$\frac{1}{2}$	A decade of dengue disease burden in Africa (2013–2023): a systematic review
3	<u>Gaspary O. Mwanyika</u> ^{a,b} , <u>Monika Moir^a, Abdualmoniem O. Musa^c, Jenicca</u>
4	Poongavanan ^a , <u>Graeme Dor^a, Eduan Wilkinson^a, Cheryl Baxter^a, <u>Tulio de Oliveira</u>^{a,d}</u>
5	and <u>Houriiyah Tegally</u> ^a
6	
7	^a Centre for Epidemic Response and Innovation (CERI), School for Data Science and
8	Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
9	^b Department of Applied Sciences, Mbeya University of Science and Technology,
10	Mbeya, Tanzania
11	^c Kassala University & Ministry of Health, Kassala State, Sudan
12	^d KwaZulu-Natal Research Innovation and Sequencing Platform, University of
13	KwaZulu- Natal, Durban, South Africa
14	
15	
16	
17	
18	
19	Corresponding authors: Houriiyah Tegally (houriiyah@sun.ac.za)
20	
21	
22	
23	
24	
25	

Travel Medicine and Infectious Diseases

26 Abstract

27 Background

- 28 Dengue is a major mosquito-borne disease worldwide. The epidemiological trends of the
- 29 disease in Africa over the past decade remain unclear. This review aims to provide insight
- 30 into the epidemiological trends of dengue in Africa from 2013–2023.

31 Methods

- 32 We systematically searched PubMed/MEDLINE and Scopus for studies published
- 33 between January 2013 and December 2023. Additionally, we collected official
- 34 records from the World Health Organization for Africa and African Centre for Disease
- 35 Control. We included studies that reported dengue cases in humans in Africa and
- 36 excluded publications prior to 2013, review articles and non-human studies. For
- 37 specific countries, the suspected cases per 100,000 population and fatality rates
- 38 were estimated and the trend predicted using a negative binomial model. The
- 39 statistical analyses and visualisations were performed using R programming.

40 **Results**

- 41 Of the 453 reports screened, 87 from 25 African countries were selected for
- 42 systematic review. Between 2013 and 2023, approximately 200,000 suspected
- 43 dengue cases, 90,000 confirmed cases and 900 deaths were reported in Africa.
- 44 Over 80% of confirmed cases originated from West Africa, with Burkina Faso
- 45 reporting over 500 cases per 100,000 population. DENV1 and DENV2 predominating
- 46 at different times with transmission closely linked to rainy seasons.

47 Conclusions

48 The rising dengue cases across Africa, highlight the need to strengthen surveillance

49 and implement effective regional-specific interventions against future dengue

Travel Medicine and Infectious Diseases

- 50 outbreaks. Further research is necessary to improve our understanding on dengue
- 51 transmission dynamics and suitability of regions in Africa.
- 52 Key words: dengue, disease burden, Africa, systematic review
- 54 **1.** Introduction

53

55 Dengue is a major mosquito-borne viral disease transmitted by infected female 56 mosquitoes of the Aedes genus [1]. The disease is caused by dengue virus (DENV) 57 of the Flaviviridae family in the genus Orthoflavivirus. The virus consists of four 58 antigenically distinct serotypes: DENV1, DENV2, DENV3 and DENV4, which are 59 capable of inducing mild to severe illnesses in humans [2]. Globally, approximately 60 390 million dengue infections, 500,000 hospitalizations and more than 20,000 deaths 61 are reported annually [3]. In recent decades, the virus has transcended its traditional 62 boundaries, extending into temperate regions including Europe and North America [4,5]. The disease has been reported in Africa since the late 19th and early 20th 63 64 centuries, with reported cases in Zanzibar (1870), Burkina Faso (1925), Egypt 65 (1887), South Africa (1926–1927), and Senegal (1927–1928). From the 1960s to 66 2010, laboratory confirmed cases were reported in 15 African countries, with recent 67 endemicity established in more than 34 countries [6]. Although the prevalence of 68 dengue virus across Africa has been previously documented [7,8], epidemiological 69 trends in the context of morbidity and mortality, geographical distribution, seasonality 70 and transmission suitability remain unclear. In this systematic review, we collate a 71 decade of dengue epidemiological data from the African continent to synthesise and 72 analyse epidemiological trends between 2013 and 2023. We highlight regional and 73 country-specific epidemiological trends to inform public health response against 74 future dengue outbreaks in Africa.

Travel Medicine and Infectious Diseases

75 **2.** Methods

76 **2.1 Search strategy and selection criteria**

77 This review analysed studies and reports describing dengue cases in African

78 countries and territories. Medical Subject Headings (MeSH) terms such as: dengue

virus, prevalence, epidemiology, serotype, in conjunction with a compilation of

80 specific African countries and territories were used in the search. We searched

81 PubMed/MEDLINE and Scopus databases for relevant English articles using an

82 advanced search strategy (Appendix S1). Additional epidemiological reports were

83 obtained from the World Health Organization for Africa (WHO AFRO) and the African

84 Centre for Disease Control (AFRICA CDC) between January 2013 and December

85 2023. We included articles that reported dengue cases in human studies in Africa

and official records from the WHO AFRO and AFRICA CDC surveillance reports. We

87 excluded publications prior to 2013, review articles, and non-human studies.

88 **2.2 Screening and quality assessment**

89 Two reviewers (GOM and AM) conducted an initial screening of the titles and

90 abstracts from the search results using Rayyan application software accessible at

91 <u>https://rayyan.ai/</u> to identify relevant articles. Reasons for exclusion of irrelevant

92 articles were documented. Three reviewers (GOM, AM and HT) evaluated the quality

93 of included reports. The selection of reports for inclusion in the systematic review

94 followed the Preferred Reporting Items for Systematic Reviews and Meta-analysis

95 guidelines (PRISMA) [9].

96

97 2.3 Key definitions

Travel Medicine and Infectious Diseases

- 98 The following terms have been used in the analysis to signify different metrics used
 99 to describe dengue burden in Africa.
- 100 1. A suspected case was defined as any individual residing in or having travelled 101 to areas with dengue transmission within the past 14 days and presents with 102 acute fever, typically lasting from two to seven days' duration with two or more 103 of the following symptoms: nausea/vomiting, abdominal pain, chills, rash, 104 headache/retro-orbital pain, myalgia and arthralgia; may exhibit petechial or 105 positive tourniquet test (+ >10 pinpoint-sized spots of bleeding under the skin 106 (petechiae) per square inch, low platelet and white blood cell counts even 107 without any warning sign. 108 2. A confirmed case was defined as a suspected dengue case with laboratory 109 confirmation of infection which may include polymerase chain reaction (PCR), 110 virus culture, IgM seroconversion in paired sera (acute and convalescent 111 samples), IgG seroconversion in paired sera or fourfold IgG titre in paired 112 sera.
- 1133. A severe case was defined as a suspected/probable/confirmed dengue case
- 114 presenting with one or more of the following symptoms: severe plasma
- 115 leakage leading to dengue shock syndrome fluid accumulation with
- 116 respiratory distress, severe bleeding, severe damage of organs such as liver
- 117 (aspartate aminotransferase (ASAT) or alanine aminotransferase (ALT)
- 118 elevation \geq 1000) and central nervous system.
- 4. Case fatality rate was defined as the proportion of deaths within a specified
 population that are attributable to the total number of suspected dengue cases
 over a specific period.

Travel Medicine and Infectious Diseases

122	5.	Transmission potential (index P) was defined as a measure that quantifies the
123		risk of dengue virus transmission in a specific region, taking into account
124		climate-based factors such as temperature and humidity, which directly
125		influence the breeding, survival, and biting behaviour of the mosquito vectors
126		responsible for spreading the virus. This index provides insight into how
127		favourable environmental conditions are for dengue circulation in a given
128		area. The index was developed by Nakase et. al (2023) [10]. The spatio-
129		temporal estimates of transmission potential were then compiled for African
130		countries and territories. A threshold of 1.0 was selected to compare with the
131		basic reproductive rate. A value of 1.0 indicates that in a population where the
132		average number of adult female mosquitoes per host is 1.0 corresponds to a
133		reproduction number of 1. The period of transmission suitability is defined as
134		a month in which the transmission potential is greater than 1.0 [10].

