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 1 

Abstract 1 
During the COVID-19 pandemic a number of jurisdictions in the United States began to regularly 2 
report levels of SARS-CoV-2 in wastewater for use as a proxy for SARS-CoV-2 incidence. Despite 3 
the promise of this approach for improving situational awareness, the degree to which viral levels 4 
in wastewater track with other outcome data has varied, and better evidence is needed to 5 
understand the situations in which wastewater surveillance tracks closely with traditional 6 
surveillance data. In this study, we quantified the relationship between wastewater data and 7 
traditional case-based surveillance data for multiple jurisdictions. To do so, we collated data on 8 
wastewater SARS-CoV-2 RNA levels and COVID-19 case reports from July 2020 to March 2023, 9 
and employed Bayesian hierarchical regression modeling to estimate the statistical relationship 10 
between wastewater data and reported cases, allowing for variation in this relationship across 11 
counties. We compared different model structural approaches and assessed how the strength of 12 
the estimated relationships varied between settings and over time. These analyses revealed a 13 
strong positive relationship between wastewater data and COVID-19 cases for the majority of 14 
locations, with a median correlation coefficient between observed and predicted cases of 0.904 15 
(interquartile range 0.823 – 0.943). Across locations, the COVID-19 case rate associated with a 16 
given level of wastewater SARS-CoV-2 RNA concentration declined over the study period. 17 
Counties with higher population size and of higher levels of urbanicity had stronger concordance 18 
between wastewater data and COVID-19 cases. Ideally, use of wastewater data for decision-19 
making should be based on an understanding of their local historical performance. 20 
 21 

22 
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Introduction 1 
The practice of employing wastewater data to track pathogens has gained significant interest as 2 
an innovative method of infectious disease surveillance, with nearly 80% of the United States 3 
population connected to public wastewater systems (U.S. Government Accountability Office, 4 
2022; Yu et al., 2023). During the COVID-19 crisis, local health agencies started to gather and 5 
report data on COVID-19 concentrations in wastewater, using the trends in these data as an 6 
indirect indicator of SARS-CoV-2 transmission patterns.  7 
 8 
Tracking the presence and concentration of pathogens in wastewater, a passive method of 9 
environmental surveillance, has been used for several decades to track infectious diseases, such 10 
as polio (Matrajt et al., 2018), gastroenteritis (Kazama et al., 2017), hepatitis E (Alfonsi et al., 11 
2018), and acute diarrhea (Prevost et al., 2015), among others. However, the COVID-19 12 
pandemic accelerated interest in this approach worldwide (Naughton et al., 2023), as it offers 13 
multiple benefits as a complement to traditional surveillance systems. First, it can serve as an 14 
early warning system for SARS-CoV-2 transmission, sensitive to asymptomatic and 15 
presymptomatic cases four to ten days prior to clinical testing signals (Wu et al., 2022). Second, 16 
it can monitor community-level transmission when implemented at downstream locations such 17 
as wastewater treatment plants (McClary-Gutierrez et al., 2021). The fact that it does not 18 
require individual testing circumvents the challenges created by variable supply of and demand 19 
for COVID-19 diagnostic testing (as has been observed over the pandemic), and the decline in 20 
reporting of test results (National Academies of Sciences & Medicine, 2023). Third, wastewater 21 
surveillance programs with specific methods can track virus variants in the early stage of their 22 
evolution, allowing for early identification of emerging variants (Jahn et al., 2022; Karthikeyan 23 
et al., 2022; McClary-Gutierrez et al., 2021). Lastly, it provides an early indicator of 24 
epidemiological changes (as compared to hospitalization and death data), so that mitigation 25 
and other response measures can be deployed more rapidly. With these advantages, tracking 26 
wastewater COVID-19 data is a potentially powerful tool for COVID-19 surveillance.  27 
 28 
Despite the potential advantages of SARS-CoV-2 wastewater surveillance, significant challenges 29 
remain. Existing studies have generally considered the relationship between reported cases and 30 
wastewater metrics at a limited number of locations, such as university dorms (Kotay et al., 31 
2022), nursing homes (Davó et al., 2021), university campuses (Karthikeyan et al., 2021), and 32 
municipalities (e.g., Oklahoma City, Oklahoma (Kuhn et al., 2022) and Louisville, Kentucky 33 
(Klaassen et al., 2024)). While these studies provide valuable insights, they often do not fully 34 
account for heterogeneities across different geographical locations. Furthermore, the time 35 
periods covered by existing studies are limited. For example, Xiao et al. (2022) associated 36 
clinical case data with wastewater data within three Massachusetts counties from March 2020 37 
through May 2021. Similarly, Weidhaas et al. (2021) analyzed nine weeks of wastewater and 38 
COVID-19 case data related to ten wastewater treatment facilities in Utah. Notably, reported 39 
cases themselves are not a perfect indicator for true infection situations, given that they 40 
depend on various factors such as testing availability and access as well as the number of 41 
asymptomatic infections. As such, while quantifying the relationship between reported cases 42 
and wastewater metrics provides valuable insights, it should be noted as the next-best 43 
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alternative. Studies that compare the performance of COVID-19 wastewater surveillance data 1 
across sewersheds over extended time frames remain scarce (Dai et al., 2024). Such research is 2 
valuable for establishing the statistical basis for real-time trend analysis, and describing the 3 
conditions under which wastewater surveillance performs well.  4 
 5 
This study explored the quantitative relationship between SARS-CoV-2 wastewater surveillance 6 
data and reported COVID-19 diagnoses across multiple sewer-sheds over the initial years of the 7 
COVID-19 pandemic. Using weekly-aggregated wastewater and case report data for 107 U.S. 8 
counties over 2020-2023, we employed Bayesian hierarchical modeling to establish the 9 
statistical relationship between these two data sources, describe changes in these relationships 10 
over time and across locations, and identify how the strength of these relationships varied 11 
systematically by county characteristics.  12 
 13 

