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Abstract
A key challenge in human genetics is the discovery of modifiable causal risk factors for complex
traits and diseases. Mendelian randomisation (MR) using molecular traits as exposures is a
particularly promising approach for identifying such risk factors. Despite early successes with
the application of MR to biomarkers such as low-density lipoprotein cholesterol and C-reactive
protein, recent studies have revealed a more nuanced picture, with widespread horizontal
pleiotropy. Using data from the UK Biobank, we illustrate the issue of horizontal pleiotropy with
two case studies, one involving glycolysis and the other involving vitamin D synthesis. We
demonstrate that, although the measured metabolites (pyruvate or histidine, respectively) do not
have a direct causal effect on the outcomes of interest (red blood cell count or vitamin D level),
we can still use variant effects on these downstream metabolites to infer how they perturb
protein function in different gene regions. This allows us to use variant effects on metabolite
levels as proxy exposures in a cis-MR framework, thus rediscovering the causal roles of
histidine ammonia lyase (HAL) in vitamin D synthesis and glycolysis pathway in red blood cell
survival. We also highlight the assumptions that need to be satisfied for cis-MR with proxy
exposures to yield valid inferences and discuss the practical challenges of meeting these
assumptions.
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Introduction
A key challenge in human genetics is identifying modifiable causal risk factors for complex traits
and distinguishing those from other biomarkers with no causal effect. For example, many
cardiovascular disease loci are also associated with low-density lipoprotein (LDL) cholesterol
level, a known causal risk factor for cardiovascular disease (Ference et al., 2012; Richardson et
al., 2022). Furthermore, Mendelian randomisation (MR) studies have demonstrated that
individuals with a genetic predisposition to lower LDL cholesterol level also have a reduced risk
of cardiovascular disease (Voight et al., 2012). This link has been confirmed by clinical trials
demonstrating the success of lipid-lowering therapies in reducing cardiovascular disease risk
(Mihaylova et al., 2024). In contrast, results from MR studies are not consistent with a causal
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link between C-reactive protein (CRP) and cardiovascular disease, despite a strong
observational correlation (C Reactive Protein Coronary Heart Disease Genetics Collaboration
(CCGC) et al., 2011).
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Figure 1. Some molecular mechanisms of horizontal pleiotropy. (A) In the presence of
cell-type-specific QTLs, the same gene profiled in a different cell type can be a source of
horizontal pleiotropy. Note that cell-type-specific QTLs G1 and G2 could be in linkage
disequilibrium (LD) with each other (dashed line), further complicating the inference. (B)
Horizontal pleiotropy due to local co-regulation of gene expression. Example of a cis-QTL
variant G that is associated with the expression of gene A (primary exposure) and also with a
neighbouring gene B (alternative phenotype). In the causal diagram, potential horizontal
pleiotropy is limited to a small number of locally co-regulated genes. (C) Horizontal pleiotropy
due to co-regulation in trans-QTL networks. Example of a trans-QTL variant G that is associated
with the expression of genes C−F on different chromosomes. Note that the trans-QTL effect of
variant G on genes C−F is typically mediated by at least one gene in the cis region (e.g., gene
A). High degree of horizontal pleiotropy can make it challenging to identify the true causal
mediators. The variant effect on cis gene A function is treated as an unmeasured intermediate
phenotype (vertical pleiotropy) (C) The same scenario as in D, but now the exposure of interest
is gene A function which is proxied by the variant effect on downstream genes C−F. Horizontal
pleiotropy can be avoided in the absence of cell-type specific regulatory effects (panel A) or in
the absence of local co-regulation in the cis region (panel B). G - genetic instruments; U -
unmeasured confounders.

The hope of replicating the success in identifying modifiable biomarkers like LDL cholesterol for
other traits has prompted the high-throughput measurements of thousands of accessible
molecular traits from tens to hundreds of thousands of individuals in existing large biobanks.
These molecular traits include plasma metabolites (Karjalainen et al., 2024; Richardson et al.,
2022; Smith et al., 2022), plasma proteomics (Sun et al., 2018, 2023), and transcriptomic data
from whole blood (Võsa et al., 2021). Relying on easily accessible whole blood and plasma
samples has enabled these studies to attain sufficient sample sizes to capture associations with
low-frequency variants, as well as genetic associations with small effects. As a result, these
studies now routinely identify thousands of associations. Furthermore, while early proteomic and
transcriptomic studies focused on genetic variants located near the protein-coding genes to map
cis quantitative trait loci (cis-QTLs, Figure 1A), increased sample sizes mean that most detected
associations are now located in trans and affect the target gene or protein levels via the activity
of trans-acting factors (typically other proteins, Figure 1C) (Sun et al., 2023). These genetic
resources provide a large number of genetic instruments for MR studies, contributing to the
rapid increase in MR studies in the literature (Richmond & Davey Smith, 2022; Sanderson et al.,
2022; Stender et al., 2024).