135

2.4 Data synthesis and analysis

136 Data on the year of outbreak, country of origin, number of suspected and confirmed 137 cases, deaths and serotype counts were extracted from included reports and 138 compiled into an Excel spreadsheet (Miscrosoft Corp., 2016 Redmond, WA, USA). 139 The estimation of dengue burden was based on the number of suspected cases per 140 country's population during the respective years. The population data for the 141 respective years were obtained from the Worldometer web-source, accessible at 142 https://www.worldometers.info/population/africa/. Case fatality rate (CFR) was 143 computed based on the number of reported deaths per total number of suspected 144 dengue cases in the specific country. A negative binomial model was used to predict 145 the growth of suspected cases using the year as a predictor variable. The model was

Travel Medicine and Infectious Diseases

- 146 selected to suit count data, such as dengue case numbers and accounts for
- 147 overdispersion. The model was presented by the following equation;

$$\log(y) = \beta_0 + \beta_1 \cdot Year_t$$

149 Where;

150 y = Expected number of suspected dengue cases

151 β_0 = Intercept of the model

152 β_1 = Coefficient for the year t

153 $Year_t$ = The year variable for which the number of dengue cases was predicted

154 $e^{\beta 0 + \beta 1} = A$ multiplicative factor for the growth in dengue cases. The best fit was

- 155 compared with a Poisson regression model using likelihood ratio test. Statistical
- analysis and visualizations were conducted using R version 4.3.2 with primary
- 157 packages ggplot2, dplyr and MASS.
- 158

168

159 **3.** Results

160 **3.1 Literature search**

The review protocol was registered in the PROSPERO International prospective register for systematic reviews of human studies under CRD42023480486. The search yielded a total of 453 results, including 297 from academic databases and 156 official sources. After removing 151 duplicates, 302 unique records were screened by titles and abstracts. 173 reports were excluded from the screening process, and 129 were evaluation for eligibility. Finally, 42 records were excluded for specific reasons (Appendix S2), and 87 included in the systematic review (**Figure 1**).

Travel Medicine and Infectious Diseases

169

170 Figure 1.Selection process of included reports according to PRISMA guideline.171

172 3.2 An overview of included reports

- 173 Table 1 presents the epidemiological data extracted from the included reports,
- 174 comprising 35 published articles and 52 official records from the WHO AFRO and
- 175 AFRICA CDC surveillance data. Between January 2013 and December 2023, data
- 176 on dengue were available from 25 African countries. Seven countries, including,

- 177 Burkina Faso (7 records, n = 14,7286), Cameroon (6, n = 2513), Cote d'Ivoire (5, n =
- 178 8,250), Kenya (8, n = 7,828), Senegal (8, n = 4,606), Sudan (7, n = 2,696) and
- 179 Tanzania (6, n = 10,369) accounted for more than 50% of all records (46/87) and
- 180 80% of cumulative suspected cases (19,7707/24,4352). A comparison year-on-year
- reveals that the highest number of reports (21.8%, 19/87) and suspected cases
- 182 (60.3%, 174,888/245,143) were documented in 2023. In this year, Burkina Faso
- reported the most lethal outbreak with a total of 147,286/174,888 (84.2%) cumulative
- 184 suspected cases, 68,402/72677 (94.1%) confirmed cases, and 688/765 (89.9%).

Reference	Country	Population	Year of	Suspected	Confirmed	Deaths		Serc	otype	
			outbreak	cases	cases		DENV1	DENV2	DENV3	DENV4
[11]	Tanzania	49253643	2013	431	431	2	0	431	0	0
[12]	Kenya	44790000	2013	267	101	1	51	48	0	0
[13]	Tanzania	50814552	2014	2121	1017	4	0	0	0	0
[14]	South Sudan	37003245	2014	155	35	8	35	0	0	0
[15]	Tanzania	50814552	2014	483	101	0	0	101	0	0
[16]	Kenya	45831863	2014	1022	361	0	36	105	10	11
[17]	Nigeria	179E+08	2014	526	24	0	0	0	0	0
[18]	Kenya	45831863	2014	489	43	0	0	0	0	0
[19]	Burkina Faso	18106000	2015	399	21	0	0	0	0	0
[20]	Cameroon	23012646	2015	349	21	0	0	0	0	0
[21]	Egypt	97720000	2015	253	28	0	28	0	0	0
[22]	Senegal	14360000	2015	104	3	0	3	0	0	0
[23]	Burkina Faso	19280000	2016	1327	19	0	0	11	6	0
[24]	Democratic	81430000	2016	253	14	0	12	2	0	0
	Republic of									
	Congo									
[25]	Sudan	39380000	2016	106	4	0	0	4	0	0
[26]	Seychelles	94677	2016	1062	422	0	0	0	0	0
[27]	Burkina Faso	19280000	2016	2929	317	0	6	191	104	0
[28]	Kenya	47894670	2016	560	5	0	0	4	0	0
[00]	Burkina Faso	19280000	2016	1266	29	15	0	29	0	0
[29]	Angola	21000000	2017	401	00	0	1	62	0	0
[30]	Burkina Faso	19280000	2017	9029	141	18	۲ 12	00 101	12	0
[3] [22]	Equat	24213022	2017	1421	322	2	13	07	70	0
[32]	Konva	101500000	2017	1537	806	1	0	97	0	0
[34]	Sudan	40680000	2017	90	90	2	0	0	0	0
[35]	Cameroon	24390000	2017	114	8	0	5	0	0	0
[36]	Ethiopia	108E+08	2017	101	101	1	0	15	Õ	0
[37]	Cameroon	24390000	2017	791	86	0	5	16	8	C C
[38]	Mali	19310000	2017	429	33	0	0	0	0	0
[39]	Cameroon	24390000	2017	629	2	0	2	0	0	0
[40]	Mauritania	4160000	2017	307	165	0	0	104	0	0
[41]	Seychelles	95843	2017	4068	1429	0	0	0	0	0

 Table 1. Epidemiological trends of dengue cases and deaths in Africa over the last decade (2013–2023, n= 87)

Reference	Country	Population	Year of	Suspected	Confirmed	Deaths	Serotype			
			outbreak	cases	cases		DENV1	DENV2	DENV3	DENV4
[42]	Senegal	15570000	2018	2981	342	0	0	0	0	0
[43]	Mauritania	42710000	2018	322	28	0	0	28	0	0
[44]	Tanzania	58090000	2018	226	37	0	0	27	0	0
[45]	Ghana	30637585	2018	150	4	0	1	0	3	0
[46]	Nigeria	198E+08	2018	130	11	0	5	0	6	0
[47]	Reunion	856942	2018	6770	951	6	0	951	0	0
[48]	Senegal	15570000	2018	198	17	0	0	4	11	0
[49]	Senegal	15570000	2018	832	224	0	6	35	103	0
[50]	Seychelles	96762	2018	6120	1511	0	0	0	0	0
[51]	Kenya	48950000	2019	660	286	0	0	0	0	0
[52]	Benin	12290444	2019	26	14	2	0	0	0	0
[53]	Côte d'Ivoire	26150000	2019	2919	302	2	95	28	0	0
[54]	Tanzania	59870000	2019	6917	5286	13	0	0	0	0
[52]	Ethiopia	114E+08	2019	1251	6	0	0	0	0	0
[52]	Mali	20570000	2019	20	9	0	0	0	0	0
[55]	Senegal	16000000	2019	6	1	0	0	0	0	0
[56]	Sudan	43230000	2019	265	145	0	35	10	10	0
[57]	Sudan	43230000	2019	100	23	0	0	0	23	0
[58]	Reunion	861200	2019	30	16	0	16	0	0	0
[59]	Sudan	43230000	2019	76	17	2	0	0	0	0
[60]	Tanzania	59870000	2019	191	20	0	20	0	0	0
[61]	Mauritius	1296279	2019	265	141	0	136	5	0	0
[62]	Cameroon	25780000	2019	310	14	0	0	0	0	0
[63]	Sudan	43230000	2019	395	67	0	0	0	0	0
[64]	Comoros	806166	2020	696	4	0	4	0	0	0
[65]	Mauritania	4615000	2020	7	2	0	0	0	0	0
[66]	Cameroon	27200000	2020	320	41	0	2	8	28	0
[67]	Nigeria	213996181	2020	82	11	0	11	0	0	0
[68]	Senegal	17763163	2021	86	27	0	0	0	0	0
[69]	Kenya	53542175	2021	867	36	2	0	0	0	0
[70]	Angola	34500000	2021	86	38	0	0	0	0	0
[71]	Côte d'Ivoire	27480000	2021	4	4	0	0	0	0	0
[72]	Côte d'Ivoire	28200000	2022	11	11	1	0	0	0	0
[73]	Kenya	54027487	2022	2426	68	2	0	0	0	0
[74]	Sao Tome and Principe	227380	2022	1150	1150	8	0	0	0	0

