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Abstract: 

Introduction:  

Evaluation of artificial intelligence (AI) algorithms for prostate segmentation is challenging because 

ground truth is lacking. We aimed to (1) create a reference standard dataset with precise prostate 

contours by expert consensus and (2) evaluate various AI tools against this standard.  

Materials and methods:  

We obtained prostate MRI cases from six institutions from the Quantitative Prostate Imaging 

Consortium. A panel of four experts (two genitourinary radiologists, two prostate radiation oncologists) 

meticulously developed consensus prostate segmentations on axial T2-weighted series. We evaluated 

the performance of six AI tools (three commercially available, three academic) using Dice scores, 

distance from reference contour, and volume error. 

Results:  

The panel achieved consensus prostate segmentation on each slice of all 68 patient cases included in the 

reference dataset. We present two patient examples to serve as contouring guides. Depending on the AI 

tool, median Dice scores (across patients) ranged from 0.80 to 0.94 for whole prostate segmentation. 

For a typical (median) patient, AI tools had a mean error over the prostate surface ranging from 1.3 to 

2.4 mm. They maximally deviated 3.0 to 9.4 mm outside the prostate and 3.0 to 8.5 mm inside the 

prostate for a typical patient. Error in prostate volume measurement for a typical patient ranged from 

4.3% to 31.4%. 

Discussion: 

We established an expert consensus benchmark for prostate segmentation. The best-performing AI 

tools have typical accuracy greater than that reported for radiation oncologists using CT scans (most 
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common clinical approach for radiotherapy planning). Physician review remains essential to detect 

occasional major errors.   
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Manuscript Text: 

Introduction 

Artificial Intelligence (AI) tools are being developed and deployed rapidly, especially for medical 

imaging1. AI tools are valuable additions to clinical medicine in an era of increasingly vast data2. 

However, adverse consequences may follow if AI tools are deployed without proper stewardship by the 

medical community. Expert medical professionals must set the bar used to judge the performance of AI 

tools their field will use. 

One area of increasing interest is the development of AI algorithms for prostate auto-

segmentation, an important task for diagnostic radiologists, radiation oncologists, and urologists. 

Establishing acceptable accuracy and precision metrics requires knowledge about what constitutes a 

clinically meaningful error. In diagnostic radiology, the most common segmentation applications are 

measurement of prostate volume for PSA-density3,4, whole gland segmentation for fusion biopsy, and 

target segmentation for fusion biopsy. The PSA-density task does not require as much accuracy as more 

difficult applications (measuring extra-prostatic extension risk). While many prostate auto-segmentation 

tools for MRI are available, most were designed and validated to assist with segmentation for MRI-

ultrasound fusion biopsy5. It is unknown how well any available auto-segmentation tool works against a 

true gold standard, as there is no consensus guideline for prostate delineation on MRI. This has 

particular implications in radiotherapy, where small errors can impact patient outcomes (a randomized 

trial showed differences in prostate contours as small as 2 mm can measurably increase toxicity)6. An 

improved standard is needed for accuracy for prostate delineation for radiotherapy planning and can 

also serve as the reference for evaluation of prostate auto-segmentation tools.  

Excellent reference standard contours are a prerequisite for a meaningful comparison and 

properly validated tool. Our objectives are two-fold: 1) create a reference standard dataset with highly 
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accurate prostate contours via expert consensus and 2) meticulously evaluate an array of AI tools for 

prostate segmentation on MRI against the defined consensus reference standard. In accomplishing the 

first objective, we present a detailed contouring guide for physician education. 

Methods 

Cases 

We obtained patient cases from six institutions from the Quantitative Prostate Imaging 

Consortium (QPIC) as part of a study of prostate cancer detection approved by the institutional review 

board at each institution7,8. All patients underwent prostate multi-parametric MRI (mpMRI) for known or 

suspected prostate cancer. We included at least 10 cases from each institution. Cases in the database 

were selected from each institution in roughly sequential order. We excluded cases with prominent 

artifacts (hip implants, prominent bowel gas, and/or very large body habitus that interfered with image 

quality). The dataset was enriched to ensure approximately one-third of cases from each site had a 

prominent median lobe (prostate extension into the bladder) because this is common in clinical practice, 

and it is important to understand how automated tools perform for common anatomic variations.  

