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Abstract 31 

Head and neck squamous cell carcinoma (HNSCC) presents a complex clinical challenge due to its heterogeneous nature 32 
and diverse treatment responses. This systematic review critically appraises the performance of handcrafted radiomics 33 
(HC) and deep learning (DL) models in prognosticating outcomes in HNSCC patients treated with (chemo)-radiotherapy. 34 
A comprehensive literature search was conducted up to May 2023, identifying 23 eligible studies that met the inclusion 35 
criteria of methodological rigor and long-term outcome reporting. The review highlights the methodological variability 36 
and performance metrics of HC and DL models in predicting overall survival (OS), loco-regional recurrence (LRR) and 37 
distant metastasis (DM). While DL models demonstrated slightly superior performance metrics compared to HC models, 38 
the highest methodological quality was observed predominantly in studies using HC radiomics. The findings underscore 39 
the necessity for methodological improvements, including pre-registration of protocols and assessment of clinical utility, 40 
to enhance the reliability and applicability of radiomic-based prognostic models in clinical practice. 41 

Keywords: Radiomics, Deep Learning, Head and neck cancer, Prognosis, Systematic Review, Quality Checklist  42 

Introduction 43 

Head and neck squamous cell carcinomas (HNSCC) comprise a highly heterogeneous subset of neoplastic diseases 44 
originating in the mucosal lining of the oral cavity, pharynx, and larynx [1]. According to GLOBOCAN 2022, HNSCC 45 
(including cancers of the lip, oral cavity, larynx, oropharynx, hypopharynx, and salivary glands) accounted for an 46 
estimated 826,040 new cases and 445,896 deaths, representing about 4.4% of all cancer cases and 4.6% of all cancer 47 
deaths globally [2]. The growing global health burden may be due to alcohol and nicotine consumption patterns 48 
correlated with urban/rural migration, economic factors influencing changes in dietary patterns) and a wider exposure to 49 
oncogenic viruses such as the human papilloma virus (HPV) in the case of oropharyngeal carcinoma. 50 

Locally advanced HNSCC are generally treated with a combination of radiotherapy (RT), chemotherapy and/or surgery. 51 
Prognoses for 5-year survival range from almost 90% in HPV-positive oropharyngeal carcinoma (OPC) down to 25% in 52 
advanced hypopharyngeal carcinoma (HPC). Long-term side-effects of treatment also vary considerably between persons 53 
and may include physical appearance changes (mainly due to surgery), xerostomia, dysphagia, odynophagia, fibrosis, 54 
fatigue, and ototoxicity (mainly due to cisplatin chemotherapy). Survivorship within certain subtypes of HNSCC has been 55 
improving gradually over time, leading to greater attention towards functional preservation after treatment, psychosocial 56 
resilience, and health-related quality of life. Newer treatments such as immunotherapy and proton beam therapy are not 57 
readily available in all countries, therefore great diligence is required to identify patients that benefit from expensive 58 
novel treatments, or else to reduce disutility of care among patients that do not benefit from aggressive treatment. 59 

Genetic diversity and complex pathophysiology imply significant intra- and inter-tumoral heterogeneity in HNSCC (add 60 
REF here). Routine oncological imaging with computed tomography (CT), positron emission tomography (PET) and 61 
magnetic resonance imaging (MRI) are broadly limited to qualitative (visual) interpretation of the images and/or highly 62 
simplified metrics (e.g. measuring the maximum tumor diameter on a single axial slice or using the maximum tracer 63 
uptake intensity). The added value of clinical imaging in cancer management is unquestionable, but it remains unclear if 64 
such non-invasive investigation sufficiently captures the complicated phenotype of HNSCC to guide risk-based 65 
stratification. 66 

Radiomics has emerged as a prominent tool for scientific investigation and prognostic modelling of cancer outcomes. 67 
Radiomics uses large numbers of quantitative features per subject extracted by a computer algorithm from annotated 68 
regions of interest (ROIs) in CT, MRI and PET images [3-5]. More recently, deep learning neural networks (DLNNs) [6, 69 
7] have delivered many significant advances in the field of computerized image analysis, hence DLNN-based oncology 70 
outcome modelling is now a rapidly growing research topic. The former requires pre-defined mathematical functions to 71 
be evaluated on a region of interest in the image, the so-called “hand-crafted (HC) features” approach. In contrast, 72 
DLNNs abstract image information as “deep-learning (DL) features” through a consecutive sequence of local convolution 73 
and max-pooling steps. Thus, the latter is considered an exclusively data-driven or knowledge-agnostic approach that 74 
does not require pre-definition of features. 75 

From 2020 onwards, there have been many reviews about HC radiomics and DL for HNSCC prognostication, indicating 76 
growing interest and rapid innovations in this field of study [8-16]. Giraud et al. [17] conducted a wide-ranging overview 77 
of machine learning for radiotherapy applications (including radiomics) in head and neck cancers but did not provide a 78 
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systematized synthesis of evidence nor detailed critical appraisals of methodological quality. Spadarella et al. [18] 79 
supplied a systematic review of radiomics for nasopharyngeal carcinoma for MRI only. Sanduleanu et al. [19] proposed a 80 
radiomics quality scoring system however calibration of this scoring scale remains uncertain. Other authors pointed out 81 
possible problems of reducing something as highly nuanced and complex as study quality into a single value [20, 21]. 82 
Guha et al. [22] systematically reviewed the radiomics literature up till February 2018 for effectiveness of treatment but 83 
did not explicitly search for DL imaging studies. Despite these valuable contributions, a critically appraised synthesis 84 
comparing both radiomics and deep learning for HNSCC prognostication, covering a broad range of imaging modalities 85 
and addressing methodological rigor, remains lacking. 86 

The central question addressed in this systematic review with critical appraisal of methodological quality is to estimate 87 
the discriminative performance envelopes of prognostic HNSCC models employing handcrafted radiomics (HC) 88 
and/or deep learning (DL). The performance data shall be gleaned from high-quality primary research articles containing 89 
long-term treatment outcomes in locally advanced primary OPC, HPC and laryngeal carcinoma (LC) that are widely 90 
treated by (chemo-) radiotherapy, either alone or post-operatively. The primary result expected is a body of evidence for 91 
relative efficacy of HC versus DL features for the prognostication tasks in HNSCC 92 

In this review we do not cover: (i) studies that are principally about nasopharyngeal carcinoma because it is an 93 
epidemiologically distinct disease, and (ii) local cancers in the oral cavity that are managed with surgery alone. We 94 
placed emphasis on the methodological reliability of each study and summarized the reviewed models. 95 

Methods 96 

A protocol for this systematic review has not been prospectively registered on a database before performing it. 97 

Eligibility criteria  98 

Eligible studies include only human subjects diagnosed with primary HNSCC that have been treated by (chemo)-99 
radiotherapy either alone or in combination with surgery and post-operative RT. This clinical setting was selected 100 
because of nominally standardized and quality-assured protocols (particularly of radiotherapy planning CT that are 101 
needed for radiation dosimetry calculations) along with expertly outlined Gross Tumor Volume (GTV) as the region of 102 
interest (ROI) by the practicing clinicians. 103 