Reference	Country	Population	Year of	Suspected	Confirmed	Deaths		Serot	уре	
			outbreak	cases	cases		DENV1	DENV2	DENV3	DENV4
[75]	Niger	26207977	2022	1	1	0	0	0	0	0
[74]	Senegal	17763163	2022	196	169	0	0	0	0	0
[76]	Chad	18278568	2023	1581	41	1	0	0	0	0
[77]	Côte d'Ivoire	28873034	2023	3895	321	27	0	0	0	0
[78]	Burkina Faso	23251485	2023	146878	68346	688	0	0	0	0
[78]	Senegal	17763163	2023	203	203	0	0	0	0	0
[78]	Mali	23293698	2023	4427	629	29	0	0	0	0
[78]	Cape Verde	573007	2023	410	193	0	0	0	0	0
[76]	Angola	37174067	2023	3	3	0	0	0	0	0
[76]	Sudan	48667653	2023	1664	1664	7	0	0	0	0
[78]	Ethiopia	127E+08	2023	14249	127	7	0	0	0	0
[76]	Sao Tome and Principe	233931	2023	69	69	3	0	0	0	0
[79]	Togo	9053799	2023	8	2	1	0	0	0	0
[76]	Egypt	113E+08	2023	578	578	0	0	0	0	0
[78]	Mauritius	1300557	2023	265	265	0	0	0	0	0
[79]	Guinea	14190612	2023	6	6	1	0	0	0	0
[78]	Niger	27202843	2023	148	148	0	0	0	0	0
[78]	Nigeria	224E+08	2023	72	14	0	0	0	0	0
[78]	Ghana	34121985	2023	18	9	0	0	0	0	0
[78]	Benin	13712828	2023	6	3	1	0	0	0	0
[80]	Burkina Faso	23251485	2023	408	56	0	18	0	38	0
Total				245,143	90,053	857	542	2,551	440	11

Travel Medicine and Infectious Diseases

1 3.3 The spatial distribution of suspected dengue cases in Africa

- 2 Spatial distribution analysis indicates differences in number and distribution of
- 3 suspected dengue cases across African countries and territories. From 2013-2023,
- 4 Burkina Faso, Ethiopia and Tanzania reported the highest number of cases,
- 5 surpassing 10,000. Reunion and Seychelles reported the highest number of cases
- 6 (5,001—10,000) among territories (**Figure 2**).

9 Figure 2. A map of Africa illustrating the geographical distribution of suspected
10 dengue cases in various African countries and territories based on data reported
11 from 2013-2023. The map was developed using QGIS open-source software version
12 3.38 accessed at https://qgis.org/download/

13

14 **3.4** A rise in the number of confirmed dengue cases in West Africa

Travel Medicine and Infectious Diseases

- 15 Over the past decade, dengue disease burden has increased in Africa, with a 5-fold
- 16 increase in West Africa, from approximately 14,000 in 2014 to 70,000 cumulative
- 17 confirmed cases in 2023. The region was responsible for approximately 80% of the
- 18 confirmed cases (71, 793/89,967) (**Figure 3**).
- 19

20

Figure 3: A. The magnitude and trend of cumulative confirmed dengue cases across Africa. B. The number of suspected dengue cases per 100,000 population and fatality rates (%) for specific countries based on data reported from 2013 to 2023. Burkina Faso, and Sao Tome and Principe recorded over 500 cases per 100,000 population surpassing all other countries (Fig 3B). Sao Tome and Principe, Sudan and Mali reported higher fatality rates of 0.9%, 0.7% and 0.6% respectively.

27 **3.5** The occurrence of multiple DENV serotypes and severe dengue

Since 2013, all four serotypes of DENV, DENV1, DENV2, DENV3, and DENV4)

- 29 have been reported in Africa. Continentally, DENV1 and DENV2 dominated at
- 30 different time (Figure 4). From 2019 to 2020, DENV1 was predominate serotype in

Travel Medicine and Infectious Diseases

31 both Eastern and Western Africa. In 2023, DENV3 dominated Western Africa

- 32 whereas DENV2 prevailed in Eastern Africa.
- 33

Since 2013, a few cases of severe dengue, specifically Dengue Haemorrhagic Fever (DHF) and Dengue Shock Syndrome (DSS), have been reported in Africa. Twenty cases were reported in the United Republic of Tanzania (2014), nine in Burkina Faso (2015), five in Ethiopia (2017), two in Benin (2019) and 40 in Sudan (2019). Severe outcomes were associated with diabetes in Tanzania [11], pregnant women in Burkina Faso [19], male gender in Ethiopia [36] and malaria-dengue co-infection in Sudan [81].

Travel Medicine and Infectious Diseases

45 **3.6 Regional differences in transmission seasonality and suitability**

46	Central (Figure 5A) and Eastern (Figure 5B) Africa experienced prolonged dengue
47	transmission seasons from April to November. In Central Africa, high peaks were
48	observed in June (> 400 cases), September (> 1,000) and November (> 700) with a
49	monthly median of 94 cases. Eastern Africa exhibited a dynamic transmission
50	pattern with the highest peaks in May and June (> 4,000), September and November
51	(> 8,000, respectively) with a monthly median of 88 cases. Northern Africa (Figure
52	5C exhibited sporadic transmission patterns with high peaks in February, July,
53	August and November (>200, respectively) with a monthly median of 93 cases.
54	Western Africa (Figure 5D) had distinct high transmission seasons with high peaks
55	in October (> 17,000), November (> 50,000) and December (30,000) and a monthly
56	median of 98 cases while Southern Africa reported less than 100 cases.
57	Western Africa reported the highest number of deaths (> 500), followed by Eastern
58	Africa (> 40). In Western Africa, deaths were mostly reported during the high
59	transmission season between October and December, whereas in Eastern and
60	Central Africa, deaths were reported during both the low and high transmission
61	seasons. There have been no reported fatalities in Northern Africa.

Travel Medicine and Infectious Diseases

62

Figure 5. The seasonality of dengue transmission across regions based on data
available from 2017–2023. A. Central Africa, B. Eastern Africa, C. Northern Africa
and D. Western Africa.

66 Central and Western Africa experience persistent suitability (index P > 1) for dengue 67 transmission between April and November. Eastern Africa exhibits two phases of 68 transmission suitability (**Figure 6B**), that coincide with short and long rainy seasons 69 from October to December and March to May, respectively, whereas Northern Africa 70 exhibits transmission suitability between August to November (**Figure 6C**). 71

Travel Medicine and Infectious Diseases

72

Figure 6. Dengue transmission potential (TP) across regions based on data
available from 2017–2023. A. Central Africa B. Eastern Africa C. Northern Africa
and D. Western Africa.

76

3.7 Increasing trend in the number of predicted dengue cases across Africa
The negative binomial model predicted a rising trend in the number of dengue cases
in all African regions for each passing year (Figure 7) with the growth rate exceeding
30% in West Africa (Table 2). There were limited cases from Southern Africa that
could be included in the model.

Travel Medicine and Infectious Diseases

83

84 Figure 7. Predicted dengue cases across regions based on a negative binomial

85 model using data reported from 2013–2023. A. Central Africa B. Eastern Africa, C.

- 86 Northern Africa and D. Western Africa.
- 87

Table 2. Growth of predicted dengue cases in Africa regions according to negative binomial model using data available from 2013–2023.

