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Abstract

Pooled testing is an established strategy for efficient surveillance testing of infectious diseases with

low-prevalence. Pooled testing works by combining clinical samples from multiple individuals into one

test, where a negative result indicates the whole pool is disease free and a positive result indicates

that individual testing is needed. Here we present a straightforward and simple method for pooled

testing that uses the properties of Hadamard matrices to design optimal pooling strategies. We show

that this method can be used to efficiently identify positive specimens in large sample sizes by simple

pattern matching, without the requirement of complex algorithms.

Background

Many countries have used the ‘test, trace and isolate’ strategy to control the spread of highly in-

fectious diseases such as SARS-CoV-2. The global capacity for clinical testing is limited by factors

including cost, availability of reagents and testing capacity of clinical laboratories. The gold-standard

for detecting SARS-CoV-2 is RT-PCR [1], this technique is expensive, requires specialised equipment

and reagents, and is relatively slow, taking a few hours per test on average [2, 3].

During the height of the COVID-19 pandemic lateral flow testing (LFT) provided a solution to

issues regarding laboratory testing capacity but were not without limitations. The ‘test, trace and

isolate strategy’ relies on accurate, reproducible testing and data monitoring, however, LFT self-

testing is hindered by test variability, false negatives, and data loss due to errors in self-reporting [4].

In combination, SARS-CoV-2 testing resulted in tens of thousands of tons of plastic waste [5], and

unsustainable consumption of reagents [6] and gold nanoparticles [7].

Strategies to address this issue have resulted in the development of biodegradable and recyclable
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biosensors [8, 9], methods to recover gold nanoparticles [10] and microfluidic and reagent free testing

devices [11–14]. Despite these developments, individual testing remains inefficient when the fraction of

positives in a population is small, i.e. when almost all tests are expected to be negative. However, this

is just the situation that needs surveillance-type testing, so that a new pandemic can be anticipated.

When the infection rate is lower and urgency is not so pressing, one way of increasing capacity is to

group or pool samples. This batch analysis was first suggested by Dorfman [15] more than 70 years

ago, but has received renewed interest due to the critical testing bottlenecks that were highlighted

during the COVID-19 pandemic [16–18].

Sample Pooling

Dorfman’s method consists of two stages, the first is to combine samples from multiple individuals for

analysis. If the test result is negative then all samples are negative, if the test is positive for the pool

then each sample is tested again individually. The efficiency of this method depends on the positivity

rate and can be improved by applying various strategies generally defined as adaptive, non-adaptive

and hybrid [19]. Non-adaptive pooling is performed by generating a number of pools according to a

predefined combinatorial design, all of the pools are testing in parallel before identifying the positive

sample by deconvolution with an algorithm based on the combinatorial design [20–23]. Adaptive

strategies are performed in series, data concerning transmission and the results of each test informs

which samples will be included in the next test [24–26] . Hybrid methods involve multiple rounds of

combinatorial pooling and all samples are tested in parallel during each round [27,28].

We propose a new method, Hadamard pooling, which is suitable for single round testing when

the rate of positivity is low, or which can be used in a hybrid approach when the positivity rate

is higher. Hadamard pooling is based upon the orthogonality properties of Hadamard S matrices

that can identify an individual positive sample in a pool. This method is also compatible with

multiplex testing, in which multiple targets can be identified in a single assay, for example by RT-

PCR [29, 30], CRISPR-Cas9 assays [31] or colourimetric RT-LAMP analysis [32]. Hadamard pooling

has the potential to increase the accuracy and efficiency of surveillance testing programmes to track

the emergence and spread of infectious diseases in the event of a new pandemic.

