
Robust uncertainty quantification in popular estimators of the

instantaneous reproduction number

Nicholas Steyn∗1 and Dr Kris V Parag2

1Department of Statistics, University of Oxford, Oxford, United Kingdom
2MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, United Kingdom

Abstract

The instantaneous reproduction number (Rt) is a widely used measure of the rate of spread of an infectious
disease. Correct quantification of the uncertainty of Rt estimates is crucial for making well-informed deci-
sions. Popular methods for estimating Rt leverage smoothing techniques to distinguish signal from noise.
Examples include EpiEstim and EpiFilter, each are controlled by a single “smoothing parameter”, which
is traditionally chosen by the user. We demonstrate that the values of these smoothing parameters are
unknown and vary markedly with epidemic dynamics. We argue that data-driven smoothing choices are
crucial for accurately representing uncertainty about Rt estimates. We derive model likelihoods for the
smoothing parameters in both EpiEstim and EpiFilter. Adopting a flexible Bayesian framework, we use
these likelihoods to automatically marginalise out the relevant smoothing parameters from these models
when fitting to incidence time-series. Applying our methods, we find that the default parameterisations of
these models can negatively impact inferences of Rt, delaying detection of epidemic growth, and misrepre-
senting uncertainty (typically by producing overconfident estimates), with substantial implications for public
health decision-making. Our extensions mitigate these issues, provide a principled approach to uncertainty
quantification, and improve the robustness of inference of Rt in real-time.

The instantaneous reproduction number Rt, defined
as the average number of secondary infections gener-
ated per effective primary case at time t, is a popular
measure of epidemic spread [1]. A value of Rt < 1
indicates a declining epidemic while a value of Rt > 1
indicates a growing epidemic. This quantity is partic-
ularly useful for policymakers as it gives the propor-
tional change in transmission rates required to con-
trol the epidemic, thus informing decisions to trig-
ger and release public health interventions [2, 3, 4,
5, 6]. As a stark example, in June 2020, an Rt es-
timate of 1.01 was used to justify continued school
closures in Greater Manchester, England [7, 8]. In
addition to real-time decision-making, estimates of
Rt are also used for forecasting, scenario analysis,
and understanding the impact of interventions [9].

Many models exist to estimate Rt from such data,
including mechanistic models such as compartmen-
tal SIR models, and semi-mechanistic models such

as the renewal-model [10], the latter of which un-
derlies most contemporary methods for the real-time
estimation of Rt, including EpiEstim [11] and Epi-
Filter [12]. We focus on quantifying uncertainty in
these two models, although our approach generalises
to any real-time model.

Correct quantification of the uncertainty of Rt is cru-
cial for making well-informed decisions. If one reports
a 95% credible interval for Rt, then it is expected that
the true value of Rt should fall within this interval
95% of the time. Undercoverage occurs when the
true value falls within the credible interval less often
than expected, leading to over-confident and biased
decision-making, while overcoverage occurs when the
true value falls within the credible interval more often
than expected, leading to under-confident and highly
uncertain decision-making. A model that produces
correct coverage is said to be well-calibrated.
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Despite the importance of uncertainty quantifica-
tion, calibration is often neglected in epidemiolog-
ical models. For example, during the COVID-19
pandemic, SPI-M in England used estimates from
multiple groups to produce consensus estimates of
Rt. They were unable to combine the estimates us-
ing standard techniques due to models “providing
estimates with lower levels of uncertainty that are
not fully accounting for inherent uncertainties” [13].
Even when correct coverage is explicitly targeted, epi-
demic models frequently fail to achieve it. For in-
stance, nearly all models submitted to the open chal-
lenge to advance probabilistic forecasting for dengue
epidemics [14] produced over-confident predictions
for the various forecasting targets. A simple baseline
model (which was included for comparison) demon-
strated superior calibration compared to all 16 sub-
mitted models when predicting the peak week, for
example.

In particular, smoothing assumptions (such as penal-
ized likelihoods [15], piecewise constant/trailing win-
dow models [16, 17, 11, 18], and latent-space models
[12, 19, 20, 21]) are a key source of model miscalibra-
tion. Oversmoothed estimates result in delayed and
overconfident estimates, while undersmoothed esti-
mates are noisy and lack precision. Even with per-
fect case reporting (i.e. no observation noise), in-
herent stochasticity in the transmission of infectious
diseases necessitates the use of smoothing to distin-
guish signal from noise. All popular estimators of Rt

employ some type of smoothing.