Region	Year coefficient ()	Multiplicative factor ()	Growth rate (%)/year
Western Africa	0.33	1.39		39
Eastern Africa	0.19	1.21		21
Central Africa	0.14	1.15		15
Northern Africa	0.10	1.11		11

90

91 **4. Discussion**

92 Dengue represents a significant public health threat in Africa. However, the non-

93 specific clinical presentation of the disease, which resembles malaria and other

94 febrile illnesses such as yellow fever and chikungunya, limits better detection,

95 reporting and understanding of the disease burden. Additionally, there are limited

Travel Medicine and Infectious Diseases

96	health resources for surveillance and timely detection [82]. This review presents the
97	first systematic analysis to define the epidemiological trends of dengue disease
98	burden in Africa and associated territories from 2013 to 2023. The findings of this
99	review can inform the strengthening of intervention strategies to reduce morbidity
100	and mortality of dengue in Africa.
101	The spatial analysis reveals disparities in the quantity and distribution of suspected
102	dengue cases across Africa (Figure 2). This observation may indicate gaps in
103	epidemiological surveillance and case reporting, given that tropical regions in Africa
104	shares similar vector ecologies and transmission indices. Overall, West Africa was
105	responsible for more than two-thirds of confirmed dengue cases and one-third of
106	surveillance reports, indicating increasing transmission activities and improved case
107	reporting in this region.
108	Burkina Faso recorded the highest burden of cases per 100,000 population (Figure
109	3). In 2023, the country accounted for more than 80% of confirmed cases and
110	deaths. These estimates are consistent with the World Health Organization's
111	surveillance report on health emergency situations [83]. The impact of climate
112	hazards on the distribution of vectors and extensive international travels of infected
113	individuals from endemic countries are likely to exacerbate dengue transmission
114	through spillover events and introductions, respectively [84,85].
115	There are several probable factors that may have contributed to dengue
116	transmission in Western Africa over the past decade. Several studies have
117	demonstrated that the abundance of Aedes aegypti breeding habitats, particularly
118	waste tyres, was a significant factor for transmission, particularly in peri urban
119	centres [86,87]. Other studies have revealed that dengue outbreaks in Western

- 120 Africa are driven by the presence of abundant infected Aedes vectors [88]. In 2023,
- 121 Ouédraogo and others reported the presence of a high number of immature Aedes
- 122 *aegypti* vectors in the handwashing stations that were constructed in public areas
- 123 during the COVID-19 pandemic in Burkina Faso [89].
- 124 Despite a significant increase in the number of dengue cases, case fatality rate
- remains below 1% in Africa (Figure 3), compared to 3%–10% in Asia [90]. Given the
- 126 continuous circulation of multiple DENV serotypes within the same region (Figure 4),
- 127 more cases of severe dengue were expected due to lack of cross immunity.
- 128 However, it is possible that limited diagnostic capabilities, and under-reporting due to
- 129 misdiagnosis with other febrile illnesses, such as malaria are contributing to low
- 130 prevalence [91]. Further, genetic evidence from global ancestral analysis suggests
- 131 that African descendants may be protective against dengue haemorrhagic
- 132 phenotype [92].
- 133 The seasonality of dengue transmission in Africa shows regional differences (Figure
- 134 **5**), with Central and Eastern Africa experiencing long transmission seasons that
- 135 coinciding with rainy seasons from May to November in Central Africa (Figure 5A)
- and from April to May and November to December in Eastern Africa (Figure 5B).
- 137 The erratic transmission pattern observed in Northern Africa (Figure 5C), may be
- 138 attributed to various factors including the storage of water in open containers [93,94]
- and heavy rainfall [95], that attract Aedes mosquitoes. Moreover, there are inter-
- 140 regional migrations of people from endemic countries and extensive intra-regional
- 141 trade activities that play a significant role in the transmission of dengue [93]. Western
- 142 Africa exhibits a distinct high transmission season between October and December.

Travel Medicine and Infectious Diseases

143 These observations are consistent with the results from previous studies conducted144 in this region [96,97].

145 From April to November, Central and Western Africa (Figure 6A and 6D), exhibit 146 long transmission suitability periods (Index P > 1.0) that correlate with the annual 147 rainfall seasons [98,99]. In contrast, high transmission potential in Eastern Africa 148 (Figure 6B), correlates with two rainy seasons from September to December and 149 from March to May [100]. The low number of dengue cases reported in Northern 150 Africa could be due to a short transmission suitability period between August to 151 October. In general, West Africa experiences the highest transmission suitability 152 (Index P > 2.0) between July and November in comparison to other regions. The 153 prolonged period of transmission suitability may have contributed to the rise of 154 Western Africa as a hotspot of dengue transmission. 155 The negative binomial model predicted an increasing trend of suspected dengue

cases across Central, Eastern and Western Africa (Figure 7), with a growth rate
exceeding 30% in West Africa (Table 2). Results from previously described climate
suitability models indicate that these regions will experience significant growth in
dengue incidences over the coming decades [101]. These findings will aid to inform
healthcare policy and practices in Africa to enhance surveillance and implement
effective interventions to prevent ongoing dengue transmission.

162 Limitations

The results of this review are subject to several limitations. First, confirmed case
counts may be underestimated due to the application of different case definitions.
Second, limited dengue surveillance and case reporting between 2020–2022 period
due to COVID-19 pandemic introduces bias in estimating dengue burden. Third,

Travel Medicine and Infectious Diseases

- 167 confirmed cases among travellers returning from African countries and territories
- 168 were not included. Therefore, dengue burden estimates reported in this report should
- 169 be interpreted with caution.
- 170

171 **5.** Conclusions

- 172 Over the past decade, there has been a rise in the number of confirmed dengue
- 173 cases, particularly in West Africa. The persistent presence of multiple DENV
- 174 serotypes within the same region increases the likelihood of severe dengue due to
- the lack of cross-immunity. It is important to strengthen surveillance and implement
- 176 region-specific interventions to prevent future dengue outbreaks. We advocate
- 177 further research for understanding the evolution and transmission dynamics of the
- 178 specific dengue virus lineages in Africa.
- 179

180 **Funding**

181 Research activities at KRISP and CERI are supported in part by grants from the 182 Rockefeller Foundation (HTH 017), the Abbott Pandemic Defense Coalition (APDC), 183 the National Institute of Health USA (U01 AI151698) for the United World Antivirus 184 Research Network (UWARN), the SAMRC South African mRNA Vaccine Consortium 185 (SAMVAC), Global Health EDCTP3 Joint Undertaking and its members as well as 186 Bill & Melinda Gates Foundation (101103171), the Health Emergency Preparedness 187 and Response Umbrella Program (HEPR Program), managed by the World Bank 188 Group (TF0B8412), the UK's Medical Research Foundation (MRF-RG-ICCH-2022-189 100069), and the Wellcome Trust for the Global health project (228186/Z/23/Z). The 190 content and findings reported herein are the sole deduction, view and responsibility

Travel Medicine and Infectious Diseases

- 191 of the researcher/s and do not reflect the official position and sentiments of the
- 192 funding agencies.
- 193 Institutional review board statement
- 194 No ethical clearance because this is a review of published research.
- 195 Informed consent statement
- 196 Not applicable
- 197
- 198

Data availability statement

- 200 All the relevant data are contained within the manuscript. Any additional data is
- 201 made available through Mendeley data repository accessible at
- 202 https://data.mendeley.com/my-data/.
- 203 Authors' contributions
- 204 Gaspary O. Mwanyika: Conceptualization, data curation, formal analysis,
- 205 methodology, validation, writing-original draft, writing-reviewing & editing.
- Abdualmoniem O. Musa: Data curation and writing-reviewing & editing. Jenicca
- 207 **Poongavanan**: Methodology, writing-reviewing & editing. **Monika Moir**:
- 208 Methodology, Writing-reviewing & editing. **Graeme Dor**: Writing-review & editing.
- 209 Eduan Wilkinson: Writing-reviewing & editing. Cheryl Baxter: Methodology, project
- administration, writing-original draft, writing-reviewing & editing. Tulio de Oliveira:
- 211 Resources, funding acquisition, project administration, validation, writing-reviewing &
- editing. Houriiyah Tegally: Methodology, data curation, validation, writing-original
- 213 draft and writing-reviewing & editing.
- 214 Competing interest

Travel Medicine and Infectious Diseases

215 The authors declare no competing interest in this work.

216 Acknowledgements

- 217 We acknowledge the World Health Organization for Africa (#WHOAfro) and Africa
- 218 Centers for Disease Control and Prevention (#AfricaCDC) that made epidemiological
- 219 surveillance reports for different countries accessible. We also express our gratitude
- to all the members of the Climate Amplified Disease Epidemics (#CLIMADE)
- 221 consortium for their valuable contributions in this review.

