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Abstract

DNA sequencing of patients with rare disorders has been highly successful in
identifying “causal variants” for numerous conditions. However, there are many
reports of healthy individuals who harbor these deleterious variants, leading to
the concept of incomplete penetrance and doubt about the utility of genetic
testing in clinical practice and population screening. As the deleterious variants
are rare, the penetrance of these variants in the population is largely unknown.
We analyzed the genetic and clinical data from 486,956 participants of the Taiwan
Precision Medicine Initiative (TPMI) to determine the risk difference between
those with and without deleterious variants. In all, we analyzed 292 disease-
relevant variants and their clinical outcomes to assess their association. We found
that only 15 variants show a risk difference exceeding 5% between those with or
without the variants. In essence, 87.3% of deleterious variants exhibit minimal
risk differences, suggesting a limited impact on the individual and population
levels. Our analysis revealed increasing trends with age in six cardiovascular and
degenerative diseases and bell-shaped trends in two cancers. Additionally, we
identified three clinical outcomes exhibiting a dose-response relationship with
the number of deleterious variants. Our findings show that large-scale testing
of deleterious variants found in the literature is not warranted, except for those
exhibiting large disease risk differences.

Keywords: penetrance, prevalence, TPMI, deleterious variants

1 Introduction

A major advance in clinical genetics has been the identification of “causal variants”
in genes responsible for rare genetic disorders by DNA sequencing of the patients.
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The success of clinical sequencing has led to the discovery of new genes and dele-
terious variants for numerous conditions. About 170,000 genetic variants have been
determined to be pathogenic or likely pathogenic in ClinVar [1], a database of genetic
variation. While these “deleterious variants” fulfill consensus criteria for the designa-
tion, there are many reports of healthy individuals with deleterious variants who have
never developed the associated conditions, and this leads to the concept of incomplete
penetrance [2, 3].

Incomplete penetrance of deleterious variants reduces the predictive power of
genetic testing, raising questions about its utility in clinical practice and population
screening. Even for well-documented disease-associated variants, the level of risk may
be overestimated [4] and this leads to unnecessary procedures, undue anxiety, and
healthcare costs. For example, early cancer screening in individuals with deleterious
variants in BRCA1 and BRCA2 genes can lead to diagnoses of early, curable stage
cancers. However, deleterious variants in BRCA1/2 do not always result in the devel-
opment of breast or ovarian cancers due to low penetrance [5]. It is therefore important
to determine the penetrance and further risk difference of each deleterious variant such
that only highly penetrant variants with large risk difference are used in making clini-
cal decisions. With such information, the benefits of genetic testing can be maximized
while the undesired impact can be minimized.

There have been many studies conducted to quantify the penetrance of deleteri-
ous variants [6, 7]. In a recent study, Forrest et al. investigated the population-based
penetrance of clinical variants and found that the estimated penetrance of pathogenic
or loss-of-function variants was generally low [8]. However, the studies to-date are on
European cohorts, and a comprehensive study focused on penetrance within the Asian
population remains conspicuously absent. In this study, we analyzed genetic and clini-
cal data from 486,956 participants in the Taiwan Precision Medicine Initiative (TPMI)
to determine the penetrance of 292 selected deleterious variants. Those variants had
robust genotyping precision and were annotated with clinical phenotypes. We further
determined the risk difference based on penetrance and prevalence to infer the influ-
ence of deleterious variants on a population level. Our study is the largest of its kind
and our results point to the limited utility of population screening of most of the 292
deleterious variants in asymptomatic Han Chinese individuals.

2 Results

2.1 Overview

We summarized the penetrance and prevalence of the 292 selected deleterious variants,
along with their associated genes, disease annotations, phenotype categories, and age
dependency in Figure 1. Detailed information on the 292 selected variants can be found
in Supplementary Table S1, and the curation criteria can be found in Supplementary
Figure S1. Since we mainly consider the influence of the deleterious variants on a
population level, we present the risk difference (RD) of penetrance and prevalence
on the same scale. Figure 2 shows that only 5.2% of the deleterious variants have
large RDs (i.e., RD > 5%). If we consider inheritance patterns, then only 2.5% of
the dominant variants and 8.9% of the recessive variants have large RDs. For this
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Fig. 1: Overview of the 292 deleterious variants. We illustrated the character-
istics of the 292 deleterious variants on the Circos plot. Among them, 163 variants of
the dominant pattern were placed in the inner circle, and 123 variants of the recessive
pattern in the outer circle. Notice that 54 variants are analyzed as both patterns and
60 recessive variants have no BB-carriers in our study. The circle’s height indicates the
risk difference scale, where the < 5% region is colored green and > 5% colored red.
The colors of the variants represent their phenotype categories; the age dependency
and diseases with dose-response are also annotated. Gene names for the 15 variants
with RD > 5% are listed.

report, autosomal dominant (AD), X-linked dominant (XLD), mitochondrial (MT),
and X-linked recessive in males (XLR-male) conditions are categorized as part of
the dominant pattern, since one mutant allele is sufficient to induce the outcome;
autosomal recessive (AR) and XLR in females (XLR-female) are part of the recessive
pattern, since mutations in both copies of the gene in question are required for the
outcome. Supplementary Figure S2 depicts the RD density of variants for different
inheritance patterns.
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Fig. 2: Donut charts of the deleterious variants. The inheritance patterns of 54
variants remain uncertain; in that case, we calculated these variants for both patterns
(i.e., “as AR” or “as AD” in Supplementary Table S1). Then, 4 out of the 163 dominant
variants (2.5%) had large RDs, and 11 out of the 123 recessive variants (8.9%) had
large RDs.