Data and Methods 14 
Data sources 15 
For the study period July 1, 2020 to March 1, 2023, we collated county-level SARS-CoV-2 16 
wastewater surveillance data reported by Biobot Analytics, including 254 counties covering 17 
approximately 30% of the U.S. population. These data represent RNA copies per milliliter, 18 
normalized by the concentration of pepper mild mottle virus (PMMoV) to correct for variability 19 
in fecal content, which is influenced by environmental factors such as stormwater (Duvallet et 20 
al., 2022). Surveillance data on county-level weekly COVID-19 reported case totals were 21 
extracted from the COVID-19 data repository in the Center for Systems Science and Engineering 22 
at Johns Hopkins University.  23 

Due to varied implementation of wastewater surveillance operations, wastewater data were 24 
not available for all county-weeks. We restricted the analysis to counties with a minimum of 50 25 
weeks of available wastewater data during the study period, which resulted in 107 counties 26 
being included, covering a range of geographic areas within the United States, and with periods 27 
of data incompleteness for the majority of counties. We grouped counties into six ordinal 28 
urbanicity categories as defined by the National Center for Health Statistics (NCHS). Categories 29 
ranged from NCHS category 1 (large central metro) as the most urban to NCHS category 6 (non-30 
core) as the most rural. Fig1 shows the geographic distribution of the 107 counties included in 31 
the analysis, coded by NCHS urbanicity category.  32 

 33 

[Figure 1] 34 
 35 

Hierarchical regression models 36 
Using the wastewater and COVID-19 case data, we constructed hierarchical Bayesian regression 37 
models to capture key features of each data source, allowing for differences in the estimated 38 
relationship between these data over time and between modeled counties. Accounting for 39 
temporal variations is vital as the dynamics of the pandemic changed over time due to factors 40 
such as the emergence of new variants, public health interventions, vaccination rollouts, and 41 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 21, 2024. ; https://doi.org/10.1101/2024.10.20.24315840doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.20.24315840
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

population immunity. Also, allowing for spatial variations accounts for local differences, such as 1 
vaccination coverage, and socioeconomic and demographic characteristics. As all of them 2 
influence the relationship between wastewater metrics and reported cases, a model that can 3 
account for the complex and evolving nature of the pandemic is critical. Namely, we modelled 4 
the weekly COVID-19 case reports for each county using a negative binomial likelihood, 5 
allowing for over-dispersion in these data: 6 