222

223 Supplementary materials

- 224 Mwanyika, Gaspary (2024), "S1.Advanced search strategy for PubMed/Medline
- databases", Mendeley Data, V1, <u>https://data.mendeley.com/datasets/zf7x7wy7xg/1</u>
 226
- Mwanyika, Gaspary (2024), "S2. Excluded articles for specific reasons.", Mendeley
 Data, V1, <u>https://data.mendeley.com/datasets/3gjypt9yvs/1</u>
- 229

Mwanyika, Gaspary (2024), "S3. PRISMA 2020 checklist", Mendeley Data, V1,
 <u>https://data.mendeley.com/datasets/hx4r4jywmb/1</u>

- 232
- Mwanyika, Gaspary (2024), "S4. R programming codes ", Mendeley Data, V1, https://data.mendeley.com/datasets/d9kyhgsx2m/1
- 235
- 236 Mwanyika, Gaspary (2024), "S5. Transmission potential (Index P) data", Mendeley
- 237 Data, V1, <u>https://data.mendeley.com/datasets/cv9c4gzdy9/1</u>
- 238

239 References

- [1] Weaver SC, Reisen WK. Present and future arboviral threats. Antiviral Res
 2010;85:328–45. doi: 10.1016/j.antiviral.2009.10.008.
- [2] Murray NEA, Quam MB, Wilder-Smith A. Epidemiology of dengue: past, present
 and future prospects. Clin Epidemiol 2013;5:299–309.
- 244 https://doi.org/10.2147/CLEP.S34440.
- [3] Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The
 global distribution and burden of dengue. Nature 2013;496:504–7.
 https://doi.org/10.1038/pature12060
- 247 https://doi.org/10.1038/nature12060.
- [4] Riccò M, Peruzzi S, Balzarini F, Zaniboni A, Ranzieri S. Dengue Fever in Italy:
 The "Eternal Return" of an Emerging Arboviral Disease. Trop Med Infect Dis
 249 Density of the set of the set
- 250 2022;7:10. https://doi.org/10.3390/tropicalmed7010010.

251	[5] Ryan SJ, Carlson CJ, Mordecai EA, Johnson LR. Global expansion and
252	redistribution of Aedes-borne virus transmission risk with climate change. PLoS
253	Negl Trop Dis 2019;13:e0007213. https://doi.org/10.1371/journal.pntd.0007213.
254	[6] Amarasinghe A, Kuritsk JN, Letson GW, Margolis HS. Dengue virus infection in
255	Africa. Emerg Infect Dis 2011;17:1349–54.
256	https://doi.org/10.3201/eid1/08.101515.
257	[7] Eltom K, Enan K, El Hussein ARM, Elkhidir IM. Dengue Virus Infection in Sub-
258	Sanaran Africa Between 2010 and 2020: A Systematic Review and Meta-
259	Analysis. Front Cell Infect Microbiol 2021;11:678945.
200	1111ps.//doi.org/10.3309/101110.2021.070945.
201	al Dengue virus infection and associated risk factors in Africa: a systematic
262	al. Deligue virus infection and associated fisk factors in Africa. a systematic review and meta-analysis. Viruses 2021:13:536
203	[9] Selcuk AA A Guide for Systematic Reviews: PRISMA Turk Arch
265	Otorhinolaryngol 2019:57:57–8. https://doi.org/10.5152/tao.2019.4058
265	[10] Nakase T. Giovanetti M. Obolski U. Lourenco J. Global transmission suitability
267	maps for dengue virus transmitted by Aedes aegypti from 1981 to 2019. Sci Data
268	2023: 10:275. https://doi.org/10.1038/s41597-023-02170-7.
269	[11] Boillat-Blanco N, Klaassen B, Mbarack Z, Samaka J, Mlaganile T, Masimba J,
270	et al. Dengue fever in Dar es Salaam, Tanzania: clinical features and outcome in
271	populations of black and non-black racial category. BMC Infect Dis 2018;18:644.
272	https://doi.org/10.1186/s12879-018-3549-z
273	[12] Ellis EM, Neatherlin JC, Delorey M, Ochieng M, Mohamed AH, Mogeni DO, et
274	al. A household serosurvey to estimate the magnitude of a dengue outbreak in
275	Mombasa, Kenya, 2013. PLoS Negl Trop Dis 2015;9:e0003733.
276	https://doi.org/10.1371/journal.pntd.0003733.
277	[13] World Health Organization (WHO). Dengue outbreak in the United Republic of
278	Tanzania (Situation as of 30 May 2014). United Republic of Tanzania: World
279	Health Organization, https://reliefweb.int/report/united-republic-tanzania/dengue-
280	outbreak-united-republic-tanzania-situation-30-may-2014. ; 2014 [accessed 29
281	November 2023j.
282	[14] Anmed A, All Y, Elmagboul B, Monamed O, Elduma A, Bashab H, et al. Dengue
283	https://doi.org/10.2201/oid2511.191766
204	11105.//001.019/10.3201/elu2311.101700.
205	[15] Valid F, Modela LE, De Naldo F, Onyo Nivi, Meschi S, Rumisha SF, et al. Clinical virologic and epidemiologic characteristics of dengue outbreak. Dar es
280	Salaam Tanzania 2014 Emerg Infect Dis 2016:22:895 doi:
288	10.3201/eid2205.151462
289	[16] Shah MM, Ndenga BA, Mutuku FM, Vu DM, Grossi-Soyster FN, Okuta V, et al.
290	High dengue burden and circulation of 4 virus serotypes among children with
291	undifferentiated fever, Kenya, 2014–2017. Emerg Infect Dis 2020;26:2638.
292	doi: 10.3201/eid2611.200960.
293	[17] Onyedibe K. A cross sectional study of dengue virus infection in febrile patients
294	presumptively diagnosed of malaria in Maiduguri and Jos plateau, Nigeria.
295	Malawi Med J 2018;30:276–82. doi: 10.4314/mmj.v30i4.11.
296	[18] Ngoi CN, Price MA, Fields B, Bonventure J, Ochieng C, Mwashigadi G, et al.
297	Dengue and chikungunya virus infections among young febrile adults evaluated

for acute HIV-1 infection in coastal Kenya. PLoS One 2016;11:e0167508. doi:

[19] Sondo KA, Ouattara A, Diendéré EA, Diallo I, Zoungrana J, Zémané G, et al.

Travel Medicine and Infectious Diseases

10.1371/journal.pone.0167508.

298

299

300

301 Dengue infection during pregnancy in Burkina Faso: a cross-sectional study. 302 BMC Infect Dis 2019;19:997. https://doi.org/10.1186/s12879-019-4587-x. 303 [20] Nkenfou CN, Fainguem N, Dongmo-Nguefack F, Yatchou LG, Kameni JJK, 304 Elong EL, et al. Enhanced passive surveillance dengue infection among febrile 305 children: Prevalence, co-infections and associated factors in Cameroon. PLoS Neal Trop Dis 2021;15:e0009316. doi: 10.1371/journal.pntd.0009316. 306 307 [21] World Health Organization (WHO). Dengue– Egypt. Disease Outbreak News. 308 World Health Organization (WHO), https://www.who.int/emergencies/disease-309 outbreak-news/item/12-november-2015-dengue-en; 2015 [accessed 29 November 310 20231. 311 [22] Dieng I, Hedible BG, Diagne MM, El Wahed AA, Diagne CT, Fall C, et al. Mobile 312 Laboratory Reveals the Circulation of Dengue Virus Serotype I of Asian Origin in 313 Medina Gounass (Guediawaye), Senegal. Diagn Basel Switz 2020;10:408. 314 https://doi.org/10.3390/diagnostics10060408. 315 [23] Tarnagda Z, Cissé A, Bicaba BW, Diagbouga S, Sagna T, Ilboudo AK, et al. 316 Dengue Fever in Burkina Faso, 2016. Emerg Infect Dis 2018;24:170-2. 317 https://doi.org/10.3201/eid2401.170973. 318 [24] Proesmans S, Katshongo F, Milambu J, Fungula B, Muhindo Mavoko H, Ahuka-319 Mundeke S, et al. Dengue and chikungunya among outpatients with acute 320 undifferentiated fever in Kinshasa, Democratic Republic of Congo: A crosssectional study. PLoS Negl Trop Dis 2019;13:e0007047. 321 322 https://doi.org/10.1371/journal.pntd.0007047. 323 [25] Hamid Z, Hamid T, Alsedig K, Abdallah T, Elaagip A, Ahmed A, et al. Molecular 324 Investigation of Dengue Virus Serotype 2 Circulation in Kassala State, Sudan. 325 Jpn J Infect Dis 2019;72:58–61. https://doi.org/10.7883/yoken.JJID.2018.267. 326 [26] International Federation of Red Cross and Red Crescent Societies (IFRC). 327 Seychelles: Dengue Outbreak Emergency Plan of Action Final Report DREF 328 Operation n° MDRSC004. International Federation of Red Cross and Red 329 Crescent Societies (IFRC), https://reliefweb.int/report/seychelles/seychelles-dengue-330 outbreak-emergency-plan-action-final-report-dref-operation-n; 2016 [accessed 29 331 November 2023]. 332 [27] World Health Organization (WHO). Dengue Fever – Burkina Faso. Disease 333 Outbreak News. World Health Organization (WHO), 334 https://www.who.int/emergencies/disease-outbreak-news/item/18-november-2016-335 dengue-burkina-faso-en; 2016 [accessed 29 November 2023]. 336 [28] Masika MM, Korhonen EM, Smura T, Uusitalo R, Vapalahti K, Mwaengo D, et 337 al. Detection of dengue virus type 2 of Indian origin in acute febrile patients in 338 rural Kenya. PLoS Negl Trop Dis 2020;14:e0008099. 339 https://doi.org/10.1371/journal.pntd.0008099. 340 [29] Neto Z, Martinez PA, Hill SC, Jandondo D, Thézé J, Mirandela M, et al. 341 Molecular and genomic investigation of an urban outbreak of dengue virus 342 serotype 2 in Angola, 2017–2019. PLoS Negl Trop Dis 2022;16:e0010255. 343 https://doi.org/10.1371/journal.pntd.0010255.