However, inferences from MR studies are only valid if certain assumptions are met (Burgess et
al., 2019; Skrivankova et al., 2021). A key assumption of MR is that the genetic variants are
associated with the outcome only via the exposure of interest (Reed et al., 2024). This
assumption can be violated by horizontal pleiotropy, where the causal effect of the genetic
variants on the outcome is mediated by another trait not included in the analysis (Sanderson et
al., 2024). Importantly, genetic instruments identified for high-throughput protein, transcript or
metabolite measurements are often subject to horizontal pleiotropy, leading to incorrect or
misleading MR inferences (Karjalainen et al., 2024; Richardson et al., 2022; Smith et al., 2022)

3

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 24, 2024. ; https://doi.org/10.1101/2024.10.21.24315891doi: medRxiv preprint 

https://paperpile.com/c/oJb4jX/U9yT+8DYt+NIFe
https://paperpile.com/c/oJb4jX/U9yT+8DYt+NIFe
https://paperpile.com/c/oJb4jX/SuZZ+Ji2u
https://paperpile.com/c/oJb4jX/47VN
https://paperpile.com/c/oJb4jX/SuZZ
https://paperpile.com/c/oJb4jX/IIFA+IeN4+1cn1
https://paperpile.com/c/oJb4jX/IIFA+IeN4+1cn1
https://paperpile.com/c/oJb4jX/CpfVO+2ieGv
https://paperpile.com/c/oJb4jX/CpfVO+2ieGv
https://paperpile.com/c/oJb4jX/4lNO
https://paperpile.com/c/oJb4jX/5rss
https://paperpile.com/c/oJb4jX/5rss
https://paperpile.com/c/oJb4jX/U9yT+NIFe+8DYt
https://doi.org/10.1101/2024.10.21.24315891
http://creativecommons.org/licenses/by/4.0/


(Figure 1). As an example, Karjalainen et al. reported that MR between acetone and 233 other
metabolites identified 20 significant associations, mostly with lipid traits, but almost all these
associations were attenuated when pleiotropic variants at well-known lipid loci were excluded
(Karjalainen et al., 2024). Restricting the analysis to four less pleiotropic instruments identified a
putative causal association between plasma acetone level and hypertension (Karjalainen et al.,
2024). Similarly, both proteomic and transcriptomic studies have identified pleiotropic regulatory
variants associated with the abundance of tens to hundreds of genes or proteins (Freimann et
al., 2024; Sun et al., 2023; Võsa et al., 2021), reflecting a high degree of co-regulation in
trans-QTL networks (Figure 1C).

To avoid these pleiotropic effects, many studies focus on cis-acting genetic variation to identify
the putative causal effect of drug target (typically a gene or protein) perturbation on the outcome
of interest (Figure 1A). This approach is referred to as cis-MR (Figure 1B). In cis-MR, gene
expression or protein abundance in an accessible tissue is typically used as an exposure.
However, cis-MR can still be subject to two types of horizontal pleiotropy. First, if the gene or
protein affects the outcome in one cell type or developmental stage but is measured in another
one then this can lead to overdispersion heterogeneity or allelic spread that can bias the MR
estimates (Patel et al., 2023; Tambets, Kolde, et al., 2024) (Figure 1A). Fortunately, a number of
pleiotropy-robust MR methods have been developed to address this (Tambets, Kolde, et al.,
2024; van der Graaf et al., 2024; Zhu et al., 2021). Secondly, cis-MR can also be subject to
co-regulation between neighbouring genes (Figure 1B) (Tambets, Kolde, et al., 2024). Despite
these limitations, cis-MR has been successfully used to identify known causal relationships in
multiple benchmarks (Karim et al., 2023; Porcu et al., 2019; van der Graaf et al., 2024; Zheng et
al., 2020). However, current transcriptomic datasets are limited in sample size for most cell
types and tissues (Kerimov et al., 2023; Tambets, Kolde, et al., 2024; The GTEx Consortium,
2020) and plasma proteomic studies with large sample sizes only cover a subset of the
proteome (e.g. 2,923 proteins in the UK Biobank (Sun et al., 2023)).

