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Abstract 
 
Background: Obstructive sleep apnea (OSA) is a heterogeneous disease, with obesity a 
significant risk factor via increased airway collapsibility, reduced lung volumes, and possibly 
body fat distribution.  
 
Methods: Using race/ethnic diverse samples from the Million Veteran Program, FinnGen, 
TOPMed, All of Us (AoU), Geisinger’s MyCode, MGB Biobank, and the Human Phenotype 
Project (HPP), we developed, selected, and assessed polygenic scores (PGSs) for OSA, relying on 
genome-wide association studies both adjusted and unadjusted for BMI: BMIadjOSA- and 
BMIunadjOSA-PGS. We tested their associations with CVD in AoU. 
 
Results: Adjusted odds ratios (ORs) for OSA per 1 standard deviation of the PGSs ranged from 
1.38 to 2.75. The associations of BMIadjOSA- and BMIunadjOSA-PGSs with CVD outcomes in 
AoU shared both common and distinct patterns. For example, BMIunadjOSA-PGS was 
associated with type 2 diabetes, heart failure, and coronary artery disease, but the associations 
of BMIadjOSA-PGS with these outcomes were statistically insignificant with estimated OR close 
to 1. In contrast, both BMIadjOSA- and BMIunadjOSA-PGSs were associated with hypertension 
and stroke. Sex stratified analyses revealed that BMIadjOSA-PGS association with hypertension 
was driven by data from OR=1.1, p-value=0.002, OR=1.01 p-value=0.2 in males). OSA PGSs were 
also associated with dual-energy X-ray absorptiometry (DXA) body fat measures with some sex-
specific associations. 
 
Conclusions: Distinct components of OSA genetic risk are related to obesity and body fat 
distribution, and may influence clinical outcomes. These may explain differing OSA risks and 
associations with cardiometabolic morbidities between sex groups.   
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Introduction 
 

Obstructive sleep apnea (OSA) is a common disorder with an estimated prevalence of 17% 

(women) and 34% (men) in middle aged U.S. adults (1). OSA is associated with increased risk of 

cardiometabolic diseases, such as type 2 diabetes and hypertension, as well as increased rates 

of cardiovascular diseases (CVDs) including stroke, ischemic heart disease, and others (2–4). 

Despite recognition of the high prevalence of OSA, it remains underdiagnosed (5,6), with likely 

lower rates of diagnosis in women and in individuals who are less symptomatic (i.e. have less 

comorbidities such as hypertension or diabetes) (7). Major OSA risk factors include obesity, 

male sex, and older age (8).  

 

Polygenic scores (PGSs) summarize genetic contributions to a trait as linear combinations of 

many trait-associated genetic alleles. PGSs are being increasingly developed and are being 

applied to assess genetic relationships between phenotypes (9–11) and identify changes in 

genetic contributions by age, lifestyle, and environment (12–15). Importantly, PGSs are being 

studied and sometimes translated into clinical use, such as risk prediction, stratification and 

classification into risk groups, and for screening (16,17). PGSs have also been used for 

characterizing etiologic pathways (18,19). PGSs for OSA may help advance the understanding of 

OSA given the heterogeneity of OSA phenotypes, its complex associations with other chronic 

diseases, and the incomplete understanding of its underlying mechanisms (20). Ultimately, OSA 

PGSs may lead to improved risk stratification, screening, and treatment that targets underlying 

disease mechanisms.  
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To develop and assess OSA PGSs, we used data from racially and ethnically diverse samples 

from multiple biobanks and cohort studies, including the Million Veteran Program (MVP, (21)), 

FinnGen (22), TOPMed, All of Us, Geisinger’s MyCode, MGB Biobank, and the Human 

Phenotype Project (HPP). Given the known sex differences in OSA (23), and the strong effect of 

obesity on OSA risk, we use sex stratified summary statistics from genome-wide association 

studies (GWAS) of OSA without BMI adjustment from three of these cohorts (the MVP, 

FinnGen, and Han Chinese population GWAS) and after adjusting for BMI for two cohorts (MVP 

and FinnGen) to develop predictive OSA PGSs. We then constructed the PGSs in other studies. 

Earlier epidemiological and genetic work has demonstrated that BMI is the strongest causal risk 

factor for OSA (24). Therefore, it is critical to understand how BMI contributes to comorbidities 

and relationships between OSA and CVD. Ultimately, this potentially allows us to understand 

BMI-dependent and BMI-independent cardiovascular consequences of OSA. To achieve these 

aims, we assessed the associations of the PGSs with OSA, OSA-related measures, sleep 

phenotypes, and cardio-pulmonary, metabolic and kidney disease outcomes, in multiple 

independents studies including individuals representing diverse populations.  

 

Results 
 
A schematic overview of the study design is provided in Figure 1. We used GWAS summary 

statistics from three sources: the Million Veteran Program (MVP), FinnGen (Release 10), and an 

OSA GWAS of Han Chinese (Table 1). We applied three modern Bayesian shrinkage methods 
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(LDPred2, PRS-CS, and PRS-CSx) to develop PGSs based on the above GWAS and meta-analysis 

combinations (ancestry-specific, multi-population, sex-specific), and further developed PGSs as 

combinations (sums) of other PGSs. Here we use the term “ancestry-specific” to refer to the 

PGSs, because they were developed based on GWAS summary statistics that were computed 

within population groups defined to be genetically similar (e.g. the Harmonized Ancestry and 

Race Ethnicity (HARE) groups of MVP (25,26)). When evaluating the PGSs on groups of 

individuals, we used the term “population”, because the populations used in data analysis were 

defined based on self-reported race/ethnicity, rather than based on genetic similarity. We used 

the Mass General Brigham (MGB) Biobank dataset to train PGS summation weights, the Trans-

omics for Precision Medicine (TOPMed) dataset to assess PGS, and then data from All of Us 

(AoU), Geisinger, and HPP, to further study the selected PGSs in association with OSA and 

sleep-related measures, as well as other health outcomes. 

 

PGS software use summary statistics from a large number of variants, including correlated 

variants, and require a reference panel of linkage disequilibrium (LD) between the variants. 

Ideally, the LD reference would match the population from the GWAS corresponding to the 

summary statistics used. PRS-CS and PRS-CSx provide reference LD panels from the 1000 

Genome and from the UK Biobank (UKB) studies. Because these may not adequately 

correspond to the MVP population, we developed LD reference panels using the MVP dataset. 

We used a multi-step procedure to assess PGSs where we (a) assessed whether UKB LD 

reference panel is sufficient when using PRS-CS (compared to using our developed MVP LD 

reference panel); (b) compared ancestry-specific PRS-CS and LDPred2 PGSs (where LDPred2 
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used the MVP reference panel); (c) compared PGSs based on multi-ethnic meta-analysis to 

weighted combination of population-specific PGSs (where the population-specific PGSs relied 

on methods selected in steps (a) and (b)).  

 

 
Figure 1. OSA PGS development and assessment 

 
Development and assessment of OSA PGSs. The steps are composed of (a) PGS training using GWAS 
summary statistics, reference panels, and a separate population for computing PGS summation weights; (b) 
evaluation step used to select PGS out of multiple candidates; (c) validation of associations with OSA in new 
independent datasets; and (d) follow up analyses addressing OSA PGS associations with OSA within various 
strata, associations with related sleep phenotypes, comorbidities, and sequelae of OSA. Analyses in step (d) 
were in datasets from previous steps.  

UnadjBMI 
(N cases= 5,438 ; 
N control= 15,152)

Han Chinese

PGSs were constructed using PRS-CS, PRS-CSx, and LDPred2, with MVP and UKB as LD reference panels for each ancestry. In the multi-ethnic GWAS of MVP, and the 
meta-analysis of MVP and FinnGen, LDPred2 was applied with MVP as the LD reference panel. 