344	[30] World Health Organization (WHO), Dengue – Burkina Faso, Disease Outbreak
345	News. World Health Organization (WHO), https://www.who.int/emergencies/disease-
346	outbreak-news/item/6-november-2017-dengue-burkina-faso-en; 2017 [accessed 29
347	November 2023].
348	[31] World Health Organization (WHO) Regional Office for Africa. Weekly bulletins
349	on outbreaks and other emergencies. World Health Organization (WHO),
350	https://iris.who.int/bitstream/handle/10665/258888/OEW35-268192017.pdf?sequence=1;
351	2017 [accessed 29 November 2023].
352	[32] El-Kady AM, Osman HA, Alemam MF, Marghani D, Shanawaz MA, Wakid MH,
353	et al. Circulation of Dengue Virus Serotype 2 in Humans and Mosquitoes During
354	an Outbreak in El Quseir City, Egypt. Infect Drug Resist 2022;15:2713-21.
355	https://doi.org/10.2147/IDR.\$360675.
356	[33] World Health Organization (WHO). Weekly bulletins on outbreaks and other
357	emergencies. World Health Organization (WHO),
358	https://iris.who.int/bitstream/handle/10665/258888/OEW35-268192017.pdf?sequence=1;
359	2017 [accessed 29 November 2023].
360	[34] World Health Organization (WHO). Weekly epidemiological monitor. World
361	Health Organization (WHO),
362	https://applications.emro.who.int/docs/epi/2017/Epi_Monitor_2017_10_49.pdf; 2017 [
363	accessed 29 November 2023].
364	[35] Mouiche MMM, Ntumvi NF, Maptue VT, Tamoufe U, Albert B, Ngum Ndze V, et
365	al. Evidence of Low-Level Dengue Virus Circulation in the South Region of
366	Cameroon in 2018. Vector Borne Zoonotic Dis Larchmt N 2020;20:314-7.
367	https://doi.org/10.1089/vbz.2019.2531.
368	[36] Gutu MA, Bekele A, Seid Y, Mohammed Y, Gemechu F, Woyessa AB, et al.
369	Another dengue fever outbreak in Eastern Ethiopia-An emerging public health
370	threat. PLoS Negl Trop Dis 2021;15:e0008992.
371	https://doi.org/10.1371/journal.pntd.0008992.
372	[37] Letizia AG, Pratt CB, Wiley MR, Fox AT, Mosore M, Agbodzi B, et al.
373	Retrospective Genomic Characterization of a 2017 Dengue Virus Outbreak,
374	Burkina Faso. Emerg Infect Dis 2022;28:1198–210.
375	https://doi.org/10.3201/eid2806.212491.
376	[38] World Health Organization (WHO). Weekly bulletins on outbreaks and other
377	emergencies. In: WHO Regional Office for Africa. Mali,
378	https://iris.who.int/bitstream/handle/10665/259809/OEW1-2018.pdf?sequence=1; 2018
379	[accessed 29 November 2023].
380	[39] Mouiche MMM, Ntumvi NF, Maptue VT, Tamoufe U, Albert B, Ngum Ndze V, et
381	al. Evidence of Low-Level Dengue Virus Circulation in the South Region of
382	Cameroon in 2018. Vector Borne Zoonotic Dis Larchmt N 2020;20:314–7.
383	https://doi.org/10.1089/vbz.2019.2531.
384	[40] World Health Organization (WHO). Outbreaks and other emergencies updates.
385	In: WHO Regional Office for Africa, https://www.afro.who.int/health-topics/disease-
386	outbreaks/outbreaks-and-other-emergencies-updates?page=14; 2017 [accessed 29
387	November 2023].
388	[41] World Health Organization (WHO). World Health Organization. Weekly bulletins
389	on outbreaks and other emergencies. In: WHO Regional Office for Africa,

Travel Medicine and Infectious Diseases

390	https://iris.who.int/bitstream/handle/10665/259809/OEW1-2018.pdf?sequence=1; 2017
391	[accessed 29 November 2023].
392	[42] World Health Organization (WHO). Weekly bulletins on outbreaks and other
393	emergencies. In: WHO Regional Office for Africa,
394	https://iris.who.int/bitstream/handle/10665/277423/OEW52-2228122018.pdf; 2018
395	[accessed 29 November 2023].
396	[43] World Health Organization (WHO). Weekly bulletins on outbreaks and other
397	emergencies. In: WHO Regional Office for Africa,
398	https://iris.who.int/bitstream/handle/10665/278952/OEW01-29122018-\04012019.pdf;
399	2018 [accessed 29 November 2023].
400	[44] World Health Organization (WHO). Weekly bulletins on outbreaks and other
401	emergencies. In: WHO Regional Office for Africa,
402	https://iris.who.int/bitstream/handle/10665/278952/OEW01-29122018-\04012019.pdf;
403	2018 [accessed November 29, 2023].
404	[45] Bonney JHK, Hayashi T, Dadzie S, Agbosu E, Pratt D, Nyarko S, et al.
405	Molecular detection of dengue virus in patients suspected of Ebola virus disease
406	in Ghana. PloS One 2018;13:e0208907.
407	https://doi.org/10.1371/journal.pone.0208907.
408	[46] Ayolabi CI, Olusola BA, Ibemgbo SA, Okonkwo GO. Detection of Dengue
409	viruses among febrile patients in Lagos, Nigeria and phylogenetics of circulating
410	Dengue serotypes in Africa. Infect Genet Evol J Mol Epidemiol Evol Genet Infect
411	Dis 2019;75:103947. https://doi.org/10.1016/j.meegid.2019.103947.
412	[47] Vincent M, Larrieu S, Vilain P, Etienne A, Solet J-L, François C, et al. From the
413	threat to the large outbreak: dengue on Reunion Island, 2015 to 2018.
414	Eurosurveillance 2019;24:1900346. https://doi.org/10.2807/1560-
415	7917.ES.2019.24.47.1900346.
416	[48] Gaye A, Ndiaye T, Sy M, Deme AB, Thiaw AB, Sene A, et al. Genomic
417	investigation of a dengue virus outbreak in Thiès, Senegal, in 2018. Sci Rep
418	2021;11:10321. https://doi.org/10.1038/s41598-021-89070-1.
419	[49] Dieng I, Fall C, Barry MA, Gaye A, Dia N, Ndione MHD, et al. Re-emergence of
420	dengue serotype 3 in the context of a large religious gathering event in Touba,
421	Senegal. Int J Environ Res Public Health 2022;19:16912.
422	[50] World Health Organization (WHO). Weekly bulletins on outbreaks and other
423	emergencies. In: WHO Regional Office for Africa,
424	https://iris.who.int/bitstream/handle/10665/27/423/OEW52-2228122018.pdf; 2018
425	[accessed 29 November 2023].
426	[51] World Health Organization (WHO) Regional Office for Africa. Weekly bulletins
427	on outbreaks and other emergencies. In: WHO Regional Office for Africa,
428	https://www.who.int/docs/default-source/who-afro-outbreaks-and-emergencies-
429	updates/oew15-0814042019.pdf; 2019 [accessed 29 November 2023].
430	[52] VVorid Health Organization (VVHO). Weekly bulletins on outbreaks and other
451	emergencies. In: WHO Regional Office for Affica,
432	<u>https://fils.wno.int/bitstream/nandie/10005/550555/OEW01-05012020.pdf</u> ; 2020
455	[accessed 29 NOVEITIDEF 2023].
434	[53] WORD HEARD ORGANIZATION (WHO). WEEKIY DUILETINS ON OUTDREAKS and other