Importantly, the variant effect on gene or protein function can also be captured by its effect on
proximal downstream phenotypes in metabolic pathways or regulatory networks (Figure 1E). For
example, for well-known lipid loci, recent cis-MR studies have used variant effect on plasma
LDL cholesterol level as a proxy measure for variant effect on protein function (Richardson et
al., 2022; Yang et al., 2024). Cis-MR where the exposure is a metabolite or another biomarker is
sometimes also referred to as drug target MR (Richardson et al., 2022). Similarly, we have used
downstream trans-eQTL effects to characterise the impact of a lupus-associated USP18
missense variant on its protein function (Freimann et al., 2024). However, a systematic analysis
of when and how these proxy measures for gene or protein function can be used for causal
inference is still lacking.

In this study, we expand on the use of high-throughput plasma metabolite measurements as
proxy measures for protein function in the cis-MR framework. Using genotype and nuclear
magnetic resonance (NMR) spectroscopy data from 246,683 UK Biobank participants, we
identify 107 confidently fine mapped missense variants for 56 metabolites. In two case studies
involving glycolysis and vitamin D synthesis pathways, we demonstrate how the missense
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variants’ effects on pyruvate and histidine levels can be used as proxy readouts for their effect
on cis protein function, allowing us to infer causal relationships between disruption of protein
function and downstream traits. Finally, we propose a theoretical framework that outlines the key
assumptions that need to be satisfied to generalise this approach to other proteins and traits.

Results
We performed GWAS and fine mapping for 56 metabolites in the UK Biobank using the nuclear
magnetic resonance (NMR) platform from Nightingale Health (see Methods). The analysis
included 246,683 individuals of European ancestries (see Methods). In total, we identified 107
confidently fine mapped (posterior inclusion probability (PIP) > 0.8) missense variants that were
associated with one or more metabolites. All summary statistics and fine mapping results are
publicly available (see Data availability). Below, we will present two case studies: one focusing
on the effect of glycolysis pathway activity on red blood cell count and another one exploring the
role of histidine ammonia lyase (HAL) in modulating vitamin D levels.

Glycolysis pathway, plasma pyruvate level and red blood cell count
Loss-of-function mutations in the pyruvate kinase L/R (PKLR) gene are the most common cause
of haemolytic anaemia, a disorder in which red blood cells are destroyed faster than they are
made (Zanella et al., 2007). In our analysis, we identified eight missense variants (including two
variants in the PKLR gene) that were robustly associated with plasma pyruvate level (Figure
2A). Reassuringly, the two PKLR variants (1_155291845_C_T, rs113403872, and
1_155291918_G_A, rs116100695) were also associated with red blood cell count (RBC), thus
confirming the known disease association (Figure 2A) (Zanella et al., 2007). Despite the strong
association at the PKLR locus, there is no obvious causal mechanism directly linking levels of
circulating pyruvate to RBC counts. However, when performing MR between plasma pyruvate
level and RBC count using these eight missense variants as instruments, we detected a
non-zero “causal” effect (Figure 2B). Notably, there was considerable heterogeneity among the
causal effect estimates (Wald ratio) provided by individual genetic instruments, prompting further
investigation.

We noticed that in addition to the two PKLR missense variants, two more missense variants
affected another core enzyme of the glycolysis pathway (12_48118502_C_A, rs4760682 in
PFKM and 21_44326728_C_T, rs118106526 in PFKL, both encoding the phosphofructokinase
enzyme) (Figure 2C, Figure S1). Given that mature red blood cells lack both nuclei and
mitochondria, their energy production, which is essential for their survival, relies entirely on the
glycolysis pathway (van Wijk & van Solinge, 2005). As the end product of the glycolysis pathway
is pyruvate (Figure 2C), we hypothesised that for these four missense variants, plasma pyruvate
level might serve as a proxy readout for the glycolysis pathway activity in RBCs (see causal
diagram on Figure 2D).
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Figure 2. Relationship between plasma pyruvate level and red blood cell count. (A) Eight
fine mapped missense variants associated with plasma pyruvate level and their effect on red
blood cell (RBC) count. (B) Mendelian randomisation between plasma pyruvate level (exposure)
and RBC count (outcome) using all eight fine mapped missense variants as instruments. (C)
Role of phosphofructokinase (encoded by PFKM and PFKL genes) and pyruvate kinase
(encoded by PKLR) in the glycolysis pathway. Complete pathway is shown in Figure S1. (D)
Mendelian randomisation between glycolysis pathway activity (exposure) and RBC count
(outcome), restricted to missense variants in the three genes (PKLR, PFKM and PFKL) that
encode enzymes involved in the glycolysis pathway. The causal diagram illustrates how plasma
pyruvate level acts as a proxy for glycolysis pathway activity in red blood cells. G - genetic
instruments; U - unmeasured confounders.
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Indeed, for the four missense variants in the PFKM, PFKL and PKLR genes, we observed
directionally concordant effects between reduced plasma pyruvate level and decreased RBC
count (Figure 2A). This was further supported by Mendelian randomisation, which now showed
considerably better concordance between the causal effect size (Wald ratio) estimates provided
by the individual variants (Figure 2D). Importantly, we were now seeking to infer the effect of
glycolysis pathway activity on RBC count, rather than the effect of circulating pyruvate levels.
Hence, we are using the variants’ effects on plasma pyruvate level only as a proxy to capture
their effects on glycolysis pathway activity in RBCs.