 𝑌!"~𝑁𝑒𝑔𝐵𝑖𝑛(𝜇!" , 𝜑) [1] 7 

 𝜇!" = 𝑒𝑥𝑝(𝛼" + 𝛽#! + 𝛽$! ∗ 𝑋!") ∗ 𝑛!   [2] 8 
 9 
In Equation 1, 𝑌!" represents reported COVID-19 cases for county 𝑖 and week 𝑡. We used an 10 
alternative parameterization of the negative binomial in which 𝜇!" parameterizes the mean of 11 
the likelihood and 𝜑 parameterizes the extra-Poisson variation. The mean was specified as a 12 
function of 𝛼", a time-varying coefficient given a random-walk prior; 𝛽#!, a county-specific 13 
intercept; and 𝛽$! ,	a county-specific slope term applied to 𝑋!", the demeaned wastewater 14 
COVID-19 concentration value for each county and week (Equation 2). Both 𝛽#! 	and 𝛽$!  were 15 
specified as random effects to pool information across counties. 𝑛!  represented the population 16 
of each country, as reported by the US Census Bureau. We fit this model to the COVID-19 case 17 
and wastewater data using the RStan package in R (Stan Development Team, 2022). Additional 18 
details on the specification of this regression model, including prior distributions, are provided 19 
in the Appendix. 20 
 21 
Analysis of fitted models 22 
We used several approaches to assess model fit. First, we visually compared the COVID-19 case 23 
time series for each county to the fitted values from the regression model. Second, we 24 
calculated a quantitative measure of model fit: the Median Absolute Deviation (MAD). We 25 
estimated this value for each county and used them to describe the overall level of model fit 26 
and how this varied across counties. We used the MAD to investigate whether the strength of 27 
estimated relationships differed systematically as a function of county characteristics 28 
(urbanicity, population size), examining these relationships visually and via univariable and 29 
multivariable regression models. Finally, we calculated the correlation coefficient between 30 
modelled values and raw case totals as a simple summary measure of model fit. 31 
 32 
Coefficient estimates 33 
We used the fitted values of 𝛼" (the temporal trend in the regression model) to understand 34 
how the relationship between wastewater and COVID-19 case totals varied over the study 35 
period (July 2020 to March 2023). We used the fitted values of 𝛽#! 	and 𝛽$!  to understand how 36 
the relationship between wastewater concentration and COVID-19 case totals varied within 37 
each county.  38 
 39 
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 5 

Results  1 
Fitted relationship between COVID-19 cases and wastewater concentration 2 
For the majority of modelled locations, we estimated a relationship between wastewater 3 
concentration and weekly COVID-19 cases, indicating that wastewater concentration serve as a 4 
useful predictor of case trends. Figure 2 shows the temporal tend in reported COVID-19 cases 5 
and fitted model estimates for each of six example counties, representing a range in terms of 6 
urbanicity and population size, which are often correlated but not identical. For each of these 7 
example countries the fitted model values (blue symbols) follow the empirical case data (black 8 
symbols) closely, with occasional deviations (e.g., 2021 estimates for Monterey County, CA). 9 
Figures for other counties are available in the Appendix. We also calculated correlation 10 
coefficients comparing observed and predicted values COVID-19 case counts. Across counties 11 
the median of these correlation coefficients was 0.904, with an inter-quartile range of 0.823 to 12 
0.943. Twenty-three counties (21.5% of the sample) had correlation coefficients below 0.8, and 13 
three had values below 0.6.  14 
 15 

[Figure 2] 16 
  17 
Systematic differences in model fit across counties 18 
To further evaluate how the model performed in each county we calculated the MAD, for which 19 
smaller values indicate better model fit. For MAD, the median value was 0.259, with an inter-20 
quartile range of 0.201 to 0.301. When we compared MAD to country population size(Figure 3-21 
a), we found that model fit was better for counties with higher population numbers (p=<0.001). 22 
 23 