Despite the importance and ubiquity of these as-
sumptions, the philosophical and practical treatment
of smoothing parameters varies by method. Some
methods treat these parameters as unknown quanti-
ties to be estimated alongside Rt [19, 17, 22], while
other methods treat the choice of smoothing param-
eter(s) as a model selection problem and seek to find
some optimal point-value of the parameter [23]. Some
methods allow the user to choose their own values or
provide heuristic default values [11, 15, 22].

We argue that, because the true dynamics of Rt are
always unknown and depend on both the pathogen
and the population in which the pathogen is spread-
ing, uncertainty about the nature of these dynam-
ics should not be ignored. This uncertainty fac-
tors in both the choice of the dynamic model itself
(structural uncertainty), and the parameters associ-
ated with the chosen dynamic model (parametric un-
certainty). We focus on parametric uncertainty in
this paper, which on its own can cause substantial
model miscalibration, and demonstrate that correct

marginalisation of smoothing parameters generally
improves model robustness, even if the structure of
the dynamic model does not accurately reflect reality.

In this paper, we derive novel likelihoods for the
smoothing parameters in two popular models: Epi-
Estim [11] and EpiFilter [12]. We then use these
likelihoods to marginalise out the smoothing param-
eters, presenting estimates of Rt that appropriately
account for uncertainty in these parameters. We also
derive predictive posterior distributions and demon-
strate their use in model comparison via the con-
tinuous ranked probability score (CRPS) [24]. We
validate our methods on both simulated data, where
model estimates can be compared to a known truth,
and real-world data, where we consider the practi-
cal implications of our methods on decision-making
during the COVID-19 pandemic in New Zealand.

Methods

We provide a high-level overview of our methods here,
with full mathematical derivations and technical de-
tails provided in supplementary section 1.

Background

Both EpiEstim and EpiFilter leverage the Poisson
renewal model for Rt estimation. Specifically, let Cs

be the number of cases reported at time s and wu be
the probability that a secondary case is reported u
days after the primary case (often approximated by
the serial interval), the total infectiousness is defined
as Λt =

∑t
u=1Ct−uwu. Given Λt and the current

value of Rt, the number of cases at time t is then
assumed to be distributed according to:

Ct ∼ Poisson(RtΛt) (1)

EpiEstim assumes that, on each day t, Rt has been
fixed for the preceding k days (a trailing window of
length k). Larger values of k imply that Rt has been
fixed for a longer period, and thus result in smoother
estimates. The likelihood of observing cases between
time-steps t − k + 1 and t (denoted Ct−k+1:t) is the
product of the daily Poisson likelihoods (equation 1)
in the trailing window. A conjugate Gamma(α, β)
prior distribution is assumed for Rt, resulting in a
Gamma(αt,k, βt,k) posterior distribution for Rt given
C1:t−1, where the shape-parameter αt,k and rate-
parameter βt,k are given by:
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αt,k = α+
t∑

s=t−k+1

Cs, βt,k = β +
t∑

s=t−k+1

Λs (2)

Instead of assuming fixed trailing windows, EpiFil-
ter assumes that Rt follows a Gaussian random walk
with standard deviation equal to η

√
Rt−1. Larger

values of η allow Rt to vary faster, resulting in less
smooth estimates. A grid-approximation to the ex-
act Bayesian filtering equations is used to derive the
posterior distribution of Rt given C1:t (i.e. reported
case data up-to time t). While EpiFilter also allows
for the estimation of the smoothing distribution (Rt

given past and future data), we focus on real-time
estimation, so do not consider this here.