Table 1 tabulates the exact numbers of affected individuals and their genotypes
for the 15 gene variants where RD is > 5%. Of the 15 variants, 11 are AR vari-
ants: F11 (rs770505620, RD=1.00), GAA (rs577915581, RD=1.00), PAH (rs76687508,
RD=0.50), RCBTB1 (rs777630688, RD=0.33), CYP7B1 (rs200737038, RD=0.25),
MPZL2 (rs146689036, RD=0.21), GJB2 (rs80338943, RD=0.19), HBB (rs34451549,
RD=0.16), LPL (rs145657341, RD=0.14), ABCG5 (rs119480069, RD=0.09), and
GJB2 (rs72474224, RD=0.07). Malfunction of these genes leads to relatively rare,
and serious diseases, such as hereditary factor XI deficiency, Pompe disease, phenylke-
tonuria, and RCBTB1 -related retinopathy. Among the AR variants, 4 of them have
a large false discovery rate (FDR), indicating the uncertainty of penetrance estimates
due to the rare conditions. The 4 AD variants are in genes LDLR (rs730882109,
RD=0.13), APOB (rs144467873, RD=0.12), LPL (rs371282890, RD=0.06), and
NOTCH3 (rs201118034, RD=0.06). Malfunction of these genes leads to relatively com-
mon, and mild diseases, such as hypercholesterolemia and hyperlipidemia. Of note,
only 4 of the 15 deleterious variants are annotated in both InterVar and ClinVar, and
2 out of the 4 are also annotated in the TPMI expert panel. These results point to
the diversity of clinical impact between different populations.

We then investigated the 68 variants suggested by the TPMI expert panel (found
in Supplementary Table 1). Considering the inheritance patterns of the 68 variants, 48
are AR variants and 6 are XLR-female variants (recessive pattern, 79.4% of total, mean
RD=5.5%), while 8 are AD variants and 6 are XLR-male variants (dominant pattern,
20.6% of total, mean RD=2.9%). Only seven variants have large RD (5 of them are
also found in ClinVar or InterVar). Variants rs730882109 in LDLR and rs144467873
in APOB are annotated only in the TPMI expert panel.
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2.2 Age-stratified RD Patterns

As the results suggest, most variants have only small RDs between prevalence and
penetrance, indicating that having the deleterious variant or not has only a limited
influence on the outcome. Because some diseases may have a late age of onset, and
our cohort has a wide range of ages, calculating RD without considering the effect of
age may diminish the importance of certain variants. To investigate the influence of
deleterious variants at different ages, we stratified the cohort into eight age groups for
the analysis, and found three RD patterns to be influenced by age as illustrated in
Figure 3.

Six clinical outcomes have an increasing RD pattern with age, indicating that the
deleterious variants affect the older age groups. Although these variants have more
influence on the elderly, their peak RD is still small, in general. Among the vari-
ants of increasing RD, only rs201118034 in NOTCH3 reaches RD> 10% in CADASIL
(Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoen-
cephalopathy) at ages 60-80. Other variants with higher RD for the elderly have
limited influence on disease (i.e., the highest RD in the onset group is still < 5%).
Two cancers have a bell-shaped RD pattern, indicating that middle-aged individuals
are more vulnerable to deleterious variants. We also found that individuals in their
early adulthood are more vulnerable to the deleterious variant leading to rheumatoid
arthritis. Among the three bell-shaped variants, only rs753862052 in RAD51D has
a large RD for breast and ovarian cancer. Four clinical outcomes have a decreasing
pattern for RD, indicating that younger people are more vulnerable to deleterious
variants. Among the variants of decreasing RD, only rs34451549 in HBB is a recessive
variant and has a large RD at ages 20-30; this variant is associated with beta tha-
lassemia. The other six are dominant variants: rs371282890 and rs145657341 in LPL
have large risk differences in hyperlipidemia at ages 0-30; rs137852331, rs72554664,
and rs72554665 in G6PD also have large risk differences in glucose-6-phosphate dehy-
drogenase deficiency at ages 0-30. Figure 3 shows the outcomes with clear differences
between the age groups (i.e. relative RD scale = |max(RD)−min(RD)|/median(RD)
≥ 3); Supplementary Figure S4 shows the RD patterns of all the outcomes.

2.3 Dose–Response Relationship between Variants and Risks

Clinical outcomes usually involve intricate mechanisms; therefore, disease syndromes
are generally polygenic. To examine whether those with more deleterious variants
are more likely to develop the disease, we investigated the dose-response relationship
between the number of variants and the risk of disease. Figure 4 shows that the risks of
developing obesity, asthma, and type 2 diabetes mellitus increase with the number of
variants possessed. However, comparing with non-carrier, having more than 5 variants
only increases 1-3% of risk. Additionally, obesity and asthma have higher risks in
the younger population, but type 2 diabetes mellitus has a higher risk in the older
population. Type 2 diabetes mellitus is also the only disease that has a conspicuous
risk difference between the younger and the older population. Other diseases without
a clear dose-response relationship can be found in Supplementary Figure S5.
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Fig. 3: Three age-stratified RD patterns. We selected the variants with more
than 30 carriers and analyzed the variants with RD > 5% or FDR < 0.01. For each
variant, we calculated the relative RD scale among the age group (i.e., |max(RD) −
min(RD)|/median(RD)).
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Fig. 4: Dose–Response relationship between Variants and Risks. Three dis-
eases associated with > 5 deleterious variants with significant p-values of dose-response
relationship. The p-values are calculated using the Cochran-Armitage trend test. Com-
pared to non-carriers (0), the risk of developing the disease increases by 1-3% for those
possessing more than 5 variants (5+).

2.4 Phenotype Category

Supplementary Figure S3 shows the violin plots of deleterious variants on penetrance
and prevalence for five phenotype categories. Among the 15 variants in Table 1, 5 are
related to cardiovascular diseases (belong to LDLR, APOB, ABCG5, and two variants
in LPL); two to metabolic diseases (GAA and PAH ); and one to neurology diseases
(NOTCH3 ). Among the 55 variants with FDR < 0.01 in Supplementary Table S1,
2 are related to cancer, 10 to cardiovascular diseases; 26 to metabolic diseases; and
4 to neurology diseases. The two variants related to cancers, RAD51D and ALDH2,
are the variants with bell-shaped age dependency in Figure 3; and the four variants
related to neurology diseases, NOTCH3, LRRK2, and two variants in APOE, all show
an increasing age effect. Variants related to the well-known cancer predisposition gene
BRCA1 and BRCA2 are not included in our initial 292 variants because they do not
meet the MAF and NGS concordance criteria (Supplementary Figure S1).