 UnadjBMI 
(N cases= 43,901; 

N control= 368,280); 
AdjBMI (N cases= 
33,805; N control= 

257,015)

FinnGen

Training
Evaluation 

OSA PGS association with other 
sleep phenotypes in the TOPMed 
and Human phenotype project 

Validation & Follow
-up

Validation in population-specific and multi-population analyses

OSA PGS association with OSA 
stratified by age, sex and obesity 
in All of Us and stratified sex in 

MyCode

OSA PGS association with clinical 
phenotypes  in All of Us and 

asssociations of OSA PGSs with body 
fat distribution measures in  Human 

phenotype project 

TextMillion Veteran Program (MVP) GWAS UnadjBMI (N cases= 121,332; N control= 447,244); 
AdjBMI (N cases= 19,082 ; N control= 439,988)

UnadjBMI (N cases= 85,433; 
N control= 324,835); 

AdjBMI ((N cases= 85,405; 
N control= 318,325)

White

UnadjBMI (N cases=23,407 ; 
N control= 83,641); 

AdjBMI (N cases= 23,339; 
N control= 82,811)

Black

UnadjBMI (N cases=10,990 ; 
N control= 34,156); 

AdjBMI (N cases= 10,966; 
N control= 33,637)

Hispanic

UnadjBMI (N cases=1,667 ; 
N control= 5,454); 

AdjBMI (N cases= 1,676; 
N control= 5,586)

Asian

TOPMed was used to evaluate PGSs by comparing results from single-population GWAS, meta-analysis, and both weighted and unweighted PGS summations. PGS were 
obtained from LDPred2, PRS-CS, and PRS-CSx. PRS summations weights were derived from the MGB biobank.

BMIunadjOSA-PGS = ?MVP-Whiite* PGSMVP-white + ?FinnGen * PGSFinnGen  +  ?MVP-Black* PGSMVP-Black+  ?MVP-Hispanic* PGSMVP-Hispanic 
+  ?MVP-Asian and Han Chinnese *PRSMVP-Asian and Han Chinnese

 
BMIadjOSA-PGS = ?MVP-Whiite* PGSMVP-white + ?FinnGen * PGSFinnGen  +  ?MVP-Black* PGSMVP-Black+  ?MVP-Hispanic

White: 44,522
Black:18,435

Hispanic/Latino:17,202
Asian:2,803
All: 86,679

All of Us

White: 89,684 
Black/African American: 2,557 

Hispanic/Latino: 3,289 
Asian: 663 

Other/Mixed: 676 
Pooled: 96,869

MyCode

Israeli: 5,950 

Human phenotype project

Developing sex specific PGS 
based on sex specific GWAS

Follow-up analysis
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Evaluation of PGSs in TOPMed 

The clinical characteristics of TOPMed participants are provided in Supplementary Table 1. 

Briefly, participants were self-identified from 4 race/ethnicity groups: White, Black, 

Hispanic/Latino, and Asian. Characteristics of individuals differed across these groups. For 

example, the average ages of participants were 68 years (Asian), 63 years (White), 56 years 

(Black), and 48 years (Hispanic/Latino). Most population groups had balanced sex ratio (50% 

female), while 58% of Hispanics/Latinos were female. Mean BMI was similar (~ 30 kg/m2) in the 

group of White, Black, and Hispanic/Latino individuals, but lower (~24 kg/m2) on average, in the 

group of Asian participants.  

 

 As described in Supplementary Note 1 and Supplementary Figures 1 and 2, using PRS-CS with 

the public UKB LD reference panel resulted in equivalent or better performance to PRS-CS using 

the MVP reference panel. Next, we compared LDPred2 (with MVP LD reference panel) to PRS-

CS (with UKB reference panel) ancestry-specific PGSs. The results are provided in 

Supplementary Figures 3 and 4, demonstrating that the results were comparable for both 

approaches, except for White individuals; in this case, using the PRS-CS with UKB reference 

panel performed better. Therefore, for ancestry-specific PGSs we proceeded with PRS-CS with 

UKB LD reference panel. Next, we addressed the multi-ethnic PGS construction by comparing: 

(i) an LDPred2 PGS based on the multi-ethnic meta-analysis of all GWAS with the multi-

population MVP reference panel, multi-PGS summation of either standardized PRS-CS or PRS-

CSx ancestry-specific PGSs using either (ii) MGB-inferred weights, or (iii) equal weights. As 
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shown in Supplementary Figures 5 and 6, the best performing PGSs were MGB-inferred 

weighted combination of PRS-CS PGSs. Characteristics of MGB participants are provided in 

Supplementary Table 2. Here, the PGS based on BMI-adjusted GWAS, which we dub BMIadjOSA 

PGS, is the combination is of 5 PGSs, based on GWAS of: MVP White group, FinnGen, MVP Black 

group, MVP Hispanic/Latino group. The final PGS based on BMI-unadjusted GWAS, called 

BMIunadjOSA PGS, is a weighted summation of 6 PGSs, based on the BMI-unadjusted versions 

of the above GWAS, and further including a PGS developed based on MVP Asian group meta-

analyzed with the Han Chinese OSA GWAS. The two final PGSs (BMIadjOSA and BMIunadjOSA 

PGS) were highly correlated: Pearson correlation was 0.96, computed over the TOPMed 

dataset. Mean and standard deviations (SDs) of these PGSs computed over the TOPMed 

datasets are provided in Supplementary Table 3.  

 

Figure 2 compares the associations of the selected BMIadjOSA-PGS and BMIunadjOSA-PGS with 

OSA in TOPMed individuals, stratified by self-reported race/ethnicity, age, BMI, and sex. Here, 

OSA was defined using the apnea hypopnea index (AHI) or the respiratory event index (REI), 

depending on availability of the measurement, or self-reported diagnosis of OSA (when 

overnight sleep study was not available, see Supplementary Table 4 for OSA definition by 

study). When using AHI or REI, OSA was defined as AHI/REI≥ 15. The association models were 

adjusted for self-reported race/ethnicity, age, sex, BMI (both linear and squared terms), and the 

first 11 PCs of genetic ancestry. The OSA associations of the BMIadjOSA-PGS are stronger than 

the association of the BMIunadjOSA-PGS. In raw association, presented as proportions of 

individuals in OSA categories (no OSA, mild, moderate, and severe OSA) within quintiles of the 
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PGS, both PGSs result in similar patterns (Figure 2b). Due to the differences in PGS distribution 

between self-reported race/ethnicity groups (Figure 2a), group-combined raw (quintile-based) 

associations are not appropriate; however, the PGS associations with OSA are very consistent 

across different race/ethnicity, sex, and age strata in covariate-adjusted models (Figure 2c). 
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Figure 2: OSA PGS associations with OSA in TOPMed individuals 

 
Panel a: distributions of BMIadjOSA and BMIunadjOSA PGSs in strata defined by self-reported race/ethnicity. Panel b: 
precents and numbers of individuals with normal, mild, moderate, and severe OSA (defined by cut-points of REI/AHI or 5, 
15, and 30), in quintiles of the OSA PGSs by self-reported race/ethnicity (Asian group excluded due to low sample size). 
Panel c: estimated OSA PGS associations with OSA in TOPMed combined and stratified samples. Analyses were adjusted 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 21, 2024. ; https://doi.org/10.1101/2024.10.20.24315783doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.20.24315783
http://creativecommons.org/licenses/by/4.0/


for age, sex (unless sex-stratified), self-reported race/ethnicity (unless stratified by that), and BMI (both linear and 
squared terms).  
AHI: apnea hypopnea index; OSA: obstructive sleep apnea; PGS: polygenic score; REI: respiratory event index.  
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In TOPMed individuals who had OSA and OSA-related phenotypes measured overnight sleep 

study available, analyses using both BMIadjOSA- and BMIunadjOSA-PGSs (Figure 3) were 

generated using participants whose phenotypic characteristics are reported in Supplementary 