Model likelihoods

We use the same general framework to derive likeli-
hoods for the smoothing parameters of both meth-
ods. Formal derivations for each model are included
in supplementary section 1. Letting θ denote an ar-
bitrary smoothing parameter, we begin with the pre-
dictive decomposition of the likelihood:

logP (C1:T |θ) =
T∑
t=1

logP (Ct|C1:t−1, θ) (3)

and note that the one-step-ahead-likelihood can be
written as:

P (Ct|C1:t−1, θ) =

∫
P (Ct|Rt, C1:t−1)P (Rt|C1:t−1, θ) dRt (4)

where P (Ct|Rt, C1:t−1) is the renewal model (equa-
tion 1). Thus, deriving model likelihoods relies on
the derivation of the one-step-ahead predictive dis-
tribution for Rt: P (Rt|C1:t−1, θ).

For EpiEstim, Rt depends on reported cases only on
days t−k+1 to t, however the predictive distribution
explicitly ignores data on day t, so EpiEstim’s pre-
dictive distribution for Rt is Gamma-distributed with
shape αt−1,k−1 and rate βt−1,k−1. In this case, equa-
tion 4 is a Gamma-Poisson mixture, hence Ct|C1:t−1

follows a negative binomial distribution with parame-

ters r = αt−1,k−1 and p =
βt−1,k−1

βt−1,k−1+Λt
. The likelihood

of EpiEstim’s k is simply the sum of log-negative bi-
nomial probability mass functions for each day t.

For EpiFilter, the predictive distribution of Rt is a
by-product of the Bayesian filtering equations, found

by propagating the estimated distribution of Rt−1

given C1:t−1 forward according to the assumed Gaus-
sian random walk. This allows us to find the one-
step-ahead likelihood of Ct by taking a weighted av-
erage of the Poisson likelihood of Ct with respect to
the predictive distribution of Rt given C1:t−1.

We provide full implementations of these meth-
ods and the corresponding likelihoods in the github
repository.

Figure 1: Schematic demonstrating the derivation
of parameter likelihoods using the predictive decom-
position (equation 3). Rt estimates are projected
forward one time-step according to the relevant dy-
namic model (panel A), giving predictive distribu-
tions for Rs+1 (panel B). These are combined with
the renewal model to give the probability of observ-
ing Cs+1 conditional on past data C1:s and the cho-
sen smoothing parameter θ (panel C). In this time-
step, the undersmoothed model is more likely than
the oversmoothed model. Repeating this process and
summing the log-predictive probabilities for all time-
steps produces the model likelihood (Panel D). These
log-likelihoods are later used to marginalise out un-
certainty about θ, allowing for robust reporting of
uncertainty about Rt. The form of the Rt estimates
and predictive distributions for Rt depend on the spe-
cific model.
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Posterior distributions

These methods admit log-likelihoods for k and η
given C1:t, denoted ℓ(k|C1:t) and ℓ(η|C1:t) respec-
tively. We use these to derive posterior distributions
(denoted P (k|C1:t) and P (η|C1:t)), typically using a
uniform prior distribution over k ∈ {1, 2, . . . , 30} (as-
suming a maximum monthly dependence) and η ∈
[0, 1] (assuming a maximum Poisson diffusion).

We are ultimately interested in estimates of Rt that
account for uncertainty about k or η. To achieve this,
we marginalise out these parameters from the poste-
rior distribution of Rt, a procedure that is rare in the
literature. For EpiEstim, we leverage the discrete
nature of k to write exactly:

P (Rt|C1:t) =
30∑
k=1

P (Rt|C1:t, k)P (k|C1:t) (5)

whereas for EpiFilter, we use a grid-approximation
(η ∈ E , supplementary section 1.1.2) to the desired
integral:

P (Rt|C1:t) =

∫
P (Rt|C1:t, η)P (η|C1:t) dη

≈
∑
η∈E

P (Rt|C1:t, η)P (η|C1:t)
(6)

We can also marginalise out the smoothing parame-
ter from the predictive distributions for Ct (equation
4). This allows us to present marginal one-step-ahead
predictive distributions for Ct under both models,
useful for model comparison and probabilistic fore-
casting.

Model evaluation

We argue that a “good” model is one that maximises
precision (i.e. minimises the width of uncertainty in-
tervals), subject to being well-calibrated [24]. Choos-
ing the “best” model thus involves a trade-off: how
much (if any) miscoverage are we willing to accept in
exchange for more precise estimates? A commonly
used metric in these cases is the Continuous Ranked
Probability Score (CRPS), which measures the dis-
tance between the estimated predictive distribution
and the empirical distribution of the data. The
smaller this distance is, the more closely the model’s
predictive uncertainty aligns with the observed data
variability. We employ the CRPS to compare the
performance of our models. Full details of how we
calculate CRPS for each model is provided in supple-
mentary section 1.4.