Reference Standard Contour Development 

We convened a panel of four experts to develop the reference standard prostate segmentation 

dataset. Our panel included two genitourinary (GU) radiologists (with 12 and 21 years’ experience, each 

surpassing the number of MRIs reported to qualify as prostate MRI experts9) and two GU radiation 

oncologists specializing in MRI-guided prostate radiotherapy (10 years’ experience each). One of the GU 

radiation oncologists, also a prostate MRI researcher, generated initial contours on high-resolution axial 

T2-weighted slices. The panel met weekly from March to June 2024 to review the initial contours slice-

by-slice. All three planes were always visualized, and high-resolution coronal and sagittal T2-weighted 

acquisitions were available. If any panel member judged the contour deviated > 1 mm from the true 
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prostate boundary, the panel deliberated until consensus. Each slice case was reviewed at least twice. 

All members of the panel in attendance agreed on the final contour for each case. All four panelists 

were generally present for case reviews; meetings only proceeded when at least three panelists were 

present. 

Prostate Contouring Ground Rules 

Before the consensus review, the panel decided on ground rules for situations with more than 

one reasonable approach. If partial volume effects were present but the prostate was clearly visible, this 

was included as prostate. The proximal seminal vesicles (SVs) were not intentionally included. If a visible 

plane divided the SVs from the prostate, the tissue was labeled as SV and excluded. Tissue with SV 

appearance but without a clear dividing plane on an axial slice was included as prostate. While this may 

lead to inclusion of a small proportion of SVs, a rule was needed, and over-estimation was preferable to 

undercovering the prostate. Additionally, the panel agreed this tissue would be indistinguishable from 

prostate on CT and was invariably included in prior trials of prostate cancer radiotherapy utilizing CT for 

treatment planning. The tip of the apex may not be perfectly visualized on MRI as axial slices are 

recommended to be 3.0 mm thick (in-plane resolution should be 0.7x0.4 mm)10. Therefore, at the apex, 

any suspicion of visible prostate, even with only subtle partial volume effects, was included as prostate. 

Auto-Segmentation Models 

We invited 8 companies with commercially available prostate auto-segmentation tools to 

participate and 3 companies (Quibim, Radformation, and Cortechs.ai) accepted. Each commercially 

available tool has FDA clearance and/or CE marking for prostate auto-segmentation. Additionally, we 

evaluated 3 deep-learning models developed at academic centers (UCSD and Stanford). Stanford Model 

1 employs a vision transformer backbone pretrained using the vision foundation model DINOv211, 

coupled with a segmentation head. This architecture was refined through the incorporation of patch-
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level contrastive learning techniques (Stanford Model 2). Development and validation of the UCSD tool 

is described below. None of the tools were trained or previously validated using any cases in our curated 

reference standard dataset.  

UCSD Model Development 

We collected 618 cases from 5 different datasets for training, including 92 cases from the multi-

site dataset12, 52 cases from NCI-ISBI13, 139 cases from Prostate15814, 197 cases from Reimagine15, 45 

cases from Cortechs.ai customer data (courtesy of Cortechs.ai), 30 cases from Prostate-3T challenge16, 

50 cases from PROMISE12 challenge17, and 13 cases from The Cancer Imaging Archive (PROSTATE-

DIAGNOSIS, 9 cases18; Fused Radiology-Pathology Prostate, 4 cases19). The training process utilized nnU-

Net20, a robust and well-established model architecture. We implemented a 5-fold cross-validation 

strategy, with a total of 1,000 training epochs. The initial learning rate was 0.01 and gradually decreased 

to 0.00002 by the final epoch. Training was conducted on a single NVIDIA GeForce RTX 2080 Ti GPU, 

with a batch size of 2 per GPU. The input T2-weighted volumes were cropped to a patch size of 

16x320x320 and resampled to a uniform voxel size of 3.0x0.4x0.4 mm³. 