Hadamard Pooling

Hadamard S matrices (Figure 1a) have found application in numerous instances of experimental

optimal design including signal processing [33–36], imaging [8, 37, 38], X-ray crystallography [39] and

spectroscopy [40–45]. In each of these types of experiments, a signal is modulated by the pattern of
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Figure 1: Hadamard pooling strategy scheme based on a 7 × 7 Hadamard matrix. Pools A - G are
generated by grouping together 4 of the 7 individual samples according to the sequence of 1’s and 0’s
in each row of the matrix where 1 indicates a sample should be added to the pool and 0 indicates that
it is omitted. In the case of pool A samples 1, 2, 3 and 5 would be grouped.

a row in the matrix and summed on the detector. After this a linear transform with the inverted

Hadamard S matrix returns the individual data. By summing up the signal its size is increased, but

random noise of detection is averaged towards a constant value and therefore the signal-to-noise can

be improved. The process of using the matrices and different ways of generating their patterns is

described in supporting information (S1 appendix) and in references [39, 42, 46], Hadamard matrices

in general are described in reference [46].

In the context of pooling methods, individual samples can be grouped into multiple pools according

to each row of an S matrix with equivalent order to the number of samples being tested. Figure 1

shows a 7× 7 S matrix to illustrate the pooling approach, in practice one of many larger Hadamard

matrices could be used, although Hadamard matrices can only be generated with specific sizes, they

are numerous.

In the example shown in Figure 1, n tests are needed for n samples and so there is no improvement

over efficiency in comparison to testing individuals. However, in practice only a fraction of the matrix

is needed to successfully identify a positive individual. For the purpose of demonstration a set of seven

samples in which one is positive are used. Three pools A, D and F are generated by grouping four of

the samples together according to a reduced 3 × 7 matrix constructed from the corresponding three

rows of the 7× 7 S matrix (Figure 2). Since the pattern of each column in the matrix is unique it is

possible to identify which particular individual is positive. This is done by matching the pattern of

results from a specific test, to the corresponding column of the reduced matrix. In the example shown

in Figure 2, pools A and F return a negative test result, while pool D is positive. The results from
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Figure 2: Reduced matrix with samples numbered 1 to 7 grouped into pools A, D and F. Red indicates
which sample and pool is positive. The analysis vector elements indicate the results of the pool testing
where 1 indicates a positive analysis result and 0 a negative one. Orange highlights the column of the
reduced matrix that matches the analysis vector and therefore indicates that sample 4 is positive.

each pool are recorded in a vector where 0 indicates a negative pool and 1 indicates a positive pool.

This analysis vector is then compared to each column in the reduced matrix, if the analysis vector

and column match then this indicates that the corresponding sample is positive. For the case shown

in Figure 2 the analysis vector, [0 1 0], matches the column in the reduced matrix corresponding to

sample 4.

With this method if, for example, eleven specimens need to be checked the nature of the 11× 11

Hadamard matrix is such that only four measurements are needed to confirm a result provided, that

no more than one specimen is positive. The pattern of the 11 × 11 matrix is shown, with others, in

the Supporting information (S1 appendix). Similarly, assuming that just one sample is positive, only

four rows of the n = 15 and six of the n = 31 Hadamard S matrices are needed, Table 1.

The condition of low prevalence and hence a low probability of a positive test should be the

general expectation when large swathes of a population are tested and the infection is not spreading

exponentially i.e. reproduction ratio R < 1. The case when more than one sample is positive is

examined next as this involves choosing rows more carefully.

Choosing Rows

If, for example, seven samples are tested using an S matrix size of, say 15× 15, then combinatorially

a large number of rows are available to determine which pools to generate, e.g.,
15!

7!(15− 7)!
= 6435

and this increases very rapidly with the size of the matrix. Combinations of rows with columns that

contain the same pattern of ones and zeros must be excluded. For the example in Figure 1, using pools

A, B and D is not suitable because columns 5 and 6 will have the same pattern in the corresponding

reduced matrix and therefore the analysis vector cannot distinguish whether sample 5 or 6 is positive.

