon 88.5 102.3 96.7 74.3 74.3 104.8 89.1 202.9 82.4

Table 53: 3-month ahead percent absolute errors in Thailand for optimized models. Best per-
forming models in each location are bolded. Lower values indicate stronger performance.
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3.7 PAE of Standard Models versus Naive Persistence Baseline

country no. of locations AR ARGO ARGONet Ensemble (Country) Ensemble (Overall) NetModel SIR Seasonal

Brazil 27 16 5 7 25 21 7 14 2
Colombia 33 12 0 4 18 17 4 7 0
Malaysia 15 2 1 1 8 5 1 1 0
Mexico 32 6 1 1 18 16 2 3 2
Peru 1 0 0 0 1 0 0 0 0
Puerto Rico 1 1 0 0 1 1 0 1 0
Thailand 77 26 11 30 62 54 33 9 3
Overall 186 63 18 43 133 114 47 35 7

Table 54: Number of locations per country where standard models outperformed the naive per-
sistence baseline at the 1-month ahead horizon, as measured through percent absolute error.
Best performing models in each location are bolded. Higher values indicate stronger perfor-
mance.

country no. of locations AR ARGO ARGONet Ensemble (Country) Ensemble (Overall) NetModel SIR Seasonal

Brazil 27 16 10 13 22 19 15 1 11
Colombia 33 6 2 8 15 16 10 4 1
Malaysia 15 2 2 3 5 4 3 0 0
Mexico 32 10 7 8 22 22 11 1 12
Peru 1 0 0 0 1 1 0 0 1
Puerto Rico 1 1 0 0 1 1 0 1 0
Thailand 77 36 20 41 69 65 44 4 27
Overall 186 71 41 73 135 128 83 11 52

Table 55: Number of locations per country where standard models outperformed the naive per-
sistence baseline at the 2-month ahead horizon, as measured through percent absolute error.
Best performing models in each location are bolded. Higher values indicate stronger perfor-
mance.

country no. of locations AR ARGO ARGONet Ensemble (Country) Ensemble (Overall) NetModel SIR Seasonal

Brazil 27 16 14 17 20 19 17 0 16
Colombia 33 9 3 15 18 15 13 1 4
Malaysia 15 3 2 2 7 6 2 0 1
Mexico 32 14 13 10 18 20 14 0 17
Peru 1 1 1 1 1 1 1 0 1
Puerto Rico 1 1 1 1 1 1 1 0 1
Thailand 77 46 40 43 71 71 47 2 52
Overall 186 90 74 89 136 133 95 3 92

Table 56: Number of locations per country where standard models outperformed the naive per-
sistence baseline at the 3-month ahead horizon, as measured through percent absolute error.
Best performing models in each location are bolded. Higher values indicate stronger perfor-
mance.
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