Evaluation of AI tool performance 

We compared each AI model segmentation to the expert consensus prostate contour of the 

reference standard dataset. We compared segmentation overlap using mean Dice score of the entire 

prostate, with 1 indicating perfect overlap and 0 indicating no overlap. We utilized a variety of clinically 

relevant metrics. To measure how accurately AI tools defined the prostate’s superior extent, we 

compared the difference in MRI slice number containing the superior-most contour between each 

model versus the reference standard. We repeated this to evaluate how well AI tools defined the 

prostate’s inferior extent. Additionally, we measured how far the AI tool strayed outside the prostate 

(max error outside [mm]) and cut into the prostate (max error inside [mm]). We calculated the margin 
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required to encompass the entire prostate's average error by comparing each auto-segmentation to a 

generated distance map based on the boundary of the reference standard. We determined the absolute 

and relative volume differences between each auto-segmentation and the reference standard, reported 

in mL and percentage, respectively. Since uncertainty is greatest at the superior-most and inferior-most 

slices, we defined the ‘main gland’ as everything but the top 2 and bottom 2 slices of the reference 

standard prostate. We compared each tool’s accuracy over the main gland by measuring Dice scores. 

Because the purpose of this analysis is educational and not to market or disparage any commercial 

product, we will not label the commercial results with company names. 

Results 

Cases  

We included prostate contours for 68 cases for the reference standard dataset. Cases came 

from 6 imaging centers, and MRI data were acquired using 3 distinct 3T scanners by two vendors (GE 

Healthcare; Siemens Healthineers). None of the cases used an endorectal coil. The panel reached 

consensus on each slice of all 68 cases. We present all slices for 2 patients to illustrate complete 

prostate volumes and serve as contouring guides (representative slices Figures 1-2). These are available 

for download as slide decks in PowerPoint. 

Qualitative Observations 

The greatest uncertainty regarding prostate boundary was in determining the inferior-most slice 

containing prostate. There was also some uncertainty at the base, though this was generally clearer than 

the apex. Occasionally, distinguishing the dorsal venous plexus from the prostate was difficult, especially 

when the plexus extended posteriorly. The panel was satisfied with the final consensus contours but 

recognizes there is some uncertainty, and these cases sometimes required more time to be confident 

the prostate boundary was accurate. Lastly, we sometimes debated what was neurovascular bundle 
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versus prostate when determining the posterolateral prostate boundary. The most common cause of 

uncertainty in any part of the prostate segmentation was partial volume effects from 3.0 mm slices. On 

the other hand, the partial volume effects between slices amount to interpolation between slices and 

were generally judged to have only a small impact on the overall prostate contour shape. 

Evaluation of AI performance 

All six models correctly identified the general location of the prostate in all 68 reference 

standard cases, except for one commercial model, which failed to generate auto-segmentations for 3 of 

68 (4.4%) cases. Those 3 cases were from 2 different imaging centers. All models had greater variation at 

the apex and base compared to mid-gland. AI auto-segmentations are illustrated for one patient in 

Figure 2. For the whole prostate, median (across patients) Dice score for the six AI models ranged from 

0.80 (0.72-0.85) to 0.94 (0.92-0.95) (Table 3). All six models were more accurate in the main gland with 

median Dice-main ranging from 0.83 (0.75-0.87) to 0.95 (0.95-0.96) (Table 3).  

At the prostate’s superior boundary, the auto-segmentation models differed from the reference 

standard by a range of 1 (0-1) to 1 (1-2) slices, median (IQR) for best and worst performing model 

respectively. At the inferior boundary of the prostate, the auto-segmentation models differed from the 

reference standard by a range of 1 (0-1) to 3 (2-4) slices, highlighting greater error in defining the 

inferior extent.  