3 Methods

3.1 Study population

The TPMI is a nationwide research project encompassing 486,956 individuals with
both genetic profiles and clinical data from 16 hospital systems across Taiwan [10–12].
Participants provided their informed consent for SNP genotyping and access to their
electronic medical records (EMRs) at the recruitment hospitals. The dataset integrates
comprehensive demographic, medical, and genotyping information. The TPMI partic-
ipants were genotyped on the customized Taiwan Precision Medicine chips, TPM1 and
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TPM2 Axiom Arrays (Thermo Fisher Scientific), designed jointly with the Taiwan
Biobank. Whole-genome genotyping was performed using the TPM1 array for 165,666
participants and the TPM2 array for 321,360 participants, with 70 individuals hav-
ing data available from both arrays. The TPM1 and TPM2 chips target 686,439 and
725,936 genetic loci, respectively, designed specifically to capture the genetic diversity
of the Han Chinese population. This study was granted by the Ethics Committees of
Academia Sinica and the participating hospitals of the TPMI. Rigorous quality control
measures were implemented to exclude samples with discrepancies between genetic
and documented sex, as well as any duplicates.

3.2 Variant curation and annotation

To study the clinical impact and penetrance of potential actionable genomic findings of
the overlapping markers on TPM1 and TPM2 Axiom Array, we curated the clinically
actionable variants, including pathogenic (P), likely pathogenic (LP) variants and risk
variants annotated by ClinVar and InterVar, and known disease-related variants in
Taiwanese chosen by a TPMI expert panel. The P/LP variants were extracted from
ClinVar [1] (2023-06-17 release) and InterVar [13] (2022-06-13 release), and the risk
variants annotated by ClinVar were also included. The list of the known disease-related
variants in Taiwanese was curated by TPMI experts, including variants used for the
molecular diagnosis of diseases, founder mutations of common inheriting diseases, and
common disease-relevant variants.

The genes of all the variants studied were mapped onto ref gene from
the UCSC genome browser [14] (https://genome.ucsc.edu/), and the related dis-
ease were obtained from the American College of Medical Genetics Secondary
Findings v3.2 list [15] (ACMG), ClinGen Actionability Reports [16], ClinVar,
Online Mendelian Inheritance in Man [17] (OMIM, https://www.omim.org/) and
Orphanet [18] (https://www.orpha.net/consor/cgi-bin/index.php). The inheritance
patterns of the diseases were extracted from OMIM, Orphanet, and MedlinePlus [19]
(https://medlineplus.gov/). The Phenotype Categories of the diseases were obtained
from ACMG, Orphanet, and MedlinePlus. The ICD-10 codes of each pathological
condition were assigned based on the information from Health Promotion Administra-
tive (HPA), Taiwan Foundation of Rare Disorders (TFRD), The American Academy
of Ophthalmology (AAO), Orphanet, and TPMI clinical experts. The compilation
includes only those variants that align with both the disease names and ICD-10 codes,
accompanied by a documented mode of inheritance. The 292 variants in the final list
(Supplementary Table S1) required an overall call rate > 95%, minor allele frequency
(MAF) ≥ 0.1% (the genotyping accuracy cannot be guaranteed at lower MAF), and
next generation sequencing (NGS) concordance ≥ 0.8, and selection criteria are shown
in Supplementary Figure S1.

3.3 Phenotyping of patients

To pinpoint patients diagnosed with specific diseases, we employed ICD-10 codes. The
case group is defined based on the inclusion of a minimum of one diagnostic code
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entry within the medical documentation, originating from outpatient, inpatient, emer-
gency, surgical, or medical imaging report records. Individuals who do not meet the
specified criteria for any of the phenotypes are classified as the control group. For five
specific phenotypes—hyperlipidemia, hypercholesterolemia, obesity, type 2 diabetes
mellitus, and CADASIL—a mere presence of diagnostic codes was considered insuf-
ficient. Instead, these conditions required further qualifications involving additional
test results or specific findings in imaging reports to be classified as cases.

The case definition for hyperlipidemia and hypercholesterolemia is not only based
on their respective ICD-10 codes but also required at least one instance of documented
biochemical markers showing total cholesterol (TC) ≥ 200 mg/dl, triglycerides (TG)
≥ 130 mg/dl, or low-density lipoprotein cholesterol (LDL-C) ≥ 190 mg/dl. Similarly,
for obesity, a body mass index (BMI) of ≥ 30 kg/m2 is required in addition to the
diagnostic codes. Type 2 diabetes mellitus cases are confirmed with both the ICD-10
codes and a hemoglobin A1c (HBA1c) test result > 6.5%. CADASIL requires not just
the ICD-10 codes but also the presence in imaging reports of terms such as ”lacune”,
”lacunar infarction”, ”small vessel”, ”white matter hyperintensity”, ”leukoaraiosis”,
”microbleed”, ”small infarct”, or ”white matter lesion” documented at least once in
brain computed tomography (CT) or brain magnetic resonance imaging (MRI) scans.

3.4 Statistical analysis

Definitions of Carrier and Non-Carrier, and Quantification of
Penetrance and Prevalence

The estimation of penetrance focused on quantifying disease prevalence among
carriers, while prevalence indicated the proportion of disease occurrence among non-
carriers. The definition of “carrier” and “non-carrier” varied depending on the specific
mode of inheritance for each disease [8]. In the context of inheritance modes such
as autosomal dominant (AD), non-specific patterns (either dominant or recessive) X-
linked (XL), X-linked dominant (XLD), and mitochondrial (MT), individuals carrying
at least one minor allele were designated as “carriers”, while the remaining individuals
were referred to as “non-carriers”. For autosomal recessive (AR), individuals required
two minor alleles to be considered “carriers”. Concerning X-linked recessive (XLR)
inheritance, we performed gender-specific analyses. For males, carriers of XLR were
defined as individuals with a deleterious allele, while for females, carriers of XLR were
those with homozygous deleterious alleles; the rest were classified as non-carriers.