Studies must report at least one clinical outcome (such as all-causes mortality, cancer-related mortality, progression, 104 
regression, local and/or regional failure, or distant metastasis). Articles eligible for review contained: (i) HC radiomics 105 
and/or DL features derived from pre-treatment clinical imaging, and (ii) TRIPOD 3B (development and validation using 106 
separate data) or higher (Type 4: validation only) type of investigation of clinical outcomes modelling [23]. 107 

Exclusion criteria 108 

Specific exclusion criteria were: (i) nasopharyngeal carcinoma, (ii) exclusively phantom, in vitro or in silico studies, and 109 
(iii) clinical oncology imaging modality other than CT, PET or MRI. 110 

Studies concerning exclusively short-term response immediately following treatment (such as RECIST criteria, tumor 111 
expansion/shrinkage) or studies pertaining exclusively to radiomics/DLNN-based diagnostic characterization (such as 112 
epidermal growth factor or HPV expression), but without long-term clinical outcomes, were excluded from the review. 113 

Excluded studies also lacked peer-reviewed full text from the publishing journal, or if published before 1st January 2011, 114 
or if full text was not available in the English language. 115 

Information sources  116 

The primary search for eligible studies up to the end of May 2023 was conducted within the PubMed electronic database 117 
after it had been merged with EMBASE. The secondary search was conducted by scanning for eligible studies within the 118 
bibliography of reviews and systematic reviews. “Grey” literature sources were not consulted for this review. By-hand 119 
searching of individual journal catalogues was not performed. Non-peer reviewed article collections (e.g. arXiV and 120 
medArXiV) were omitted from this search. 121 
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Search strategy 122 

For PubMed, a sensitive search for diagnostic and prognostic studies was performed using a combination of the broad 123 
Haynes [24] and Ingui [25] filters, with an additional modification proposed by Geersing [26]. The search was narrowed 124 
using MeSH term for “head and neck cancer”, or text words anywhere in the title and abstract referring to radiomics and 125 
deep learning (including common synonyms). Text word searches were first combined with ‘OR’ operators, then 126 
integrated to MeSH term and prognostics studies filter using ‘AND’ operators. The plain text of our search string is 127 
provided as Supplemental Text Box 1. The search was conducted in two phases, in August 2020 and again on March 31st, 128 
2021, and all returned records were merged prior to screening. We also checked the references of all the review articles 129 
on ‘head and neck prognostication’ for any additional articles that may have been missed in our electronic database 130 
search.  131 

Study selection  132 

We approximated the methodological conventions established by the Cochrane Collaboration for systematic reviews due 133 
to the small size of our review team. Two reviewers (VG and LAAF) during the first search phase and two reviewers (VG 134 
and HMTT) during the second search phase independently screened PubMed records only by title and abstract to identify 135 
potential articles. Disagreements during screening were resolved by unanimous consensus through re-appraisal together 136 
with a third reviewer (LW). The full text for candidate articles was obtained through the authors’ institutional library 137 
subscriptions. Three reviewers working separately (VG, LW and HMTT) subjected full texts to a detailed reading against 138 
inclusion and exclusion criteria, then additional disagreements were resolved by unanimous consensus through 139 
reappraisal.  140 

Data extraction 141 

First, general details of the eligible studies were summarized as tables. These included the primary cancer type, imaging 142 
modality and image acquisition details, cohort clinical information with sample size, primary outcomes including non-143 
radiomics and non-deep-learning-based comparator factors, and the software base for HC or DL. 144 

Estimating risk of bias in individual studies  145 

There have been several tools proposed to appraise methodological quality of prognostic and diagnostic studies in 146 
general, such as QUADAS [27], or radiomics-specific score (RQS) [19]. 147 

We have based a methodological appraisal on the rationale raised by the RQS but refrained from assigning a single 148 
quality number. In its place, we included a brief overview of what, in our view, might have constituted some part of 149 
methodological robustness in the study. Each of the three reviewers worked independently on extracting the 150 
methodological information and was afterwards cross-checked by another reviewer. The methodological aspects we 151 
sought to extract from the studies were the following: 152 

1. Was the study prospectively registered for the intended analysis methodology in a publicly accessible study 153 
database prior to commencement of the analysis? 154 

2. If imaging data were not publicly available for download, were sufficient details present in the article to identify 155 
the scope of validity (e.g., diversity of equipment vendors, whether i.v. contrast was used, image acquisition 156 
parameters etc.)? 157 

3. If digital image pre-processing had been applied (digital filters, isotropic resampling, augmentations such as flips 158 
or rotations, and related operations) was enough information provided or standardized steps documented, that 159 
would support reproducing the same steps independently? 160 

4. If some form of model simplification had been performed, such as feature dimensionality reduction or drop-outs, 161 
was enough information provided or standardized steps documented, that would support reproducing the same 162 
model simplifications independently? 163 

• Was some form of model interpretability incorporated into the findings, such as biological correlates of 164 
HC features, or attention maps of DL features, that could support a high degree of clinical verification 165 
of the output? 166 

5. If risk stratification groups had been defined (e.g. cut-offs and operating point) was a clinical justification 167 
provided rather than solely relying on model fine-tuning for optimal groupings, since the latter might produce 168 
overly optimistic results of discrimination? 169 
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6. Was the reference standard of outcomes used in the supervised learning (also known as ground truth) provided by 170 
human experts and closely matched with the context of the clinical decision being supported by the proposed 171 
model? 172 

7. Whether the expected clinical utility of the proposed model had been estimated, through some form of cost-173 
benefit or decision-curve analysis or related measure of decision-making utility? 174 

Results 175 

Study selection 176 

The PRISMA (Preferred Reporting Items for Systematic review and Meta-Analysis) [28, 29] flowchart is provided as 177 
Figure 1. 1610 records were identified based on the specified search terms in PubMed and 237 additional records through 178 
other sources.  After duplicates removal, there were 1718 articles available for screening. Applying the selection criteria 179 
led to 120 studies for full-text screening. In the end, 23 articles were deemed eligible. 180 

 181 

Fig 1. Meta-analyses (PRISMA) workflow to select articles for review. 182 

Characteristics of included studies 183 

 184 
Table 1 presents an overview of the general characteristics observed in all the studies included. The majority (16/23) of 185 
the studies included HC radiomics, six studies included DL, and one study involved both HC and DL features for 186 
prediction of outcome following radiation therapy for HNSCC.  187 
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The most widely reported disease subsite was oropharyngeal cancer with almost all studies including this in their dataset 188 
(22/23). Next major tumor site represented was larynx (18/23), followed by hypopharynx (13/23) and oral cavity (7/23).  189 
Although we did not specifically include nasopharyngeal cancer, some studies reported a mixed subset of patients with 190 
NPC (9/23) and paranasal cancer (1/23) in the training or validation cohorts.  191 

Most of the studies included radiomics derived from radiotherapy treatment planning images; some of them included 192 
FDG PET-CT (8/23), FDG PET (4/23) or CT (14/23). Additionally, only one study reported the use of MRI. Only 5 193 
studies reported the use of contrast-enhanced CT images. 194 