Data

We test our models on three different simulated
datasets, each assuming a different dynamic model
for Rt: a Gaussian random walk (matching the dy-
namic model assumed by EpiFilter), a sinusoidal
curve, and a step-change model. These models cover
a range of smooth to sharp changes in Rt. We also
compare model outputs on real-world data from the
COVID-19 pandemic in New Zealand [25], chosen as
an example of high-quality data with limited report-
ing biases. We explicitly relate real-world policy de-
cisions to the inferences made by our models. A com-
mon serial interval from the COVID-19 literature, a
Gamma distribution with a mean of 6.5 days and
standard deviation of 4.2 days, is used for both the
simulation study and the application to real-world
data [26, 27]. Further information on simulated data
is provided in supplementary section 2.

Results

Simulation study

Fitting EpiEstim and EpiFilter to a single realisa-
tion of each simulated epidemic (figure 2) demon-
strates that default parameterisations of both EpiEs-
tim and EpiFilter result in oversmoothed estimates
of Rt, relative to the level of smoothing estimated
from the data. The exception is EpiFilter when fit to
the random walk simulation, where the true value of
η is deliberately chosen to match EpiFilter’s default
η = 0.1.

Using these default parameters results in credible
intervals for Rt that typically undercover the true
value. This is more noticeable for EpiEstim, where
coverage of the 95% credible intervals for Rt in the
default model ranges from just 8.9% in the sinusoidal
simulation, to 74.4% in the step-change simulation.
Marginalising out k considerably improves coverage
in these models to 81.1% and 94.4% respectively. De-
fault EpiFilter is generally more robust, partially as a
result of the default η = 0.1 being less extreme with
respect to the posterior distribution of η, although
marginalising out this parameter still improves cov-
erage of Rt from 81.1% to 92.2% in the sinusoidal
model.

The one-step-ahead predictive coverage of reported
cases is also improved by marginalising out the
smoothing parameter. While this is true for all mod-
els and simulations considered, the effect is more pro-
nounced in EpiEstim.
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Figure 2: Simulated case data (A, B, C), posterior distributions for smoothing parameters at t = 100 (D, E,
F), estimates of Rt (G, H, I), and estimates of predictive cases (J, K, L) for one realisation of each simulated
epidemic. The first column (A, D, G, J) shows results for the Gaussian random walk simulation with η = 0.1,
a dynamic model that precisely matches default EpiFilter. The second column (B, E, H, K) shows results
for the sinusoidal simulation, and the third column (C, F, I, L) shows results for the step-change simulation.
Vertical dotted lines in the parameter posterior distributions denote the default parameter values, while the
vertical solid line denotes both the default parameter value and the true value of the parameter (in EpiFilter
when fit to the random walk simulation). Black lines (in Rt estimates) and black dots (in predictive Ct

estimates) denote the true values of Rt and Ct respectively. Predictive coverage of the 95% credible intervals
(closer to 95% is better) and the CRPS (lower is better) are shown within each figure.
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Finally, marginalising out the smoothing parame-
ter almost always improves (decreases) the CRPS,
suggesting that marginalised models produce more
accurate predictive distributions of cases than de-
fault models. The sole exception is EpiFilter in the
step-change simulation, where the CRPS worsens (in-
creases) slightly, although we show in supplementary
section 3 that, on average, marginalisation also im-
proves EpiFilter when fit to step-change simulations.
The worsening CRPS in this specific simulation sug-
gests that, according to the trade-off implied by the
CRPS, the narrower credible intervals produced by
default EpiFilter may be worth sacrificing some cov-
erage of predictive cases. We observe a similar effect
in the sinusoidal simulation when comparing EpiEs-
tim and EpiFilter, where the CRPS is slightly lower
in EpiEstim (indicating it as the better model), de-
spite EpiFilter having better coverage of predictive
cases.