Assessing the Impact of Genetic Variants on Phenotypes

To ascertain the significance of variant effects on their respective diseases, we employed
Fisher’s exact test using a 2 × 2 contingency table (comprising carriers/non-carriers
versus affected/unaffected individuals). For a deeper insight into the variant effect,
we employed the risk difference (the difference between penetrance and prevalence) to
investigate the significance of each variant. All graphical representations and statistical
analyses were performed using R version 4.3.3.
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Donut charts of RD distribution.

To elucidate the distribution of RDs across the studied genetic variants, we utilized
donut charts. These charts categorize the variants into defined RD ranges and visually
represent these categories as proportions of the total.

Variants were categorized into four groups based on their RD values:

• RD < -2%: Variants in this group suggest a decreased prevalence of disease among
carriers compared to non-carriers.

• -2% ≤ RD < 2%: This range includes variants with negligible impact on disease
risk.

• 2% ≤ RD < 5%: Variants in this category have a moderate increase in disease
prevalence among carriers.

• RD ≥ 5%: These variants are associated with a substantial increase in dis-
ease risk, highlighting their potential importance in genetic screening and clinical
interventions.

The analysis covered 292 unique variants, of which 232 displayed distinct RD
values. Among these, the inheritance patterns were classified based on the variant’s
impact in monoallelic (dominant) or biallelic (recessive) conditions:

• Dominant (163 variants): Includes variants associated with autosomal dominant
(AD), mitochondrial (MT), X-linked (XL), and X-linked recessive in males (XLR-
male) inheritance patterns. For these variants, possessing one mutant allele is enough
to influence the phenotype.

• Recessive (123 variants): Comprises variants associated with autosomal recessive
(AR) and X-linked recessive in females (XLR-female) inheritance patterns. These
variants require two mutant alleles to affect the phenotype.

Age-stratified RD analysis.

Understanding the age-specific impacts of genetic variants on their associated pheno-
types is crucial, given that many diseases have age-dependent onsets and progressions.
By conducting age-stratified RD analyses, we aim to reveal whether certain variants
have disproportionate effects on disease risk at particular stages of life. This is partic-
ularly pertinent for conditions with known age of onset, where variants might exhibit
significant influence in specific age brackets. First, we selected variants from the cohort
that exceeded 30 carriers, targeting those with an RD greater than 5% or an FDR less
than 0.01. This stringent selection process was employed to isolate variants that are
statistically significant or carry potential clinical importance. Inclusion of variants with
an FDR less than 0.01 allows for the consideration of those that are statistically signif-
icant but might not show a broad RD greater than 5%. This inclusion criteria ensures
we do not overlook variants that, while not broadly impactful, may exhibit significant
RD variations in restricted age groups. For each selected variant, we computed the rela-
tive RD scale among the age groups, defining it as |max(RD)−min(RD)|/median(RD).
This measure helped us to identify and illustrate the extent of RD variation across dif-
ferent age categories. Diseases with a relative RD scale larger than 3 were emphasized
in Figure 3, signifying considerable fluctuations in risk which may provide insights into
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age-specific genetic influences. By adopting a threshold that brings out the most pro-
nounced RD variations, we aimed to prioritize findings that could indicate important
age-related changes in disease risk profiles. Comprehensive results, capturing the entire
spectrum of relative RD scale values, have been detailed in Supplementary Figure S4
for extended analysis and complete representation of the data.

Dose–response analysis between variants and risk.

We conducted dose–response analyses to investigate the potential correlation between
the number of genetic variants and the disease risk. This analysis included diseases
associated with more than five variants identified by both TPM1 and TPM2 chips.
The statistical significance of the trends was assessed using the Cochran-Armitage
trend test, which is specifically designed for ordered alternatives, making it suitable
for evaluating trends across ordered groups of variant counts. The primary goal was to
determine whether an increase in variant count is associated with an increase in disease
risk, particularly examining if this trend persists across different age groups. Given the
onset of many genetic disorders varies significantly with age, it is crucial to understand
how these associations change with age. Therefore, we analyzed both overall trends
and stratified the data by age groups (above and below 50 years) to assess whether
the observed dose–response relationships were consistent across different age groups.

The diseases associated with more than five variants were selected for detailed
analysis, including obesity (analyzed as ADs and ARs), breast and ovarian cancer
(analyzed as ADs and ARs), asthma, Type 2 diabetes mellitus, Glucose-6-phosphate
dehydrogenase deficiency, and retinitis pigmentosa (analyzed as ADs and ARs). The
terms as ADs and as ARs refer to analyses conducted under the assumption that
the unclear inheritance patterns of some variants were either autosomal dominant
(AD) or autosomal recessive (AR), respectively. Diseases such as Glucose-6-phosphate
dehydrogenase and retinitis pigmentosa were included in the initial analysis phase
but were excluded due to the absence of patients with more than one variant.
Only diseases that demonstrated a significant overall dose–response relationship were
highlighted in Figure 4, ensuring the findings reflect substantial and clinically rele-
vant variant–disease associations. All analysis results, including both significant and
non-significant outcomes, are detailed in supplementary Figure S5.

