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Summary paragraph 
 

Psychiatric disorders account for a substantial fraction of the world’s disease burden1, and yet 
the development of novel therapeutics has been notoriously slow2.  Likely contributing factors 
include the complexity of the human brain and the high polygenicity of psychiatric disorders3–5, 
meaning that thousands of genetic factors contribute to disease risk.  Fortunately, 
technological advances have enabled comprehensive surveys of human brain cell types using 
transcriptomes from single nuclei (snRNAseq)6–8.  Additionally, genome-wide association 
studies (GWAS) have linked thousands of risk loci to psychiatric disorders9–11.  Here, we 
combined these two landmark data resources to infer the cell types involved in the etiology of 
schizophrenia and comparison phenotypes.  This work demonstrated: 1) cell types that are 
concordant with prior findings about schizophrenia, 2) novel cell type associations for 
schizophrenia, 3) greater molecular specificity regarding schizophrenia-associated cell types 
than was previously available, 4) evidence that well powered genome-wide and brain-wide 
datasets are required for these analyses, 5) distinct cellular profiles for five brain-related 
phenotypes, 6) a prototype for a cell-type based classification system for psychiatric and other 
brain disorders, and 7) a roadmap toward drug repurposing, novel drug development, and 
personalized treatment recommendations.  Thus, this work formalizes a data-driven, cellular 
and molecular model of complex brain disorders.  
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Introduction 
Approximately one in five adults has a psychiatric disorder12.  While these disorders may 
resolve on their own or with treatment, for many, they represent lifelong afflictions.  
Schizophrenia is often considered the cardinal adult psychiatric disorder given its severity, 
chronicity, and enduring worldwide distribution13–15.  Like all other major psychiatric disorders 
(depression, substance use disorders, PTSD, etc.), the etiology of schizophrenia depends both 
on genetic and environmental factors.  All such disorders are moderately to highly heritable, 
and schizophrenia is one of the most heritable of these “complex polygenic” disorders, with 
heritability estimates from twin studies of approximately 80%16,17. 
 
Accordingly, investment in research on schizophrenia has successfully generated knowledge 
about its genetic basis.  Massive human genome-wide association studies (GWAS) 
encompassing millions of individuals, often led by the international Psychiatric Genomics 
Consortium (PGC), showed that common genetic variants account for a substantial fraction of 
population liability to schizophrenia as well as other psychiatric disorders3,9,18–20.  For instance, 
the most recent GWAS of schizophrenia in a sample of 320,404 participants found 287 risk loci 
across the human genome (see Figure 1A).  These loci exceeded a stringent, international 
threshold for statistical significance (p<5x10-8), which corrects for tests of multiple hypotheses.  
While these landmark studies have revealed novel discoveries about psychiatric disorders, 
they also raised a new challenge: determining the physiological relevance of associated 
genomic loci. 
 
Polygenic influences on schizophrenia offer a powerful entry point for discovering disease 
etiology, when combined with data about how genes are used in specific brain cell types.  
Gene expression from a common nuclear genome is largely what generates cellular diversity 
in the body, and newly available technology allows measurement of gene expression (RNA 
molecule counts) from individual cells or the nuclei within those cells via single nucleus RNA 
sequencing (snRNAseqi).  Moreover, computational clustering of cellular transcriptomes in 
snRNAseq datasets readily reveals known as well as novel cell types, and consequently this 
approach is being used to create comprehensive atlases of cell types in human and animal 
organs10,21,22.  Recently, a landmark snRNAseq dataset for the human brain was released6.  
Previous human studies had surveyed only small numbers of brain regions.  Thus, Siletti et 
al.’s6 analysis of 106 brain regions and 3,369,219 individual nuclei is by far the most 
comprehensive human snRNAseq dataset available to date.  This dataset afforded statistical 
clustering of 461 cell types in normal human brains, 378 of which are neuronal.  The right side 
of Figure 1A, adapted from Siletti et al., shows these 461 cell types as the ends of the leaves 
of a dendrogram.  Using this critical dataset which specifies gene expression in hundreds of 
healthy, adult human brain cell types, we were able to map the polygenic risk for 
schizophrenia9 (as quantified in schizophrenia GWAS) to specific human brain cell types and 
their anatomical locations.  This was accomplished in an entirely data-driven manner using the 
leading available genome-wide and brain-wide datasets and is therefore “unbiased” with 
respect to researcher-driven hypotheses about which cell types should be associated with 
schizophrenia. 

 
i “scRNAseq” when single cells are used instead of snRNAseq when single nuclei within cells are used. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 22, 2024. ; https://doi.org/10.1101/2024.10.21.24315695doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.21.24315695
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

 
Figure 1. Approach for systematically testing 461 human brain cell types for association with 
schizophrenia.  We tested whether genes associated with schizophrenia were preferentially expressed 
in one or more brain cell types.  A. We used two types of human genome-wide data.  Left: Genome 
wide association study (GWAS) results from the most recent (2022) schizophrenia GWAS which 
identified 287 loci for schizophrenia in a sample of 320,404 participants.  GWAS results are depicted in 
a Manhattan plot with the chromosomal position on the x-axis and statistical significance (-log10(p)) on 
the y-axis, for each genetic variant tested.  Right: cell type data from the most comprehensive human 
brain snRNAseq study to date (3,369,219 cells from 106 brain regions, clustered into 461 statistical 
clusters, referred to here as cell types).  For the 461 cell types, colors reflect superclusters as assigned 
in Siletti et al.  Here we used grayscale to denote non-neuronal cell types and rainbow colors for 
neuronal cell types (see Figure 2 for complete color coding).  B. Each of the 461 cell types was tested 
for association with schizophrenia.  As detailed in the methods, we first calculated ‘specificity’ scores 
using established procedures to quantify the fraction of each gene’s total expression that was found in 
each cell type (for 16,641 genes, see Methods).  Specificity values ranged from 0-1, and for each gene 
the specificity scores summed to 1 over the 461 cell types (by definition).  MAGMA was first used to 
quantify schizophrenia associations for each gene (as applied to GWAS data).  Next, for each of the 
461 cell types (analyzed separately), we used regression (implemented in MAGMA) to test for linear 
relationships between specificity scores and schizophrenia associations of those genes, while 
correcting for known potential confounding variables. C. Results are depicted first as a cell type profiles 
(here for schizophrenia), then associated cell types are described with functionally relevant details (e.g., 
brain structure, neurotransmitters, receptors, cortical layer localization).  
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Present study  
 

Based on the work of Bryois et al., Watanabe et al., and Skene et al. (who used rodent data 
and more limited human snRNAseq datasets23–25 available at the time), we used MAGMA26,27 
software for analysis of GWAS data to analyze the schizophrenia GWAS results implementing 
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gene property analysis.  We determined the cell types that had gene usage that was positively 
correlated with schizophrenia gene associations, while adjusting for potential confounders (e.g. 
gene size, gene density; see methods for details).  We then used conditional analyses to 
empirically select representative cell types among all significant results for further discussion.   
 
The 461 cell types tested here are hierarchically organized and numerically close cell types 
tend to have similar gene expression profiles.  This means that there are not 461 statistically 
independent cell types and that Bonferroni correction is overly stringent.  Nevertheless, we 
implemented Bonferroni correction to be conservative.  This also means that significant cell 
types may be significant for two reasons: either they are driving a phenotypic association (truly 
associated), or they appear associated because they share overlapping gene expression with 
a cell type (or types) driving associations.  The latter scenario (correlated statistical tests) is a 
common problem relevant to diverse domains of research, and both statistical and 
experimental procedures can clarify truly associated cell types.  Here, we used conditional 
analysis (see Methods), the leading statistical approach for handling this issue in this type of 
analysis24,28.  In brief, each cell type was tested for association while controlling for each of the 
other cell types.  Interpretation-wise, it is most conservative to only focus on these ‘significant 
independent’ cell types, hence our primary focus on the significant independent cell types in 
this manuscript.  
 