These results depend on the simulated data, and
we consider differing simulated epidemic dynamics
in supplementary section 3, showing how the appro-
priate level of smoothing depends on the underlying
epidemic dynamics. We find that marginalisation be-
comes more important as the standard deviation of
the simulated random walk increases, the period of
the sinusoidal curve decreases, or the step-change be-
comes more frequent, as (in all three examples) the
level of oversmoothing in default models increases.

Contrary to common intuition, fitting to a greater
number of daily cases does not necessarily improve
the quality of inference. Supplementary figure S1
demonstrates that, while marginalised EpiFilter is
largely robust to sample size, EpiEstim’s coverage
worsens as sample size increases in both the default
and marginalised models. This occurs as the model,
which has a guaranteed level of misspecification (Rt

cannot be constant at one value on [t− k + 1, t] and
then constant at a different value on [t−k+2, t+2])
results in the model becoming more confident in the
incorrect estimate. This increased confidence in a
misspecified model means that, in the presence of ob-
servation noise, EpiFilter is also expected to degrade
as sample size increases.

The COVID-19 pandemic in New Zealand,
August-December 2021

After largely containing the spread of COVID-19, in
August 2021 an outbreak of the delta-variant was de-

tected in Auckland, New Zealand, leading to the im-
position of strict non-pharmaceutical interventions.
The outbreak was characterised by an initial peak
of cases in late August, followed by a period of de-
cline, before a second peak in mid-November (figure
3). The reproduction number was repeatedly cited in
decision-making by multiple officials, including the
Prime Minister and the Director-General of Health
[3, 28, 29, 30, 4, 31, 32].

We fit all four models to reported cases (smoothed
using a 5-day moving average to decrease reporting
noise) between 11 August 2021 and 1 December 2021
(figure 3). Both EpiEstim and EpiFilter exhibit an
improved CRPS after marginalisation, and EpiEstim
exhibits improved predictive coverage after marginal-
isation. As Rt is unknown, we are unable to evaluate
the calibration of this variable.

As in the simulated epidemics, we find that the de-
fault models oversmooth relative to the marginalised
models. This is most noticeable for EpiEstim, where
almost all posterior mass is on k = 2. For EpiFil-
ter, the default value of η = 0.1 is within the 95%
credible interval for the final value of η, so, in this
case, default EpiFilter is better calibrated than de-
fault EpiEstim, however table 1 still highlights some
delays in detection of epidemic growth or decline.

On 31 August, marginalised EpiFilter first detected
that Rt may be less than 1, while 4 days later, this
was detected by the default EpiEstim, the last model
to do so. In fact, both marginalised models were
confident that Rt < 1 by 3 September, before the
possibility of decline had been detected by default
EpiEstim. This was a period characterised by daily
press conferences and strict interventions (including
stay-at-home orders), which were estimated to have
cost the city NZ$56m per day [33].

On 13 September, the Government announced that
because restrictions had “...reduced that value [Rt]
down to consistently below one”, restrictions in Auck-
land would be relaxed the following week on 21
September [30]. There was considerable interest in Rt

over the following week, as a resurgence could have
necessitated prolonged restrictions. The timing of
this announcement coincides exactly with the first de-
tection of a potential resurgence by the marginalised
models (on 13 September), while the default models
are still confident that Rt < 1.
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Figure 3: Reported case data and parameter posterior estimates (A), reproduction number estimates (B),
predictive cases (C) and reproduction number estimates for selected periods (D, E, F) from fitting the
four models to reported case data from the outbreak of the delta-variant of SARS-CoV-2 in Auckland,
New Zealand between 11 August 2021 and 1 December 2021. Our methods improve predictive coverage of
EpiEstim and the CRPS of both models.

EpiEstim EpiFilter
Default Marginalised Default Marginalised

Period A

First detection 4 Sep (+4) 1 Sep (+1) 1 Sep (+1) 31 Aug (+0)
Expected Rt < 1 4 Sep (+3) 2 Sep (+1) 2 Sep (+1) 1 Sep (+0)
Confidence in Rt < 1 5 Sep (+2) 3 Sep (+0) 3 Sep (+0) 3 Sep (+0)

Period B

First detection 20 Sep (+7) 13 Sep (+0) 18 Sep (+5) 13 Sep (+0)
Expected Rt > 1 30 Sep (+10) 20 Sep (+0) 28 Sep (+8) 20 Sep (+0)
Confidence in Rt > 1 1 Oct (+0) 1 Oct (+0) 1 Oct (+0) 1 Oct (+0)