As a final validation, we repeated the MR analysis using the four missense variants in genes
that do not encode enzymes directly involved in the glycolysis pathway (GCKR, NDOR1,
AMPD3, PDK3) and detected a null effect (Figure S2), indicating that the initial genome-wide
MR estimate (Figure 2B) was primarily driven by the missense variants in genes encoding
enzymes of the glycolysis pathway. Notably, the glucokinase regulator (GCKR) missense variant
(rs1260326, GCKR:p.Leu446Pro) is a highly pleiotropic locus associated with 51 (out of 56)
selected metabolites in our recent meta-analysis of 599,249 individuals (Tambets, Kronberg, et
al., 2024). This example highlights how the levels of plasma metabolites can be regulated
through multiple distinct mechanisms. However, even if the metabolite itself (e.g. pyruvate) is
unlikely to have a direct causal effect on the outcome of interest (RBC count), it can still act in a
locus-specific manner as a proxy measure for other biological traits (e.g. glycolysis) that do have
a causal effect.

Histidine, UV exposure and vitamin D
We recently noticed an interesting common variant (MAF = 42%) GWAS hit near the HAL gene
(12_95984993_C_T, rs3819817) that was associated both with vitamin D levels (Manousaki et
al., 2020) and skin cancer (Seviiri et al., 2022). In the Open Targets Genetics portal (Mountjoy et
al., 2021), this variant was identified as an eQTL for the HAL gene and was also associated with
trans-urocanate level in urine (Schlosser et al., 2020) and childhood sunburn occasions (Neale
Lab), but was not pleiotropically associated with any other disease (Figure 3A-B). Furthermore,
the lead variant had a positive effect on HAL expression and trans-urocanate level and a
negative effect on vitamin D level, sunburn occurrences and skin cancer risk (Figure 3C).

The biochemical role of histidine ammonia lyase (HAL) in regulating vitamin D levels is well
understood (Figure 4). HAL is an enzyme that converts histidine to trans-urocanate (Hall, 1952).
As a natural sunscreen, trans-urocanate absorbs UV light and isomerises to its cis-form. This
process reduces the effective UV radiation dose in humans, thereby inhibiting vitamin D
synthesis. However, the lower dose may also provide protection against sunburn and skin
cancer (Barresi et al., 2011). In the liver, trans-urocanate is further converted by the urocanate
hydratase (encoded by UROC1) into 4-imidiazolone-5-propionate (Figure 4) (Kessler et al.,
2004). Interestingly, this conversion does not occur in the skin, as UROC1 is highly expressed in
the liver (median TPM = 75.6 in GTEx) but not in the skin (median TPM = 0.01) (The GTEx
Consortium, 2020) leading to trans-urocanate accumulation in the skin and thus to reduced
vitamin D levels but also protection from skin cancer (Figure 3C).
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Figure 3. Effect of skin-specific regulatory variation on vitamin D level and other related
traits. (A) Regional association plots for HAL expression in skin, plasma histidine,
trans-urocanate, and vitamin D levels, illustrating statistically significant associations within the
same genomic region. The lead HAL eQTL variant (rs3819817) has been highlighted in red. (B)
Regional association plots for childhood sunburns and skin cancer in the same genomic region.
(C) Effect size of the rs3819817 HAL eQTL lead variant on the six traits.
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Figure 4. The role of histidine metabolism in regulating vitamin D levels. Role of HAL in
regulating vitamin D level in a skin-specific manner.