4 Discussion

With the ever-increasing number of deleterious variants identified by clinical sequenc-
ing of patients with rare diseases, and the push to sequence “everyone” to incorporate
genetic information in clinical practice, assessing the real disease risk in asymptomatic
individuals with deleterious variants is of great clinical importance. As the deleterious
variants are usually rare, only large cohort studies have sufficient power to provide
evidence for disease risk levels relevant in clinical practice. In this study, we compared
the penetrance and prevalence of 292 deleterious variants in a cohort of 486,956 indi-
viduals in the TPMI and found that only 15 variants have RD > 5% between those
with and without the deleterious variants. Specifically, 94.8% of the deleterious or loss
of function variants found in the databases have limited impact in the Han Chinese
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population. Even if we only consider the 68 clinical variants suggested by the TPMI
expert panel, 89.7% of the variants have RD < 5%. Similar results were presented in
a previous study using BioMe and UK Biobank, where 89% of the variants have RD
< 5% [8]. These results clearly indicate that most deleterious variants found in patients
with rare diseases (and published in peer reviewed journals or submitted to databases
such as ClinVar) do not exhibit a significant effect on asymptomatic individuals or the
population as a whole.

For the small number of deleterious variants with significant risk differences, most
of them cause severe AR diseases. For example, the top three AR variants are related
to hereditary factor XI deficiency, Pompe disease, and phenylketonuria, all of which
lack curative treatments and rely on symptomatic therapies to prevent excessive bleed-
ing [20], glycogen buildup [21], or irreversible mental disability [22]. Additionally, the
average risk difference is notably higher in recessive diseases (RD = 0.0327) compared
to dominant diseases (RD = 0.0040), highlighting the considerable influence of inher-
itance patterns on the transmission of deleterious variants in the population. Despite
the severity of AR-associated diseases, affected individuals represent a small fraction
of the population, as the recessive pattern requires two alleles for trait manifesta-
tion. For example, only two out of approximately four hundred thousand participants
in the TPMI cohort inherit the top-ranked homozygous variant rs770505620. On the
contrary, three of the four autosomal dominant (AD) variants in Table 1 are associ-
ated with relatively mild conditions such as hypercholesterolemia and hyperlipidemia
compared to AR-inherited diseases.

The variant rs201118034 (p.R544C) (Table 1) deserves our attention for several
reasons. First, as an AD variant in the NOTCH3 gene, an individual who inherited
one copy of the mutated gene from either parent is supposed to develop the associ-
ated adult-onset condition, CADASIL, a hereditary small vessel disease of the brain
with stroke as a defining symptom [23, 24]. Second, approximately 1% of individuals
in Taiwan carry the rs201118034 variant (1% in the TPMI cohort, 0.9% in the Taiwan
Biobank cohort [23]), and now our result showed that carriers of rs201118034 variant
face a risk difference of roughly 6% compared to non-carriers (Table 1), the risk dif-
ference even reaches to 10% at ages 60-80 (Figure 3(a)). Because there is no cure for
CADASIL, genetic counseling and health management measures that delay disease
onset are the best course of action to reduce the burden of disease in the population.
Third, mutations in the NOTCH3 gene can also lead to cognitive impairment and
other neurological deficits beyond stroke, underscoring the multifaceted impact of this
genetic variant on cognitive functions [25, 26]. Fourth, understanding and monitoring
the implications of rs201118034 is essential for effective management and intervention
strategies to mitigate the risks associated with CADASIL and its broader neurological
manifestations.

In addition to CADASIL, Alzheimer’s and Parkinson’s disease also showed con-
spicuous increases in risk differences with age (Figure 3(a)), suggesting that not only
aging itself plays a key risk factor for neurodegenerative diseases [27, 28], but the risk
increases even more with age if one carries certain deleterious variants. We can draw a
similar conclusion on three vessel coronary disease, as the risk differences of four related
variants also increase with age (Figure 3(a)). A similar study of a multicenter case
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cohort also observed an increase in penetrance with age in cardiovascular disease [29].
The rationale behind the increasing RD pattern can be easily comprehended. In the
context of neurodegenerative diseases, the accumulation of misfolded proteins, oxida-
tive stress, and inflammation are prominent features of aging brains [27, 28]. Similarly,
in cardiovascular diseases, the arteries become less flexible and more prone to plaque
build-up with age, leading to reduced blood flow and an increased risk of cardiovas-
cular events [30]. Our results pointed out that carrying certain deleterious variants
worsens the clinical conditions while aging. Cancers, in general, also have increased
risks with age [31], but Figure 3(b) depicted a bell-shaped pattern for breast and
ovarian cancer, and esophageal cancer. We noticed that screening practices may also
influence the observed risk across age groups and may result in bell-shaped or decreas-
ing RD patterns. For example, in Taiwan, the newborn screening for G6PD deficiency
became a regular test in 1987, and the screening rate reached 99% in 1996; breast
cancer is also routinely screened since the government provides free mammography
screening for women at 45-70 ages [32].

Finally, we explored the dose-response relationship between the number of vari-
ants and disease risk. While previous studies primarily focused on this relationship
within different alleles of the same gene, comparing the effects of heterozygous and
homozygous variants, comprehensive analyses encompassing both genome-wide and
phenome-wide perspectives have been limited. In our study, we identified three poly-
genic diseases — obesity, asthma, and type 2 diabetes mellitus — that exhibit a
dose-response relationship with the number of associated variants. Among the 18 vari-
ants associated with obesity, the top 1 to 12 belongs to the FTO gene, which not only
increases body and fat mass but also affects food intake [33]. While none of these 18
variants individually demonstrate large risk differences, individuals carrying 5 or more
variants exhibit a significantly higher average risk difference compared to non-carriers,
consistent with previous research findings [34]. Similar observations were made in
asthma, where 9 variants, including 3 belonging to interleukin genes, were associated
with the disease, supporting the presence of a polygenic effect, as suggested in pre-
vious studies [35]. Type 2 diabetes mellitus also displays a polygenic nature with a
dose-response effect, where different sets of variants can lead to distinct etiologies [36].
Among the 9 associated variants, the top variants belong to TCF7L2, IGF2BP2, and
SLC30A8, genes that influence insulin secretion [37–39]. Our findings further reveal
that the elderly population exhibits a stronger dose-response effect on Type 2 dia-
betes than younger individuals, highlighting the intricate relationship between aging
and the penetrance of variants.