A further condition is imposed when the number of positive samples is either one or two. Rows must

be selected such that when two of their columns are added together they are not equal to a third. It

is also assumed that a sample’s result is not quantitative, and that the measurement indicates only
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Figure 3: The optimal reduced matrix based on a 7×7 Hadamard S matrix with corresponding pools.

a binary result, i.e. either positive or negative, thus 1 or 0 and that two positive samples in the

same row are measured as 1 in total and not 2. The consequence of this latter restriction is that one

column of the S matrix must be removed (reducing the total number of samples) and in the case of

the 7 × 7 matrix one row is added to the reduced matrix, meaning that four pools are now needed

from 6 samples. The only acceptable combination of pools for this matrix is A, D, F, G, shown in

Figure 3.

For larger matrices there are several acceptable groups of rows but these are still a very small

fraction, typically < 1%, of the total number of combinations. In the 11 × 11 matrix five rows are

needed, for example B, D, E, F, J and with this combination of rows the last column in the matrix

must be deleted. Different combinations of rows are generated if an alternative column is deleted.

Suitable rows for other matrices are listed in Table 1. The minimum number of rows required appears

to be about half for a small matrix and slightly less for larger ones [9].

Results and Discussion

This method is suitable when the likelihood of measuring two or more positive samples is low. Assum-

ing a Poisson (or Binomial) distribution, with a positivity rate of 1%, and using a 7 × 7 matrix one

positive sample has a 30% of being present in the whole matrix or 6.5% chance of being present in a

column but two or more positives have a 9% in total or 0.23% chance in a column. The same numbers

for columns in a 15×15 matrix are 13% and 1% respectively. These results were confirmed by simulat-

ing the process stochastically. Typically 20,000 repeat calculations were averaged and the simulations

closely match the predicted behaviour from the Poisson (and Binomial) distribution (Figure 4).

When two positive samples are present, the result produced does not correspond to any column

and their identities, within strict limits, can be estimated but usually re-testing would be required.

For example in Figure 2, two positive pools returning analysis vector [0 1 1 1] could be made up of

samples 1 + 2, 1 + 4, 1 + 5, 1 + 6 so that only sample 1 may be positively identified. This is case (ii)
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Table 1: Suitable pool combinations when using Hadamard S matrices initially of size n×n. The last
column was ignored in choosing the S matrix for each list of rows in cases(ii) and (iii). In the larger
matrices there are equivalent rows that could be used. The right-hand column shows the probability as
a percentage of detecting 0, 1 or ≥ 2 positives, when there are 1% positive samples out of n, calculated
using the Poisson distribution. The letters follow the order ‘A, B, C, . . Z, a, b, c, . . z’.

in Table 1. If a quantitative method of analysis is used then identifying the samples is easier as these

same pairs each have a unique analysis vector, for example [0 1 2 1] for the pair 1 & 2. The only case

needing re-testing is when the analysis vector is [1 1 1 1] for which there are three combinations out

of a possible 15 that are not unique; 1+3, 2+6 and 4+5. To overcome this restriction another row(s)

could be used and such a pattern is shown in case (iii) in Table 1 with the exception of n = 7 where

such a row does not exist. The 15×15 matrix is slightly unfavourable in this respect, whilst the others

are more efficient needing only one extra row.

Large sample sizes

For a large number of samples with low positivity rate, a strategy similar to that of Dorfman [15] can

be used. In the Dorfman method, all the specimens are pooled into a few large groups and then each

of those that tested positive is retested. Our approach is similar but differs slightly in that these initial

groups are tested according to the Hadamard method and then the specimens comprising any positive

ones are tested again, also using the Hadamard method. Thus for 225 samples ( 15×15 matrix ) and if

only one sample is positive the Dorfman method involves testing 15 pooled groups then 15 more tests

of the group containing the positive one. Using the Hadamard method, if only one positive is known
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to be present and 4 rows ( Table 1) are used to generate the pools, then four further measurements

are needed from the group that contains the positive result, or 2m where m is the number of rows

used. This is 3.6% of the total sample when n = 15 or a test/person ratio of 0.036. These values are

effectively the same as the 0.1% positives shown as blue circles in Figure 4.

