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Abstract 24 

Femoral neck fractures pose significant morbidity and mortality risks, particularly among osteoporotic 25 

patients. This study aims to identify effective exercises for enhancing bone health and develop a neural 26 

network model to predict femoral neck strains during exercise using inertial measurement unit (IMU) 27 

data. We employed musculoskeletal modeling (MSK) and finite element (FE) analysis to assess 28 

femoral neck strains during various ballistic exercises—walking, running, countermovement jumps, 29 

squat jumps, unilateral hopping, and bilateral hopping—across three intensity levels: high, moderate, 30 

and low. Results showed that running at all intensities produced significantly higher strains compared 31 

to walking (1985 ± 802 µε tensile, 5053 ± 181 µε compressive, p < 0.001), with peak tensile strains 32 

reaching 3731 µε and compressive strains up to 9541 µε. Low-intensity unilateral hopping also yielded 33 

significantly higher strains (3003 µε, p < 0.001) than walking, suggesting its osteogenic potential. In 34 

contrast, squat jumps, countermovement jumps, and bilateral hopping generated lower peak strains. 35 

The neural network model demonstrated high prediction accuracy, achieving correlations up to 0.97 36 

and root mean square errors as low as 145.20 µε. These findings support the use of neural networks 37 

and IMU sensors for practical, cost-effective interventions to improve bone health and reduce fracture 38 

risk.39 
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1. Introduction 40 

Femoral neck fractures are the most common osteoporotic fractures, leading to high morbidity and 41 

mortality rates, with 50% of patients losing independent mobility and up to 30% mortality within six 42 

months1,2. Additionally, the related costs place a significant strain on healthcare systems. The number 43 

of men and women at high risk of experiencing a major osteoporotic fracture is projected to increase 44 

from 157 million in 2010 to 319 million by 20403. Therefore, reducing the risk of osteoporotic hip 45 

fractures is critical. 46 

Exercise is a proven method to enhance bone health. However, the type, intensity, and frequency of 47 

the exercise directly affect the extent of its benefits on bone health4. Ballistic exercises, such as hopping 48 

and jumping, are particularly promising for stimulating femoral neck adaptation5,6. It has been reported 49 

that normal walking7 is not associated with bone mineral density (BMD) changes in the femoral neck 50 

whereas jogging combined with walking8, running, and jumping9,10 were the most effective in 51 

improving BMD. On the other hand, while more frequent exercise is known to improve BMD, the 52 

specific benefits of increasing exercise intensity for enhancing BMD remain unclear4. Recent research 53 

has focused more on the effectiveness and safety of moderate- to high-intensity exercise compared to 54 

traditional low-intensity approaches, which prioritize safety11,12. A comprehensive meta-analysis 55 

examined the effects of different exercise intensities—low, moderate, and high—across various 56 

regimens, including resistance training, impact training such as walking, jogging, and jumping, and 57 

combined resistance and impact exercises on BMD at the lumber spine and femoral neck in 58 

postmenopausal women. The analysis revealed that high-intensity exercise was significantly more 59 

effective in increasing lumbar spine BMD compared to moderate- and low-intensity exercises, with 60 

mean differences of 0.031 g/cm², 0.012 g/cm², and 0.010 g/cm², respectively12. However, at the femoral 61 

neck, low- and moderate-intensity exercise were equally effective, showing a mean difference of 0.011 62 

g/cm², while high-intensity exercise had no significant effect. In contrast, another study has showed 63 

that 6 months of unilateral, high-impact exercise of multidirectional hops completed daily increased 64 

the mean femoral neck BMD by 0.81% in postmenopausal women aged between 55 and 70 years13. 65 

Previous computational modeling studies have simulated the femoral neck response to various 66 

exercises, represented by mechanical strains, enabling the ranking of exercises based on their 67 

osteogenic potential14. The osteogenic response is triggered in areas where strain exceeds habitual 68 

loading levels, typically associated with normal walking15,16. A review by Martelli et al.14 reported that 69 

fast walking, but not necessarily running, optimally loads the femoral neck, while high-intensity jumps 70 

and hopping generate higher strains in the femoral neck than walking15,17. However, a previous study 71 

by the same author found that vertical and squat jumps produced lower femoral neck strains than 72 

walking, while one-leg long jumps resulted in higher strains16. These inconsistent findings highlight 73 

potential concerns regarding the impact of high-intensity exercises on joint health, raising safety 74 

considerations. Therefore, a comprehensive understanding of the mechanical response of the femoral 75 

neck to various ballistic exercises across different intensity levels is critical for designing effective 76 

preventive interventions for bone health. 77 

Currently, no clinical method exists to directly measure the in-vivo mechanical response of the femoral 78 

neck for a certain type of locomotion. In biomechanical research, the “gold standard” non-invasive 79 

approach for predicting femoral neck response (strains) is musculoskeletal modeling (MSK) combined 80 

with finite element analysis (FE)16–22. The coupled MSK-FE model integrates two critical types of data: 81 