5 Conclusion

With the exception of 15 deleterious variants, our analysis of 292 deleterious variants
in 486,956 Han Chinese individuals in Taiwan shows that the vast majority of deleteri-
ous variants identified in patients with rare diseases confer minimal added risk to those
with the risk variant in the general population. This finding has several implications.
First, genetic testing of most deleterious variants found in ClinVar or the literature in
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the general population will have no impact on individual or population health man-
agement. Second, identifying protective or modifying genetic factors in asymptomatic
individuals with deleterious variants will likely lead to useful insights into the diseases
in question. Third, in several adult-onset diseases, the risk difference exhibits an age-
related increasing trend. Fourth, three conditions display a dose-response relationship
with the number of deleterious variants present in a patient. Overall, we have con-
ducted the largest study on the penetrance of deleterious variants to-date and laid the
foundation for risk assessment for these variants in the clinical setting.

Supplementary information. Supplementary information includes a list of 292
deleterious variants in a csv file (Table S1), and a pdf file containing demographic
characteristics of the TPMI Biobanks (Table S2), variant curation of the 292 deleteri-
ous variants (Figure S1), RD distribution of the 292 deleterious variants (Figure S2),
Violin plots of the 292 deleterious variants (Figure S3), age-stratified RD patterns
(Figure S4), and dose-response relationship of the selected variants and disease risks
(Figure S5).

Declarations

• Conflict of interest/Competing interests: The authors declare no conflict of interest
or competing interests.

• Funding. This study was supported by the following agencies (grant numbers):
Academia Sinica (40-05-GMM, AS-GC-110-MD02, 236e-110020) and National
Development Fund, Executive Yuan (NSTC 111-3114-Y-001-001).

• Ethics approval. This study was approved by the Institutional Review Boards of 17
institutes: 1. Academia Sinica (AS-IRB01-18079), 2. Taipei Veterans General Hos-
pital (2020-08-014A), 3. National Taiwan University Hospital (201912110RINC),
4. Tri-Service General Hospital (2-108-05-038), 5. Chang Gung Memorial Hospital
(201901731A3), 6. Taipei Medical University Healthcare System (N202001037), 7.
Chung Shan Medical University Hospital (CS19035), 8. Taichung Veterans Gen-
eral Hospital (SF19153A), 9. Changhua Christian Hospital (190713), 10. Kaohsiung
Medical University Chung-Ho Memorial Hospital (KMUHIRB-SV(II)-20190059),
11. Hualien Tzu Chi Hospital (IRB108-123-A), 12. Far Eastern Memorial Hos-
pital (110073-F), 13. Ditmanson Medical Foundation Chia-Yi Christian Hospital
(IRB2021128), 14. Taipei City Hospital (TCHIRB-10912016), 15. Koo Foun-
dation Sun Yat-Sen Cancer Center (20190823A), 16. Cathay General Hospital
(CGH-P110041), 17. Fu Jen Catholic University Hospital (FJUH109001).

• Data availability. The genotyping and electronic medical record (EMR) data ana-
lyzed in this study are from the Taiwan Precision Medicine Initiative (TPMI)
with proper approval from the TPMI Data Access Committee. In compliance
with the confidentiality laws governing genetic and health data in Taiwan, the
de-identified TPMI data are kept in a secure server at the Academia Sinica
and not released to the public. Researchers requesting access to the individ-
ual genotyping and EMR data can do so on a collaborative basis. Instructions
on requesting access to the data can be found on the TPMI’s official website
(https://tpmi.ibms.sinica.edu.tw/www/en/).

16

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted October 22, 2024. ; https://doi.org/10.1101/2024.10.21.24315653doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.21.24315653


• Author contribution

– Conceptualization: Yen-Tsung Huang, Pui-Yan Kwok, En-Yu Lai, Jia-Ying Su,
Chun-yu Wei

– Formal analysis: Jia-Ying Su, En-Yu Lai, Yen-Tsung Huang, Chun-yu Wei
– Investigation: Hsueh-Ju Lu, Yen-Lin Chen, Chih-Kuang Cheng, Kuan-Chih Chen,
Shin-Yee Lim, Yi-Shiuan Shen, Chia-Chia Huang, Yen-Po Wang, Nai-Fang Chi,
I-Cheng Lee, Harn-Shen Chen, Yun-Cheng Hsieh, Yi-Chu Liao, Shao-Jung Hsu,
Shuo-Ming Ou, Kuan-Lin Lai, Chung-Chi Lin, Yi-Jen Chen, Chia-Ming Chang,
Peng-Hui Wang, Yung-Hung Luo, Yun-Ting Chang, Chih-Chiang Chen, Yu-
Cheng Hsieh, Yi-MingChen, Tzu-HungHsiao, Ching-Heng Lin, Yen-Ju Chen,
I-Chieh Chen, Chien-Lin Mao, Shu-Jung Chang, Yen-Lin Chang, Yi-Ju Liao,
Chih-Hung Lai, Wei-Ju Lee, Hsin Tung, Ting-Ting Yen, Hsin-Chien Yen, Shy-Shin
Chang, Yu-Sheng Chang, Ting-I Lee, Shauh-Der Yeh, Mei-Yi Wu, Ming-ShunWu,
Lung Wen Tsai, Cai-mei Zheng, Yu-Mei Chien, Tsung-Hsien Lin, Yen-Hsu Chen,
Cheng-Che E. Lan, Jeng-Hsien Yen, Wen-Chen Liang, Te-Fu Chan, Shyh-Shin
Chiou, Shih-Chang Chuang, Shang-Jyh Hwang