In the general case the number of positive samples should be present in proportions given by the

Poisson distribution. If more than one positive is found in the first round, each row is individually

summed and retested, to find all positives. The positive groups are then tested to give a total of

4+15+4+4 tests in the 15×15 matrix which is 3m+n in general. If m rows are used from a matrix

of size n and i = 0, 1, 2 positive samples occur with the fraction fi then the number of tests per person

T is the weighted sum of zero, one, two or three samples etc.,

T ≈ 1

n2
(mf0 + 2mf1 + (3m+ n)f2 + (4m+ n)f3 + · · · )) (1)

A plot of T is shown in Figure. 4 with data points taken from the literature and the Dorfman

function for the number of tests per person:

TD = 1 +
1

w
− (1− p)w (2)

Where w is the sample size and p the probability of infection (p = 0.01) with these conditions the

minimum sample size is:

wmin = 1/
√
p (3)

The number of tests required per person subsequently increases with the sample size, in contrast

using the Hadamard method the number of tests decreases with increasing sample size. Additionally,

the number of tests is significantly lower than that of the Dorfman method, and comparable to [16]

for large numbers of samples. The Hadamard pooling method produced similar results to previous

pooling strategies, but has the advantage that no complicated algorithm is needed to interpret the

results, only simple pattern matching. The strategy of using the minimum number of tests m initially

(case (i) Table 1) and then testing all n samples only when more than one is positive, and then as

necessary reverting to testing only m rows, turns out to be more efficient than initially testing the

full matrix first. Instead of testing all n samples in the second step the reduced matrix could be used,

case (iii) Table 1, and would lead to a slightly better test/person ratio than shown in Figure 4 for

1% positives. If the full matrix has to be evaluated the simplest way to identify a positive sample

using the Hadamard method is to left-multiply the column of results by the inverse of the S matrix,

see Supplementary Information (S1 appendix). In the 1% positive case only the smaller matrices are
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Figure 4: Figure 4. The number of tests / person vs. the sample size (matrix size squared, n2) in a two
step or Dorfman consecutive (two-stage or hierarchical ) analysis with 0.1 and 1% positive samples.
The top axis shows the S matrix size m. The blue circles are the data when 0.1 % on average are
positive and the red circles when 1% are positive and therefore 0, 1, 2 or 3 etc. positives are present
but weighted by the Poisson distribution and calculated using Equation 1. The grey circles are a
stochastic simulation of the process when 0.1% are positive using rows as in case (i) Table 1. The
similar calculation for 1% positives follows the red circles. Points labelled (a) are taken from Ghosh
et al. [22], point (b) from Shental et al. [47], and (c) at 1 and 0.1 % positives from Figure 3 in Mutesa
et al [16]. The dashed line is the Dorfman function.

included as multiple positives in each row or column soon occur as the matrix size increases and this

involves using an increasingly involved sequence of testing for no gain in the number of tests/person.

The pooling method can be extended further for larger numbers, for example with three stages,

153 = 3375 samples, between 12 and 21 measurements are needed. However, this and larger numbers

are probably only rarely going to within the capacity of a single testing station and, although dilution

of samples is possible [16,26], such huge dilution may not be desirable or even feasible in practice.

Conclusion

We have demonstrated a straightforward approach to pooled testing using Hadamard S matrices to

design pooling strategies. The efficiency of Hadamard pooling increases with sample size making the

approach suitable for surveillance testing in low prevalence settings, ideally when the positivity rate

is ≤ 1%. Hadamard pooling not only provides improvements in experimental screening efficiency but

also in computational efficiency. A positive sample can be identified from a single round of testing

by pattern matching, removing the need for computationally expensive decoding algorithms. This
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strategy has the potential to contribute to the sustainable and efficient screening programmes needed

to ensure preparedness for the next pandemic.

Methods

Matrix Generation

All calculations were performed using Python 3 (v 3.9) with the NumPy package (v 1.23) within a

Jupyter Notebook (v 6.4). Hadamard matrices were generated using the Quadratic Residue, Shift

Register or Doubling methods, as appropriate, and described in [33,39,46,48].