(1) three-dimensional (3D) bone architecture and density from medical imaging, such as computed 82 

tomography (CT) or magnetic resonance imaging (MRI), for the FE modeling component, and (2) 83 

muscle and joint contact forces, typically estimated through inverse dynamics and static optimization, 84 
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based on 3D motion capture data, for the MSK modeling component. The predictions from MSK-FE 85 

models have the potential to significantly enhance fracture risk assessments, guide more effective 86 

treatment strategies, and improve rehabilitation protocols for clinicians, practitioners, and 87 

physiotherapists23,24. However, the MSK-FE method is resource-intensive, requiring specialized 88 

equipment, expertise, and considerable time, make it unsuitable for routine clinical use. Therefore, 89 

there is a critical need for a rapid, cost-effective, and user-friendly non-invasive method that can 90 

accurately predict in-vivo femoral neck strains during various locomotion modes (e.g., ballistic 91 

exercises). 92 

Machine learning has become a leading technological trend in recent biomechanical research25. The 93 

extensive availability of large datasets from wearable sensors has driven significant advancements in 94 

estimating variables that traditionally required costly lab setups, such as ground reaction forces and 95 

other derived metrics. Machine learning has demonstrated its ability to accurately predict various 96 

kinetic and kinematic variables merely from wearable sensor measurements (e.g., Inertial measurement 97 

units (IMU))26, requiring less expert intervention and eliminating the need for expensive equipment. 98 

Multiple machine learning studies have estimated ground reaction force (GRF)27,28, joint moments29–99 
34, and internal joint forces35,36 during various locomotion tasks, using measures such as accelerations 100 

and gyroscopes that are (or can be) measured by IMU sensors. Wouda et al.27 used an artificial neural 101 

network to estimate vertical GRF during running using accelerations and lower limb joint angles. The 102 

network demonstrated a high correlation (>0.90) with the actual GRF time series. Guo et al.28 used 103 

Nonlinear System Identification (NARMAX) model from directly measured acceleration data without 104 

including joint kinematics to estimate vertical GRF during walking. Their model achieved a prediction 105 

error as low as 3.8% when compared to GRF data obtained from pressure insoles. Stetter et al.35 used 106 

a neural network with two hidden layers, similar to Wouda et al.27, to estimate knee joint forces during 107 

various exercises, including walking, running at different speeds, cutting maneuvers, one-leg jump, 108 

and counter-movement jump, using data from two IMU sensors. The results showed a good agreement 109 

between the estimated joint forces and those calculated through inverse dynamics for vertical and 110 

anterior-posterior knee forces with correlation coefficients ranging from 0.60 to 0.94, and 0.64 to 0.90 111 

respectively (Stetter et al., 2019). Matijevich et al.36 estimated peak tibial force during running using 112 

various machine learning techniques, including neural networks and LASSO (Least Absolute 113 

Shrinkage and Selection Operator) regression. They converted lab-based data into signals that could 114 

be feasibly measured with IMU sensors and a pressure-sensing insole, achieving an estimation 115 

accuracy with a root mean-squared error (RMSE) of 0.25 ± 0.07 body weights and an absolute percent 116 

error between lab-based measured forces and machine learning estimated forces of 2.6 %. A very recent 117 

study by Haribaba and Basu37 evaluated various machine learning models, including neural networks, 118 

in conjunction with FE data to accelerate the prediction of the mechanical response (represented by 119 

strains) in the acetabulum of a healthy hip joint and periprosthetic bone in total hip joint replacement 120 

during walking gait. The study utilized different input features, such as bone condition, body weight, 121 

fin size, and loading conditions. A strong correlation was found between the predicted FE strains and 122 

those estimated by the neural network, with a coefficient of determination of 0.87 and RMSE of 0.04. 123 