– Resources: Chien-Hung Chen, Ya-Chung Tian, Chia-Ling Chen, Yao-Fan Fang,
Ji-Tseng Fang, Yi-Hao Yen, Wei-Chi Wu, Wen-Shih Huang, Chi-Chin Sun, Wen-
Chien Chou, Ching-Hung Lin, Tsung-Hua Yang, Pei-Lin Lee, Ming-Yang Wang,
Tsen-Fang Tsai, Tung-Hung Su, Jyh-Ming Liou, Shun-Fa Yang, Chia-Chuan
Hsieh, Chih-Chien Sung, Feng-Chih Kuo, Shih-Hua Lin, Dueng-Yuan Hueng,
Chien-Jung Lin, Hueng-Yuan Shen, Chang-Hsun Hsieh, Shinn-Zong Ling, Tso-
Fu Wang, Tsung-Jung Ho, Pei-Wei Shueng, Chen-Hsi Hsieh, Kuo-Shyang Jeng,
Gwo-Chin Ma, Ting-Yu Chang, Han-Sun Chiang, Yi-Tien Lin, Kuo-Jang Kao,
Chen-Fang Hung, I-Mo Fang, Po-Yueh Chen, Kochung Tsui

– Data Curation: Ming-Fang Tsai, Erh-Chan Yeh, Yi-Jung Lin, Yu-Chuang Huang,
Wan-Ru Li

– Writing - Original Draft: Pui-Yan Kwok, Yen-Tsung Huang, En-Yu Lai, Jia-Ying
Su

– Writing - Review & Editing: Jer-Yuarn Wu, Chun-yu Wei, Ling-Hui Li, Cathy
S.-J. Fann, Hsin-Chou Yang, Chien-Hsiun Chen, Hung-Hsin Chen, Yi-Min Liu,
Ming-Fang Tsai, Erh-Chan Yeh

– Supervision: Pui-Yan Kwok, Jer-Yuarn Wu, Wei-Jen Yao, Shiou-Sheng Chen,
Ming Chen, Chih-Yang Huang, Da-Wei Wang, Chun-houh Chen

– Project administration: Yi-Min Liu, Tsai-Chuan Chen, Wei-Ting Huang,
– Funding acquisition: Pui-Yan Kwok

References

[1] Landrum, M.J., Chitipiralla, S., Brown, G.R., Chen, C., Gu, B., Hart, J., Hoff-
man, D., Jang, W., Kaur, K., Liu, C., et al.: Clinvar: improvements to accessing
data. Nucleic acids research 48(D1), 835–844 (2020)

[2] Raj, A., Rifkin, S.A., Andersen, E., Van Oudenaarden, A.: Variability in gene
expression underlies incomplete penetrance. Nature 463(7283), 913–918 (2010)

17

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted October 22, 2024. ; https://doi.org/10.1101/2024.10.21.24315653doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.21.24315653


[3] Wright, C.F., et al.: Incomplete penetrance and variable expressivity: from clinical
studies to population cohorts. Frontiers in Genetics 13, 920390 (2022)

[4] Manrai, A.K., Ioannidis, J.P., Kohane, I.S.: Clinical genomics: from pathogenicity
claims to quantitative risk estimates. Jama 315(12), 1233–1234 (2016)

[5] Downs, B., Sherman, S., Cui, J., Kim, Y.C., Snyder, C., Christensen, M., Luo,
J., Lynch, H., Wang, S.M.: Common genetic variants contribute to incomplete
penetrance: evidence from cancer-free brca1 mutation carriers. European Journal
of Cancer 107, 68–78 (2019)

[6] Wright, C.F., West, B., Tuke, M., Jones, S.E., Patel, K., Laver, T.W., Beaumont,
R.N., Tyrrell, J., Wood, A.R., Frayling, T.M., et al.: Assessing the pathogenicity,
penetrance, and expressivity of putative disease-causing variants in a population
setting. The American Journal of Human Genetics 104(2), 275–286 (2019)

[7] Shah, R.A., Asatryan, B., Sharaf Dabbagh, G., Aung, N., Khanji, M.Y., Lopes,
L.R., Van Duijvenboden, S., Holmes, A., Muser, D., Landstrom, A.P., et al.:
Frequency, penetrance, and variable expressivity of dilated cardiomyopathy–
associated putative pathogenic gene variants in uk biobank participants. Circu-
lation 146(2), 110–124 (2022)

[8] Forrest, I.S., Chaudhary, K., Vy, H.M.T., Petrazzini, B.O., Bafna, S., Jordan,
D.M., Rocheleau, G., Loos, R.J., Nadkarni, G.N., Cho, J.H., et al.: Population-
based penetrance of deleterious clinical variants. Jama 327(4), 350–359 (2022)

[9] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and
powerful approach to multiple testing. Journal of the Royal statistical society:
series B (Methodological) 57(1), 289–300 (1995)

[10] Yang, H.C., et al.: The Taiwan Precision Medicine Initiative: a cohort for large-
scale studies. submitted to BioRxiv, DOI pending (2024)

[11] Chen, H.H., et al.: Population-specific polygenic risk scores developed for the Han
Chinese. submitted to MedRxiv, DOI pending (2024)

[12] Wei, C.Y., et al.: Clinical impact of pharmacogenetic risk variants in a large
Chinese cohort. submitted to MedRxiv, DOI pending (2024)

[13] Li, Q., Wang, K.: Intervar: clinical interpretation of genetic variants by the 2015
acmg-amp guidelines. The American Journal of Human Genetics 100(2), 267–280
(2017)

[14] Karolchik, D., Baertsch, R., Diekhans, M., Furey, T.S., Hinrichs, A., Lu, Y.,
Roskin, K.M., Schwartz, M., Sugnet, C.W., Thomas, D.J., et al.: The ucsc genome
browser database. Nucleic acids research 31(1), 51–54 (2003)

18

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted October 22, 2024. ; https://doi.org/10.1101/2024.10.21.24315653doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.21.24315653


[15] Miller, D.T., Lee, K., Abul-Husn, N.S., Amendola, L.M., Brothers, K., Chung,
W.K., Gollob, M.H., Gordon, A.S., Harrison, S.M., Hershberger, R.E., et al.:
Acmg sf v3. 2 list for reporting of secondary findings in clinical exome and genome
sequencing: A policy statement of the american college of medical genetics and
genomics (acmg). Genetics in Medicine 25(8), 100866 (2023)