Summarizing, we used robust statistical procedures to combine two massive, unbiased, 
genome-wide and brain-wide datasets to systematically test which brain cell types were linked 
with schizophrenia.  To validate this approach and determine disease-specificity, we also 
analyzed four comparison phenotypes (alcohol consumed per week29, sleep duration per 
night11, multiple sclerosis30, and Alzheimer’s disease31).  Results from these analyses matched 
prior expectations (e.g. of immune cell relevance to multiple sclerosis) and also revealed novel 
cell type associations.  In sum, these findings yielded a data driven map of the cellular etiology 
of schizophrenia, demonstrated clear extensibility to other brain phenotypes, and suggested a 
tractable roadmap toward personalized psychiatric treatment using low-cost genotype data.  
Throughout this manuscript, please refer to Supplementary Table S1 for more complete 
information about the 461 cell types analyzed in this report (numbered 0-460, per Siletti et al.6).   
 
Schizophrenia associated cell types 
 

Of the 109 total cell types that were significantly associated with schizophrenia, there were ten 
significant independent cell types (see Figure 2), as follows.  The most significant cell type 
was a subtype of somatostatin interneurons (#239, p=4.3x10-17).  The next two significant 
independent cell types were also cortical: PAX6 interneurons distributed widely across the 
cortex (#278, p=1.5x10-15) and an excitatory cell type found almost exclusively in retrosplenial 
cortex (#132, p=2.1x10-13, 91% of cells from retrosplenial cortex).  Note that the PAX6 
interneurons (#239) were annotated as GABA/VGLUT3, indicating co-expression of GABA and 
glutamate, which is relatively uncommon.  Fourth and fifth were two distinct inhibitory 
amygdala neuron types #233 (p=2.8x10-12) and #423 (p=9.0x10-10), see below for more details.  
The remaining five cell types had neurons primarily from the prefrontal cortex (#404, p=7.3x10-

8, specifically from Broadmann area 14), thalamus (#440, p=1.4x10-5), cortex-wide excitatory 
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neurons annotated to deep layer 6b (#98, p=2.2x10-5), and two excitatory hippocampal neuron 
types (#179 p=2.6x10-5 and #202 p=1.1x10-4).  In addition to these ten significant independent 
cell types, other notable significant cell types were medium spiny neurons in the striatum (i.e., 
caudate and putamen, #222), cortex-wide excitatory neurons in layer 2/3 (#123), as well as cell 
types preferentially located in visual cortex (#133), septal nuclei (#428), superior colliculus 
(#433, #367), and substantia innominata (#232). 
 
Figure 2.  Cell type associations for schizophrenia reveal known and novel cell types for 
schizophrenia.  A. Schizophrenia results for 461 cell types are depicted in a scatterplot, with cell type 
number on the x-axis and statistical significance on the y-axis (-log10(p)), such that higher values are more 
statistically significant).  The horizontal gray line denotes Bonferroni correction for the 461 cell types 
(p<.0001).  Numbers above points are cell type numbers and numbers within points are supercluster 
numbers.  Larger points denote the ten cell types that were ‘significant independent’ cell types after 
conditional analyses (see Methods).  B. The top cell type for schizophrenia (#239) aligned to somatostatin 
interneuron subtype SST.ix (from Fang et al.) for which cortical layer localization had been determined using 
spatial transcriptomics.  Thus, we inferred that cell type #239 was likely most abundant in cortical layer 5, 
but also found in cortical layers 6 and 2/3, whereas cell type #242 was likely most abundant in layers 2/3. 
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Interneurons  
 

For schizophrenia, arguably the most widely replicated postmortem tissue finding involves 
aberrant inhibitory neurons in the cortex (interneurons)32,33.  While both the parvalbumin and 
somatostatin (SST) subclasses of interneurons have been implicated, the most recent 
evidence shows the greatest abnormalities in somatostatin interneurons32,33.  Thus, the 
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present report of the strongest association with somatostatin (SST) interneurons, and many 
significantly associated interneurons (including parvalbumin), is concordant with leading prior 
findings.  We extended these findings by specifying more subtle subtypes of somatostatin 
interneurons and by determining the probable cortical layers for these schizophrenia-
associated somatostatin interneuron subtypes (#239 and #242ii) using additional snRNAseq 
and spatial transcriptomics datasets. 
 
Specifically, recent studies have identified far more interneuron subtypes than were 
distinguishable using traditional markers.  These transcriptomically-defined cell types reside 
preferentially in specific cortical layers in both humans and mice7.  In Figure 2B, with a plot 
adapted from Fang et al.7, the cortical layer distribution of human interneuron subtypes is 
shown (i.e. cortical layers 1-6).  We aligned somatostatin subtypes from the Linnarsson6 and 
Zhuang7 laboratories, and found that #239 and #242 (from Siletti et al.) best matched SST.ix 
and SST.i, respectively (from Fang et al.), and that these cell types differed in cortical layer 
distribution.  #239 somatostatin interneurons were most likely to be localized to cortical layer 5 
(and less so to layers 6 and 2/3), while #242 somatostatin interneurons were most likely to be 
in layers 2/3.  Alignment to two mouse datasets8,34 yielded similar cortical layer localization 
results, providing additional support for putative layer localizations.  Contextualizing these 
findings, we note that schizophrenia postmortem tissue studies have primarily identified deficits 
in upper cortical layers, particularly deep layer 335,36, which may be consistent with the primary 
localization of cell type #242 and, to a lesser extent, #239.  Given known disruptions in sensory 
processing and integration in schizophrenia, it is conceivable that normal cortical layer 5 
integration and output functions37 are disrupted in schizophrenia due to abnormalities in layer 5 
somatostatin interneurons, of the #239 type. 
 
Amygdala 
 

Within the amygdala, which is a structure known to have diminished volume in schizophrenia38, 
we found 17 significant cell types (including both inhibitory and excitatory), two of which were 
independent significant cell types (#233 and #423, both inhibitory).  Cell type #233 was 
annotated by Siletti et al as a medium spiny neuron of the “eccentric” subtype, a recently 
discovered subtype of medium spiny neurons10.  This general class of neurons – medium spiny 
neurons – has been frequently linked to schizophrenia, and medium spiny neurons are the 
dominant inhibitory neuron type of the striatum (caudate and putamen).  In addition to the two 
major subtypes of medium spiny neurons, which are well characterized based on their 
differential expression of dopamine receptors (D1 versus D2), recent transcriptomic studies 
made clear that a third subtype of medium spiny neurons also exists.  These ‘eccentric’ 
medium spiny neurons had evaded detection because classical D1/D2 markers do not reliably 
differentiate the newly named ‘eccentric’ medium spiny neurons10.  Thus, the linking of this 
eccentric medium spiny neuron type (#233) to schizophrenia demonstrates multiple benefits of 
large-scale transcriptomic studies and the unbiased approaches used here to link cell types to 

 
ii We also examined cell type #242 because it was nearly as significant as the top cell type (#239).  This second-most 
significant cell type (#242) was also associated with other psychiatric phenotypes, was larger than #239 (i.e., encompassed 
~3x more cells in SileF et al), and it was the most significant cell type in our analysis of the 2018 schizophrenia GWAS.  Thus, 
we thought #242 was also a strong candidate for psychiatric relevance. 
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schizophrenia.  First, scRNAseq studies made possible the detection of the relatively rare 
(~4%) but clearly transcriptomically distinct “eccentric” medium spiny neuron subtype10.  
Second, the brain-wide Siletti et al snRNAseq dataset used here shows that neurons that 
transcriptomically resemble all three subtypes of medium spiny neurons (D1, D2, and 
eccentric) are also found outside of the striatum.  And third, this approach links these newly 
discovered, relatively rare, and extra-striatal eccentric medium spiny neurons to schizophrenia.   
Such a discovery would not have been possible without these large, comprehensive, and 
“unbiased” datasets that allow us to see more clearly the gaps in prior knowledge, and to 
discover which newly filled gaps might also provide critical information about schizophrenia 
etiologyiii.   
 