The best-performing model typically included at least one point 3.0 mm outside the true 

prostate for each patient (compared to 9.4 mm for the worst-performing model). The median (IQR 

across cases) maximum error outside the prostate ranged from 3.0 mm (2.0-4.0) for the best-performing 

model to 9.4 mm (6.7-12.5) for the worst-performing model.   
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The best-performing model typically excludes 3.0 mm of true prostate in at least one point 

somewhere in the prostate. The median (IQR) maximum error inside the prostate ranged from 3.0 mm 

(2.8-4.5) for the best-performing model to 8.5 mm (6.8-9.3) for the worst-performing model.  

At any given point in the prostate, the expected error in either direction (inside or outside the 

prostate) was 1.3 mm for a typical patient for the best-performing model and 2.4 mm for a typical 

patient for the worst-performing model. The median (IQR) mean error ranged from 1.3 mm (1.2-1.5) to 

2.4 mm (2.1-2.8).  

The median (IQR) relative volume difference across patients ranged from 4.3% (2.3-7.7%) for the 

best-performing model to 31.4% (22.2-43.8%) for the worst-performing model (Table 3). The best-

performing model typically gives estimates of prostate volume within 2.3-7.7% of the true value. The 

worst-performing model typically gives estimates that differ by 22-44% from the true value. Most 

models underestimated prostate volume (Figure 3).  

Presence of a prominent median lobe did not appear to be a major driver of inaccuracy for the 

models (Supplementary Figures 1-2 and Supplementary Tables 1-2). 

Lastly, although a model’s overall performance may be quite good, there can still be 

considerable variation across cases. We provide representative images showing the case with lowest 

Dice score for each of the auto-segmentation models (Figure 4).  

Discussion 

Amidst a flood of published and available AI tools, the medical community needs to define the 

reference standard against which AI models are judged. Here, we created a reference standard dataset 

of 68 cases through consensus determination by an interdisciplinary expert panel for rigorous evaluation 
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of prostate auto-segmentation AI tools. We present two cases in full as educational resources for a wide 

audience (radiology, radiation oncology, urology, etc.).  

Using the expert consensus dataset, we tested six AI tools (three commercially available and 

three academic). All six models provided useful results. Prostate volume was typically adequate for 

calculating PSA density. However, even the best-performing models had a volume error >10% for some 

patients, suggesting currently these tools require physician supervision. None of the AI tools universally 

gave results accurate enough for radiotherapy without manual review and revision if errors >2.0 mm are 

considered important. The randomized MIRAGE trial compared CT-guided stereotactic body 

radiotherapy (SBRT) with a 4.0 mm planning margin to MRI-guided SBRT with a 2.0 mm planning margin 

for treatment of localized prostate cancers. Participants treated with the larger margin had significantly 

worse genitourinary and gastrointestinal toxicity, suggesting errors in prostate contours as small as 2.0 

mm  could affect outcomes6. 

Physician contouring of the prostate shows substantial variation, and errors are common21,22. 

For radiotherapy planning, radiation oncologists have traditionally performed prostate segmentation on 

CT images. One study found radiation oncologists’ prostate contours were, on average, 30% larger than 

the true prostate volume, while still only including 84% of the prostate23. Another study reviewed 

manual contours of 300 prostates and described numerous and varied errors in each part of the 

prostate22. Here, one of the best performing AI tools had a median Dice score of 0.94, and the mean 

error over the full prostate contour was typically only 1.3 mm, likely clinically acceptable for 

radiotherapy planning and more accurate than reported accuracy of physicians contouring the prostate 

on CT images24. 