[16] Webber, E.M., Hunter, J.E., Biesecker, L.G., Buchanan, A.H., Clarke, E.V.,
Currey, E., Dagan-Rosenfeld, O., Lee, K., Lindor, N.M., Martin, C.L., et al.:
Evidence-based assessments of clinical actionability in the context of secondary
findings: Updates from clingen’s actionability working group. Human mutation
39(11), 1677–1685 (2018)

[17] Hamosh, A., Scott, A.F., Amberger, J.S., Bocchini, C.A., McKusick, V.A.: Online
mendelian inheritance in man (omim), a knowledgebase of human genes and
genetic disorders. Nucleic acids research 33(suppl 1), 514–517 (2005)

[18] Weinreich, S.S., Mangon, R., Sikkens, J., Teeuw, M.E., Cornel, M.: Orphanet:
a european database for rare diseases. Nederlands tijdschrift voor geneeskunde
152(9), 518–519 (2008)

[19] Miller, N., Lacroix, E.-M., Backus, J.E.: Medlineplus: building and maintaining
the national library of medicine’s consumer health web service. Bulletin of the
Medical Library Association 88(1), 11 (2000)

[20] Zhang, X., Lewandowska, M., Aldridge, M., Iglay, K., Wolford, E., Shapiro, A.:
Global epidemiology of factor xi deficiency: a targeted review of the literature
and foundation reports. Haemophilia 29(2), 423–434 (2023)

[21] Stevens, D., Milani-Nejad, S., Mozaffar, T.: Pompe disease: a clinical, diagnostic,
and therapeutic overview. Current treatment options in neurology 24(11), 573–
588 (2022)

[22] Blau, N., Van Spronsen, F.J., Levy, H.L.: Phenylketonuria. The Lancet
376(9750), 1417–1427 (2010)

[23] Lee, Y.-C., Chung, C.-P., Chang, M.-H., Wang, S.-J., Liao, Y.-C.: Notch3
cysteine-altering variant is an important risk factor for stroke in the taiwanese
population. Neurology 94(1), 87–96 (2020)

[24] Tang, S.-C., Chen, Y.-R., Chi, N.-F., Chen, C.-H., Cheng, Y.-W., Hsieh, F.-I.,
Hsieh, Y.-C., Yeh, H.-L., Sung, P.-S., Hu, C.-J., et al.: Prevalence and clinical
characteristics of stroke patients with p. r544c notch3 mutation in taiwan. Annals
of clinical and translational neurology 6(1), 121–128 (2019)

[25] Liao, Y.-C., Hsiao, C.-T., Fuh, J.-L., Chern, C.-M., Lee, W.-J., Guo, Y.-C., Wang,
S.-J., Lee, I.-H., Liu, Y.-T., Wang, Y.-F., et al.: Characterization of cadasil among
the han chinese in taiwan: distinct genotypic and phenotypic profiles. PloS one

19

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted October 22, 2024. ; https://doi.org/10.1101/2024.10.21.24315653doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.21.24315653


10(8), 0136501 (2015)

[26] Lin, H.-J., Chen, C.-H., Su, M.-W., Lin, C.-W., Cheng, Y.-W., Tang, S.-C., Jeng,
J.-S.: Modifiable vascular risk factors contribute to stroke in 1080 notch3 r544c
carriers in taiwan biobank. International Journal of Stroke 19(1), 105–113 (2024)

[27] Hindle, J.V.: Ageing, neurodegeneration and parkinson’s disease. Age and ageing
39(2), 156–161 (2010)

[28] Hou, Y., Dan, X., Babbar, M., Wei, Y., Hasselbalch, S.G., Croteau, D.L., Bohr,
V.A.: Ageing as a risk factor for neurodegenerative disease. Nature Reviews
Neurology 15(10), 565–581 (2019)

[29] McGurk, K.A., Zhang, X., Theotokis, P., Thomson, K., Harper, A., Buchan, R.J.,
Mazaika, E., Ormondroyd, E., Wright, W.T., Macaya, D., et al.: The penetrance
of rare variants in cardiomyopathy-associated genes: A cross-sectional approach
to estimating penetrance for secondary findings. The American Journal of Human
Genetics 110(9), 1482–1495 (2023)

[30] North, B.J., Sinclair, D.A.: The intersection between aging and cardiovascular
disease. Circulation research 110(8), 1097–1108 (2012)

[31] DePinho, R.A.: The age of cancer. Nature 408(6809), 248–254 (2000)

[32] Quality Assurance Programs Provided by Preventive Medicine Foundation. https:
//www.qap.tw/en/. Online; accessed 23 April 2024

[33] Zhao, X., Yang, Y., Sun, B.-F., Zhao, Y.-L., Yang, Y.-G.: Fto and obesity:
mechanisms of association. Current diabetes reports 14, 1–9 (2014)

[34] Hinney, A., Vogel, C.I., Hebebrand, J.: From monogenic to polygenic obesity:
recent advances. European child & adolescent psychiatry 19, 297–310 (2010)

[35] Sordillo, J.E., Lutz, S.M., Jorgenson, E., Iribarren, C., McGeachie, M., Dahlin, A.,
Tantisira, K., Kelly, R., Lasky-Su, J., Sakornsakolpat, P., et al.: A polygenic risk
score for asthma in a large racially diverse population. Clinical & Experimental
Allergy 51(11), 1410–1420 (2021)

[36] Pearson, E.R.: Type 2 diabetes: a multifaceted disease. Diabetologia 62(7), 1107–
1112 (2019)

[37] Gloyn, A.L., Braun, M., Rorsman, P.: Type 2 diabetes susceptibility gene tcf7l2
and its role in β-cell function. Diabetes 58(4), 800 (2009)
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