Most of the patients included in the studies were treated with definitive radiotherapy or chemo-radiation therapy. Cheng 195 
et al. included some patients who underwent surgery [30]. One study included patients who had surgery following RT 196 
[31]. Zhai et al. specifically excluded patients who underwent elective neck node dissection following RT [32].  197 

The sample size of the cohorts reported in this review ranged from 52 to 2552. For HC radiomics studies used training 198 
dataset sizes ranging from 124 [33] to 377 [34], (mean 202; SD 101), and their validation dataset sizes varied from 65 199 
[35] to 542 [36], (Mean 143; SD 107). In the DL studies, the training datasets sizes ranged from 102 [37] to 2552 patients 200 
[38], (Mean 531; SD 826) and independent validation datasets from 52 [37] to 872 patients [38], (Mean 200; SD 133).  201 

A wide variety of software tools were used to extract the HC features, with 9 studies reporting the use of custom-built 202 
codes using MATLAB [31, 32, 36, 39-43] or Python [44]. The other open-source software reported were Z-Rad [45], 203 
IBEX [34], CERR [35], OncoRadiomics [46], Pyradiomics [33] and MIRP [47]. 204 

Most DL studies [30, 37, 48-50] applied a reasonably consistent CNN architecture, from what could be gleaned in the 205 
technical details of the publications. For instance, Le at al. used a 3-layer neural network with self-attention, also known 206 
as PreSANet (Pre-Self-Attention Network) [51] while Kazmierski et al. used a deep multitask logistic regression to model 207 
the time-to-event [38].   208 

Summarized performances of included studies 209 

Table 2 summarizes the endpoints, model building aspects, and performance of the different models. The most studied 210 
prognosis endpoint (16/23) was overall survival (OS) followed by local disease failure, recurrence or control and finally 211 
distant metastasis. The event to sample ratios for OS ranged from 15% to 81% and distant metastasis (DM) rates varied 212 
between 12% and 19%. The rates for loco-regional recurrence (LRR), local recurrence (LR) local failure (LF) or local 213 
regional control (LRC), ranged from 7% to 67%. 214 

Notably, all sixteen HC radiomics studies employed various feature reduction techniques to streamline their radiomics 215 
models. Among these, Spearman's correlation ranking with the other features emerged as one of the popular methods [31, 216 
40, 43, 47] followed by LASSO regression models [31, 34]. Some studies employed more than one feature reduction 217 
approach before building the prognostic models. For example, [42, 44] utilized 13 feature selection methods for their 218 
various machine learning algorithms.  219 

The most frequently (9/23) used machine learning model for HC radiomics was multiple Cox regression technique 220 
followed by the multiple linear regression. When we analyzed the prognostic performance of these models across the 221 
studies based on reported test AUC/C-Indices, the best performing model for OS was reported by Goncalves et al. with an 222 
AUC/C-index of 0.91 using HC features [33]. Analyzing the DL studies separately showed that Kazmierski et al. [38] 223 
achieved the highest performing OS model with a discriminatory AUC of 0.82. Vallieres et al. [40] reported the highest 224 
performing Distant metastasis (DM) prediction model using HC radiomics and clinical parameters with a C-Index of 0.88 225 
while Lombardo (2021) [49] achieved an AUC of 0.89 by including DL and clinical features. Interestingly, [48] 226 
constructed a CNN model using HC radiomics features, which surpassed all other performances and achieved an AUC/C-227 
index of 0.92. 228 

Consequently, the majority of HC studies (7 out of 16) and DL studies (5 out of 6) found that incorporating radiomics, 229 
either alone or combined with clinical parameters enhanced the predictive power and offered value compared to the 230 
traditional clinical models. 231 

Methodological quality assessment 232 
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Given the large number of HC or DL studies for prognostication in head and neck cancer, we restricted the assessment of 233 
methodological quality of studies that adhered to TRIPOD guidelines and described the development or validation of the 234 
model or both. (TRIPOD 3B and 4). Figure 2 gives an overview of the distribution of the methodological quality and 235 
reporting completeness for 23 studies selected for this review. An extended explanation of the reasons for the scores is 236 
made available as part of the supplementary Table S1. 237 

  238 

Fig 2. Methodological quality assessment of included studies. Red, yellow, and green dots represent poor, medium, and good quality, 239 
respectively. The final column shows the total number of good scores (green) out of 8 quality assessments.  240 

The methodological assessment involved using an 8-item rating system rating based on the criteria as mentioned earlier 241 
under the Methods section, with red, yellow, and green indicating poor, medium, and good respectively. The highest 242 
score achieved was 6/8 by only one study, falling short due to study not prospectively registered and show the clinical 243 
utility of the models [47]. More than half of the reporting was of potentially suboptimal methodological quality and 244 
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1 Meneghetti:2021 [47] 6

2 Kim:2022 [31] 5

3 Fujima:2021 [37] 4

4 Ger:2019 [34] 4

5 Lv:2020 [43] 4

6 Starke:2020 [50] 4

7 Zhai: 2021 [32] 4

8 Aerts:2014 [39] 3

9 Bogowicz:2020 [45] 3

10 Cheng:2021 [30] 3

11 Kazmierski:2023 [38] 3

12 Keek:2020 [46] 3

13 Le WT:2022 [51] 3

14 Leger:2017 [44] 3

15 Lombardo:2021 [49] 3

16 Parmar:2015a [41] 3

17 Parmar:2015b [42] 3

18 Vallières:2017 [40] 3

19 Diamant:2019 [48] 2

20 Folkert:2017 [35] 2

21 Goncalves:2022 [33] 2

22 Leijenaar:2015 [36] 2

23 Zhou:2020 [52] 1

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 22, 2024. ; https://doi.org/10.1101/2024.10.22.24315007doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.22.24315007
http://creativecommons.org/licenses/by/4.0/


  

  

 

achieved a score of 3 or lower. None of the studies were prospectively registered prior to the HC or DL analysis, wh245 
recapitulates a general limitation seen globally in prediction modelling studies using HC features and DL. Only 2246 
studies reported all essential details regarding the imaging acquisition protocol, and 18/23 about any image p247 
processing. Regarding assessing the clinical utility of the developed models through methodologies like cost-ben248 
analysis or decision curve analysis; none of the studies included in this review fulfilled this criterion. Most studies (20/249 
included the essential model simplification techniques such as feature selection/multi-dimensionality reduction, hyp250 
parameters, and dropout rates etc. that allow reproducibility of the models. However, fewer (7/23) studies includ251 
measures for interpretability such as comparison with biological correlates. Most studies (20/23) provided appropri252 
justification for risk grouping/risk cut-offs to delineate risk subgroups; however, three studies [33, 48, 52] did not inclu253 
any risk stratification.  254 

We found only 4/23 of the studies investigated the overall effectiveness of the models in comparison to the traditio255 
clinical models within the healthcare setting. The broad parameters assessed included were if a) the AI models w256 
compared to clinical models b) the models were trained and tested for the outcomes appropriately c) if the outcome w257 
survival, the survival data used were linked to any cancer registries, and d) adequate documentation of the final mo258 
that permits reproducibility for external validation. The two studies that reported ‘good’ in at least 5 out of the259 
assessment items [31, 47] used HC radiomics and were both reporting for local disease as the outcome. Of the five stud260 
that had ratings of 4, 3 used HC radiomics and 2 used DL, all reporting varied outcomes.  Most of the other stud261 
(16/23) had ratings of 3 or less, which included 10 studies using HC radiomics, 5 using DL methods and 1 study hav262 
both HC and DL features.   263 