[Figure 3] 24 
 25 
Furthermore, we found that MAD was associated with urbanicity (Figure 3-b), with more urban 26 
counties (Categories 1, 2, and 3) having lower MAD (p=<0.001) and therefore better model fit. 27 
More rural counties had poorer model fits (higher values of MAD), with the exception of 28 
Chittenden VT.  29 
 30 
When we fit a multivariable regression model including both logged population and urbanicity 31 
category as predictors we found both coefficients to have the same sign as in the univariate 32 
analyses but were no longer significant (population size: p=0.09, urbanicity: p=0.13).  33 
 34 
Time-trends 35 
Figure 4 shows changes in the estimated relationship between wastewater concentration and 36 
COVID-19 case reports over the study period, quantified as the level of logged COVID-19 case 37 
totals consistent with a given wastewater concentration, shown in blue. Notably, the 38 
fluctuations in this relationship are closely associated with the significant US waves at the end 39 
of 2020 to the beginning of 2021 (Alpha wave), the summer of 2022 (Delta wave), and the 40 
beginning of 2022 (Omicron wave). During these periods, the ratio of COVID-19 cases to 41 
wastewater concentration is relatively high, as compared to the months before and afterwards. 42 
After early 2022 the estimated trend shows a progressive decline. 43 
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 1 
[Figure 4] 2 

 3 
Differences across counties 4 
Figure 5 shows fitted estimates for how changes in wastewater concentration values are 5 
associated with changes in COVID-19 cases for each county. As expected, the slopes shown in 6 
Figure 5 are positive (indicating that an increase in wastewater concentration was associated 7 
with an increase in reported cases), and relatively consistent across counties. In all cases the 8 
slope of these lines was estimated to be less than 1.0 (median: 0.551, IQR: 0.447 to 0.632), 9 
indicating that that fitted relationship between wastewater concentration and COVID-19 case 10 
totals is less than proportional (e.g., a 50% increase in wastewater concentration is associated 11 
with a <50% increase in case totals).  12 
 13 

[Figure 5] 14 
 15 

Discussion 16 
Wastewater data have been used extensively during the SARS-CoV-2 pandemic to monitor 17 
disease trends and provide early evidence of rising community transmission. However, there is 18 
limited information on the statistical relationship between wastewater metrics and reported 19 
COVID-19 cases, and how this relationship varies over time and across jurisdictions (Dai et al., 20 
2024). This knowledge is valuable for making decisions about how best to use wastewater data, 21 
and to understand the settings in which these data provide accurate information about COVID-22 
19 case trends. In this study, we modeled the relationship between wastewater metrics and 23 
clinical cases at the county level in the United States from July 2020 to March 2023.  24 
 25 
The results of our analysis show that models fit to wastewater data are better able to predict 26 
case counts in urban counties (based on NCHS categorization) as compared to more rural 27 
counties. This may be due to rural areas having lower levels of connection to centralized 28 
sewage systems, the source of wastewater surveillance data (National Academies of Sciences & 29 
Medicine, 2023; M. Varkila et al., 2023). We also noted a reduction in model performance 30 
among counties with smaller population sizes. This is consistent with other studies that have 31 
reported wastewater surveillance to have limited sensitivity as an early warning indicator in 32 
smaller geospatial scales (Gamage et al., 2024; Klaassen et al., 2024). We also estimated 33 
differences in the quality of model fit that were not explained by urbanicity and population 34 
size—these may relate to local differences in the coverage of wastewater surveillance, the 35 
processing of wastewater samples, or the quality of COVID-19 case reporting. 36 
 37 
In addition to inter-county differences, the results also revealed fluctuations in the relationship 38 
between wastewater concentration and COVID-19 case totals over the course of the pandemic. 39 
Several factors could account for these temporal trends. First, viral shedding patterns among 40 
individuals developing COVID-19 in recent years likely differ from those developing disease in 41 
the early stage of the pandemic, as immunity in the population through previous infections and 42 
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 7 