Unexpectedly, although we anticipated that the effect of the rs3819817 HAL eQTL variant on
vitamin D level and skin cancer risk would be mediated by the conversion of histidine to
trans-urocanate (Figure 4), the variant had only a weak association with plasma histidine level
(beta = −0.014, p = 1.8×10−6, Figure 3). To understand this discrepancy, we examined the
rs3819817 HAL eQTL effect sizes and p-values in all 127 datasets in eQTL Catalogue release 6
(Kerimov et al., 2023). The eQTL was highly tissue-specific and detected only in three skin
datasets from the TwinsUK (Buil et al., 2015) and GTEx (The GTEx Consortium, 2020) studies
(Figure S3). This suggests that the rs3819817 HAL eQTL variant primarily affects histidine level
in the skin rather than in plasma, via tissue-specific regulation of HAL gene expression.

Since histidine was one of the 56 metabolites profiled in our analysis, we next focussed on fine
mapped missense variants associated with plasma histidine. Reassuringly, two of the strongest
associations corresponded to two low-frequency (MAF < 0.5%) missense variants in the HAL
gene (12_95977953_C_T, rs61937878, and 12_95986106_C_T, rs117991621), which were also
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strongly associated with vitamin D levels (Figure 5A) (Kanai et al., 2021). Interestingly, a third
missense variant (12_95994812_G_A, rs143854097) in the HAL gene was only associated with
histidine level and not with vitamin D level, potentially due to its low allele frequency (MAF ~
0.1%) and limited statistical power. We also detected missense variants in further seven genes
(including the pleiotropic GCKR:p.Leu446Pro missense variant also associated with pyruvate)
that were robustly associated with histidine but not vitamin D levels, suggesting that plasma
histidine is unlikely to have a direct causal effect on vitamin D levels. Unfortunately, we were not
able to assess the effects of the three fine mapped HAL missense variants on skin cancer,
trans-urocanate and HAL expression due to the low allele frequency of these variants (MAF <
0.5%).

Finally, we hypothesised that for variants affecting the HAL gene, we could use their effect on
reducing plasma histidine level as a proxy measure for their effect on HAL protein function.
Using this approach with MR, we detected a significant causal effect of −0.152 between
increased HAL protein function (proxied by reduction in plasma histidine) and vitamin D level
(Figure 5B). Notably, this estimate was dominated by the two large-effect missense variants in
the HAL gene. Using the skin-specific eQTL variant (rs3819817) with plasma histidine level as
exposure would have yielded a highly misleading estimate of −0.0414/0.014 = −2.96 (Wald
ratio) (Figure 5B). This is because this variant likely has a much larger effect on HAL function in
the skin, the causal tissue for vitamin D level, than in the tissues that determine histidine level in
plasma. Interestingly, using the expression level of HAL in the skin as the exposure (instead of
plasma histidine level) with the same instrument yielded a causal effect estimate of
−0.0414/0.49 = −0.084 (Wald ratio), which aligns more closely with the estimate from the two
missense variants (−0.152). The necessity of considering tissue- and cell type-specific effects
poses a significant limitation to using variant effects on circulating metabolites (or other
molecular traits) as proxy measures for protein function, as we will discuss in detail below.

As a negative control, we performed MR between plasma histidine and vitamin D levels utilising
all fine mapped missense variants associated with plasma histidine levels outside of the HAL
gene as instruments. This allowed us to directly estimate the causal effect of increasing plasma
histidine levels on vitamin D levels (Figure 5B). As expected, we observed a null effect, further
reinforcing that vitamin D level is primarily influenced by the HAL enzymatic activity in the skin.
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Figure 5. Using plasma histidine level as a proxy for HAL protein activity. (A) Fine mapped
(PIP > 0.8) missense variants associated with plasma histidine level in the UK Biobank. (B)
Mendelian randomisation (MR) analysis examining the relationship between proxied HAL
protein activity and vitamin D level. The instruments are restricted to the two missense variants
in the HAL gene and a skin-specific eQTL for HAL (Figure 4A). Here, we use the effect of these
variants on reducing plasma histidine level as a proxy measure for their effect on HAL function.
(C) MR between plasma histidine and vitamin D levels using all fine mapped missense variants
associated with plasma histidine levels outside the HAL region as instruments. G - genetic
instruments; U - unmeasured confounders.
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Additional assumptions of MR with proxy exposures
Both the glycolysis and vitamin D examples illustrate how restricting genetic instruments to
specific gene regions and using variant effects on plasma metabolites as proxy measures for
corresponding gene function can help reduce horizontal pleiotropy and infer plausible causal
relationships between perturbed gene function and outcomes of interest. However, generalising
this approach to other gene regions and potential proxy exposures requires careful
consideration of two key assumptions:

1. The instruments (genetic variants) must be unambiguously linked to the causal
cis-gene. The majority of trait-associated genetic variation is non-coding, likely
modulating the expression or splicing of nearby cis genes. We and others have shown
that expression-altering variants often regulate the expression of multiple neighbouring
genes (Tambets, Kolde, et al., 2024) (Figure 1B). Although splicing QTLs tend to have
more specific effects on a single target gene, distinguishing them from expression QTLs
can be challenging in practice (Kerimov et al., 2023). This is the main reason why we
focused on fine mapped missense variants in this study, as they can be linked to the
causal gene with high confidence. However, missense variants are rare and may not be
available for most traits and exposures. Thus potential violation of this assumption
should be explicitly considered when performing analyses such as drug target MR that
include all genetic variants from a specific gene region as instruments (Gill et al., 2024;
Richardson et al., 2022; Yang et al., 2024).

2. For accurate inference, the proxy metabolite, transcript, or protein being
measured should be downstream and proximal to the cis-gene or protein of
interest whose function we are aiming to approximate. In our case study, for variants
affecting the HAL gene, it is preferable to use histidine or trans-urocanate concentrations
rather than metabolites further downstream in the pathway (Figure 3B). In practice,
however, the exact mechanisms by which the cis gene affects the measured traits are
often unclear, which could inadvertently result in capturing traits that are downstream of
the outcome of interest, potentially leading to reverse causation. As GWAS sample sizes
increase, the proportion of discoveries that correspond to these indirect effects is also
likely to increase. For example, in a very large meta-analysis of NMR metabolites (n =
599,249), the HAL missense variant rs61937878 was also weakly associated the plasma
glycine levels (beta = 0.071; p = 2.5x10-10), likely reflecting an indirect pleiotropic effect
(Figure S4).

In addition to these two assumptions specific to proxy exposures, we also need to consider the
factors that can invalidate any cis-MR analysis with molecular traits as exposures. First,
molecular traits such as gene expression, protein abundance or metabolite concentrations can
often be measured in many different cell types, tissues or developmental stages (contexts for
short). In an ideal scenario, the context in which the genetic variant’s effect on the exposure has
a causal effect on the outcome (‘causal context’) is the same where the exposure is measured
(‘proxy context’), but this is often not the case. In the HAL example, the likely causal context
where HAL influences vitamin D levels is skin tissue, but the proxy context in which histidine
was measured is plasma. If a genetic variant has the same effect on the exposure in the proxy
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context as it would in the causal context (e.g. it is a missense variant), then context
misspecification is less important. However, non-coding regulatory variants can often have
context-specific effects, and this can significantly bias MR estimates. For example, the
skin-specific eQTL for HAL had almost no effect on plasma histidine level (Figure 3A). Secondly,
even if the included instruments themselves do not have context-specific effects, they might still
be in LD with other context-specific genetic variants that do. This can bias the marginal effect
sizes of the instruments on the exposure, thus also biasing the MR estimates when using an
exposure measured in the proxy context. A promising approach to account for these biases are
methods such as MR-link-2 that explicitly model the LD between instruments and their
potentially pleiotropic effects (van der Graaf et al., 2024).

Discussion
Using examples from the glycolysis and vitamin D synthesis pathways, we have constructed two
case studies to demonstrate how horizontal pleiotropy can mislead MR to infer implausible
causal relationships between an exposure and an outcome. Our case studies complement
previous reports highlighting widespread horizontal pleiotropy affecting plasma metabolite levels
and other high-throughput molecular measurements (Freimann et al., 2024; Karjalainen et al.,
2024; Richardson et al., 2022; Smith et al., 2022; Yang et al., 2024). We illustrate how MR
analysis can be reformulated by focusing on genetic variation located in cis of specific target
genes and using the high-throughput molecular measurements as proxy readouts of protein
function (Figure 1E). The key contribution of our work is to explicitly outline the additional
assumptions required for this approach to produce valid inferences. We expand on previous
work focused on well-known lipid loci (Richardson et al., 2022; Yang et al., 2024) by providing a
general framework for conducting MR analysis using arbitrary proxy measures of protein
function.