Tables 5 and 6. The PGSs are generally associated with OSA phenotypes (AHI, hypoxic burden, 

percent sleep time with oxyhemoglobin saturation below 90%, minimum and average oxygen 

saturation, and respiratory event-related oxygen desaturation during sleep; all log 

transformed), and are in the expected direction of effect. There are differences, however, in the 

trait associations between REM and NREM sleep, with stronger associations in phenotypes 

measured during NREM sleep (e.g., AHI: 0.15, 95% CI [0.12, 0.18]; NREM AHI: 0.16, 95% CI 

[0.11, 0.21]; REM AHI: 0.06, 95% CI [0.02, 0.11]). In addition, the PGS association with average 

oxyhemoglobin saturation during sleep (Avg SatO2) is very weak (effect size: -0.0003, 95% CI 

overlapping with zero, p-value =0.09). To address the hypothesis that this result is because Ave 

SatO2 potentially reflects lung function better than OSA, we estimated the association of lung 

function (FEV1 to FVC ratio) PGS with Avg SatO2 as well as with AHI, both log transformed. The 

lung function PGS was associated with Avg SatO2 (effect size: -0.0002, 95% CI: [ -0.003,-

0.00007], p-value=9.0 x10-4) but only weakly with AHI (effect size: 0.01, 95% CI: [0.002 , 0.2], p-

value=0.02, Supplementary Table 7).  
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Figure 3. Estimated associations of OSA PGSs with OSA- and sleep-related phenotypes in 
TOPMed 

 

Results from association analyses of OSA PGSs with OSA-related sleep measures. Panel a: measures 
that tend to be higher with more severe OSA, panel b: measures that tend to be lower with more 
severe OSA. 
AHI: apnea hypopnea index; NREM: non-rapid eye movement sleep; REI: respiratory event index; 
REM: rapid eye movement sleep; Avg SatO2: average oxyhemoglobin saturation during sleep; Min 
SatO2: minimum oxyhemoglobin saturation during sleep; Avg DesatO2: average oxyhemoglobin 
desaturation during respiratory events. 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 21, 2024. ; https://doi.org/10.1101/2024.10.20.24315783doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.20.24315783
http://creativecommons.org/licenses/by/4.0/


Sex specific PGSs (based on sex-specific GWAS) did not exhibit better performance than PGSs 

based on sex-combined analysis (Supplementary Figure 7 and 8).  

 

Associations of OSA PGSs in the Geisinger’s MyCode project 

The MyCode project include individuals recruited from the Geinsinger healthcare provider. OSA 

categorization is based on ICD codes, as described in the Methods section. Figure 4 provides 

results from association analyses of BMIadjOSA-PGS and BMIunadjOSA-PGS in MyCode in a sex-

combined analysis. Results from sex-stratified analysis are provided in Supplementary Figure 9. 

Characteristics of the study population are provided in Supplementary Table 8. There were 

96,869 individuals, of which 19,148 (19.8%) had OSA. The mean age was 48 years, and 60% 

were female. Majority of individuals were White. The OSA PGSs were highly associated with 

OSA: BMIadjOSA-PGS overall OR=2.00, 95% CI:[1.89;2.12], in females  OR=1.89,  95% 

CI:[1.75;2.05], and in males OR=2.14, 95% CI:[1.97;2.23].  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 21, 2024. ; https://doi.org/10.1101/2024.10.20.24315783doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.20.24315783
http://creativecommons.org/licenses/by/4.0/


Figure 4: OSA PGS associations with OSA in validation studies.  

 

Estimated associations of BMIadjOSA and BMIunadjOSA PGSs with OSA in three validation datasets: 
All of Us, Geinsinger health system, and the Human Phenotype Project, in combined and stratified 
analyses.  

 
 

Associations of OSA PGSs with OSA phenotypes in the Human Phenotype Project 

Supplementary Table 9 characterizes the participants from the HPP. There were 3,070 female 

and 2,880 male participants, ~52 years old on average, and the average BMI was ~26 kg/m2. 

Very few individuals had OSA according to medical diagnosis: 0.75% of female and 4.1% of male 

participants. Supplementary Table 10 further characterizes the subset of individuals who had 
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sleep monitoring data measured using the WatchPAT device, and their objective sleep 

phenotypes (averaged values over three nights). Based on sleep monitoring data, 17.2% of 

female and 30.7% of male individuals had OSA defined as AHI≥ 15. BMIadjOSA-PGS was 

strongly associated with OSA in the HPP (Figure 4). The association was stronger when OSA was 

based on medical diagnosis (141 cases, 5,792 controls; OR=2.75), compared to the association 

when OSA was defined based on a 3-day average of AHI≥ 15 (1,042 cases, 3,155 controls; 

OR=1.38). Unlike the analysis in the TOPMed data, associations of quantitative OSA-related 

phenotypes with the OSA PGSs were similar when stratified by REM and NREM stage (Figure 5). 

PGS associations were stronger with the oxygen desaturation index (ODI) compared to the AHI 

or respiratory disturbance index (RDI). We also estimated associations with oxygen saturation 

phenotypes (Supplementary Figure 10), sleep stage duration (percentages of total sleep 

duration) (Supplementary Figure 11), and with self-reported sleep phenotypes (Supplementary 

Figure 12).  OSA PGSs were strongly associated with lower minimum and average oxygen 

saturation during sleep, with stronger associations for BMIadjOSA-PGS compared to 

BMIunadjOSA-PGS. The PGS associations with other phenotypes were generally weaker. Among 

the associations that had p-value<0.05, BMIunadjOSA-PGS was associated with less sleep time 

percentage in light sleep and longer percentage of time in REM sleep. BMIadjOSA-PGS was 

weakly associate with higher likelihood of daytime sleepiness (p-value=0.04) and BMIunadjOSA-

PGS was associated with both shorter sleep duration (beta from association with continuous 

sleep hours question =-0.07, p-value=0.03), and with lower likelihood of long (>9 hours) sleep 

duration (OR=0.35 ≤9 hours, p-value=0.04). Characteristics of self-reported sleep phenotypes 

among the HPP participants are provided in Supplementary Table 11.  
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Figure 5: OSA PGS associations with quantitative OSA phenotypes in the Human 
Phenotype Project. 

 
Estimated associations of BMIadjOSA and BMIunadjOSA PGSs with sleep monitoring, log-
transformed OSA-related measures in the HPP, stratified by REM and NREM sleep and 
combined. All measures were averaged over the three nights of sleep monitoring. 
AHI: apnea hypopnea index; HPP: Human Phenotype Project; ODI: oxygen desaturation 
index; RDI: respiratory disturbance index; REM: rapid eye movement; NREM: non-REM. 