Figure 3 visualizes the reported discriminatory metrics (AUC/C-index) against the number of methodological items ra264 
‘good’ in this review. The color-codes refer to the type of features used for modelling the outcomes, namely HC or D265 
The top two methodological rated studies had a discriminatory performance between 0.66-0.77. We noticed that most266 
the studies lie within a wide scatter with respect to the performances ranging from 0.58-0.92 and ratings between 2 and267 
From three HC radiomics studies, we observed an AUC/C Index of 0.83 to 0.91 [33, 40, 52] for four outcomes. Five 268 
studies had discriminatory performance between 0.80-0.92 [30, 37, 38, 48, 49]. To view the reported metrics against 269 
ratings for each outcome individually, please refer to the supplementary materials. 270 
 271 
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Fig 3. Reported discriminatory metrics (AUC/C-index) of included studies with the number of methodological items rated ‘good’ in 273 
this review.  274 

Discussion 275 

In this systematic review, we summarized the basic characteristics and reported results of studies and rigorously 276 
evaluated the methodological quality of studies that included either HC radiomics or DL methods to predict disease 277 
outcome in patients treated for head and neck cancer. The models focused on the prediction of recurrent disease and/or 278 
survival and were constructed using either HC or DL based radiomics features or both. Only studies that qualified as 279 
TRIPOD 3b or higher (had independent validation of the results in an external dataset) were included in the review. 280 
While a handful of the studies have reported encouraging results and hinted at their suitability for clinical use, a 281 
considerable portion of studies still fall short in their methodological rigor. Future studies can enhance the quality based 282 
on the quality checklist provided which allows them to think about employing more robust methodologies and ensuring 283 
documentation for wider implementation.  284 

Figure 3 offers an overview of the studies examined in this review, presenting their reported performance metrics 285 
alongside ratings from our methodological assessment independently for models validated using either HC or DL based 286 
radiomics. The two studies with the highest reported AUC/C index metrics for HC and DL also happen to have very low 287 
methodological robustness [33, 48].  Overall, we noted that the DL models exhibited higher performance scores 288 
compared to the HC models with the exception of [50] that recorded the lowest performance of AUC/C Index of 0.4. 289 
However, despite the higher discriminatory performance, we observed that the methodological aspects were generally 290 
better in studies currently using HC radiomics than those involving DL methods. This could be partly attributed to the 291 
significant efforts towards standardization of HC radiomics, particularly through initiatives like the Imaging Biomarker 292 
Standardization Initiative (IBSI) [53] that has led to clearer definitions, workflows, and best practices. In contrast, deep 293 
learning, while rapidly evolving and is sometimes integrated with the HC radiomics workflow, currently lacks the same 294 
level of formalized guidelines emphasizing the need for such initiatives.  295 

It would have been optimal if the data collection and statistical analysis protocol for radiomics modeling had been pre-296 
registered. Platforms like ClinicalTrials.gov could serve this purpose, providing transparency in the analysis. Regrettably, 297 
none of the studies in this review report such a pre-registration. This may be attributed to the absence of widely available 298 
consensus on where such protocols can be registered in advance. We also recommend that, as a radiomics community, we 299 
should further promote biomedical modeling registries like the AIMe registry [54]. These platforms should facilitate 300 
review, provide suggestions for collaboration, and offer feedback on statistical protocols before initiating a radiomics 301 
project study. Transparent registration helps ensure reproducibility and credibility in radiomics research by minimizing 302 
biases and clearly defining the methodological framework, including training and validation strategies. 303 

Similarly, we observed that AI prognostication models often overlook the assessments of their clinical implications and 304 
applicability for practical use. The evaluation of clinical utility, carried out through methodologies like cost-benefit 305 
analysis or decision curve analysis [55, 56], it is imperative for gaining insights on the practical implications of these 306 
models. Regrettably, none of the papers included in this review fulfilled both criteria, highlighting a gap in research 307 
transparency and pre-analysis protocol documentation.  308 

In our methodological assessment, we evaluated studies based on the clarity of outcome definitions and endpoints. While 309 
predicting patient prognosis remains a challenge, to ensure the reliability of the prognostic models, a clear definition of 310 
primary endpoint is required that are both valid and reliable. Currently, the endpoints were accepted as defined by the 311 
clinicians based on the oncology practices. The endpoints studied include OS, LRR and DM. Most studies lacked clear 312 
information for how their clinical endpoints were determined, and whether this was accurately and consistently applied. 313 
For instance, when modeling OS, better statistics on the date of death of people that can be prospectively collected is 314 
preferred to assess survival interval, as opposed to phone surveys with next-of-kin, but it was not always clear how the 315 
important endpoint information was obtained. It could be hospital-based or like in the Netherlands, a national population 316 
registry for all births/deaths related information. Overall, there was heterogeneity in the broad definitions of the endpoints 317 
and follow-up periods available for survival analysis which could have also contributed to the results varying 318 
significantly, with C-Index/AUC values ranging between 0.40 [50] to 0.92 [48]. Notable exceptions to where there was 319 
clarity on the clinician-defined endpoints include [31, 32, 47, 50]. 320 
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Many studies showed [30, 32, 33, 38-40, 43, 47, 49, 51] that a combined model involving clinical factors and imaging 321 
features outperforms the results of just the clinical model. These findings suggest that multi-dimensional data possesses 322 
greater predictive capability compared to a predictive model constructed solely with mono-dimensional data. However, 323 
Le et al. reported that the addition of PET to either the CT or a combination of CT and clinical DL model showed a 324 
marked decrease in performance in the models’ predictive capability for all endpoints [51]. It is interesting to note that the 325 
same training dataset was used by Goncalves [33] and Vallieres [40].   326 

Clinical research and modelling become highly relevant to the clinician only if the study is accurate and reproducible. 327 
The prognostic efficacy of the survival models leveraging radiomics features relies on the utilization of stable and 328 
reproducible features, alongside transparent imaging protocols [57, 58]. While studies such as [47] and [37] stand out as 329 
exemplary studies with comprehensive and reproducible imaging details, other studies were missing key information such 330 
as CT image acquisition and reconstruction parameters.  331 

Most studies also lacked sufficient details for model reproducibility. To reproduce the model, feature engineering and 332 
model building are equally important steps. Feature selection methods work by reducing the number of input variables by 333 
eliminating redundant features and selecting the most relevant ones for the model. This process significantly enhances 334 
model performance, improves interpretability of findings, and addresses generalization issues. In our methodological 335 
assessment, we evaluated studies based on their model simplicity and reproducibility. Most HC radiomics studies have 336 
clearly outlined their feature reduction and model selection parameters to ensure reproducibility. However, Aerts et al. 337 
[39] provided explanations for some statistical methods used but lacked clarity on certain aspects. Zhou et al. (2020) [52] 338 
developed multifaceted radiomics models for predicting distant metastases, incorporating both DL and machine learning 339 
classifiers. While their feature extraction was conventional, reproducibility steps were not explicitly detailed. For the DL 340 
studies, we noted that the model parameters were typically disclosed to ensure reproducibility across most included 341 
studies. 342 