A related ‘trans-weighted cis-MR’ idea was presented in the MR-Fish study (Warwick et al.,
2024). However, a key difference between our analysis and theirs is that they did not explicitly
consider the assumptions that the instruments and proxy exposures should satisfy to produce
reliable inferences. For instance, by using variants in the FTO locus as instruments and plasma
CRP level as the proxy exposure, the authors inferred a putative causal link between altered
FTO function (proxied by variant effect on CRP) and type 2 diabetes risk. However, they
overlooked that the lead non-coding variant at the FTO locus regulates the expression of IRX3
and IRX5 transcription factors instead of the FTO gene itself (Claussnitzer et al., 2015), thereby
violating our first assumption. Thus, it is unclear what is the added value of the MR Fish
approach beyond simply reporting the closest genes at the outcome-associated locus, because
there is no guarantee that the included instruments have any effect on the claimed cis gene.
They also did not consider our “proximal effect” assumption (assumption 2), which could easily
lead to cases of reverse causation, where the variant effect on the exposure is mediated via the
outcome.

Most cis-MR analyses use gene expression levels or protein abundances as exposures (Karim
et al., 2023; Porcu et al., 2019; Tambets, Kolde, et al., 2024; van der Graaf et al., 2020; Zheng
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et al., 2020). However, when the aim is to infer the causal relationship between altered protein
function and an outcome of interest, gene expression or protein abundance are themselves
imperfect proxies of protein function. This could be particularly problematic for missense and
splice regulatory variants, as their effect on gene expression and protein abundance might be
poorly correlated with protein function due to the existence of distinct functional isoforms
(Gotthardt et al., 2023; Park et al., 2018; Wright et al., 2022) or because of assay-specific
quantification artefacts (Eldjarn et al., 2023; Pietzner et al., 2021). Using downstream regulatory
or metabolic effects as proxy measures for protein function mitigates these limitations. For
example, using HERC5 gene expression in lymphoblastoid cell lines as a readout of the
missense variant effect on USP18 protein function allowed us to establish a potentially causal
link between reduced USP18 function and increased lupus risk (Freimann et al., 2024). This
would not have been feasible using the standard cis-MR approach, as the missense variant had
no effect on USP18 gene expression (there was no cis-eQTL), and USP18 protein abundance
has not been measured in the disease-relevant context.

Using proxy exposures in cis-MR also has several limitations, as outlined by the assumptions
above. In particular, the variant mechanisms of action for most detected genetic signals are
often unknown, making it challenging to unambiguously link the variants to the causal genes.
Furthermore, for most metabolite GWAS signals and trans-QTL loci, we lack sufficient
mechanistic understanding to determine whether the detected effect is proximal or indirectly
mediated by other factors. In fact, one of the main reasons we knew to focus on pyruvate and
histidine in our two case studies were the names of the two enzymes prompting the analysis:
pyruvate kinase and histidine ammonia lyase. These limitations can restrict the practical utility of
using proxy exposures in MR, and we caution against performing automated all-against-all
cis-MR analyses with proxy exposures without careful consideration of the underlying
assumptions.

Methods

Study cohort
The UK Biobank is a longitudinal biomedical study of approximately half a million participants
between 38-71 years old from the United Kingdom (Bycroft et al., 2018). Participant recruitment
was conducted on a volunteer basis and took place between 2006 and 2010. Initial data were
collected in 22 different assessment centers throughout Scotland, England, and Wales. Data
collection includes elaborate genotype, environmental and lifestyle data. Blood samples were
drawn at baseline for all participants, with an average of four hours since the last meal, i.e.
generally non-fasting. NMR metabolomic biomarkers (Nightingale Health, quantification library
2020) were measured from EDTA plasma samples (aliquot 3) during 2019–2024 from the entire
cohort. Details on the NMR metabolomic measurements in UK Biobank have been described
previously for the first tranche of ~120,000 samples (Julkunen et al., 2023). The UK Biobank
study was approved by the North West Multi-Centre Research Ethics Committee. This research
was conducted using the UK Biobank Resource under application numbers 91233 and 30418.
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Metabolite measurements
This dataset encompassed both the tranche one dataset, comprising approximately 130,000
samples, and the tranche two dataset, which augmented the resources with an additional
170,000 samples. Details of Nightingale's NMR metabolomics platform and the biomarker
measures have been provided for UK Biobank’s metabolomics Supplier Criteria Tables in July
2016 (project reference 15004). For the current research, 56 biomarkers from the available
panel were selected for GWAS analysis and fine mapping (Table S1). We excluded individuals
with more than 5 missing metabolite measurements from the cohort and applied a
metabolite-wise inverse normal transformation to obtain the final dataset.

PCA-based genetic ancestry assignment
We performed principal component analysis (PCA) of the genotype data using FlashPCA2
(Abraham et al., 2017). Subsequently, all individuals within the UK Biobank dataset who also
had NMR data available were clustered into genetic ancestry groups based on their first three
principal components using GaussianMixture() function from the scikit-learn Python module. The
number of mixture components was set to four based on empirical analysis. The final dataset,
representing the largest PCA cluster corresponding to predominantly European genetic ancestry
individuals, comprised 246,683 individuals.