The second significant independent amygdala cell type (#423) is inhibitory and while found 
predominately in amygdala (51% of cells), is also present in the thalamus (20%), 
hypothalamus (15%), and other brain regions.  Notable gene enrichments for this cell type 
include a cytochrome p450 gene (CYP19A1) responsible for the biosynthesis of estrogen, a 
sodium channel subunit gene (SCN5A), a GABA receptor A subunit gene (GABRQ), and 
neurotensin, a neuropeptide that modulates dopamine and other neurotransmitters relevant to 
psychiatric disorders, which has been investigated as a therapeutic target for 
schizophrenia39,40.  Other amygdala cell types associated with schizophrenia, but not deemed 
independent after conditional analyses, include medium spiny neurons of the D1 (e.g. #220) 
and D2 (#217) subtypes. 
 
Hippocampus 
 

Our hippocampal findings provide molecular details that can augment and extend 
schizophrenia imaging and postmortem tissue findings.  Prior work showed lower average 
volume of the hippocampus and smaller individual hippocampal neurons, as reported in meta-
analyses41.  Here, we have identified specific neuron types that may underlie these 
hippocampal volume reductions in schizophrenia.  Of the 86 neuron types located primarily in 
the hippocampus (from Siletti et al.’s data6), seven were significantly associated with 
schizophrenia in our analyses.  Two of those seven significant hippocampal neuron types were 
significant independent cell types after conditional analyses (#179 and #202).  Cell type #179 
is an excitatory neuron type (VGLUT1) and contributing cells came from all major subregions 
of the hippocampus (subiculum, CA1-4, dentate gyrus).  Cell type #202 is also excitatory 
(VGLUT1) and contributing dissections encompass all major hippocampal subregions except 
the subiculum.  The present report may also be concordant with prior reports of increased 
hippocampal excitatory (glutamate) neurotransmitter metabolites in individuals with 
schizophrenia42, and based on these results future studies can target more specific subtypes 
of neurons. 
 
 
In sum, the primary anatomical locations for the significant independent schizophrenia cell 
types were three widely distributed across the cortex, two from specific cortical regions 

 
iiiNote that we also found medium spiny neurons from the striatum to be associated with schizophrenia (#222 and #224). 
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(retrosplenial and prefrontal), two from amygdala, two from hippocampus, and one from the 
thalamus.  Of note, the three subcortical structures linked to schizophrenia here (amygdala, 
hippocampus, and thalamus) are precisely the same subcortical structures found to have the 
largest volume decreases in schizophrenia patients as compared to controls (Hedges g of -.66, 
-.46, and -.31, respectively) in a recent meta-analysis of brain volume studies in first-episode 
psychosis43.  Thus, two completely independent, brain-wide, data-driven approaches to 
understanding schizophrenia – one using imaging data43 and the present approach using 
genetic data – pointed to the same three subcortical regions: amygdala, hippocampus, and 
thalamus.  In the next section we consider the cell types and brain regions linked to four other 
phenotypes using this approach.   
 
Contrasting five brain phenotypes 
Prior investigations across different branches of medicine have linked cell types to phenotypes 
using gene expression and GWAS data23–25,44.  We sought to establish whether this new 
human snRNAseq dataset could also afford accurate identification of cell types linked to 
comparison brain-related phenotypes (alcohol consumed per week, sleep duration per night, 
multiple sclerosis, and Alzheimer’s disease; see the Methods for the rationale for selecting 
these phenotypes).  As shown in Figure 3, expected cell type phenotype pairs were found and 
are discussed below (see Supplementary Tables 2-5 for full results).    
 
Figure 3.  Distinct cell type profiles for five phenotypes. Cell-type associations for five brain-related 
phenotypes are depicted in scatterplots, with cell type number (0-460) on the x-axis and statistical 
significance on the y-axis (reported as -log10(p), such that higher values are more statistically 
significant).  Horizonal white lines reflect correction for 461 tests (i.e. p<0.0001).  The first three 
phenotypes (schizophrenia, alcohol consumed per week, and sleep duration per night) yielded neuronal 
cell-type associationsiv.  The two neurological phenotypes (multiple sclerosis & Alzheimer’s disease) 
yielded non-neuronal cell type associations of immune and microglial cell types, respectively. See 
Supplementary Figures 1-4 for larger annotated scatterplots for the comparison phenotypes.   
 

 
ivCommi%ed oligodendrocyte precursors (cOPC) were the most significant non-neuronal cell types for psychiatric phenotypes.  Note that 
Bonferroni correc@on for 461 cell types is overly stringent, and we are not arguing that glia play no role in psychiatric phenotypes. 
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Schizophrenia, Alcohol consumed per week, and Sleep duration per night 
 

We discussed previously the notability of the somatostatin interneuron associations with 
schizophrenia (e.g., #239), given prior findings of somatostatin interneuron abnormalities in 
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schizophrenia32,33.  For alcohol consumed per week, the top cell type was a D2 medium spiny 
neuron (#217, p=1.3x10-9), which also matched prior expectations given that D2 medium spiny 
neurons causally influence alcohol consumption45–49.  For sleep duration per night, the top cell 
type was also a medium spiny neuron, but of the D1 type (#231, p=2.8x10-9).  This finding may 
be consistent with recent findings linking D1-MSNs and sleep, particularly rapid eye movement 
(REM) sleep50.  For sleep duration per night, we also highlight associated cell types from the 
pons (#396, p=1.3x10-6) and medulla (#386, p=5.9x10-6) since these structures are key nodes 
of sleep regulatory circuits51.  Note that these pons and medulla cell types were not associated 
with schizophrenia or alcohol consumption, but rather they are specific among these 
phenotypes for sleep.  Note as well that the sleep phenotype had many associations with the 
newly named “Splatter” supercluster of neurons (described in Siletti et al.6), which includes a 
wide variety of subcortical neuron types.  See Figure 4 for a comparison of the brain regions 
harboring the significant independent cell types for these three psychiatrically relevant 
phenotypes.   
 
Multiple sclerosis and Alzheimer’s disease 
For multiple sclerosis, an autoimmune condition, the strongest association was a T cell type 
(cell type #1, p=6.0x10-20).  The next most significant cell types were B cells (cell type #0, 
p=4.7x10-14) and natural killer cells (cell type #2, p=3.5x10-12).  These results are consistent 
with longstanding understanding of pathogenic T cell involvement in multiple sclerosis, best-
available treatments for multiple sclerosis, and also with more recent findings linking B cells to 
multiple sclerosis52–54.  For Alzheimer’s disease, the most significant cell types were microglial 
(most associated cell type: #6, p=2.4x10-7).  Again, these results are consistent with 
longstanding (>100 years ago) and newer findings.  Specifically, glial alterations were reported 
by Alzheimer in his 1907 neuropathological description of the disease55, prior work established 
that many Alzheimer’s disease genes are preferentially expressed in microglia30, and newer 
therapeutics targeting microglia are being investigated for Alzheimer’s disease44,56.   
 