It is crucial to understand the biological correlates of features included in the model to improve its interpretability. In 343 
some HC radiomics studies we noticed a lack of emphasis on model interpretability, like comparing the model’s 344 
performance with established clinical parameters [35, 36, 42, 44, 45]. Goncalves et al. [33] incorporated a combined 345 
model of radiomics and clinical parameters, but it should be noted that the clinical parameters were not predictors usually 346 
reported in literature for that outcome. While [42, 46] integrate clinical parameters in separate models, a combined model 347 
for interpreting the biological implications of the radiomics parameters was absent. In DL, the focus shifts to making the 348 
activated regions, from which features influencing the chosen outcome are derived, interpretable for clinicians. Attention 349 
maps play a significant role in this context. Except [48], none provided minimal and maximal activation maps. However, 350 
it should be emphasized that the activation maps did not correlate the model’s covariates with any known clinical 351 
biomarkers. Except [37], other studies trained models incorporating both DL and known clinical features, with a focus to 352 
enhance the comprehension of the biological correlates of deep-extracted features. 353 

During our literature review, we encountered papers submitted for the HECKTOR Challenge at MICCAI 2021 and 2022 354 
[59, 60], which focused on automatic head and neck tumor segmentation and outcome prediction in PET/CT images. 355 
These papers demonstrated that by integrating radiomics features with machine learning algorithms, valuable insights can 356 
be provided into the metabolic and morphological properties of tumors, aiding in the prediction of patient outcomes. The 357 
challenge participants were given the same data, and their work centered on applying DL and conventional radiomics to 358 
head and neck cancer diagnosis and prognosis, specifically Recurrence-Free Survival (RFS), using FDG-PET/CT images 359 
and available clinical data. Despite being highly relevant to our search criteria, these studies were not included as they did 360 
not meet the TRIPOD criteria. 361 

We acknowledge several limitations of the current systematic review that future research could address. Firstly, this 362 
review was not prospectively registered prior to commencement. Second, we were unable to perform a quantitative meta-363 
analysis owing to the significant heterogeneity in the outcomes analyzed, the methodological and mathematical process 364 
involved for HC and DL-based modelling. Instead, we provided a visual synthesis of reported model performance in 365 
relation to methodological robustness (Figure 3). Third, despite our rigorous efforts to evaluate methodological 366 
procedures using objective criteria, independent raters, and consensus, we believe some degree of subjectivity and 367 
potential debatable assessments may remain. Additional detailed notes on methodology are provided in the 368 
supplementary table S1 to improve transparency. Lastly, we introduced some inclusion bias by only considering full-text 369 
articles in English. This decision was made pragmatically, as all authors of this review are proficient in English, ensuring 370 
that the selected material is accessible and understandable to readers who may wish to inspect the individual papers 371 
themselves. Additionally, since January 2024 TRIPOD has released an update called TRIPOD+AI. There may be some 372 
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things in the new TRIPOD that we did not align or incorporate in this present review. However, this may be useful in 373 
future work in this question. 374 

Conclusion 375 

This systematic review provides a critical evaluation of the current state of handcrafted radiomics and deep learning 376 
models for prognostication in head and neck squamous cell carcinoma. Despite promising advancements, significant 377 
methodological heterogeneity and gaps in reporting standards were identified. The review emphasizes the need for 378 
standardized methodologies, including pre-registration of study protocols and detailed reporting of imaging and model 379 
development procedures, to improve the reproducibility and clinical utility of these models. Future research should also 380 
focus on integrating clinical factors with radiomics features to enhance predictive accuracy and on conducting 381 
comprehensive assessments of the clinical implications and cost-effectiveness of these models. Such efforts will be 382 
crucial in advancing personalized treatment strategies and improving outcomes for HNSCC patients. 383 

 384 
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Tables 567 

Table 1 Summary of general study characteristics. 568 

Reference Type Imaging 
modality 

Cohort description and sample 
sizes 

Type(s) 
of 

image 
features 

Primary 
treatment 

Study 
design 

Potential 
comparato

rs 

Software 
access (or 
code base) 

Aerts:2014 
[39] 

OPC, LC Treatment 
planning 

FDG-PET-

Training datasets comprised of only 
NSCLC cases, validation in separate 
HNSCC datasets. 

HC The 
majority 
were RT 
only, the 

R TNM 
staging, 
HPV status 
and tumor 

Radiomics; 
in-house code 
(Matlab base) 
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 CT 

Treatment 
planning CT 

Validation 1: OPC (64%), LC 
(36%) n=136, all stages, HPV 
negative 72%, from 2004. 

Validation 2: OPC (100%) n=95, all 
stages, 2000-2006, HPV negative 
81%, 

remaining 
CRT. 

 

volume Code access 
n.r. 

Bogowicz:2020 
[45] 

OPC, 
HPC, LC, 

Oral 
Cavity 

Treatment 
planning 
CECT 

Six institutional cohorts, all stages, 
years n.r 

Cohorts were used for internal-
external validation according to 
Steyerberg method. 

Cohort sizes ranged from n=100 up 
to n=441, HPV negative rates 
ranged from 11% to 100%. 

HC Definitive 
RT or 
CRT 

R None; only 
compared 
radiomics 
models 

 

Z-Rad 
(Python base)  

Code access -
[61] 

Folkert:2017 
[35] 

OPC Treatment 
planning 

FDG-PET 

Training: One academic center in 
USA (n=174) Only stage III-IV, 
2002-2009, HPV status n.r. 

Validation: Independent academic 
center in USA (n=65) Only stage 
III-IV, 2003-2009, HPV status n.r. 

HC Definitive 
CRT 

R Compared 
with 
multivariab
le clinical 
models. 

Computationa
l Environment 
for 
Radiotherapy 
Research 
(CERR), 
(Matlab base) 

Code access 
n.r. 

Ger:2019 [34] 

 

OPC, LC Treatment 
planning 
CECT 

F18-FDG-
PET 

 

Model development and validation 
of CT and PET features separately. 

CT - Training: (n=377) All stages, 
2004-2013, HPV negative 41%. 

PET - Training: (n=345), all stages, 
2004-2013, HPV negative 40%. 

Validation: HNSCC datasets from 
Aerts:2014. 

HC Definitive 
RT or 
CRT 

R CT 
radiomics: 
Tumor 
volume and 
HPV status. 

PET 
radiomics: 
HPV status 

IBEX (Matlab 
base) 

 

 

Goncalves:202
2 [33] 

OPC, 
HPC, 

NPC, LC 

 

Treatment 
planning CT 

 

Training 1: Two centers in Montreal 
(n=124), all stages, 2006-2014, 
HPV negative 28%. 

Validation 1: Two other centers in 
Montreal (n=70), stage II-IV, 2008-
2014, HPV negative 1%. 

HC Definitive 
RT or 
CRT 

 

R Compared 
with 
multivariab
le clinical 
model. 

PyRadiomics 
(Python base) 
Code - [62] 

Keek:2020 [46] OPC, 
HPC, LC 

CECT Training: (n=301) from 4 Dutch 
academic hospitals, all stages, years 
n.r, HPV negative 69%. 