Forming our reference standard was time consuming and required considerable investment by 

experts. We reinforce the importance of multidisciplinary collaboration in developing reference 
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standards for meaningful comparison of AI tools. Here, the GU radiologists were experienced at 

reviewing high numbers of prostate MRIs and are well-trained in cross-sectional anatomy. The radiation 

oncologists provided the clinical context of prostate contours used for radiotherapy. Radiation 

oncologists strive for highly accurate contours over the full prostate in their routine clinical work, 

whereas approximate volumes may be acceptable for radiologists’ reporting volumes for deriving PSA 

density. The radiation oncologists contributed insights around seminal vesicles in the context of prostate 

cancer treatment, inclusion of the median lobe, and concerns of missing the tip of the apex with use of 

3.0 mm MRI slices. Importantly, multidisciplinary collaboration created a better reference standard than 

either group would have accomplished alone. All panelists were emphatic that development of the 

reference standard dataset was a highly educational exercise. 

According to a review of 100 commercially available AI products for medical imaging, only 36% 

had peer-reviewed evidence of efficacy25. Validating AI tools is significantly challenging but necessary to 

ensure patients and healthcare professionals can trust their accuracy26. We maintain there is great value 

in a reference standard dataset independent of any data used for training the AI tools it is meant to 

test22,27. This avoids inflation of accuracy due to model overfitting. Reference standard datasets should 

be carefully curated and only used for validation of models developed elsewhere, permitting objective 

head-to-head performance evaluations of existing and future AI tools. Furthermore, different AI tool 

outputs require different statistical evaluation methods28. Accuracy evaluation should include indices of 

overall agreement (Dice score29) and of clinically relevant errors (deviations from the reference standard 

inside and outside the prostate).  

Our study has practical value for radiation oncologists and patients today. MRI-based 

radiotherapy planning has been shown to improve precision and may limit toxicity compared to 

commonly used CT-based approaches22,30. Delineation of the prostate on MRI is also integral to focal 

radiation boost for prostate cancer, which reduces cancer recurrence and metastatic spread31,32. 
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However, many radiation oncologists are unfamiliar33 and/or not proficient34,35 at contouring the 

prostate on MRI. Both our MRI-based consensus contouring guides (Figures 1-2) and validation of MRI-

based auto-segmentation tools provide unique but related tools to facilitate widespread, accurate 

adoption of MRI-based radiotherapy planning. 

Our study has some limitations. First, there is no purely objective way to verify the precise in 

vivo prostate boundary, so expert consensus is the best that can be achieved. Theoretically, a larger 

expert group could be engaged, but larger groups naturally complicate scheduling and dilute each 

member’s contribution. Second, acquisition protocols for prostate MRI vary across centers/scanners. 

We mitigated this by including data from 6 centers and 2 vendors with 3 different scanner models. We 

used diagnostic MRI data from PI-RADS compliant protocols rather than acquisitions designed for 

radiotherapy planning because this is most common. Third, although outside scope of this study, clinical 

use of prostate segmentation for radiotherapy has additional considerations, including (a) physiological 

changes to prostate position between or within treatments and (b) the need for accurate registration of 

MRI to CT when a separate planning CT simulation is used.  

Conclusions 

We present the first expert consensus guide for prostate radiotherapy planning using MRI and a 

multi-institutional, interdisciplinary expert consensus dataset for meticulous evaluation of auto-

segmentation AI tools. We found that some currently available AI tools are generally highly accurate, 

achieving average errors <2.0 mm. Physician review remains necessary, as all AI tools make clinically 

meaningful errors in some cases.  
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Figure 1. Expert-defined consensus prostate contour on MRI for a representative patient case.  

The expert contour is shown as red contour on axial T2-weighted slices. 
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Mid Sagittal View Mid Sagittal View 
Expert-Defined Reference Standard Auto-Segmentation 

Figure 2. Visual comparison of expert-defined consensus contour versus all auto-segmentation models 
for axial T2-weighted slices from a single patient case. The left panel represents the expert-defined 
consensus prostate contour, shown as red contour. The right panel shows the corresponding auto-
segmentation products for all models for each slice. Blue: UCSD model. Yellow: Stanford Model 1. Cyan: 
Stanford Model 2. Green: Company A’s product. Orange: Company B’s product. Purple: Company C’s 
product. 
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Company B 

 
Company C 

 
All Models 

Figure 3. Scatter plot of auto-segmentation volume vs. expert-defined consensus contour. N=68 cases. 