Figure 4.  Brain locales of origin for the independent significant cell types associated with 
schizophrenia, alcohol consumed per week, and sleep duration per night.  Inhibitory cell types are 
depicted in blue, and excitatory cell types are in red, with saturation of color denoting statistical 
significance.   Cell type numbers are given after brief descriptions.  Unless an asterisk is present, the 
regions depicted were the source of >50% (and usually much >50%) of cells for a particular 
transcriptomic cell type.  If there are two excitatory or two inhibitory cell types for a single brain 
structure, color saturation corresponds to the more significant cell type.  If both excitatory and inhibitory 
cell types are associated with a single structure, then the fill of the structure denotes the more 
significant association (as opposed to the border).  For example, there are two amygdala cell types 
associated with alcohol per week and the inhibitory cell type #217 is more significant (hence the 
blue/inhibitory fill). BA=Broadmann area, SST=somatostatin, PAX6=paired box 6 gene, VIP=vasoactive 
intestinal peptide, Inf=inferior.  Cell type #278 is annotated as GABA/VGLUT3. 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 22, 2024. ; https://doi.org/10.1101/2024.10.21.24315695doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.21.24315695
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

 
 
 
 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 22, 2024. ; https://doi.org/10.1101/2024.10.21.24315695doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.21.24315695
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

Statistical power requirements 
 

We also sought to determine how the statistical power of individual GWAS influenced our 
detection of cell type associations, hypothesizing that poorly powered GWAS might not afford 
discovery of cell type associations.  We further hypothesized that successive GWAS with 
increasing statistical power (as evidenced by increasing numbers of loci detected) would also 
afford increasing numbers of associated cell types until most of the relevant cell types were 
associated (or until “saturation” was afforded by adequately powered GWAS).  Saturation 
would be indicated by a leveling off in the number of associated cell types.  Thus, we re-ran 
our primary analysis on four schizophrenia GWAS with progressively increasing sample sizes 
(and statistical power), ranging from a 2011 GWAS (N=21,865) to the most recent GWAS 
(N=320,404)9,19,20,57.  Figure 5 shows results consistent with our hypotheses.  The smallest 
GWAS revealed no significant cell type associations in our analysis, though it was adequately 
powered to detect five GWAS loci.  By contrast, the subsequent schizophrenia GWAS afforded 
detection of 63, 90, and then 109 cell types, corresponding to discovery of 108, 145, and then 
287 loci as reported in the primary publications9,19,20.  Thus, we demonstrated that cell types 
can be linked to psychiatric phenotypes with this approach when adequately powered GWAS 
are available, and that 
“saturation”, of cell type 
discovery appears to occur at 
much smaller sample sizes than 
“saturation” of loci (predicted to 
saturate at >10,000 associated 
variants for psychiatric 
disorders4,5).  The plateauing of 
associated cell types suggests 
that relevant biological features 
are being captured at the cell 
type level, via aggregation of 
polygenic signal into cell types. 
 
Figure 5. Demonstration of 
required statistical power of the 
GWAS for detecting cell type 
associations.  A. Results for four 
successive, increasingly larger, and 
better powered, schizophrenia 
GWAS.  Horizontal lines in all plots 
denote Bonferroni corrected statistical 
significance for 461 cell types 
(p<.0001). B. All four sets of results 
superimposed with loess lines in red.  
C. In this range of sample sizes for 
schizophrenia GWAS, the number of 
loci detected continues to increase 
steeply, but the number of cell types 
plateaus. 
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Towards a cellular psychiatric taxonomy  
 

This work demonstrates the possibility of building a taxonomy for psychiatric disorders based 
on quantitative evaluation of cell types.  Figure 6A illustrates this idea for the five examined 
phenotypes: schizophrenia, alcohol consumed per week, sleep per night, multiple sclerosis, 
and Alzheimer’s disease.  The proposed cellular taxonomy naturally structures future 
exploration, both statistical and experimental.  As shown in Figure 6B, future statistical 
investigations can test for evidence consistent with schizophrenia-linked cell types acting 
together.  For example, particular combinations of cell types act together in small local circuits, 
while others function together through longer-range projections.  Pairs, triplets, or any other 
combination of cell types may be tested together for associations with schizophrenia.  Figure 
6C depicts another way that cell-type associations with schizophrenia may ultimately improve 
schizophrenia treatment.  By examining the molecular properties of schizophrenia-associated 
neurons (e.g. neurotransmitter usage, receptor expression, etc.), scientists might repurpose 
currently available drugs, or design new drugs, to target these cell types, thus modulating 
specific dysfunctional brain circuits.   By examining other cell types for the expression of 
relevant receptors, it may also be possible to predict side effects.  Perhaps most excitingly, 
future work might even parse genetic risk for schizophrenia at an individual level using cell-
type or circuit-level polygenic scores.  The point of this endeavor is not to explain the most 
phenotypic variance (as is the goal of full-genome polygenic scores), but rather to predict the 
most vulnerable cell types for a given individual, and to accordingly tailor treatment.  Note that 
the cost of these individualized predictions should be minimal, requiring only GWAS 
genotyping (<$50 USD) and analysis (extremely inexpensive after development of algorithms; 
i.e., ~$150 USD and subsequently decreasing).   
 
Figure 6.  A cellular taxonomy for brain phenotypes maps shared and non-shared genetic 
influences in a mechanistically informative manner, and implies next steps toward deeper 
mechanistic understanding of schizophrenia as well as novel, personalized treatments.  The 31 
superclusters are color coded as in Figure 2.  A. Significant independent cell types are depicted for the 
five analyzed phenotypes.  Given that psychiatric disorders have shared and non-shared genetic 
influences; this approach may reveal the cellular (and therefore mechanistic) relevance of these shared 
and non-shared cell type associations.  For example, shared or ‘pleiotropic’ cell types include cortical 
interneurons (#239) and excitatory retrosplenial cortex neurons (#132).  Regarding non-shared cell 
types, sleep-specific associations of pons (#396) and medulla (#386) “splatter” neurons are notable. 
Future work may extend to additional psychiatric disorders or subtypes of psychiatric disorders (e.g. 
positive, negative, and/or disorganized symptoms of schizophrenia).  B. Statistical follow-up 
approaches include testing for joint association of cell types known to function together in circuits. C. 
Experimental follow up approaches include testing of drugs as predicted by gene expression in 
associated neuron types. Examples of predicted targets, in three schizophrenia associated cell types 
(#132, #239, #278), are given for illustration purposes, but data afford much more extensive 
predictions, for all cell types. 
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Discussion 
 
Major scientific advances often depend on newly available data obtained either in greater 
detail or scale, or via combined datasets capable of yielding novel insights.  The vision and 
perseverance of leaders of the Psychiatric Genomics Consortium (PGC) enabled discovery of 
thousands of specific risk loci for schizophrenia and other psychiatric disorders, using 
unprecedented sample sizes (>1 million participants)9,18,19,29.  Combining the PGC 
schizophrenia dataset with another landmark data resource, a single nucleus RNA sequencing 
(snRNAseq) dataset of 3,369,219 unique cells from 106 human brain regions6, we were able to 
use robust analytical approaches26 to discover cell types likely to be directly involved in the 
etiology of schizophrenia based on their expression of schizophrenia associated genes.  To 
our knowledge, this is the first time that such a comprehensive catalog of human brain cell 
types has been systematically tested for associations with schizophrenia.   
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Cell type associations consistent with prior findings (discussed throughout the manuscript) lend 
confidence to our results, but novel findings can broaden our understanding of these disorders.  
Highlighting just two examples, we note that fear and the sense of self are two symptom 
domains that are clinically important for many patients with schizophrenia.  Indeed, fear is one 
of the defining emotional features for many who suffer from schizophrenia and the amygdala is 
critical for fear processing.  Thus, the amygdala cell types reported here (#233, #423) may be 
causally linked to the maladaptive fear that causes so many problems for individuals with 
schizophrenia.  A more amorphous, but nevertheless clinically relevant and historically notable 
feature of schizophrenia concerns distortions in the sense of self.  Consequently, it is 
noteworthy that we discovered a highly associated cell type (#132) in a brain region 
(retrosplenial cortex) that is critical for the sense of self.  Specifically, recent findings showed 
that a particular rhythm in the retrosplenial cortex causes dissociation58, meaning alterations in 
one’s sense of self.  In other words, we found that neurons in a brain region critical for an 
integrated sense of self are associated with schizophrenia, a disorder noted for alterations in 
the sense of self.  Moreover, this retrosplenial neuron type is significantly associated with 
many psychiatric phenotypes, and thus may represent a common node of dysfunctional 
processing in psychiatric disorders. 
 