Validation (n=143) from 4 other 
European academic hospitals, all 
stages, years n.r , HPV negative 
45%. 

HC Definitive 
CRT 

R Compared 
with 
multivariab
le clinical 
features. 

RadiomiX 
toolbox 
(OncoRadiom
ics) 

Kim:2022 [31] OPC, 
HPC, LC, 

Oral 
Cavity, 
NPC, 

Paranasal 
sinus 

MRI 

T2WI, CE-
T1WI 

Training: Single Dutch academic 
center (n=161) all stages, 2014-
2019, HPV n.r. 

Internal Validation: Same as 
training center (n=54) all stages, 
2014-2019, HPV n.r. 

External Validation: University 
hospital in Korea (n=70), all stages, 
2014-2019, HPV n.r. 

HC Definitive 
RT or 
CRT.  

Surgery 
followed 

by RT 

R Compared 
with 
multivariab
le clinical 
model. 

 

Radiomics; 
in-house code 
(Matlab base) 
Code access -
[63] 

 

Leger:2017 
[44] 

Oral 
cavity, 
OPC, 

HPC, LC 

Non-CECT 
only 

 

Training: Combined from two 
centers (n=213), 1999-2011, all 
stages, HPV negative 77%. 

Validation: Combined from two 
centers (n=80), all stages, 2005-
2012, HPV negative 49%. 

HC All 
definitive 

CRT 

R None; only 
compared 
radiomics 
models 

Radiomics; 
in-house code 
(Python base) 

Code access 
n.r. 
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Leijenaar:2015 
[36] 

OPC Treatment 
planning CT 

Only external validation of 
previously published model (ie 
Aerts:2014). 

OPC (100%) n=542, all stages, 
2005 – 2010, HPV negative 24%, 

HC About 
equal 

proportion 
of 

definitive 
RT and 
CRT. 

R TNM 
staging, 
HPV status 
and tumor 
volume 

As in 
Aerts:2014 

Lv:2020 [43] OPC, 
HPC, 

NPC, LC  

Treatment 
planning 

FDG-PET-
CT 

 

(n=296) Subset of data from 
Vallieres:2017, from the 4 cancer 
centers in Montreal, Canada. 

HC Definitive 
RT or 
CRT 

R Compared 
with 
multivariab
le clinical 
model. 

Radiomics 
Analysis 
(SERA) 
package 
(Matlab base) 

Meneghetti:20
21 [47] 

OPC, 
HPC, LC, 

Oral 
Cavity 

Treatment 
planning CT 

 

Training: Two German centers 
combined (n=233) stages II-IV, 
2005-2013, HPV negative 61%. 

Validation: One of the German 
centers in training combined with 
two other independent centers 
(n=85) stage III-IV, 2005-2013, 
HPV negative 61%. 

HC Definitive 
CRT 

R Compared 
with tumor 
volume 

MIRP by 
Oncoray 

Code access - 
[64] 

Parmar:2015a 
[41] 

OPC, LC Treatment 
planning 

FDG-PET-
CT 

Treatment 
planning CT 

HNSCC datasets from Aerts:2014 HC The 
majority 
were RT 
only, the 

remaining 
CRT. 

R None; used 
radiomics 
to predict 
stage and 
HPV status 

As in 
Aerts:2014 

Parmar:2015b 
[42] 

OPC, LC Treatment 
planning 

FDG-PET-
CT 

Treatment 
planning CT 

HNSCC datasets from Aerts:2014 HC Majority 
RT only,  

Remaining 
CRT. 

R None; 
compared 
different 
radiomics 
models 

As in 
Aerts:2014 

Vallières:2017 
[40] 

OPC, 
HPC, 

NPC, LC 

Treatment 
planning 

FDG-PET-
CT 

 

 

Training: Two centers HGJ and 
CHUS in Montreal (n=194), all 
stages, 2006-2014, HPV negative 
20%. 

Validation: Two other independent 
centers HMR and CHUM in 
Montreal (n=106), stage II-IV, 
2008-2014, HPV negative 3%. 

HC Definitive 
RT or 
CRT 

R Compared 
with 
multivariab
le clinical 
models. 

Radiomics; 
in-house code 
(Matlab base) 

Code access 
n.r. 

 

Zhai: 2021 [32] 

 

Oral 
cavity, 
OPC, 
NPC, 

HPC, LC 

 

 

CECT Only external validation of 
previously published model 
(Zhai:2020). 

Training: One academic center 
(n=165), all stages, 2007-2016, 
HPV negative 29%. 

Validation 1: Same center as 
training (n=112), all stages, 2007-
2016, HPV negative 27%. 

Validation 2: Independent academic 
center (n=113), all stages, 2007-
2016, HPV negative 24%. 

HC Definitive 
RT or 
CRT; 

Excluding 
elective 

neck 
dissection 
immediatel

y 
following 

RT 

R Compared 
with 
multivariab
le clinical 
models. 

 

Radiomics; 
in-house code 
(Matlab base) 

Code access 
n.r. 

 

Zhou:2020 
[52] 

OPC, 
HPC, 

NPC, LC 

 

Pre-treatment 
FDG-

PET/CT   

Subset (n=188) of the cohorts used 
previously by Vallières:2017 

HC Definitive 
RT or 
CRT 

R None SSAE, IMIA 
and IMIA-II 

Code access 
n.r. 

Cheng:2021 
[30] 

OPC FDG-PET Training: Single institution (n=268), 
2006-2017, HPV negative 79%. 

Validation 1: (n=353) combined 

DL Definitive 
RT or 

R Compared 
with 
multivariab
le clinical 

3D UNet 
model and 3D 
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datasets from Vallières:2017, 
Ger:2019 and Aerts:2014, all stages, 
2003-2014, overall HPV negative 
30%. 

Validation 2: Chinese academic 
centre (n=31), all stages, 2011-
2013, HPV negative 3%. 

CRT  

Included 
some 

surgery 
patients 

model. 

 

ConvCox  

Code access - 
[65]     

Diamant:2019 
[48] 

OPC, 
HPC, 

NPC, LC 

 

Treatment 
planning 

FDG-PET-
CT 

 

Same training and validation 
datasets as Vallieres:2017 

DL Definitive 
RT or 
CRT 

R Compared 
DL to 
Vallieres 
radiomics 
model(s). 

CNN in Keras 
with 
Tensorflow 

Code access 
n.r. 

Fujima:2021 
[37] 

OPC Treatment 
planning 

FDG-PET 

Training: Single institution (n=102), 
all stages, 2007-2017, HPV 
negative 25%. 

Validation: Another independent 
institution (n=52), all stages, 2007-
2017, HPV negative 15%. 

DL Definitive 
RT or 
CRT 

 

R Compared 
with 
multivariab
le clinical 
models. 

Several 2D 
CNNs: 

AlexNet, 
GoogLeNet 
Inception v3 
and ResNet-
101 

Code access 
n.r. 

Kazmierski:20
23 [38] 

Multiple 
sites incl. 
OPC, LC, 
NPC, Oral 

Cavity 

Treatment 
planning 
CECT 

 

Training: Single institution dataset 
(n=2552) from Toronto, Canada; all 
stages, years n.r., HPV negative 
17%. 