Association testing and fine mapping
The association testing between genetic variants and 56 metabolites was conducted using the
regenie software (Mbatchou et al., 2021). During the analysis, sex and the ten top genotype
PCs calculated with FlashPCA2 were utilised as study-specific covariates. In regenie step 1, the
linkage disequilibrium (LD) pruned variants were used as an input. LD pruning was performed
with PLINK2 with the following parameters: MAF > 0.001, window size = 50000 variants,
window shift at the end of each step = 200 variants and pairwise r2 threshold = 0.05. In regenie
step 2, the minimum imputation info score was set to 0.6, and the minimum minor allele count
was calculated based on the number of samples so that MAF would be equal to 0.001.

After association testing, the statistical fine mapping on the summary statistics obtained from
regenie and in-sample LD matrix was conducted using the Sum of Single Effects Model (SuSiE)
(Wang et al., 2020). LD matrices were calculated with LDstore2 (Benner et al., 2017) software
for each fine mapped region. Fine mapped regions were defined for each genome-wide
significant locus (p < 5x10-8) by considering a 3 Mb wide window centred around the lead
variant. In cases where these regions overlapped but did not exceed a total span of 6 Mb, they
were merged into a single region. If the resulting region exceeded this 6 Mb limit, the originally
defined regions were recursively reduced until all regions adhered to this size constraint. (If
LDstore2 encountered a segmentation fault in the following step, alternative maximum region
limits of 4.5 Mb or 3 Mb were employed instead.) Regions containing fewer than 50 variants
were omitted from the analysis. Additionally, due to the extensive LD structure in the region, the
major histocompatibility complex (MHC) region (chr6:28,477,797-33,448,354) was excluded
from fine mapping. In the SuSiE method (Wang et al., 2020), the maximum number of causal
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variants within a locus was set to 10. Consequently, up to 10 independent 95% credible sets
(CS) and posterior inclusion probabilities (PIP) for each variant were computed, utilising the
default uniform prior probability of causality.

Association testing and fine mapping was performed on human genome assembly GRCh37.
Subsequently, the coordinates of the imputed variants within the fine mapping results were lifted
to the GrCh38 build. This transition was accomplished using the 'liftover()' function available in
the R package MungeSumstats (Murphy et al., 2021). The Nextflow workflow for GWAS
analysis and fine mapping is available from GitHub (https://github.com/AlasooLab/reGSusie).

External summary statistics
The UK Biobank summary statistics and fine mapping results for red blood cell count and
vitamin D were downloaded from Google Cloud (link) (Kanai et al., 2021). The GWAS summary
statistics for skin cancer from (Seviiri et al., 2022) study were downloaded from the GWAS
Catalog (accession GCST90137411). The GWAS summary statistics for “childhood sunburn
occasions” (UK Biobank data field 1737) were downloaded from the Neale lab website
(UK_Biobank_GWAS: Overview of the Data QC, Code, and GWAS Summary Output from the
2017 UK Biobank Data Release, n.d.).

Software used
Mendelian randomisation was performed with the fitSlope() function from the MRLocus R
package version 0.0.26 (Zhu et al., 2021). All forest plots were made with the ggforestplot R
package (https://github.com/NightingaleHealth/ggforestplot).

Data and code availability
The GWAS summary statistics for the 56 metabolites are available from Zenodo
(https://doi.org/10.5281/zenodo.13821209). The fine mapped credible sets and log Bayes
factors from SuSiE are available from Zenodo (https://doi.org/10.5281/zenodo.13821038). The
GWAS and fine mapping Nextflow workflow is available from GitHub
(https://github.com/AlasooLab/reGSusie).
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Supplementary figures

Figure S1. Diagram of the glycolysis pathway.
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Figure S2. Mendelian randomisation between plasma pyruvate (exposure) and red blood cell
count (RBC) (outcome) using missense variants outside of the glycolysis pathway (GCKR,
NDOR1, AMPD3, PDK3) as instruments.
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Figure S3. Volcano plot of the vitamin D lead variant effect on HAL expression across 127
eQTL Catalogue release 6 datasets.
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Figure S4. Pleiotropic association between HAL missense variant rs61937878 was plasma
glycine levels. The absolute variant effect on glycine (beta = 0.071; p = 2.5x10-10) is even
smaller than the variant effect on vitamin D (beta = -0.12841), likely reflecting an indirect
pleiotropic effect.
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