Historically, classifying psychiatric disorders has proven challenging, generating enduring 
debate about psychiatric nosology.  Our final figure depicts cell type profiles for the five 
phenotypes analyzed here, providing a proto-taxonomy for these phenotypes.  Here we 
suggest that cell typologies may prove the right level of analysis for a stable taxonomy 
of brain disorders; making available the appropriate measurements and organizing 
principles.  What remains to be determined is the relevance of developmental versus adult 
cell types to different disorders, the identifiability of subtypes of disorders with this approach, 
and the eventual impact of this research on classification of psychiatric disorders. 
 
A cellular classification approach might be further refined using GWAS of different subtypes of 
psychiatric disorders.  Appealingly, the long-postulated heterogeneity within psychiatric 
disorders (e.g., the ‘schizophrenias’) may be wrangled into comprehensibility with these 
approaches.  Different cell type associations might be identified, for example, for major 
symptom domains of schizophrenia, including positive, negative, and disorganized symptoms.  
Further, by specifying molecular properties of etiologically relevant cell types for different 
disorders (e.g. receptors and neurotransmitters) this classification system should naturally 
nominate treatment targets, as well as relevant therapeutics.  By analogy, quantifying and 
organizing electrons and protons allowed classification of elements into the periodic table and 
thus generated novel predictions about elemental interactions.  A cell-typology for psychiatric 
disorders may similarly afford novel predictions about which medications and treatments are 
most likely to be effective for each disorder.  One such approach involves developing 
polygenic risk scores for cell types or circuits.  Individual level metrics of genetic risk, polygenic 
risk scores, are already available for multiple psychiatric disorders.  Typically, polygenic scores 
use variants from across the genome to maximize accurate prediction of risk.  To determine 
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the best medications for individuals, however, cell-type restricted polygenic scores may 
eventually prove more useful. 
 
Limitations 
There are important limitations to consider regarding this approach and currently available 
datasets.  First, this approach cannot discover cellular abnormalities resulting exclusively from 
environmental influences. Conversely, this “limitation” also implies that reported cellular 
associations do not result from environmental risk factors, treatment, or consequences of living 
with schizophrenia.  Second, although these datasets represent landmark achievements in 
GWAS and transcriptomically-derived cell types, they have important limitations, which 
diminish the ultimate power of this approach.  Briefly, this snRNAseq dataset6 did not include 
all brain regions, the female sex, or non-European ancestry individuals.  Specific brain regions 
not sampled in Siletti et al. which may be particularly important for schizophrenia include the 
dorsolateral prefrontal cortex (DLPFC Broadmann area 9) and the ventral tegmental area of 
the midbrain (VTA).  Further, since this snRNAseq dataset came from adult humans, an 
important next step will be conducting the same analyses using developmental datasets.  For 
example, another dataset from the Linnarsson group59 includes human brains from post-
conception weeks 5-14, a time period critical for neurogenesis and potentially of importance for 
psychiatric disorders.   
 
The statistical methods used here were selected for their robustness to false positives and 
prior use with transcriptomic datasets, but such models may be further optimized, for example 
via inclusion of data from exome sequencing studies of schizophrenia.  Further, we used a 
straightforward method of linking genetic variants to genes based only on proximity, and thus 
longer-range effects of variants on genes were omitted from our analyses.   Finally, to the 
extent that the central assumption of our analysis method – that cell types that make greater 
relative use of schizophrenia-associated genes than other cell types – is incorrect, cell type 
associations reported may be incorrect. 
 
In conclusion, the results reported here are possible thanks to a combination of natural 
endowment (the genome as a catalog of biological elements) and human technology (i.e., 
modern advances which allow us to query the genome – in both RNA and DNA forms – in 
great detail).  Together, these results provide a new framework for understanding the cellular 
basis of psychiatric disorders.  Given the detailed molecular information available about each 
cell type (e.g. receptors, neurotransmitters, neuropeptides), this work also provides a roadmap 
toward novel therapeutics, better use of existing medications, and truly personalized medicine.    

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 22, 2024. ; https://doi.org/10.1101/2024.10.21.24315695doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.21.24315695
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

SUPPLEMENTARY FIGURES 
 
 
Supplementary Figure 1.  Cell type associations for alcoholic drinks consumed per 
week. 
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Supplementary Figure 2.  Cell type associations for sleep duration per night. 
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Supplementary Figure 3.  Cell type associations for multiple sclerosis 
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Supplementary Figure 4.  Cell type associations for Alzheimer’s disease 
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Supplemental Figure 5.  Information about the number of dissections contributing to 
each of the 461 cell types.  For example, interneurons (cell types #236-296), shown in blue 
shades, are among the cell types that are found in the largest number of dissections (top) and 
no single dissection accounted for >25% of any interneuron type, and for most the top 
contributing dissection accounted for <10% of the cells in that cell type (bottom).   The number 
of contributing dissections for these widely-distributed interneuron cell types was 56-84 out of 
106 possible dissections.   
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METHODS 
 
Selecting comparison phenotypes 
 

In addition to schizophrenia, we selected four comparison phenotypes (alcohol consumed per 
week, sleep duration per night, multiple sclerosis, and Alzheimer’s Disease).  These 
phenotypes met the following criteria: 1) they were polygenic, and 2) well powered GWAS of 
those phenotypes were available (both conditions are required for this method).  Regarding 
psychiatric comparison phenotypes, we wanted to mitigate concerns about the reliability of 
psychiatric diagnosesv, so we chose alcohol consumed per week and sleep duration per night 
because they are readily quantifiable (albeit noisily).  The two neurological phenotypes 
(multiple sclerosis and Alzheimer’s disease) were selected because have considerably 
different etiology from psychiatric disorders60, and consequently they provided an opportunity 
to observe greater contrasts among this set of five brain-related phenotypes.  Genome-wide 
association studies (GWAS) results used here were from the best powered GWAS of these 
phenotypes available at the time of analysis (Nov 2022-July 2023).  The relevant sample sizes 
and source publications were as follows: schizophrenia9 (N=320,404), alcohol per week 
(N=2,428,851), sleep duration per night11(N=446,118), multiple sclerosis30 (N=41,505), and 
Alzheimer’s disease31 (N=788,989).  Given that well powered GWAS are required for these 
analyses, we used only European ancestry samples since adequately powered GWAS are not 
available for any other ancestry, for all these phenotypes.     
 