Validation 1: First validation dataset 
as was used by Aerts:2014. 

Validation 2: Same institution as 
Ger:2019 (n=444), all stages, years 
n.r., HPV negative 9%. 

Validation 3: Private Polish dataset 
(n=298), all stages, years n.r., HPV 
negative 6%. 

HC and 
DL 

Definitive 
RT or 
CRT 

R Compared 
with 
multivariab
le clinical 
model and 
tumour 
volume. 

PyRadiomics 
and 
DeepMTLR 

Code access- 
[66] 

. 

Le WT:2022 
[51] 

OPC, 
HPC, 

NPC, LC 

Treatment 
planning 

FDG-PET-
CT 

 

Same training and validation 
datasets as Vallieres:2017. 

External Validation: New dataset 
from one of the Montreal hospitals 
(n=371), all stages, 2011-2019, 
HPV negative 24%. 

DL Definitive 
RT or 
CRT 

 

R Compared 
with 
multivariab
le clinical 
model. 

PreSANet  

Code access 
n.r. 

Lombardo:202
1 [49] 

Various 
subtypes 

of HNSCC 

CT Training: Dataset used by 
Diamant:2019. 

Validation 1: The validation set #1 
used by Aerts:2014. 

Validation 2: Subset of Canadian 
data previously used by 
Kazmierski:2023. 

Validation 3: Single center set from 
Italy (n=110), all stages, 2017-2019, 
HPV n.r. 

DL Definitive 
RT or 
CRT 

R Compared 
with 
multivariab
le clinical 
model. 

2D and 3D 
CNNs [67] 

Starke:2020 
[50] 

Oral 
cavity, 
OPC, 

HPC, LC 

Treatment 
planning CT 

 

Same training and validation 
datasets as used by Leger:2017. 

DL Definitive 
CRT 

R Compared 
with 
multivariab
le clinical 
model. 

2D and 3D 
CNNs  

Code access - 
[68] 

Abbreviations: CECT – Contrast Enhanced Computed Tomography; CNN – Convolutional Neural Network; CRT – Chemoradiotherapy; CT - 569 
Computed Tomography; DM – Distant Metastasis; DL – Deep Learning; FDG-PET - Fluorodeoxyglucose-Positron Emission Tomography; HC – Hand 570 
crafted;  HNSCC - Head-and-Neck Squamous Cell Carcinoma; HPC – Hypopharyngeal Carcinoma; HPV – Human Papillomavirus; IMRT - Intensity-571 
modulated radiation therapy (which also includes volume-modulated arc therapy and helical tomotherapy); LC - Laryngeal Carcinoma; LRC – Loco-572 
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Regional Tumor Control; LRR – Locoregional Recurrence; LF – Local Failure; NPC – Nasopharyngeal Carcinoma; n.r - not reported; NSCLC - Non-573 
Small Cell Lung Cancer; OPC – Oropharyngeal Carcinoma; OS – Overall Survival; R – Retrospective; RT – Radiotherapy;  574 
 575 

Table 2 Summary of model discriminative performances. 576 

Reference Primary 
outcome 

Event to 
sample size 

ratio 

Model 
simplification/reduction 

Type of model Discriminative 
performance in validation 

dataset(s) 

Added value of 
radiomics/DL 

Aerts:2014 
[39] 

OS n.r (231) Stability ranks for feature 
selection 

Multivariable Cox 
proportional hazards 

regression 

Radiomics: C-index 0.69  

Clinical C-index 0.68 - 0.69 

Combined C-index 0.69 - 
0.70 

Comparable to 
tumor volume and 

TNM stage. 

Bogowicz:2020 
[45] 

2yr OS 5 datasets 
with LOOCV 
- 

68% (1064) 

Hierarchical clustering 
and  

univariate logistic 
regression 

Multivariable Logistic 
regression 

Centralized AUC 0.69 - 0.82 

Distributed AUC 0.73 - 0.80 

n.r. 

Folkert:2017 
[35] 

OS, LF, 
DM 

Train: 27% 
OS 7% LF, 
19% DM 

(174) 

Validate: 
48% ACM, 

15% LF, 
17% DM 

(65) 

Forward feature selection Multivariable Logistic 
regression 

(Tested stratification in 
Kaplan-Meier but did 
not report any time-to-
event discrimination 

metric) 

OS: AUC�0.60 

LF: AUC�0.68 

DM: AUC 0.65 

n.r. 

Ger:2019 [34] OS CT  

Train 26% 
(377), 

Validate 21% 
(349) 

PET  

Train 22% 
(345), 

Validate 15% 
(341) 

Clinical variables– 
Forward feature selection 
using Akaike information 

criteria (AIC) > 2 

Radiomics - LASSO 
regression 

Multivariable Cox 
proportional hazards 

regression 
dichotomized at 3 years 

OS: CT AUC 0.72 

OS: PET AUC 0.59 

Tumor volume 
alone was superior 
to radiomics and 
clinical model 

PET covariates 
not associated 

with OS 

Goncalves:202
2 [33] 

LRR, DM, 
OS 

Training: 
LRR – 14%, 
DM – 18%, 
OS – 18% 
(125) 

Validation: 
LRR – 20%, 
DM – 19%, 
OS– 27% 
(70) 

 

 Feature importance 
(XGBoost) 

Multiple machine 
learning algorithms 

Multilayer perceptron, 
extreme gradient 
boosting, logistic 

regression, random 
forest, and decision 

trees 

Best performing model 
XGBoost. 

Combined model 

LRR: AUC 0.74 

DM: AUC 0.84 

OS: AUC 0.91 

Radiomics only  

LRR: AUC 0.58 

DM: AUC 0.84 

OS: AUC 0.82 

Combined model 
outperforms 

radiomics model 

 

Keek:2020 [46] OS, LRR, 
DM 

Training: n.r. 
(301) 

Validation: 
n.r. (143) 

Relative feature 
importance (random 

survival forest (RSF)) 

Multivariable Cox 
proportional hazards 

regression and random 
survival forest 

Clinical model 

OS: C-index 0.77 (RSF) 

LRR: C-index 0.79 (RSF) 

DM: C-index 0.84 (RSF) 

Radiomics model 

OS: C-index 0.62 (Cox) 

LRR: C-index 0.59 (RSF) 

Clinical models 
outperform 

radiomics models 
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DM: C-index 0.56 (Cox) 

Kim:2022 [31] LR Training: 
57% (161) 

Validation: 
67% (54) 

External 
validation: 
49% (70) 

 Spearman’s correlation + 
LASSO logistic model  

Multivariable Logistic 
regression  

Radiomics 

 AUC 0.77 (CI 0.40–0.88)   

Clinical 

AUC 0.53 (CI 0.39–0.67)   

Radiomics model 
outperforms 

clinical model 

Leger:2017 
[44] 

LRC, OS Training: 

LRC- 40%, 
OS-56% 

(213)  

Validation: 

LRC-32%, 
OS-65% (80) 

13 feature selection 
methods 

 

Multiple machine 
learning algorithms 

 

LRC: C-index 0.71 
(Random Forest) 

OS: C-index 0.64 (Boosting 
Tree) 

n.r. 