435 emergencies. In: WHO | Regional Office for Africa,

436	https://iris.who.int/bitstream/handle/10665/326596/OEW34-1925082019.pdf; 2019
437	[accessed 29 November 2023].
438	[54] World Health Organization (WHO). Weekly bulletins on outbreaks and other
439	emergencies. In: WHO Regional Office for Africa,
440	https://iris.who.int/bitstream/handle/10665/328778/OEW40-300906102019.pdf; 2019
441	[accessed 29 November 2023].
442	[55] World Health Organization (WHO). Weekly bulletins on outbreaks and other
443	emergencies. In: WHO Regional Office for Africa,
444	https://iris.who.int/bitstream/handle/10665/330353/OEW01-05012020.pdf; 2020
445	[accessed 29 November 2023].
446	[56] Desogi M, Ali M, Gindeel N, Khalid F, Abdelraheem M, Alnaby A, et al.
447	Detection of dengue virus serotype 4 in Sudan. East Mediterr Health J Rev Sante
448	Mediterr Orient Al-Majallah Al-Sihhiyah Li-Sharq Al-Mutawassit 2023;29:436–41.
449	https://doi.org/10.26719/emhj.23.041.
450	[57] Eldigail MH, Abubaker HA, Khalid FA, Abdallah TM, Musa HH, Ahmed ME, et
451	al. Association of genotype III of dengue virus serotype 3 with disease outbreak
452	in Eastern Sudan, 2019. Virol J 2020;17:118. https://doi.org/10.1186/s12985-
453	020-01389-9.
454	[58] Hafsia S, Barbar T, Wilkinson DA, Atyame C, Biscornet L, Bibi J, et al. Genetic
455	characterization of dengue virus serotype 1 circulating in Reunion Island, 2019-
456	2021, and the Seychelles, 2015-2016. BMC Infect Dis 2023;23:294.
457	https://doi.org/10.1186/s12879-023-08125-y.
458	[59] Ahmed A, Eldigail M, Elduma A, Breima T, Dietrich I, Ali Y, et al. First report of
459	epidemic dengue fever and malaria co-infections among internally displaced
460	persons in humanitarian camps of North Darfur, Sudan. Int J Infect Dis IJID Off
461	Publ Int Soc Infect Dis 2021;108:513–6. https://doi.org/10.1016/j.ijid.2021.05.052.
462	[60] Mwanyika GO, Mboera LEG, Rugarabamu S, Makange M, Sindato C, Lutwama
463	JJ, et al. Circulation of dengue serotype 1 viruses during the 2019 outbreak in
464	Dar es Salaam, Tanzania. Pathog Glob Health 2021;115:467–75.
465	https://doi.org/10.1080/20477724.2021.1905302.
466	[61] World Health Organization (WHO). Weekly bulletins on outbreaks and other
467	emergencies. In: WHO Regional Office for Africa,
468	https://iris.who.int/bitstream/handle/10665/326403/OEW21-2026052019.pdf; 2019
469	[accessed 29 November 2023].
470	[62] Tchuandom SB, Lissom A, Ateba GHM, Tchouangueu TF, Tchakounte C, Ayuk
471	AR, et al. Dengue virus serological markers among potential blood donors: an
472	evidence of asymptomatic dengue virus transmission in Cameroon. Pan Afr Med
473	J 2020;36. doi: 10.11604/pamj.2020.36.185.22128.
474	[63] World Health Organization (WHO). Weekly bulletins on outbreaks and other
475	emergencies. In: WHO Regional Office for Africa,
476	https://iris.who.int/bitstream/handle/10665/332246/OEW22-2531052020.pdf; 2020
477	[accessed 30 November 2023].
478	[64] World Health Organization (WHO). Weekly bulletins on outbreaks and other
479	emergencies: Week 22, https://iris.who.int/bitstream/handle/10665/332246/OEW22-
480	2531052020.pdf; 2020 [accessed 29 November 2023].
481	[65] World Health Organization (WHO) Regional Office for Africa. Weekly bulletins
482	on outbreaks and other emergencies: Week 26 In: WHO Regional Office for

Travel Medicine and Infectious Diseases

483	Africa, https://iris.who.int/bitstream/handle/10665/344522/OEW26-2127062021.pdf;
484	2020 [accessed 30 November 2023].
485	[66] Simo Tchetgna H. Sado Yousseu F. Kamgang B. Tediou A. McCall PJ. Wondii
486	CS. Concurrent circulation of dengue serotype 1, 2 and 3 among acute febrile
487	patients in Cameroon, PLoS Neol Trop Dis 2021:15:e0009860.
488	https://doi.org/10.1371/journal.pntd.0009860.
489	[67] Tizhe DT, Kwaga JKP, Nok Kia GS, Serological and Molecular Survey for
490	Dengue Virus Infection in Suspected Febrile Patients in Selected Local
491	Government Areas in Adamawa State, Nigeria, Vaccines 2022:10:1407
492	https://doi.org/10.3390/vaccines10091407
493	[68] World Health Organization (WHO). Weekly bulletins on outbreaks and other
494	emergencies. In: WHO Regional Office for Africa.
495	https://iris.who.int/bitstream/handle/10665/350967/OEW01-271202012022.pdf: 2022
496	[accessed 30 November 2023].
497	[69] World Health Organization (WHO). Weekly bulletins on outbreaks and other
498	emergencies. In: WHO Regional Office for Africa.
499	https://iris.who.int/bitstream/handle/10665/342386/OEW27-280604072021.pdf: 2021
500	Jaccessed 30 November 2023
501	[70] World Health Organization (WHO). Weekly bulletins on outbreaks and other
502	emergencies. In: WHO Regional Office for Africa.
503	https://iris.who.int/bitstream/handle/10665/343406/OEW31-260701082021.pdf: 2021
504	[accessed 30 November 2023].
505	[71] World Health Organization (WHO). Weekly bulletins on outbreaks and other
506	emergencies. In: WHO Regional Office for Africa.
507	https://iris.who.int/bitstream/handle/10665/342123/OEW18-2602052021.pdf; 2021
508	[accessed 30 November 2023].
509	[72] Weekly bulletins on outbreaks and other emergencies. In: WHO Regional
510	Office for Africa, https://iris.who.int/bitstream/handle/10665/356076/OEW14-
511	280303042022.pdf; 2022 [accessed 30 November 2023].
512	[73] World Health Organization (WHO). Weekly bulletins on outbreaks and other
513	emergencies. In: WHO Regional Office for Africa,
514	https://iris.who.int/bitstream/handle/10665/355799/OEW23-300505062022.pdf; 2022
515	[accessed 30 November 2023].
516	[74] World Health Organization (WHO). Weekly bulletins on outbreaks and other
517	emergencies. In: WHO Regional Office for Africa,
518	https://iris.who.int/bitstream/handle/10665/365480/OEW52-1925120222.pdf; 2022
519	[accessed 30 November 2023].
520	[75] World Health Organization (WHO) Regional Office for Africa. Weekly bulletins
521	on outbreaks and other emergencies. In: WHO Regional Office for Africa. Niger,
522	https://iris.who.int/bitstream/handle/10665/364200/OEW36-290804092022.pdf; 2022 [
523	accessed 30 November 2023].
524	[76] Africa Centres for Disease Control and Prevention. Weekly Event-Based
525	Surveillance Report. Africa Centres for Disease Control and Prevention (CDC),
526	https://africacdc.org/download/africa-cdc-weekly-event-based-surveillance-report-
527	december-2023/; 2023 [accessed 30 November 2023].
528	[77] World Health Organization (WHO). Dengue Situation Report 001. Côte d'Ivoire:
500	