For all panels, the X-axis shows the absolute prostate volume (mL) of the expert-defined consensus 
contour while the Y-axis shows the absolute prostate volume (mL) of the auto-segmentation product. If 
the result falls between the two solid lines, the relative volume of the auto-segmentation is within 10% 
(in either direction) of the expert-defined volume. Blue: UCSD model. Yellow: Stanford Model 1. Cyan: 
Stanford Model 2. Green: Company A’s product. Orange: Company B’s product. Purple: Company C’s 
product. 
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Expert-Defined Reference Standard & Stanford 

Model 1 

 
Expert-Defined Reference Standard 

 
Expert-Defined Reference Standard & Stanford 

Model 2 

 
Expert-Defined Reference Standard 

 
Expert-Defined Reference Standard & Company A 

  
Expert-Defined Reference Standard 

 
Expert-Defined Reference Standard & Company B 
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Expert-Defined Reference Standard 

 
Expert-Defined Reference Standard & Company C 

Figure 4. Example auto-segmentation errors. 

Example slices illustrating particularly bad auto-segmentation errors from the cases with the worst Dice 
score for each AI tool’s prostate segmentation. These are single slices from cases shown in the sagittal 
view. In all panels, the red contour is the expert-defined consensus contour. Blue: UCSD model. Yellow: 
Stanford Model 1. Cyan: Stanford Model 2. Green: Company A’s product. Orange: Company B’s product. 
Purple: Company C’s product. 
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Tables 

Case Characteristics. Total Study MRI Images (n = 68)   

Cohorts     

UC San Diego (UCSD)   10 

Harvard University’s Massachusetts General Hospital 
(MGH) 

  14 

University of Rochester Medical Center (URMC)   12 

UC San Francisco (UCSF)   10 

UT Health Sciences Center San Antonio (UTHSCSA)   10 

University of Cambridge   12 

Cases with prominent median lobe vs. selected without 
regard to anatomy 

    

Median Lobe   23 

Sequential, without regard to anatomy   45 

Institution MRI scanner models 
Number of 
scanners 

UCSD 

GE Healthcare 
Discovery MRI750, GE 

Healthcare Signa 
Premier 

3 

URMC SIEMENS Skyra 2 

MGH 
GE Healthcare Signa 

Premier 
1 

UCSF 
GE Healthcare Signa 

Premier 
2 

Cambridge 
GE Healthcare 

Discovery MRI750 
1 

UTHSCSA SIEMENS Skyra 2 

Total 3 models 11 scanners 

Table 1. Characteristics of the cases included in this study. 
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Scanner UCSD* URMC MGH UCSF Cambridge UTHSCSA 

Pulse sequence Fast Spin Echo 
(FSE) 

Turbo Spin Echo 
(FSE) 

Fast Spin Echo 
(FSE) 

Fast Spin Echo 
(FSE) 

Fast Spin Echo 
(FSE) 

Turbo Spin Echo 
(FSE) 

TR (ms) 5300 4800 4800 2964 3130 4710 
TE (ms) 100 104 104 150 98 100 
FOV (mm) 200 x 200 180 x 180 180 x 180 220 x 220 180 x 180 180 x 180 
Matrix [resampled 
dimensions] 

320 x 320 [512 x 
512] 

384 x 365 [384 x 
384] 

384 x 365 [384 x 
384] 

512 x 512 [320 x 
320] 

448 x 256 [512 x 
512] 

240 x 320 [320 x 
320] 

Slices 32 32 32 36 30 30 
Slice Thickness (mm） 3 3 3 3 3 3 
Field Strength (T) 3 3 3 3 3 3 