Leijenaar:2015 
[36] 

OS n.r. (542) Not applicable Multivariable Cox 
proportional hazards 

regression 

 

 OS: C-index 0.65 n.r. 

Lv:2020 [43] 

 

RFS, MFS, 
OS 

Training: 

RFS - 14%, 
MFS – 14%, 
OS – 17% 

(190)  

Validation: 

RFS - 8%, 
MFS – 4%, 
OS – 7% 

(106) 

Univariate cox analysis + 
3-fold cross validation + 
Spearman's correlation 

Multivariable Cox 
proportional hazards 

regression 

 

Combined clinical and 
radiomics 

RFS C-index: 0.54 - 0.60 

MFS C-index: 0.61 - 0.71 

OS C-index: 0.60 - 0.65 

Clinical 

FS C-index: 0.58 

MFS C-index: 0.61 

OS C-index: 0.62 

Combined model 
outperformed 
clinical model 

Meneghetti:20
21 [47] 

LRC Training: n.r. 
(233) 

Validation: 
n.r.(85) 

3 feature-selection 
algorithms:  

Spearman's correlation, 
minimal redundancy 

maximum relevance and 
regularized Cox 

regression 

Multivariable Cox 
proportional hazards 

regression 

 

Combined C-index 0.66 
(0.55-0.75) 

Clinical C-index 0.56 [0.49-
0.62] 

Combined model 
outperformed 
clinical model 

Parmar:2015a 
[41] 

OS Training n.r. 
(136) 

Validation 
n.r. (95) 

Unsupervised clustering 
methods 

Multivariable Cox 
proportional hazards 

regression  

Radiomics C-index 0.68 

Clinical C-index 0.63 

Radiomics model 
outperforms 

clinical model 

Parmar:2015b 
[42] 

3yr OS Training 37% 
(101) 

Validation 
34% (95) 

13 feature selection 
methods 

 

 

Multiple machine 
learning algorithms 

 

 

 AUC 0.61 - 0.69 n.r. 

Vallières:2017 
[40]  

OS, LR, 
DM 

Training: LR 
- 15%, DM - 
13%, OS - 
16% (194) 

Validation: 
LR - 15%, 
DM - 13%, 
OS - 23% 

(106) 

Stepwise forward feature 
selection + Spearman 

rank correlation + 
maximal information 

coefficient 

Clinical: Random 
forest classifier 

Radiomics: Cox 
regression model  

Clinical  

OS: AUC 0.78 C-Index 0.76  

LR: AUC 0.72 C-Index 0.69 

DM: AUC 0.55 C-Index 
0.60 

Combined  

OS: AUC 0.74 C-index 0.71 

LR: AUC�0.69 C-index 

Combined models 
superior to clinical 
models for OS and 

DM  
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0.67;  

DM: AUC�0.86 C-index 
0.88; 

Zhai: 2021 [32] NF 5.3% (113) N.A Multivariable Cox 
proportional hazards 

regression  

 

Radiomics C-Index 0.71 

Clinical C-Index 0.57 

Combined C-Index 0.71 

External 
validation 
confirms 

superiority of 
combined model. 

Zhou:2020 
[52] 

DM 16% (188) Deep learning with 
stacked sparse 
autoencoder 

Single objective (SO), 
multi-objective (MO) 

and multi-faceted 
models capable of 

combining many base 
classifiers (M-

radiomics)  

SO AUC 0.81 

MO AUC 0.76 

M-radiomics 0.84 

 

n.r 

Cheng:2021 
[30]  

OS 

 

Training: 
50% (268) 

Validation: 
77% (384) 

N.A  

3D CNN-based cox 
proportional hazards 

(ConvCox) 

Clinical  

AUC 0.75 (CI 0.65- 0.84)  

Combined  

AUC 0.80 (CI 0.73-0.87) 

Combined model 
outperforms 

clinical model 

Diamant:2019 
[48] 

DM, LRF, 
OS 

Same as 
Vallieres:201

7 

 

N.A CNN discriminator CNN 

DM: AUC 0.86 - 0.88 

LRF: AUC 0.50 - 0.65 

OS: AUC 0.65 - 0.70 

Handcrafted Radiomics and 
CNN 

DM: AUC 0.92  

LRF: AUC n.r 

OS: AUC n.r  

 Handcrafted 
radiomics and 
CNN model 

outperforms CNN 
model for DM 

Fujima:2021 
[37] 

LF, PFS Training: n.r 
(n=102)  

Validation: 
n.r (n=52) 

 

N.A 

Deep learning based 
multivariable Cox 

proportional hazards 
regression  

 

Clinical  

LF: AUC 0.59 - 0. 74 

DL  

LF: AUC 0.61 - 0.85 

Deep learning 
models 

outperforms 
clinical models 

Kazmierski:20
23 [38] 

OS Training: 
59% (1802) 

Test: 81% 
(750) 

Validation: 
67% (872) 

Maximum relevance-
minimum redundancy 
method (MRMR) 

Multiple machine 
learning and Deep 

learning models using 
clinical (EMR, 
Volume) and/or 
imaging features 

DL + Clinical 

AUC 0.72 - 0.82 (Best 
model EMR +Volume) 

Radiomics + Clinical 

AUC 0.72 - 0.82 (Best 
model EMR +Volume) 

Similar 
performances for 
machine and deep 
learning models;  

Deep Clinical 
models 

outperform deep 
imaging models  

Le WT:2022 
[51] 

 

DM, LR, 
OS 

Same as 
Vallieres:201

7 

 

 

N.A 

Multiple Deep learning 
Models compared with 

proposed Pseudo-
volumetric 

convolutional neural 
network with deep 

preprocessor module 
and self-attention 

(PreSANet) 

DM: AUC 0.67 [CI 0. 61–
0.73] 

LR: AUC 0.68 [CI 0. 65–
0.72] 

OS: AUC 0.68 [CI 0.65–
0.71] 

Proposed Deep 
learning model 
outperformed 
other reported 

models for LR and 
OS 

Lombardo:202
1 [49] 

DM Training: 
13% (294) 

Test: 12% 
(744) 

 

N.A 

 

Comparing 2D and 3D 
CNN 

 

2D CNN + Clinical AUC 
0.66-0.89  

3D CNN + Clinical AUC 
0.66-0.87 

2D CNN + 
clinical 

outperformed 3D 
deep learning 

models 
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Starke:2020 
[50] 

 

LRC 

 

Same as 
Leger:2017 

 

N.A 

 

Comparing 2D and 3D 
CNN 

Clinical C-Index 0.39 

2D CNN + Volume C-Index 
0.40 

3D CNN C-Index 0.31 

2D CNN + 
volume 

outperformed 
clinical and other 

deep learning 
models 

Abbreviations: CNN - convolutional neural network; DL - deep learning; DM - Distant Metastasis; LF - Local Failure; LR - Local Recurrence; LRC - 577 
Loco-regional tumor control; LRR - Locoregional Recurrence; MFS- Metastatic Free survival; NF - Nodal Failure; OS - Overall Survival; PFS - 578 
Progression-Free Survival; RFS - Recurrence-free Survival; RT - Radiotherapy; T1 WI-T1 weighted image; T2 W1-T2 weighted image;  579 
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