 

 
Associations of OSA PGSs with clinical outcomes in the All of Us study 

All of Us participant characteristics are provided in Supplementary Table 12. Between 6%-15% 

of participants were classified with OSA, with the lowest and highest percentages observed in 

self-reported Asian self-reported White participants, respectively. All association analyses were 

adjusted for age, BMI (linear and squared terms), sex at birth, self-reported race/ethnic 
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background, and the first 10 genetic PCs. First, we performed OSA association analysis in the 

combined cohort with BMIadjOSA PGS, BMIunadjOSA PGS, as well as with other previously 

reported PGSs that used either only genome-wide significant SNPs (21), or used the clump & 

threshold method to derive PGS based on BMI-unadjusted analysis using FinnGen-only data 

(10). The results are provided in Supplementary Table 13, demonstrating that the newly-

developed OSA PGSs have stronger associations with OSA compared to previously-developed 

one.  Figure 4 visualizes the associations of the developed OSA PGSs with OSA in All of Us (as 

well as other cohorts), and Supplementary Figure 9 provides results stratified by sex, age, and 

obesity groups. Unlike in TOPMed, the OSA PGS association estimates in All of Us differed 

across self-reported race/ethnicity groups, with the association in self-reported White 

individuals being the strongest (OR=2.14 of BMIadjOSA-PGS, 95% CI [1.93, 2.37]), and weakest 

in self-reported Hispanic/Latino individuals (BMIadjOSA-PGS OR= 1.35, 95% CI [1.13, 1.60]).  

 

Next, we performed association analyses of BMIadjOSA-PGS and BMIunadjOSA-PGS with clinical 

outcomes potentially related to OSA: hypertension, type 2 diabetes, stroke, atrial fibrillation, 

atrial fibrillation, heart failure, coronary artery disease, asthma, chronic obstructive pulmonary 

disease (COPD), and chronic kidney disease. The results are visualized in Figure 6. 

BMIunadjOSA-PGS was associated with all clinical cardiovascular, pulmonary, and kidney 

outcomes, while BMIadjOSA-PGS had more variable, and usually weaker, associations. Notably, 

BMIadjOSA-PGS was not associated with type 2 diabetes, heart failure, coronary artery disease, 

COPD, or chronic kidney disease, but associated with hypertension, stroke, atrial fibrillation, 

and asthma (raw p-value<0.05).  
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Figure 7 (hypertension and type 2 diabetes) and Supplementary Figure 13 (all other outcomes) 

provide results from sex-stratified association analyses of OSA PGSs. The associations with 

hypertension and diabetes suggest sex-differences: Both BMIadjOSA- and BMIunadjOSA-PGS 

associations with hypertension were driven by the female stratum, while the BMIunadjOSA-PGS 

association with T2D was driven by the male stratum. 

Figure 6:  OSA PGS associations with other clinical outcomes in All of Us. 

 
Estimated associations of BMIadjOSA and BMIunadjOSA PGSs with clinical outcomes in the 
All of Us study. Associations were adjusted for age, sex, BMI (linear and squared terms), and 
10 PCs of genetic ancestry.  
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Associations of OSA PGSs with body fat distribution measures from DXA scan 

We used data from the HPP to study whether BMIadjOSA and BMIunadjOSA PGSs are 

associated with body fat distribution measures to potentially explain their different associations 

with health outcomes. We considered measures based on total body visceral adipose tissue 

(VAT), subcutaneous adipose tissue (SAT), gynoid fat mass, and android fat masses. Specifically, 

we used, as outcomes, the proportions of total body VAT and SAT mass out of total body fat 

mass (TFM), the ratio VAT:SAT mass, the proportions of gynoid and android fat out of TFM, and 

the ratio gynoid:android fat mass. Characteristics of these DXA phenotypes are provided in 

Supplementary Table 14. Association analyses results are provided in Figure 7 (BMI adjusted 

analyses) and Supplementary Figure 14 (BMI unadjusted analyses). In combined sex association 

analyses that was not adjusted to BMI, BMIunadOSA-PGS was associated with all DXA 

outcomes. Higher BMIunadjOSA-PGS values were strongly associated with higher proportions 

of VAT and SAT mass proportions, and with higher android mass proportion but with lower 

gynoid mass proportion out of TFM. Also, it was associated with increased VAT:SAT ratio, and 

with lower gynoid:android mass ratio. In BMI-adjusted analyses, results were similar, however, 

BMIadjOSA-PGS was not associated with SAT ratio out of TFM. Further, BMIadjOSA-PGS was 

associated with VAT:SAT only in the female stratum (Figure 7).  
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Figure 7: Sex-stratified associations OSA PGSs with cardiometabolic traits and body fat 
distribution measures from DXA scan 

 

 
Top: Estimated adjusted odds ratio of OSA PGSs with hypertension and T2D in All of Us. 
Bottom: estimated associations of BMIadjOSA-PGS with DXA measures. 
All associations were adjusted for age, sex, BMI (linear and squared terms), and the 10 first 
genetic principal components. Results from association analyses that used BMIunadjOSA-PGS 
and was not adjusted for BMI are provided in Supplementary Figure 14. 
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BMI: body mass index; OR: odds ratio; VAT: visceral adipose tissue; SAT: subcutaneous 
adipose tissue; FM: fat mass; TFM: total scan fat mass; T2D: type 2 diabetes. 

 

Discussion 
 
This is the largest study to date leveraging polygenic scores across global populations to 

investigate the role of BMI in OSA and related clinical outcomes. Associations of the 

BMIadjOSA-PGS with OSA, in BMI-adjusted analyses, were strong, and ranged from ORs of 1.38 

from device-measured AHI≥ 15 and 2.75 from medical diagnosis-based OSA (HPP), to 1.98 (All 

of Us), and 2.00 (MyCode), likely reflecting a more severe phenotype that triggered clinical 

recognition. Importantly, associations differed between PGS developed based on BMI-adjusted 

and BMI-unadjusted GWAS. Using data available from the All of Us cohort, we further showed 

that the strength of associations with cardiovascular, metabolic, pulmonary and kidney 

disorders often differed depending on the BMI adjustment of the source OSA GWAS. For 

example, type 2 diabetes, coronary artery disease, and heart failure associations were null in 

association with BMIadjOSA-PGS but were positively associated BMIunadjOSA-PGS, suggesting 

that much of the co-aggregation of those cardio-metabolic phenotypes may be explained by 

genetic risk factors associated with obesity. In contrast, both BMIadjOSA- and BMIunadjOSA-

PGSs were associated with hypertension, stroke, and asthma, and stroke, suggesting that 

obesity-independent risk factors for OSA are associated with those outcomes. Interestingly, 

epidemiological studies that adjusted for BMI and other cardiovascular confounders have 

generally shown more consistent associations with OSA for hypertension and stroke in 

comparison to coronary artery disease (27,28). These results point to a unique pathophysiology 
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of OSA captured only by BMI-adjusted GWAS that may not be associated with elevated BMI and 

may specifically increase risk for vascular and airway diseases.  

 

The association between asthma and BMIadjOSA-PGS is of interest given the reported 

associations between OSA and asthma phenotypes but uncertainty regarding the causal 

directionality of the relationship between OSA and asthma (29,30).  Common risk factors for 

both disorders include not only obesity but also inflammation and atopy. Our study findings 

suggest that additional OSA-related risk factors, beyond obesity, may influence risk of asthma. 

 

Obesity is one of the strongest risk factors for OSA and is independently an important risk factor 

for many other health outcomes including diabetes and various cardiovascular outcomes. 