Gene expression data 
 

The gene expression data from Siletti et al. is publicly available.  Briefly, Siletti et al. sampled 
3,369,219 nuclei from 106 different dissections in three postmortem brain donors using high-
throughput 10X Chromium single-nucleus RNA sequencing.  The nuclei were then 
computationally clustered into 31 superclusters and 461 cluster.  The 461 clusters are referred 
to as “cell types” in our paper.  For data processing, we first applied a transformation to the 
single-cell expression data to compress the scale and reduce outliers (as is typical for such 
data, here we used 𝑙𝑛(1 + 𝑥)), and obtained the mean transformed expression for each gene 
in each cell type.  We only kept protein-coding genes from the National Center for 
Biotechnology Information (NCBI) and removed unexpressed genes, genes with non-unique 
names, and genes within the MHC region (chromosome 6 base positions 25,000,000-
34,000,000).  For MAGMA use, we mapped Ensemble IDs to Entrez gene IDs with the 
Genome-Wide Association for Human package ("org.Hs.eg.db") in Bioconductor (v3.12.0).  
Genes without unique Ensemble-Entrez mappings were removed.  A metric of gene 
expression specificity was then calculated by dividing the transformed expression of a gene in 
a cell type by the sum of the transformed expression of that gene across all cell types, yielding 
a value between 0 and 1 that characterizes the extent to which a particular gene is expressed 
in a particular cell type.  For example, in hippocampal neuron type 202, 12% of the total 
transformed gene expression of the GUCA2A gene is in this cell type, so the specificity score 
for GUCA2A in cell type 202 is 0.12.  If a hypothetical gene were completely evenly expressed 

 
v LimitaQons notwithstanding, psychiatric diagnoses are moderately reliably diagnosed across Qme and raters.  Further, 
unbiased clustering approaches applied to symptom level and geneQc data support the uQlity and validity of such diagnoses. 
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across all cell types, then the specificity score for that gene, in all cell types, would be 1/461 = 
0.0022. 
 
MAGMA overview 
 

MAGMA (v1.10) is software designed for gene and gene set analysis of GWAS data, and it 
has been extensively tested to ensure appropriate control of type I errors and adjustment for 
potentially confounding variables26,61.  MAGMA uses a regression framework and employs a 
two-stage procedure to test for associations, first calculating gene level p-values and then 
using those gene level p-values to compute p-values for collections of genes.  Collections of 
genes can either be analyzed as gene sets (using binary coding of genes that are in or out of 
the set) or as ‘gene properties’ meaning quantitative values assigned to all genes, as we have 
here (i.e., specificity values for each gene, in each cell type).  We employed the gene property 
analysis rather than arbitrarily imposing a threshold on the specificity scores to define a gene 
sets for each cell type.  We also used the optional third stage, conditional analysis, to specify 
likely independent associations among all significant associations.   
 
MAGMA gene level analysis 
 

We first used MAGMA to map each SNP to a gene if the SNP was located within 35 kilobases 
(kb) upstream to 10 kb downstream of that gene.  We then used MAGMA’s SNP-wise mean 
(snp-wise=mean) model to conduct gene analysis while adjusting for linkage disequilibrium 
(LD).  LD data was from the European ancestry panel of 1000 Genomes phase 362.  In gene 
analysis, the test statistic of a gene was calculated as the sum of squared SNP z-statistics, 
where z-statistics were the probit transformation of SNP p-values from GWAS.  Because the 
test statistic for each gene followed a mixture of independent χ!" distributions under the null 
hypothesis, we calculated gene p-values (each representing the association between a 
phenotype and a gene) accordingly. 
 
MAGMA gene property analysis 
 

MAGMA’s gene property analysis represents the association that a gene has with a given 
phenotype as a z-score 𝑍# = probit(1 − 𝑃𝑔) where 𝑃# is the p-value of a given gene from the 
gene analysis step in MAGMA.  Per MAGMA default, we truncated z-scores that were 3 
standard deviations below or 6 standard deviations above the mean to prevent outliers from 
biasing analysis results.  We then conducted the gene property analysis via a linear regression 
model 𝑍 = β$ + 𝑃%β! + 𝐶β" + 𝜀	(𝑒𝑞. 1), where 𝑍 is the aforementioned z-scores of each gene, 
𝑃% is the specificity of each gene in a given cell 𝑐, 𝐶 represents the covariates, and 𝜀	is 
modeled as a multivariate normal accounting for the LD between genes.  Per MAGMA default, 
specificity values were truncated if they were 5 standard deviations from the mean.  In our 
analysis, covariates were gene size, gene density, sample size, inverse mean minor allele 
count, and their log values.  Lastly, we conducted a one-directional test of the coefficient β! as 
a test of the association of each cell type with each phenotype.  For each phenotype (e.g., 
schizophrenia), this analysis was run 461 times (i.e., once for each cell type). 
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MAGMA conditional analysis 
 

To specify likely independent signals from among all significant results (i.e. all significant cell 
types for each phenotype), we conducted pairwise conditional analyses using MAGMA.  Here, 
we used the linear regression model 𝑍 = β$& + 𝑃%!β!

& + 𝑃%"β"
& + 𝐶β'′ + 𝜀	(𝑒𝑞. 2), which is the 

same as the one from gene property analysis except that the model here includes two cell 
types of interest.  We then conducted forward stepwise selection as detailed in Watanabe et 
al.23 to arrive at a set of “independent significant” cell types.  For cell type 𝑐! and 𝑐", let us 
denote the p-value associated with β!&  in 𝑒𝑞. 2	be 	𝑝%!,%" and the one associated with β"&  be 
	𝑝%",%!.  We also denote the marginal p-values associated with the respective cell types from 
gene property analysis be 𝑝%! and 𝑝%".  We define proportional significance, which portrays the 
remaining significance of a cell type 𝑐! after conditioning on 𝑐", as 𝑃𝑆%!,%" such that 𝑃𝑆%!,%" =
)*+,	(/#!,#")
)12#(/#!)

.  In forward stepwise selection, the set of independent significant cell types (denoted 
as 𝑆) initially only contained the most marginally significant cell type.  The next most significant 
cell type 𝑐 was added to the set 𝑆 in succession only if it satisfied two scenarios:  First, if both 
𝑃𝑆%,3, 	𝑃𝑆3,% ≥ 0.8 for all 𝑠	 ∈ 𝑆, the associations of cell type 𝑐 and any 𝑠	 ∈ 𝑆 with a given 
phenotype were considered independent.  Second, if 0.5 ≤ 𝑃𝑆%,3 < 0.8	, 0.5 ≤ 	𝑃𝑆3,% < 0.8, and 
𝑝% ≤ 0.05 for all 𝑠	 ∈ 𝑆, the associations of cell type 𝑐 and any 𝑠	 ∈ 𝑆 were only partially 
explained by each other, while the majority of the signals were independent.  Cell types not 
included in the set 𝑆 can still play an important role in the etiology of a phenotype; however, 
the selection procedure excluded them because their association cannot be distinguished from 
the association of cell types in 𝑆.  Note that in some rare cases, cell type with a lower marginal 
significance can have a higher conditional significance.  When 𝑃𝑆%!,%" < 0.2 yet 𝑃𝑆%",%! ≥ 0.2 for 
cell type 𝑐! and 𝑐"	where	𝑝%! < 𝑝%", the order of the selection process was reversed for the two 
cell types. 
 