To find suitable combinations of the Hadamard matrix rows as shown in Table 1, the combinations

Cr,n = n!/(r!(n−r)!) of r rows out of a total of n was calculated. For example selecting 10 rows of the

n = 15× 15 matrix produces 3003 different combinations, but this rises rapidly to over 200 million for

the n = 31 matrix with 13 rows. For smaller numbers of combinations each was exhaustively checked.

The values of r were increased until a satisfactory list was found, for example a list with the conditions

of case(iii), Table 1. There is only one smallest list for a n = 11 × 11 matrix, i.e. ACGHIK and 65

smallest but equivalent lists out of 92378 when r = 10, n = 19 one of which is shown in Table 1. For

larger matrices there are also several acceptable lists, but still a small fraction of the total (<1%), and

only one of them is given in Table 1. (The exception is n = 15 where there are many (≈ 13 %) suitable

combinations). When the number of combinations runs into millions, as it does for larger matrices,

an exhaustive search is not feasible so the combinations were chosen at random until a suitable one

was found. This is possible because, luckily, it happens that the suitable combinations tend to cluster

and so can be accessed more quickly by random selection than a linear search.

Pooling Simulation

The person/test ratio was calculated for different sample sizes using Equation 2 assuming m rows

used out of an n × n matrix with values f0, f1 · · · calculated from the Poisson distribution for the

percentages as shown in the Figures 2 and 3.
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Supporting Information

2 Appendix 1

Hadamard Matrices

A conventional Hadamard matrix is square and contains entries of 1 and -1 only, and has the property

that each row is orthogonal and as such has matching entries in half the rows and half not. The first

row and column contain only ones. A variation of these matrices is used here and are labelled as

Hadamard S matrices in which the first row and column of the Hadamard matrix are ignored and the

changes 1 → 0 and −1 → 1 are made in the rest of the matrix. This is the form of the matrix shown

in Figure 1.

Only certain integer values are allowed in forming the S matrices, nevertheless they are numerous,

the first few are 3, 7, 11, 19, 23, 27, 31, 43, 47, 59, · · · 103, · · · , 199, · · · which are prime numbers which

also satisfy the condition 4n + 3 where n = 0, 1, 2, · · · . Other Hadamard matrices can be made with

size 2n− 1, n = 2, 3, for example n = 4 produces a 15× 15 matrix and 27× 27 by a similar method.

The n = 32 and 31 S matrices are circulant. Their first rows are

n = 23, 0 0 0 0 1 0 1 0 0 1 1 0 0 1 1 0 1 0 1 1 1 1 1

n = 31, 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 1 1 1 0 1 1 0 1 1 1

The Hadamard Transform

If the situation arises that all samples have to be measured a vector is constructed out of every summed

row in a Hadamard matrix, instead of just selected ones. This vector comprises the unknown values

qk which are multiplied by Sik = 0 or 1 and summed according to the pattern of each row into:

Wi =
∑
k

QkSik (S1)

which is the dot product of vectors Q and a row of S. The column vector formed is W =[
W1, W2, · · ·

]T
. The transform to return the original values isQ = S−1W whereQ =

[
Q1, Q2, · · ·

]
.

The inverse of an S matrix can be calculated by directly, but more simply as

S−1 =
2

n+ 1
(2ST − J) (S2)

where J is an ‘all ones’ matrix and superscript T indicates the transpose.
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Fig. 5: Figure S-1. Examples of Hadamard S matrices. Each of the matrices except n = 27 is
circulant and so can be produced from the first lines alone by rotating by one position. Note that the
15× 15 matrix cannot be made by the Quadratic Residue method, however, different but functionally
equivalent matrices are formed by either the Shift Register method (matrix shown above) or the
Doubling method, both of these methods are described in [46] and the 28 × 28 Hadamard matrix
construction, among others [33,48]
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