Studies assessing the effect of OSA, and the effect of OSA treatment, on cardiovascular 

outcomes typically attempt to account for the role of BMI or obesity and evaluate the OSA-

specific effect (31–33). Hence it is important to account for BMI in the development of OSA 

PGSs. The developed PGSs, BMIadjOSA- and BMIunadjOSA-PGSs are highly correlated, yet have 

different associations with OSA and with other health outcomes. The BMIadjOSA-PGS has 

stronger association with OSA in BMI-adjusted analysis, while the BMIunadjOSA-PGS has 

stronger association with other outcomes, likely due to it capturing BMI-related OSA genetic 

effects. Both PGSs are useful. It would be incorrect to dismiss the BMIunadjOSA-PGS as 

capturing primarily obesity rather than OSA genetics, because the impact of obesity is being 

mediated through OSA. BMIadjOSA-PGS captures OSA genetic effects without the contribution 

of obesity, but it is difficult to assess how effective this adjustment is (i.e., does some of the 
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obesity-related OSA genetics remain captured in BMIadjOSA-PGS?), the observed null 

association of BMIadjOSA-PGS with diabetes in All of Us suggests that it was largely effective. 

We studied the associations of OSA-related phenotypes with BMIadjOSA- and BMIunadjOSA-

PGSs in both TOPMed and HPP, both while adjusting the associations to BMI. In TOPMed, the  

associations of oxygen saturation phenotypes were stronger with BMIunadjOSA-PGS compared 

to BMIadjOSA-PGS (but this was not replicated in HPP). More work is needed to assess whether 

this points to OSA-specific obesity-related pathophysiology, such as obesity-hypoxemia 

interactions (30). 

 

We performed association analyses of OSA PGSs with DXA scan measures in the HPP. While it 

would have been ideal to consider fat measures separately in the neck/upper airway area 

(34,35) and in the abdomen (36), we had overall VAT and SAT mass measures, and gynoid and 

android fat masses (not limited to VAT or SAT tissues). OSA PGSs were associated with higher 

VAT:SAT ratio, but the associations were statistically significant only in females (Figure 7). This 

is consistent with sex differences in cardiometabolic risk conferred by VAT (37) identified in the 

Framingham Heart Study. Higher VAT is associated with increased inflammation and insulin 

resistance (38,39), and increased insulin levels are in turn associated with OSA—even after 

adjusting for BMI (40). Insulin levels may be linked to OSA via the association of VAT with upper 

airway  size and function (41). The association of OSA PGSs with VAT:SAT ratio, even in BMI-

adjusted analysis, is consistent with the role of inflammation and insulin resistance in OSA. The 

stronger association observed in women also suggests a potential sex-specific mechanism.  
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Strengths of this study include the use of multiple independent and population-diverse 

datasets, with populations reflecting the diversity of the U.S. population, as well as a few world-

wide populations. Our study is unique in that we employed both BMI-adjusted and -unadjusted 

GWAS to develop and assess PGSs, assessment of OSA associations in a stratified manner, and 

estimated the associations of OSA PGSs with multiple clinical measures across available 

datasets. Our results suggest areas for improvement in future studies. Importantly, there 

remains the challenge posed by the underdiagnosis of OSA (42), limiting results from GWAS as 

well as estimations of associations (43). For example, the OSA PGSs effect size estimates 

demonstrated unprecedented consistency across strata defined by age, sex, and self-reported 

race/ethnicity (unlike previous results with blood pressure PGS (15)) in TOPMed, where most of 

the cohorts assessed OSA using objective devices. In contrast, associations differed by self-

reported race/ethnicity in All of Us, where OSA status was determined by electronic health 

record codes. There, the associations were strongest in self-reported White populations. Well-

known health disparities between White and minority populations in the U.S. (44), suggest the 

possibility of referral bias and missed diagnosis of OSA in race/ethnic minority populations in 

the U.S. Such differences may underlie the observed differences in OSA PGS effect estimates.   

 

In summary, we developed BMIadjOSA- and BMIunadjOSA-PGSs, which were highly associated 

with OSA across multiple, diverse, populations. Follow up association analyses in All of Us 

revealed the genetically determined, OSA-specific, obesity independent, association with 

hypertension, stroke, and asthma. The results support the importance of both obesity related 

and unrelated genetic risk factors for OSA. 
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Online Methods  
 

Figure 1 provides an overview of the study. In brief, we used GWAS summary statistics from 

multiple published GWAS of OSA using three modern methods, LDPred2 (45), PRS-CS (46), and 

PRS-CSx (47), that have been shown to be very successful for polygenic, complex, traits. We 

developed PGS after either meta-analyzing GWAS summary statistics across independent 

cohorts, or using a PGS combination approach, as a weighted sum. We then evaluated PGS in 

association with OSA, and performed additional analyses where we studied PGS associations 

with other phenotypes.  

 
 
 
GWAS summary statistics 
 
We developed PGS based on summary statistics from MVP (21), from the FinnGen study (22), 

and from a GWAS of OSA in Han Chinese (48). Table 1 provides information about the summary 

statistics.  

 

GWAS of OSA in FinnGen 
 
The FinnGen study is a large-scale genomics initiative that has analyzed over 500,000 Finnish 

biobank samples and correlated genetic variation with health data to understand disease 
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mechanisms and predispositions. The project is a collaboration between research organizations 

and biobanks within Finland and international industry partners.  

 

The project aims to identify the impact of genetic and environmental factors on various 

diseases while enhancing understanding of the progression and biological mechanisms 

underlying these conditions (49). Genome-wide association testing for OSA was performed 

utilizing Regenie 2.2.4 (50) through the FinnGen Regenie pipelines 

(https://github.com/FINNGEN/regenie-pipelines). The analysis was adjusted for the current age 

or age at death, sex, genotyping chip, genetic relatedness, and the first 10 genetic PCs. The 

analysis was also conducted adjusting for BMI, and it was repeated for both sexes separately. 

The baseline characteristics of the participants are presented in Supplementary Table 15. 

 
 
Table 1: GWAS summary statistics used for OSA PGS development 

GWAS  Reference Sex group BMI 
adjustment 

Sex-combined 
sample size 

Study 
population  

MVP PMID 
36989840 

Combined, 
and sex-
stratified  

Unadjusted Cases: 121,332 
Controls: 
447,244  
 

91% male,  
72% White, 
19% Black, 8% 
Hispanic,  
1.2% Asian. 

MVP PMID 
36989840 

Combined, 
and sex-
stratified  

Adjusted Cases: 119,082 
Controls:439,988 

91% male,  
72% White, 
19% Black, 8% 
Hispanic,  
1.2% Asian. 

FinnGen 
Release 10 

PMID 
36653562 

Combined, 
and sex-
stratified 

Adjusted Cases: 33,805;  
Controls: 
257,015 

Finnish 
Europeans 

FinnGen 
Release 10 

PMID 
36653562 

Combined, 
and sex-
stratified 

Unadjusted Cases: 43,901; 
Controls: 
368,280 

Finnish 
Europeans 
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Han Chinese PMID 
35819321 
 

Combined Unadjusted Cases: 5,438; 
Controls:15,152  

Han Chinese 

MVP study population was defined by “HARE group”: groups defined by a harmonized genetic ancestry and self-
reported race/ethnicity algorithm (25) designed to create genetically similar groups, with group definitions relying 
on self-reported race/ethnicity of the majority of group members.  
 
Creating an MVP LD reference panel for PGS development  
We used three popular methods to develop PGSs: LDPred2, PRS-CS, and PRS-CSx, all requiring 

the use of reference panels – correlation matrices tabulating the linkage disequilibrium (LD; 

correlation) between single nucleotide polymorphisms (SNPs) used for PGS preparation. We 

constructed such matrices based on the MVP dataset, using unrelated individuals only (overall 

N=567,748). 