Period C

First detection 22 Nov (+7) 16 Nov (+1) 15 Nov (+0) 15 Nov (+0)
Expected Rt < 1 27 Nov (+2) 26 Nov (+1) 25 Nov (+0) 25 Nov (+0)
Confidence in Rt < 1 29 Nov (+1) 28 Nov (+0) 29 Nov (+1) 29 Nov (+1)

Table 1: Dates of the first detection of growth or decline (defined as the upper bound on the 95% credible
interval of Rt crossing 1 for growth, or the lower bound crossing 1 for decline), the date that the central
estimates of Rt first crossed 1, and the date that the models are first confident in growth or decline (defined
as the lower bound on the 95% credible interval of Rt crossing 1 for growth, or the upper bound crossing
1 for decline) for the COVID-19 outbreak in Auckland, New Zealand that started in August 2021. The
number of days after the first detection is shown in parentheses, highlighting the substantial delay often
observed in default models.
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Default EpiFilter first detected a potential resur-
gence on 18 September (5 days after the marginalised
models) and default EpiEstim on 20 September (7
days after the marginalised models, and the day be-
fore restrictions were due to be relaxed). While the
marginalised models first produced central estimates
of Rt > 1 on the same day (20 September), it wasn’t
until 10 days later, on 30 September, that default
EpiEstim produced a central estimate of Rt > 1, an
entire 17 days after the announcement, and 9 days
after the restrictions were relaxed.

Daily reported cases continued to increase until mid-
November, before appearing to plateau. While the
marginalised models (and default EpiFilter) became
uncertain about continued epidemic growth around
15 November, default EpiEstim was still confident
that Rt > 1 until 22 November (7 days later), a
clear example of oversmoothed models being over-
confident.

We test our methods on additional real-world
datasets in supplementary section 4.

Discussion

We have presented derivations for the model like-
lihood of two popular Rt estimators. We used
these likelihoods to develop posterior distributions for
the corresponding smoothing parameters, and then
marginalised out uncertainty about these parameters
from estimates of Rt. We have shown that doing this
results in improved uncertainty quantification for Rt,
thus allowing increased confidence in the calibration
of reported credible intervals.

Robust uncertainty quantification is crucial for real-
world decision-making. Our methods provide one
of the first principled and computationally efficient
ways of ensuring the robustness of reported uncer-
tainty in two popular models: EpiEstim [11] and Epi-
Filter [12].

In addition to real-time decision-making, estimates of
Rt are also used as the ground-truth in other mod-
els, such as models investigating the impact of non-
pharmaceutical interventions [34, 35, 36, 37, 38, 39,
40, 41, 42], the effect of climate [43], or the relation-
ship between mobility and transmission [44]. These
citations all use EpiEstim to estimate Rt, most with
the default value of k = 7. Some of these citations
correct for delays induced by the smoothing parame-
ter by shifting estimates by k/2 days, but this is a de-
terministic correction that ignores uncertainty about
k. The Bayesian nature of our methods allows for the

propagation of uncertainty in k through to estimates
of Rt and thus to downstream models estimating the
effect of interventions, climate, or mobility.

While we focus on parametric uncertainty, by fit-
ting our models to simulated data from a range of
dynamic models, one of our key findings is that
marginalising out smoothing parameters results in in-
creased model robustness, even when ignoring struc-
tural uncertainty. This is observed by improved cov-
erage of predictive cases and decreased CRPS in sim-
ulations and on real data, and by improved coverage
of Rt in simulations. As Rt is always unknown, it is
not possible to compare coverage of this quantity on
real data, and we rely on the CRPS on observables
as a proxy for model performance (which is justified
by our results on simulated data).

We used two metrics to evaluate model performance:
coverage of the 95% credible intervals and CRPS.
The former is a measure of calibration only, while
the latter also factors in precision (and simultane-
ously considers all credible intervals, not just the 95%
level). Calibration and precision are often a trade-off:
correct calibration can usually be obtained by de-
creasing precision (i.e., widening credible intervals).
The CRPS is a principled way of balancing these two
goals. Alternative scoring rules may be appropriate
depending on context. The documentation of [45]
summarises scoring rules in an epidemiological con-
text.