Considerations regarding anatomical annotations 
 

Throughout this manuscript, we refer to the anatomical locations of cell types.  These locations 
were reported in Siletti et al., whose procedures involved sampling from of 106 separate 
human brain regions (“dissections”), and to which each of the 3,369,219 cells in their study can 
be traced.  Note, however, that it is rare for any of the 461 cell types to be exclusively from any 
one dissection or brain region.  Indeed, one goal of such transcriptomic surveys is to reveal the 
ways in which transcriptomically similar cells are found in different areas of the brain.  
Supplementary Figure 5 summarizes information about the dissections contributing to each 
cell type.  For example, interneurons, which are inhibitory neurons found widely across the 
cortex (cell types #236-296 in Siletti et al.) derive from dozens of cortical (and even some 
subcortical) regions.  Accordingly, the single dissection contributing the most cells to any of the 
interneuron clusters typically accounts for <10% of cells in the cluster.  Conversely, cell type 
#202 is from just two dissections, both in the hippocampus.  For brevity in the manuscript, we 
refer to cell types as “hippocampal” or “amygdala”, etc. when cell types derive primarily from 
that brain region (i.e. >50%, but typically much higher).  Precise information about the 
dissections accounting cells in each cell type is given in Supplementary Table 1, which 
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provides the total number of cells in each cluster and the percentage of cells in that cluster that 
came from each contributing dissection.   
 
Note about cell types / cell nomenclature 
 

Nomenclature for cell types will continue to evolve as the naming and categorization of cell 
types continues.  For clarity, we have not addressed the issue of continuous gradients of 
difference across cell types, but this will be an important area of investigation for future studies.   
 
 
 
 
 
Acknowledgements  
This work was supported by the Jaswa Innovator Award to LD and by the National Institute of 
Mental Health (NIMH) to LD (R01 MH123486 & R21 MH125358). 
 
Author contributions 
L.D. designed the experiment, reviewed all data and analyses, drafted the manuscript, made 
the figures; T.L., M.S, W.L, H.S., N.S, S.V, & H.S. analyzed the data; J.Y., G.W., J.B., L.T., 
B.S.P., B.K., K.D, & W.J.G provided essential expertise; all authors edited and approved the 
manuscript.  
 
Competing interests  
The authors have no competing interests.  
 
Materials & Correspondence 
Correspondence should be directed to L.D. (LaramieD@Stanford.edu) 
 
Data availability 
All datasets used here are publicly available from the primary publications as noted throughout 
the manuscript.   

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 22, 2024. ; https://doi.org/10.1101/2024.10.21.24315695doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.21.24315695
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28 

REFERENCES 
1. Global, regional, and na9onal burden of 12 mental disorders in 204 countries and territories, 1990–

2019: a systema9c analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry 9, 137–
150 (2022). 

2. Hyman, S. E. Revolu9on stalled. Sci. Transl. Med. 4, 155cm11 (2012). 
3. Purcell, S. M. et al. Common polygenic varia9on contributes to risk of schizophrenia and bipolar 

disorder. Nature 460, 748–752 (2009). 
4. Visscher, P. M., Yengo, L., Cox, N. J. & Wray, N. R. Discovery and implica9ons of polygenicity of 

common disease. Science 373, 1468–1473 (2021). 
5. O’Connor, L. J. et al. Extreme Polygenicity of Complex Traits Is Explained by Nega9ve Selec9on. Am. 

J. Hum. Genet. 105, 456–476 (2019). 
6. Sile_, K. et al. Transcriptomic diversity of cell types across the adult human brain. 

2022.10.12.511898 Preprint at haps://doi.org/10.1101/2022.10.12.511898 (2022). 
7. Fang, R. et al. Conserva9on and divergence of cor9cal cell organiza9on in human and mouse 

revealed by MERFISH. Science 377, 56–62 (2022). 
8. Tasic, B. et al. Shared and dis9nct transcriptomic cell types across neocor9cal areas. Nature 563, 

72–78 (2018). 
9. Trubetskoy, V. et al. Mapping genomic loci implicates genes and synap9c biology in schizophrenia. 

Nature 604, 502–508 (2022). 
10. Saunders, A. et al. Molecular Diversity and Specializa9ons among the Cells of the Adult Mouse 

Brain. Cell 174, 1015-1030.e16 (2018). 
11. Dash9, H. S. et al. Genome-wide associa9on study iden9fies gene9c loci for self-reported habitual 

sleep dura9on supported by accelerometer-derived es9mates. Nat. Commun. 10, 1100 (2019). 
12. Substance Abuse and Mental Health Services Administra9on, 2021 Na9onal Survey on Drug Use 

and Health. Key Substance Use and Mental Health Indicators in the United States. 
haps://www.samhsa.gov/data/report/2021-nsduh-annual-na9onal-report (2021). 

13. Tandon, R., Keshavan, M. S. & Nasrallah, H. A. Schizophrenia, “Just the Facts” What we know in 
2008. 2. Epidemiology and e9ology. Schizophr. Res. 102, 1–18 (2008). 

14. Tandon, R., Nasrallah, H. A. & Keshavan, M. S. Schizophrenia, ‘just the facts’ 4. Clinical features and 
conceptualiza9on. Schizophr. Res. 110, 1–23 (2009). 

15. Kadakia, A. et al. The Economic Burden of Schizophrenia in the United States. J. Clin. Psychiatry 83, 
22m14458 (2022). 

16. Hilker, R. et al. Heritability of Schizophrenia and Schizophrenia Spectrum Based on the Na9onwide 
Danish Twin Register. Biol. Psychiatry 83, 492–498 (2018). 

17. Cardno, A. G. et al. Heritability Es9mates for Psycho9c Disorders: The Maudsley Twin Psychosis 
Series. Arch. Gen. Psychiatry 56, 162–168 (1999). 

18. Sullivan, P. F. et al. Psychiatric Genomics: An Update and an Agenda. Am. J. Psychiatry 175, 15–27 
(2018). 

19. Schizophrenia Working Group of the Psychiatric Genomics Consor9um. Biological insights from 108 
schizophrenia-associated gene9c loci. Nature 511, 421–427 (2014). 

20. Pardiñas, A. F. et al. Common schizophrenia alleles are enriched in muta9on-intolerant genes and in 
regions under strong background selec9on. Nat. Genet. 50, 381 (2018). 

21. THE TABULA SAPIENS CONSORTIUM. The Tabula Sapiens: A mul9ple-organ, single-cell 
transcriptomic atlas of humans. Science 376, eabl4896 (2022). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 22, 2024. ; https://doi.org/10.1101/2024.10.21.24315695doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.21.24315695
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29 

22. Zeisel, A. et al. Molecular Architecture of the Mouse Nervous System. Cell 174, 999-1014.e22 
(2018). 

23. Watanabe, K., Umićević Mirkov, M., de Leeuw, C. A., van den Heuvel, M. P. & Posthuma, D. Gene9c 
mapping of cell type specificity for complex traits. Nat. Commun. 10, 3222 (2019). 

24. Skene, N. G. et al. Gene9c iden9fica9on of brain cell types underlying schizophrenia. Nat. Genet. 
50, 825–833 (2018). 

25. Bryois, J. et al. Gene9c iden9fica9on of cell types underlying brain complex traits yields insights into 
the e9ology of Parkinson’s disease. Nat. Genet. 52, 482–493 (2020). 

26. de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of 
GWAS data. PLoS Comput. Biol. 11, e1004219 (2015). 

27. Watanabe, K., Taskesen, E., Bochoven, A. & Posthuma, D. Func9onal mapping and annota9on of 
gene9c associa9ons with FUMA. Nat. Commun. 8, 1826 (2017). 

28. Bryois, J. et al. Gene9c Iden9fica9on of Cell Types Underlying Brain Complex Traits Yields Novel 
Insights Into the E9ology of Parkinson’s Disease. bioRxiv 528463 (2019) doi:10.1101/528463. 

29. Saunders, G. R. B. et al. Gene9c diversity fuels gene discovery for tobacco and alcohol use. Nature 
612, 720–724 (2022). 

30. Interna9onal Mul9ple Sclerosis Gene9cs Consor9um. Mul9ple sclerosis genomic map implicates 
peripheral immune cells and microglia in suscep9bility. Science 365, eaav7188 (2019). 