 

We focused on HapMap SNPs, and further required, for each LD reference panel representing a 

specific population subset, MAF of at least 0.01, and imputation quality≥0.8. We excluded SNPs 

from the major histocompatibility complex (MHC) region (chr6: 26–34Mb; grch37), 

 

We first used the R package bigsnpr (V1.12.) to create correlation matrices based on each of 

MVP HARE groups, and based on the combined sample. For the European HARE group, we 

subset the dataset to 100K unrelated individuals, to speed up computing time. Because other 

HARE groups had smaller sample sizes, we used all unrelated individuals associated with the 

group (N African: 106,445, N Hispanic: 44,714, N Asian: 7,149). To create the multi-population 

correlation matrix we sampled 100K individuals at random from the unrelated set of MVP 

individuals. Random sampling ensured that the proportions of individuals from each HARE 

group was maintained from the complete dataset. LDPred2 requires correlation matrices based 
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on entire chromosomes. Thus, we used function snp_cor from bigsnpr to compute these 

matrices for each chromosome, HARE group, and the multi-population dataset.  

 

PRS-CS and PRS-CSx required splitting each chromosome to smaller LD blocks, typically of 

hundreds of SNPs (46) due to computational limitations. Thus, we applied the snp_ldsplit 

function from the form bigsnpr package to split the correlation matrices from each 

chromosome, in each HARE group dataset, to LD blocks, varying the r2 parameters and 

minimum and maximum block sizes as needed (following the bigsnpr tutorial). This function 

was not able to identify independent LD blocks based on the multi-population dataset based on 

a range of parameters (we considered r2 up to 0.3), likely due to admixture, so we did not apply 

PRS-CS on the multi-population GWAS summary statistics and only used it based on individual 

HARE group summary statistics.  

 

For PRS-CS and PRS-CSx, we outputted the SNPs in each LD block, used plink v.1.9 to create 

correlation matrices, and next combined them by chromosome. 

 
PGS development 
 
We developed PGSs using LDPred2, PRS-CS, and PRS-CSx. The latter method is a multi-PGS 

combination method that relies on summary statistics from GWAS performed in populations of 

distinct ancestral make-up and develops PGS matching each of the ancestries, to be later 

combined as a weighted (or unweighted) sum. We used the reference panels developed in MVP 

as well as the reference panels provided with the PRS-CS and PRS-CSx software, which are 

based on subpopulations of the UKB program, and develop PGS for OSA based on BMI-adjusted 
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and BMI-unadjusted analyses. We also developed PGSs using PRS-CS and LDPred2 and 

combined them as sums of PGSs. We considered the following PGS constructions: 

1. Only based on MVP, HARE group specific GWAS: using LDPred2 based on MVP HARE 

group reference panels; using PRS-CS and PRS-CSx based on MVP HARE group LD 

reference panels; using PRS-CS and PRS-CSx based on UKB LD reference panels. The 

difference between PRS-CS and PRS-CSx is that PRS-CSx constructs the HARE groups (or 

ancestry)-specific PGS while borrowing information from other groups while PRS-CS 

does not.  

2. Only using FinnGen: using LDPred2 and PRS-CS based on MVP and UKBB European 

reference panels. 

3. Based on similar ancestry meta-analysis of MVP, FinnGen, and Han Chinese OSA 

GWAS summary statistics. Here, we meta-analyzed MVP Asian + Han Chinese OSA 

GWAS (only BMI unadjusted due to data availability), and meta-analyzed MVP White 

HARE group with FinnGen Finish Europeans. We then used the same approaches as in 

bullet 1 above. 

4. PGS based on multi-population meta-analysis: using the meta-analysis of summary 

statistics of MVP only, and similarly using meta-analysis of all MVP, FinnGen, and Han 

Chinse GWAS, with LDPred2 and the multi-population MVP reference panel. 

Ancestry/population-specific PGSs developed as described in bullet points 1-3 above were 

combined together (as described below) as weighted or unweighted sums.   

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 21, 2024. ; https://doi.org/10.1101/2024.10.20.24315783doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.20.24315783
http://creativecommons.org/licenses/by/4.0/


We also developed PGSs based on sex-specific GWAS summary statistics. Because the sample 

size of female participants is small in MVP, especially of non-White participants, for female sex 

PGSs we developed MVP-only PGS using the multi-ethnic female GWAS results with LDPred2, 

and a European population-based PGS using the White MVP female GWAS summary statistics 

meta-analyzed with the FinnGen female GWAS summary statistics. For male-only PGS, we used 

the same methods as described above for the sex-combined PGSs.  

 

MGB Biobank 
 

The Mass General Brigham (MGB) biobank is a biorepository of consented patient samples at 

MGB (Supplementary Note 2). We extracted data from MGB biobank in November 2021. OSA 

status was extracted from the field “Obstructive Sleep Apnea OSA”. We used the dataset to 

derive PGS combination weights. In brief, we used (1) PRS-CSx PGSs as well as, separately, (2) 

single population PGSs (MVP HARE groups only and combined with FinnGen and Han Chinese 

OSA GWAS) developed using LDPred2 or (separately) PRS-CS, in logistic regression of OSA over 

the set of PGSs. The effect estimates of the PGSs are the weights used later to create a sum of 

PGSs, e.g.: w1xPGS1 + w2xPGS2 + w3xPGS3. Analyses in MGB Biobank were adjusted for current 

age, sex, self-reported race/ethnicity, genotyping batch, and BMI (linear and squared terms), 

with BMI being the median BMI in the health records for each person. We performed both BMI-

unadjusted and BMI-adjusted analyses, where the adjustment in MGB matched the BMI 

adjustment used in the original GWAS that the relevant PGSs were constructed by.  
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Deriving a single set of PGS variant weights from a multiple PGS combination 
 
To facilitate replication of PGS association analyses as well as general use of PGS in external 

studies, we here demonstrate how we derive a new PGS, that accounts for the weighted (or 

unweighted) summation of multiple, standardized, PGSs. The formula for the 𝑘th PGS is: 

1
2𝑝!

(𝑔"𝛽!"

#!

"$%

 

 

Where note that is standardized according to the number of potential alleles (2 times the 

number of variants). Suppose that we computed the mean and standard deviation of the PGSs 

in the evaluation dataset (here, TOPMed), and they are given by 𝜇! , 𝜎! for the 𝑘 PGS. Noting 

that the number of variants can change between PGSs, we denote by 𝑝! the number of variants 

in the 𝑘th PGS. When summing 𝐾 PGSs with weights, 𝑤%, … , 𝑤&  the expression is: 

 

wPGSsum = 𝑤%
( 12𝑝%
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This can alternatively be written as a single PGS formula after some rearrangement of terms, 

and harmonizing all variants to be considered as being a single set of 𝑝 variants, with a variant 

potentially having a 𝛽 weight of zero in any specific PGS, then: 
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Therefore, we can compute wPGSsum as a single PGS, with the 𝛽 weight for each variant being 

obtained as a weighted sum of the 𝛽 weights of the individual PGSs. In other words, we can 

multiply the variant 𝛽 weights in the 𝑘 PGS by 𝑤!/(2𝑝!𝜎!), with 𝑤! being the weight from the 

PGS summation, and 𝜎! being the PGS standard deviation in the TOPMed dataset.  

 
 
The TOPMed dataset 
 
The TOPMed dataset provides aggregated whole genome sequencing (WGS) across multiple 

studies. We used WGS data to construct and assess PGS associations using several studies with 

available OSA phenotypes. Some studies performed at-home, over-night sleep studies (ARIC, 

CARDIA, CHS, and FHS via the Sleep Heart Heath Study (51), CFS (52), HCHS/SOL (53), JHS (54), 

MESA (55)), and only one study used a questionnaire-based OSA status (COPDGene). Detailed 

descriptions of these studies are provided in Supplementary Note 3.  