vaccination increased significantly throughout the pandemic (Puhach et al., 2023). Second, the 1 
transition between different dominant variants may have also influenced the dynamics of 2 
discharged RNA copies in human waste. For example, the viral and antibody dynamics are 3 
distinct between omicron and delta variants (Yang et al., 2023). Also, as mutations may affect 4 
the quantification of SARS-CoV-2 concentration in wastewater, such viral changes may need to 5 
be accounted for in estimating the relationship between wastewater levels and case 6 
notifications (Endo et al., 2023). Lastly, case reporting systems have changed over time, 7 
influencing the ratio of reported and unreported cases (Alvarez et al., 2023; Silk et al., 2023). In 8 
particular, the declining trend over the final year of the time series (i.e. a declining number of 9 
reported COVID-19 cases for a given wastewater level) likely relates to changes in COVID-19 10 
testing and reporting practices, with a progressively smaller fraction of COVID-19 cases 11 
diagnosed and reported to public health authorities.  12 
 13 
Designing effective wastewater surveillance systems require trade-offs among cost-14 
effectiveness, speed, and local feasibility (Levy et al., 2023). Most current sequencing is 15 
implemented with hundreds to thousands of samples in parallel with expensive machinery and 16 
intensive investment in human resources (Levy et al., 2023). This implies that counties with 17 
fewer resources may find it difficult to finance and support the required laboratory 18 
infrastructure and human resources.  19 
 20 
While the quality of model fit was generally good, our analyses revealed substantial variation in 21 
the utility of wastewater surveillance across counties. It is also important to note that reported 22 
case counts, which we used as a proxy for infection trends, are an imperfect measure of true 23 
incidence (M. R. Varkila et al., 2023). Ideally, a population-based survey, such as the United 24 
Kingdom’s Office for National Statistics’ COVID-19 Infection Survey, would provide a more 25 
accurate information for assessing the predictive performance of wastewater surveillance. 26 
However, without such data in the US, we rely on case reports as the best available data. 27 
Further investigation, validation, and standardized data collection frameworks are required to 28 
better understand the relationship between wastewater and epidemiological data. The 29 
incorporation of next-generation sequencing and automation of wastewater data collection 30 
processes could enhance the effectiveness of wastewater surveillance (Iwamoto et al., 2023; 31 
Singer et al., 2023).  32 

Conclusions 33 
The SARS-CoV-2 pandemic made it clear that traditional event-based surveillance systems have 34 
critical deficiencies for providing prompt and valid information about the local epidemiological 35 
situation. Wastewater surveillance may provide health agencies with another early detection 36 
and effective surveillance tool, unaffected by several of the deficiencies of traditional 37 
surveillance data. As of March 2024, more than 1300 locations in the US and over 72 countries 38 
globally conducted wastewater surveillance (CDC, 2024; University of California Merced, 2024). 39 
When implemented effectively, these can data provide a comprehensive picture of SARS-CoV-2 40 
transmission, capturing asymptomatic and non-tested infections. Our study demonstrates that 41 
analyzing wastewater metrics across multiple jurisdictions can establish the relationship 42 
between wastewater and potential cases, and how these differ across locations and over time. 43 
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 8 

However, the missing data in wastewater and uncertainty in case data require future efforts to 1 
make the relationship between them more established. Efforts to collect wastewater data in a 2 
more standardized manner should be enhanced further to fully realize their potential.  3 
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Figures  1 
 2 
 3 

 4 
Figure 1: This shows geographic location and NCHS urbanicity category for the 107 counties included in the 5 
analysis. 6 
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 1 
  2 

 3 
Figure 2: Comparison of observed and predicted COVD-19 case counts for a select group of counties within 4 
each urban-rural category as defined by the National Center for Health Statistics (NCHS).  5 

 6 
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 1 
 2 

 3 

 4 
Figure 3: Panel A shows how the quality of model fit (MAD) varies with county population size. Panel 5 
B shows how the quality of model fit (MAD) varies with country urbanicity category.  6 

 7 
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 1 
Figure 4: Time series of the time-varying coefficient (𝜶𝒕) alongside the aggregated case counts across 2 
counties from July 2020 to February 2023.  3 

4 



 13 

 1 
Figure 5: Estimated relationship between wastewater concentration and mean weekly cases per 100 2 
thousand people for each county. 3 
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