31. Bellenguez, C. et al. New insights into the gene9c e9ology of Alzheimer’s disease and related 
demen9as. Nat. Genet. 54, 412–436 (2022). 

32. Lewis, D. A., Curley, A. A., Glausier, J. & Volk, D. W. Cor9cal Parvalbumin Interneurons and Cogni9ve 
Dysfunc9on in Schizophrenia. Trends Neurosci. 35, 57–67 (2012). 

33. Dienel, S. J., Fish, K. N. & Lewis, D. A. The Nature of Prefrontal Cor9cal GABA Neuron Altera9ons in 
Schizophrenia: Markedly Lower Somatosta9n and Parvalbumin Gene Expression Without Missing 
Neurons. Am. J. Psychiatry appiajp20220676 (2023) doi:10.1176/appi.ajp.20220676. 

34. Yao, Z. et al. A taxonomy of transcriptomic cell types across the isocortex and hippocampal 
forma9on. Cell 184, 3222-3241.e26 (2021). 

35. Ba9uk, M. Y. et al. Upper cor9cal layer–driven network impairment in schizophrenia. Sci. Adv. 8, 
eabn8367 (2022). 

36. Lewis, D. A. & González-Burgos, G. Neuroplas9city of Neocor9cal Circuits in Schizophrenia. 
Neuropsychopharmacology 33, 141–165 (2008). 

37. Moberg, S. & Takahashi, N. Neocor9cal layer 5 subclasses: From cellular proper9es to roles in 
behavior. Front. SynapFc Neurosci. 14, (2022). 

38. Ho, N. F. et al. The Amygdala in Schizophrenia and Bipolar Disorder: A Synthesis of Structural MRI, 
Diffusion Tensor Imaging, and Res9ng-State Func9onal Connec9vity Findings. Harv. Rev. Psychiatry 
27, 150–164 (2019). 

39. Boules, M. M., Fredrickson, P., Muehlmann, A. M. & Richelson, E. Elucida9ng the Role of 
Neurotensin in the Pathophysiology and Management of Major Mental Disorders. Behav. Sci. 4, 
125–153 (2014). 

40. Binder, E. B., Kinkead, B., Owens, M. J. & Nemeroff, C. B. The role of neurotensin in the 
pathophysiology of schizophrenia and the mechanism of ac9on of an9psycho9c drugs. Biol. 
Psychiatry 50, 856–872 (2001). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 22, 2024. ; https://doi.org/10.1101/2024.10.21.24315695doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.21.24315695
http://creativecommons.org/licenses/by-nc-nd/4.0/


 30 

41. Roeske, M. J., Konradi, C., Heckers, S. & Lewis, A. S. Hippocampal volume and hippocampal neuron 
density, number and size in schizophrenia: a systema9c review and meta-analysis of postmortem 
studies. Mol. Psychiatry 26, 3524–3535 (2021). 

42. Kraguljac, N. V. et al. A longitudinal magne9c resonance spectroscopy study inves9ga9ng effects of 
risperidone in the anterior cingulate cortex and hippocampus in schizophrenia. Schizophr. Res. 210, 
239–244 (2019). 

43. Brugger, S. P. & Howes, O. D. Heterogeneity and Homogeneity of Regional Brain Structure in 
Schizophrenia: A Meta-analysis. JAMA Psychiatry 74, 1104–1111 (2017). 

44. Hansen, D. V., Hanson, J. E. & Sheng, M. Microglia in Alzheimer’s disease. J. Cell Biol. 217, 459–472 
(2018). 

45. Cheng, Y. et al. Dis9nct Synap9c Strengthening of the Striatal Direct and Indirect Pathways Drives 
Alcohol Consump9on. Biol. Psychiatry 81, 918–929 (2017). 

46. Thanos, P. K. et al. DRD2 gene transfer into the nucleus accumbens core of the alcohol preferring 
and nonpreferring rats aaenuates alcohol drinking. Alcohol. Clin. Exp. Res. 28, 720–728 (2004). 

47. Bocarsly, M. E. et al. A Mechanism Linking Two Known Vulnerability Factors for Alcohol Abuse: 
Heightened Alcohol S9mula9on and Low Striatal Dopamine D2 Receptors. Cell Rep. 29, 1147-
1163.e5 (2019). 

48. Heinz, A. et al. Correla9on between dopamine D(2) receptors in the ventral striatum and central 
processing of alcohol cues and craving. Am. J. Psychiatry 161, 1783–1789 (2004). 

49. Pa9, D. et al. Dopamine D2 receptors in the bed nucleus of the stria terminalis modulate alcohol-
related behaviors. 2023.06.13.544820 Preprint at haps://doi.org/10.1101/2023.06.13.544820 
(2023). 

50. McCullough, K. M. et al. Nucleus Accumbens Medium Spiny Neuron Subtypes Differen9ally 
Regulate Stress-Associated Altera9ons in Sleep Architecture. Biol. Psychiatry 89, 1138–1149 (2021). 

51. Weber, F. & Dan, Y. Circuit-based interroga9on of sleep control. Nature 538, 51–59 (2016). 
52. van Langelaar, J., Rijvers, L., Smolders, J. & van Luijn, M. M. B and T Cells Driving Mul9ple Sclerosis: 

Iden9ty, Mechanisms and Poten9al Triggers. Front. Immunol. 11, (2020). 
53. Kaskow, B. J. & Baecher-Allan, C. Effector T Cells in Mul9ple Sclerosis. Cold Spring Harb. Perspect. 

Med. 8, a029025 (2018). 
54. Ochs, J. et al. Proinflammatory CD20+ T cells contribute to CNS-directed autoimmunity. Sci. Transl. 

Med. 14, eabi4632 (2022). 
55. Alzheimer, A., Stelzmann, R. A., Schnitzlein, H. N. & Murtagh, F. R. An English transla9on of 

Alzheimer’s 1907 paper, ‘Uber eine eigenar9ge Erkankung der Hirnrinde’. Clin. Anat. N. Y. N 8, 429–
431 (1995). 

56. Leng, F. & Edison, P. Neuroinflamma9on and microglial ac9va9on in Alzheimer disease: where do 
we go from here? Nat. Rev. Neurol. 17, 157–172 (2021). 

57. Schizophrenia Psychiatric Genome-Wide Associa9on Study (GWAS) Consor9um. Genome-wide 
associa9on study iden9fies five new schizophrenia loci. Nat. Genet. 43, 969–976 (2011). 

58. Vesuna, S. et al. Deep posteromedial cor9cal rhythm in dissocia9on. Nature 586, 87–94 (2020). 
59. Braun, E. et al. Comprehensive cell atlas of the first-trimester developing human brain. 

2022.10.24.513487 Preprint at haps://doi.org/10.1101/2022.10.24.513487 (2022). 
60. Consor9um, T. B. et al. Analysis of shared heritability in common disorders of the brain. Science 

360, eaap8757 (2018). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 22, 2024. ; https://doi.org/10.1101/2024.10.21.24315695doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.21.24315695
http://creativecommons.org/licenses/by-nc-nd/4.0/


 31 

61. Sey, N. Y. A. et al. A computa9onal tool (H-MAGMA) for improved predic9on of brain-disorder risk 
genes by incorpora9ng brain chroma9n interac9on profiles. Nat. Neurosci. 23, 583–593 (2020). 

62. 1000 Genomes Project Consor9um et al. An integrated map of gene9c varia9on from 1,092 human 
genomes. Nature 491, 56–65 (2012). 

 
 
 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 22, 2024. ; https://doi.org/10.1101/2024.10.21.24315695doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.21.24315695
http://creativecommons.org/licenses/by-nc-nd/4.0/