 

OSA phenotype used in PGS assessment 

Supplementary Table 16 describe the OSA assessment across these studies. In brief, we defined 

OSA in studies that used over-night measurements using the Apnea-Hypopnea Index (AHI) or 

the Respiratory Event Index (REI) as defined by each study, with AHI/REI≥5 (mild-to-severe 

OSA) and with AHI/REI≥15 (moderate-to-severe OSA). Because COPDGene used self-reported 

doctor diagnosed OSA, while other TOPMed studies used a quantitative index, we compared 

using OSA definition, for studies using an index, as either mild-to-severe OSA versus no OSA, or 

using moderate-to-severe OSA versus no or mild OSA. To focus the potential analyses, this 
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comparison was performed using the full available TOPMed OSA dataset and the multi-ethnic 

LDPred2-based MVP PGS only. We next performed other PGS evaluations with the selected OSA 

definition. The selected OSA definition was the one that had stronger association with the PGS.  

 

Using TOPMed to identify an optimal multi-ethnic OSA PGS 

Whole genome sequencing and quality control in TOPMed are described in Supplementary 

Note 4. We constructed the developed PGSs in TOPMed using PRCise 2 (v2.3.1.e; without any 

clumping nor thresholding). We estimated the association between the PGS and OSA in mixed 

models implemented in the GENESIS R package (version v2.16.1), with relatedness modeled via 

a sparse kinship matrix. All models were further adjusted for age, sex, BMI (linear and squared 

terms), self-reported race/ethnicity, and the first 11 principal components (PCs) of genetic data 

to prevent population stratification. We note here that we adjusted for self-reported 

race/ethnicity because health disparities related to the different sociocultural and structured 

environment experienced by different demographic groups may result in differences in OSA 

rates between them (56). 

We assessed OSA PGS in a multi-step process. 

1. Choosing a reference panel for ancestry-specific PGS development when using PRS-CS. 

We compared PGS developed with our MVP LD reference panel to those developed 

using the existing UKBB LD reference panels. For this comparison we focused on 

ancestry-specific PGSs developed using the PRS-CS method. If UKBB reference panel 

performed better or equally well, we proceeded with the UKBB reference panel in PGS 
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using the PRS-CS software, because the UKK reference panel is publicly available and 

thus more useful to the research community. 

2. Compare ancestry-specific PRS-CS and LDPred2 PGSs. We compared PRS-CS PGSs 

developed with the reference panel selected in step 1, with PGSs generated by LDPred2 

using the MVP LD reference panel. For LDPred2 we only used the MVP reference panel 

because the software does not provide a reference panel. 

3. Compare PGS based on multi-ethnic meta-analysis to weighted ancestry-specific PGS 

combinations. We compared PGSs constructed based on multi-ethnic meta-analyses 

and PGSs constructed as PGS combinations: combinations of PRS-CSx-derived PGSs, and 

combinations of either PRS-CS or LDPred2 PGSs according to step 2 comparison.  We 

used both weighted and unweighted analyses.  

As the conclusion of step 3, we selected the optimal multi-ethnic OSA PGSs based on BMI-

adjusted and BMI-unadjusted analyses. When comparing PGSs, they were prioritized based on 

effect size estimates and p-values. 

 

 

Secondary PGS comparisons and analyses in TOPMed 

We performed additional comparisons with the multi-ethnic OSA PGS: (a) we compared the 

selected multi-ethnic PGS to ancestry-specific PGSs within relevant population groups, and (b) 

we studied the associations of sex-specific PGSs with OSA within sex groups and combined, to 

assess whether PGS developed based on sex-specific GWAS perform better within their 
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corresponding sex groups, and whether the GWAS sample size is sufficient (especially for 

female participants) to develop sex-specific PGSs. 

 

 

OSA and lung function PGS associations with OSA phenotypes and with other sleep 

phenotypes in TOPMed 

Some of the TOPMed studies performed over-night sleep studies, and some administered sleep 

questions, enabling associations of selected OSA PGSs with additional sleep phenotypes.  

 

We estimated the association of the OSA PGS with overnight sleep-evaluated phenotypes that 

rely on oxyhemoglobin saturation and desaturation, and are typically associated with OSA. 

These phenotypes included AHI/REI, hypoxic burden (57), minimum and average 

oxyhemoglobin saturation during sleep, average oxyhemoglobin desaturation during 

respiratory events (i.e. desaturation compared to the baseline saturation at the beginning of 

the sleep period), and percent sleep time under 90% oxyhemoglobin saturation. Some of these 

phenotypes were further evaluated separately during rapid and non-rapid eye movement (REM 

and NREM) sleep (23). For comparison, we also constructed a PGS for lung function and 

evaluated its association with some of these phenotypes. The lung function PGS was 

constructed based on PGS variants and weights downloaded from the PGS catalog (58), PGS ID 

PGS001180, based on the ratio between force expiratory volume in 1 second to force vital 

capacity and developed by 59).  
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We also estimated the association of the OSA PGS with self-reported sleep phenotypes: sleep 

duration (harmonized in (60)), short and long sleep, defined as sleep duration>9 hours, the 

Epworth sleepiness scale (ESS), including an excessive daytime sleepiness phenotype defined as 

ESS>10, and the Women Health Initiative Insomnia rating scale (WHIIRS), including an insomnia 

phenotype defined as WHIIRS ≥9. TOPMed studies contributing to each analysis are provided in 

Supplementary Table 16. 

 

OSA PGS association with OSA in Geisinger’s MyCode  
 

The MyCode Community Health Initiative (MyCode) Study is a hospital-based cohort study 

recruited from Geisinger, a large healthcare provider in central Pennsylvania. Subjects that have 

provided biospecimens have been genotyped through a collaboration with Regeneron Genetics 

Center as part of the DiscovEHR Study (http://www.discovehrshare.com/), including up to 

170,765 participants available at the time of this analysis. All participants were genotyped using 

the Illumina’s HumanOmniExpressExome (~60,000) or Global Screening Array (~110,000). All 

array-based data were quality controlled (QC’ed) with standard QC procedures before 

imputation, including gender mismatches, duplicate samples (identical twins were kept), low 

individual and SNP call rates (<95%), Hardy-Weinberg equilibrium (P ≤1×10-15), and 

heterozygosity (F >0.4). QC’ed array data was imputed to the TOPMed Release 2 reference 

panel by array. Following imputation, all variants were filtered if they exhibited a minor allele 

count (MAC) of less than 5, a mean imputation quality score (R2) <0.7, or missingness >10%. 
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The current analysis was restricted to a subset of unrelated adult MyCode participants up to 2nd 

degree, selected using PRIMUS (61).  OSA cases were defined based on a minimum of three 

OSA-related ICD-9 (ICD-9: 327.20, 327.23, 327.29, 780.51, 780.53, 780.57) or ICD-10 (G4730, 

G4733 or G4739) on separate dates, controls included those with zero instances of a relevant 

OSA ICD code, and those with one or two OSA codes were excluded from the analysis. This 

phenotype was based on a previous chart validation in the Geisinger study participants (62).  

 

BMIadjOSA and BMIunadjOSA PGSs were generated from files with SNP and weight using 

PRSice2 without clumping and thresholding. PGS associations with OSA were carried out both 

stratified and combined across sexes using GENESIS and AUC was estimated using pROC. All 

analyses were carried out using R. All association analyses were adjusted for age, BMI, BMI2, 

sex (in combined analysis), self-reported or EHR-derived race/ethnicity, and the top 20 genetic 

PCs. 