529 World Health Organization,

530	https://iris.who.int/bitstream/handle/10665/375392/AFRO.Dengue.Sitrep001-
531	20231219.pdf; 2023 [accessed 30 November 2023].
532	[78] World Health Organization (WHO). AFRO Dengue Situation Report 001. World
533	Health Organization,
534	https://iris.who.int/bitstream/handle/10665/375392/AFRO.Dengue.Sitrep001-
535	<u>20231219.pdf;</u> 2023 [accessed 22 January 2024].
536	[79] Africa Centres for Disease Control and Prevention (CDC). Weekly Event-Based
537	Surveillance Report. Africa Centres for Disease Control and Prevention,
538	https://iris.who.int/bitstream/handle/10665/375392/AFRO.Dengue.Sitrep001-
539	<u>20231219.pdf;</u> 2023 [accessed 22 January 2024].
540	[80] Gomgnimbou MK, Belem LRW, Some K, Diallo M, Barro B, Kaboré A, et al.
541	Utilization of novel molecular multiplex methods for the detection and,
542	epidemiological surveillance of dengue virus serotypes and chikungunya virus in
543	Burkina Faso, West Africa. Mol Biol Rep 2024;51:906.
544	https://doi.org/10.1007/s11033-024-09847-1.
545	[81] Ahmed A, Eldigail M, Elduma A, Breima T, Dietrich I, Ali Y, et al. First report of
546	epidemic dengue fever and malaria co-infections among internally displaced
547	persons in humanitarian camps of North Darfur, Sudan. Int J Infect Dis IJID Off
548	Publ Int Soc Infect Dis 2021;108:513–6. https://doi.org/10.1016/j.ijid.2021.05.052.
549	[82] World Health Organization (WHO). Disease Outbreak News; Dengue – Global
550	situation. World Health Organization, https://www.who.int/emergencies/disease-
551	outbreak-news/item/2023-
552	DON498#:~:text=Between%201%20January%202023%20and,of%20the%20Americas%
553	2C%20with%2015; 2023 [accessed 05 January 2024].
554	[83] World Health Organization (WHO). Weekly bulletins on outbreaks and other
555	emergencies. World Health Organization,
556	https://iris.who.int/bitstream/handle/10665/375392/AFRO.Dengue.Sitrep001-
557	<u>20231219.pdf;</u> 2023 [accessed 05 January 2024].
558	[84] Aliaga-Samanez A, Romero D, Murray K, Segura M, Real R, Olivero J. Potential
559	climate change effects on the distribution of urban and sylvatic dengue and
560	yellow fever vectors. Pathog Glob Health 2024;118:397–407.
561	https://doi.org/10.1080/2047724.2024.2369377.
562	[85] Carlson CJ, Albery GF, Merow C, Trisos CH, Zipfel CM, Eskew EA, et al.
563	Climate change increases cross-species viral transmission risk. Nature
564	2022;607:555–62. doi: 10.1038/s41586-022-04788-w.
565	[86] Gyasi P, Bright Yakass M, Quaye O. Analysis of dengue fever disease in West
566	Africa. Exp Biol Med Maywood NJ 2023;248:1850–63.
567	https://doi.org/10.11/7/15353702231181356.
568	[87] Badolo A, Somble A, Yameogo F, Wangrawa DW, Sanon A, Pignatelli PM, et al.
569	First comprehensive analysis of Aedes aegypti bionomics during an arbovirus
570	outbreak in west Africa: Dengue in Ouagadougou, Burkina Faso, 2016-2017.
571	PLOS Negl Trop Dis 2022;16:e0010059.
572	nttps://doi.org/10.13/1/journal.pntd.0010059.
573	[88] Pappoe-Ashong P, Otosu-Appian L, Mingle J, Jassoy C. Seroprevalence of
5/4	aengue virus intections in Gnana. East Atr Med J 2018;95:2132–40.
575	[89] Ouedraogo WM, Zanre N, Rose NH, Zahouli JZB, Djogbenou LS, Viana M, et
5/6	ai. Dengue vector nabitats in Ouagadougou, Burkina Faso, 2020: an unintended

- 577 consequence of the installation of public handwashing stations for COVID-19
- 578 prevention. Lancet Glob Health 2024;12:e199–200.
- 579 https://doi.org/10.1016/S2214-109X(23)00565-X.
- [90] Yeh C-Y, Lu B-Z, Liang W-J, Shu Y-C, Chuang K-T, Chen P-L, et al.
 Trajectories of hepatic and coagulation dysfunctions related to a rapidly fatal
 outcome among hospitalized patients with dengue fever in Tainan, 2015. PLoS
 Negl Trop Dis 2019;13:e0007817. doi: 10.1371/journal.pntd.0007817.
- [91] Waggoner JJ, Gresh L, Vargas MJ, Ballesteros G, Tellez Y, Soda KJ, et al.
 Viremia and clinical presentation in Nicaraguan patients infected with Zika virus, chikungunya virus, and dengue virus. Clin Infect Dis 2016:ciw589. https://doi:
 10.1093/cid/ciw589.
- [92] Sierra B, Triska P, Soares P, Garcia G, Perez AB, Aguirre E, et al. OSBPL10,
 RXRA and lipid metabolism confer African-ancestry protection against dengue
 haemorrhagic fever in admixed Cubans. PLoS Pathog 2017;13:e1006220.
- 591 https://doi.org/10.1371/journal.ppat.1006220.
- [93] Seidahmed OME, Hassan SA, Soghaier MA, Siam HAM, Ahmed FTA,
 Elkarsany MM, et al. Spatial and temporal patterns of dengue transmission along
 a Red Sea coastline: a longitudinal entomological and serological survey in Port
 Sudan city. PLoS Negl Trop Dis 2012;6:e1821.
- 596 https://doi.org/10.1371/journal.pntd.0001821.
- 597 [94] Andayi F, Charrel RN, Kieffer A, Richet H, Pastorino B, Leparc-Goffart I, et al. A
 598 sero-epidemiological study of arboviral fevers in Djibouti, Horn of Africa. PLoS
 599 Negl Trop Dis 2014;8:e3299. https://doi.org/10.1371/journal.pntd.0003299.
- [95] Seidahmed OME, Siam H a. M, Soghaier MA, Abubakr M, Osman HA, Abd
 Elrhman LS, et al. Dengue vector control and surveillance during a major
 outbreak in a coastal Red Sea area in Sudan. East Mediterr Health J Rev Sante
 Mediterr Orient Al-Majallah Al-Sihhiyah Li-Sharq Al-Mutawassit 2012;18:1217–
 24. https://iris.who.int/handle/10665/118472.
- [96] Donatien K, Hien YE, Salam S, Yacouba NK, Denise IP, Nikièma AR, et al.
 Seroepidemiological Study of Dengue Virus Infection Suspected Cases in
 Burkina Faso. J Biosci Med 2023;11:47–56. doi: 10.4236/jbm.2023.111006.
- [97] Ouattara CA, Traore S, Sangare I, Traore TI, Meda ZC, Savadogo LGB.
 Spatiotemporal analysis of dengue fever in Burkina Faso from 2016 to 2019.
 BMC Public Health 2022;22:462. https://doi.org/10.1186/s12889-022-12820-x.
- BMC Public Health 2022;22:462. https://doi.org/10.1186/s12889-022-12820-x.
 [98] Klassou KS, Komi K. Analysis of extreme rainfall in Oti river basin (West Africa).
- J Water Clim Change 2021;12:1997–2009. https://doi.org/10.2166/wcc.2021.154.
 [99] Fotso-Nguemo TC, Diallo I, Diakhaté M, Vondou DA, Mbaye ML, Haensler A, et
- al. Projected changes in the seasonal cycle of extreme rainfall events from
- 615 CORDEX simulations over Central Africa. Clim Change 2019;155:339–57. 616 https://doi.org/10.1007/s10584-019-02492-9.
- 617 [100] Mwangi E, MacLeod D, Kniveton D, Todd MC. Variability of rainy season 618 onsets over East Africa. Int J Climatol 2024;44:3357–79.
- 619 https://doi.org/10.1002/joc.8528.
- [101] Sintayehu DW, Tassie N, De Boer WF. Present and future climatic suitability
 for dengue fever in Africa. Infect Ecol Epidemiol 2020;10:1782042.
- 622 https://doi.org/10.1080/20008686.2020.1782042.
- 623