Our results suggest that improved CRPS implies bet-
ter estimates of Rt, even when the model is misspec-
ified (i.e., when the structure neither matches the
ground or simulated truth). However, there is no
guarantee of performance under model misspecifica-
tion. Since some misspecification is inevitable when
modelling infectious diseases, any scoring rule should
be interpreted with caution. One example is observa-
tion noise: EpiEstim and EpiFilter assume that the
epidemic follows the Poisson renewal model and that
the appropriate level of smoothing is fixed over time
(supplementary section 5 investigates this further).
We demonstrate that our methods help with robust-
ness to observation noise in supplementary section
3.3, but the lack of explicitly allowing for observa-
tion noise remains a limitation. We chose the New
Zealand dataset as an example of high-quality epi-
demiological data with limited reporting biases, but
in many real-world applications, observation noise is
a significant issue that must be factored into analysis.

Alternative parameter fitting procedures for EpiEs-
tim have previously been proposed. In the supple-
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mentary material of [11], the authors suggest select-
ing k such that the window contains sufficient cases
as to reduce the posterior coefficient-of-variation to a
desired level. Depending on philosophy, this is either
a subjective decision about the bias-variance trade-
off, or a way of choosing parameters to obtain a de-
sired level of confidence in Rt estimates. In either
case, choosing a value of k with relatively low likeli-
hood is likely to lead to poor model calibration. Al-
ternatively, APEestim [23] proposed an information-
theoretic approach to selecting k. While their ap-
proach is principled, it results in the selection of k
shifted by one unit compared to our method, and
does not allow for the marginalisation of uncertainty
when there are multiple plausible values of k. We
compare APEestim with our methods in supplemen-
tary section 6. Finally, as both EpiEstim and EpiFil-
ter are Bayesian estimators, we argue that marginal-
ising out the smoothing parameter is a more justified
approach than selecting a single value.

While our methods can be applied to any sequen-
tial model (i.e., any model that estimates Rt using
C1:t, and then Rt+1 using C1:t+1, and so on), other
methods exist that approach the smoothing problem
differently. For example, EpiNow2 [19] also uses the
renewal model, but models Rt using a Gaussian pro-
cess. The smoothness of this model is primarily de-
termined by the length-scale, which can either be
assumed (in much the same way as default EpiEs-
tim or EpiFilter) or estimated. Rather than using
the sequential structure of the data, EpiNow2 fits
the length-scale alongside Rt (and other parameters)
using a Markov-chain Monte Carlo algorithm. Un-
derstanding the nuances of these various approaches
to smoothing and hence inference-based decision-
making will form a topic of future study.

The August 2021 outbreak of SARS-CoV-2 in Auck-
land, New Zealand provides a pertinent example
of the importance of smoothing assumptions. Rt

was first reported by officials as being less than 1
on 29 August, two days before any of our models
(marginalised or default). While the official mod-
els were also based on the renewal model, they ap-
proached the smoothing problem differently: they as-
sumed Rt was fixed at one value prior to the lockdown
on 18 August, and then fixed at a different value af-
ter the lockdown [46], a piecewise constant model [16,
17]. These assumptions, provided they were correct,
allowed researchers to be more confident in their es-
timates of Rt.

It is often argued that public policy decision-making
should be “data-driven”, with Rt frequently featur-

ing as an example of “data” that could inform these
decisions [47]. However, without careful model con-
struction and accurate representation of uncertainty,
estimates of Rt risk being influenced more by model
assumptions than the underlying data. As we have
demonstrated on both simulated and real-world data,
these decisions will also be delayed relative to de-
cisions made using models with more robust uncer-
tainty quantification. Fortunately, our methods pro-
vide a simple and computationally efficient way to
improve the robustness of these estimates, and to
benchmark the uncertainty introduced or removed by
smoothing assumptions.

Additional material

In addition to the supplementary material, all code is
available on the GitHub repository. This repository
contains all code necessary to reproduce the results in
this paper, as well as Julia implementations of both
EpiEstim and EpiFilter. Tutorials for the use of these
methods are provided on the corresponding website.
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