 

OSA PGS associations with outcomes in All of Us 
 

We used WGS data from All of Us, version 6. Sequencing and quality control procedures for All 

of Us, performed by the All of Us team, are described in 

https://support.researchallofus.org/hc/en-us/categories/4537007565204-Genomics. The data 

was available in a HAIL matrix tables. We used python version 3 on the All of Us Researcher 

Workbench. We first filtered genetic files to keep only HapMap SNPs, then converted the file to 

BED plink format. Next, we filtered out variants that failed All of Us quality control according to 

the “filter” flag, and variants with missing call rate >1%. We did not further filter by allele 
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frequency. We constructed the PGSs selected by the TOPMed analysis using plink. And we only 

used variants with MAF ≥ 0.01. In this dataset, we also compared the TOPMed-selected PGSs 

to previously-reported PGSs, in order to alleviate potential effects of overfitting, where 

TOPMed was used to select the main PGSs reported here.  We estimated the associations of 

OSA PGSs with OSA and other clinical outcomes: hypertension, type 2 diabetes, stroke, atrial 

fibrillation, heart failure, coronary artery disease, asthma, chronic obstructive pulmonary 

disease, and chronic kidney disease. We performed sex-combined and sex-stratified analyses 

for all phenotypes, and for OSA, also analyses stratified by self-reported race/ethnicity, obesity 

category (BMI<30 and ≥ 30) and age categories (age≤40, 40<age≤ 60, age>60). 

Supplementary Note 5 provides the definitions of the phenotypes used (medical codes, etc.).  

 

OSA PGS associations across OSA and sleep measures in the Human Phenotype Project 
 

We studied the association of OSA PGS with OSA, both from clinical diagnosis and from sleep 

monitoring, and with self-reported sleep measures in the HPP (63). Home sleep study was 

performed using the WatchPAT device (Itamar medical) over three nights. To determine OSA 

status based on sleep monitoring, we averaged the AHI measures from all available nights and 

then used AHI≥15 as cutoffs for defining OSA. We also estimated PGS associations with NREM 

and REM AHI, ODI, and RDI, and device-measured sleep duration, as continuous measures in 

association with the OSA PGS. Analyses were adjusted for age, sex, and BMI (linear and squared 

terms). Self-reported sleep phenotypes were available via questionnaires mimicking the UKBB 

project. We estimated the associations of OSA PGS with the responses to the following 

questions: “Daily sleep hours”, “Tired or little energy fortnight”, “Consider yourself morning 
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evening”, “Easy getting up”, “Nap during day”, and “Trouble falling asleep”. We adjusted for the 

same variables as before.  

 

OSA PGS associations with body fat DXA measures in the Human Phenotype Project 

We estimated the associations of the developed OSA PGSs with DXA measures available from 

the HPP. The relevant available measures Included VAT and SAT masses across the entire body 

(total scan), total mass, and gynoid and android masses, where gynoid correspond to the hips 

area and android to the waist area. We used 6 measures: ratios of VAT, SAT, gynoid, and 

android masses out of the total mass, and VAT:SAT and gynoid:android mass ratios. For each of 

the raw measures, we first checked for and removed any outliers. For distributions that 

appeared log-normal, we applied log transformation, and if the association results were the 

same (similar direction and p-value) as in the untransformed phenotype, we used the 

untransformed phenotype. We used only genetically unrelated individuals, performed BMi-

adjusted and -unadjusted analysis using the same covariates as described in the previous 

section, and performed both sex-combined and sex-stratified analyses.  

Data availability statement 

Summary statistics from BMI-adjusted and BMI-unadjusted OSA GWAS, stratified by sex and by 

HARE group, have been deposited on dbGaP, study accession phs001672.  
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Individual-level genotypes and register data from FinnGen participants can be accessed by 

approved researchers via the Fingenious portal (https://site.fingenious.fi/en/) hosted by the 

Finnish Biobank Cooperative FinBB (https://finbb.fi/en/).  

 

Full summary statistics for the genome-wide association study can be accessed 

from https://figshare.com/ (DOI: 10.6084/m9.figshare.20033246) and Bio-X institutes website 

(http://analysis.bio-x.cn/gwas/). 

 

MGB Biobank genotyping and phenotypic data are available to Mass General Brigham 

investigators with required approval from the Mass General Brigham Institutional Review board 

(IRB). 

 

BMIadjOSA-PGS and BMIunadjOSA-PGS variant and weights will be deposited to the PGS 

Catalog. There are also available on the GitHub repository 

https://github.com/nkurniansyah/OSA_PRS. We also used additional PGSs for performance 

comparisons. All are available on the PGS catalog (LDPred2 OSA PGS from Zhang et al. 2022: 

PGS003479, genome-wide significant variants OSA PGS based on BMI-adjusted MVP GWAS: 

PGS003858, genome-wide significant variants OSA PGS based on BMI-unadjusted MVP GWAS: 

PGS003857, pulmonary function PGS: PGP000244).  

 

TOPMed freeze 8 WGS data are available by application to dbGaP according to the study 

specific accessions: ARIC: “phs001211“, CFS: “phs000954”, CHS: “phs001368”, COPD- Gene: 
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“phs000951”, FHS: “phs000974”, HCHS/SOL: “phs001395”, JHS: “phs000964”, MESA: 

“phs001211”, WHI: “phs001237”. Phenotype data are available from dbGaP according to the 

study-specific accessions: ARIC: “phs000280“, CFS: “phs000284”, CHS: “phs000287”, COPD- 

Gene: “phs000179”, FHS: “phs000007”, HCHS/SOL: “phs000810”, JHS: “phs000286”, MESA: 

“phs000209”, WHI: “phs000200”. 

 

Data from the NIH All of Us study are available via institutional data access for researchers who 

meet the criteria for access to confidential data. To register as a researcher with All of Us, 

researchers may use the following URL and complete the laid out steps: https:// 

www.researchallofus.org/register/. Researchers can contact All of Us Researcher Workbench 

Support at support@researchallofus.org.  

 

Data in this paper is part of the Human Phenotype Project (HPP) and is accessible to researchers 

from universities and other research institutions at: https://humanphenotypeproject.org/data-

access. Interested bona fide researchers should contact info@pheno.ai to obtain instructions 

for accessing the data. 

 

MyCode data can be accessed by Geisinger investigators. There are restrictions to the sharing 

of MyCode DiscovEHR genetic datasets related to agreements between Geisinger and the 

Regeneron Genetics Center. 
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Code availability statement 
We provide developed scripts used to perform analyses described in the paper and code to 

construct the OSA-PGSs in the GitHub repository https://github.com/nkurniansyah/OSA_PRS 

and the Zenodo repository (will provided upon paper acceptance) 

 
 

Ethics statement 
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and written informed consent was obtained for all participants.  
 
Study subjects in FinnGen provided informed consent for biobank research, based on the 
Finnish Biobank Act. Full ethnics statement is provided in Supplementary Note 6.  
 
The All of Us research program was approved by a single IRB, the “All of Us IRB”, which is 
charged with reviewing the protocol, informed consent, and other participant-facing materials 
for the All of Us Research Program. The IRB follows the regulations and guidance of the Office 
for Human Research Protections for all studies, ensuring that the rights and welfare of research 
participants are overseen and protected uniformly. More information is provided online 
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program. 
 
Ethics statement for MGB Biobank is provided in Supplementary Note 2, and for TOPMed 
studies in Supplementary Note 3. 
 
The Human Phenotype Project’s data used in this work was approved by the Weizmann 
Institute’s IRB for the 10K study, protocol 578-1. 
 
The MyCode Study was approved by the Geisinger Institutional Review Board and all 
participants provided informed consent. The current analysis consisted of secondary analysis of 
existing de-identified data and was deemed to be not “human subjects” research as defined in 
45 CFR 46.102(f).  
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