Table 2. MRI acquisition parameters T2-weighted sequences for each cohort. TR: repetition time. TE: echo time. FOV: field-of-view. FSE: fast spin 
echo. UCSD: University of California San Diego. MGH: Harvard University’s Massachusetts General Hospital. URMC: University of Rochester 
Medical Center. UTHSCSA: University of Texas Health Sciences Center San Antonio. UCSF: University of California San Francisco. Cambridge: 
University of Cambridge. *One of the ten patients from UCSD was scanned with a TR of 7000 ms and FOV 240 x 240 mm 
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Model   Dice     Max error outside 
prostate (mm) 

    Max error inside prostate 
(mm) 

    Average error 
(mm) 

  

Model   median     median     median     median   
  min IQR max min IQR max min IQR max min IQR max 

UCSD   0.94     3.0     4.0     1.3   
  0.87 0.92-0.95 0.97 1.3 3.0-3.9 7.8 0.5 3.0-6.0 10.3 0.9 1.2-1.5 2.4 

Stanford Model1   0.89     7.0     3.0     2.0   
  0.75 0.87-0.91 0.94 3.2 6.0-9.0 15.7 0.6 2.8-4.5 16.7 1.1 1.7-2.2 4.6 

Stanford Model2   0.92     9.4     3.4     2.1   
  0.64 0.90-0.93 0.95 3.0 6.7-12.5 30.0 1.6 3.0-4.7 11.0 1.1 1.6-2.6 8.3 

Company A   0.90     4.4     4.5     1.7   
  0.65 0.87-0.91 0.94 1.7 3.2-5.8 15.8 1.6 5.8-6 11.0 1.1 1.5-2.0 3.3 

Company B   0.89     5.0     6.4     1.9   
  0.34 0.86-0.91 0.93 2.7 3.7-6.5 21.3 3.7 5.9-8.3 14.9 1.3 1.7-2.2 3.9 

Company C   0.80     3.0     8.5     2.4   
  0.00 0.72-0.85 0.91 0.0 2.0-4.0 41.4 0.0 6.8-9.3 24.2 0.0 2.1-2.8 30.7 

Model   Dice-main     Difference in superior 
extent of contour (slices) 

    Difference in inferior 
extent of contour (slices) 

    Volume 
difference (%) 

  

Model   median     median     median     median   
  min IQR max min IQR max min IQR max min IQR max 

UCSD   0.95     1     1     4.7   
  0.90 0.95-0.96 0.98 0 0-1 2 0 0-2 3 0.1 3.0-8.3 27.1 

Stanford Model1   0.92     0     1     16.4   
  0.81 0.90-0.93 0.96 0 0-1 3 0 1-2 5 4.9 10.2-22.9 64.7 

Stanford Model2   0.94     1     3     4.3   
  0.72 0.93-0.95 0.96 0 0-1 4 0 2-4 9 0.1 2.3-7.7 36.1 

Company A   0.92     1     1     9.2   
  0.67 0.89-0.93 0.95 0 0-1 3 0 0-1 3 0.1 4.8-17.9 54.5 

Company B   0.91     1     1     12.0   
  0.36 0.89-0.92 0.95 0 1-2 8 0 0-1 5 0.8 8.1-16.8 62.0 

Company C   0.83     1     3     31.4   
  0.00 0.75-0.87 0.93 0 0-2 4 0 2-4 9 1.6 22.2-43.8 100 

Table 3. Dice, Max error outside prostate (i.e., how far the AI segmentation strayed beyond the true prostate, in mm), Max error inside prostate 
(i.e., how far the AI segmentation cut into the true prostate, in mm), Average error (mm), Dice-main, Difference in superior extent of contour 
(number of slices), Difference in inferior extent of contour (number of slices), and Volume difference (%) of each model. The median, min, IQR, 
and max refer to across patients for that metric/model combination. E.g., the UCSD model gave a Dice score of 0.97 for the patient where it 
most accurate, 0.87 for the patient where it was least accurate, and 0.94 was the median Dice for the UCSD model across all 68 patients. 
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