These studies demonstrate the feasibility of neural networks to estimate the internal loadings of lower 124 

limb joint structures. In a recent study, we presented eXplainable convolutional neural network (XCM) 125 

to estimate lower limb joint moments, including hip joint, from data from four IMU sensors of various 126 

locomotion tasks31. Excellent agreement was found between the XCM estimated and the MSK inverse 127 

dynamics calculated hip joint moments with a correlation coefficient of 0.98.   128 

This study has two primary aims. The first aim is to investigate the osteogenic response of the femoral 129 

neck to various ballistic exercises, including walking, running, countermovement jumps, squat jumps, 130 
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unilateral hopping, and bilateral hopping, at three different intensity levels—low, moderate, and high—131 

using MSK-FE modeling. We will rank the tested exercises based on the predicted peak first principal 132 

strain (tensile strain) and third principal strain (compressive strain) at the femoral neck and analyze the 133 

statistical differences in the predicted strains compared to normal walking at a self-selected speed. 134 

Exercises that produce significantly higher strains than walking are considered more effective for 135 

promoting bone health, assuming that osteogenic responses occur where exercise induced strain 136 

surpasses that of regular walking14,15. The second aim of the study is to develop a neural network using 137 

XCM architecture model capable of estimating femoral neck strains during various ballistic exercises 138 

using IMU sensors data represented by acceleration and gyroscope measurements. While previous 139 

studies have estimated joint kinematics and kinetics during various locomotion modes, no research to 140 

date has directly estimated the mechanical response of the bone in joints (bone strains) using a body-141 

worn sensor setup. In previous studies, the number of IMU sensors and their measurement locations 142 

are often determined heuristically, and the impact underlying the selection of these parameter values 143 

on prediction accuracy has not been discussed yet38. Therefore, we further investigate the effect of 144 

using a reduced number of IMU sensors on model prediction accuracy. That will be done based on data 145 

from: (1) a comprehensive set of seven IMU sensors covering the entire lower body range of motion 146 

(trunk, left and right thigh, shank and foot), and (2) a reduced IMU sensor configuration of three sensors 147 

positioned around the region of interest only, the hip joint (trunk, and left and right thigh). The results 148 

of this study could help overcome current limitations in predicting femoral neck strains, which typically 149 

rely on expensive data and specialized expertise, and open new possibilities for using these predictions 150 

in clinical settings, potentially aiding in the design of effective preventive interventions, such as 151 

exercise regimes targeting bone health enhancement. 152 

2.  Material and methods 153 

2.1. Participants and data collection and processing 154 

Motion capture and musculoskeletal data of the current study has been used from our previously 155 

published study39 (first article of this series). In summary, a cohort of forty (20 males and 20 females) 156 

active participants were recruited with age range of 18 to 70 years old (mean ±SD: age of 40.3±13.1 157 

years; height 1.71±0.08 m; and mass 68.44 ±11.67kg). All participants were healthy with no lower 158 

limb joint replacement or serious injury within the last year of the recruitment. Ethical approval was 159 

obtained from the University of Essex Faculty of Science & Health Ethics Subcommittee (ETH2021-160 

1155). A written consent form was obtained from all participants before participating. Each participant 161 

attended one session in the biomechanics labs of the University of Essex, where three successful trials 162 

of walking, running, countermovement jump, squat jump, unilateral hopping, and bilateral hopping 163 

were collected at three different self-reported intensity levels (maximum, medium or intermediate, and 164 

minimum). Details of the characteristics of each exercise can be found in the supplementary materials 165 

(Table 2.SM.).    166 

Figure 1 shows the overall workflow of the current study. For each participant, thirty-eight retro-167 

reflective markers were attached to the lower body (twenty-two individual markers were attached to 168 

the left and right superior iliac spines, anterior superior iliac spines and posterior superior iliac spines, 169 

medial and lateral femoral condyles, medial and lateral malleoli, lateral and posterior aspects of the 170 

calcaneus, the first and fifth metatarsals while tracking clusters consisting of four markers were 171 

attached to the distal lateral aspect of the thigh and the shank). Marker trajectories were recorded using 172 

fourteen 3D motion capture cameras (Vicon. Ltd., Oxford, UK, 200 Hz, filtered at 18 Hz with a zero-173 

lag second order low pass Butterworth). Ground reaction forces were collected using two-floor force 174 

plates (Kistler, Winterthur, Switzerland, 2000 Hz, filtered at 50 Hz with a zero-lag 2nd order low pass 175 
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Butterworth) positioned side by side. To verify the musculoskeletal model's muscle force predictions, 176 

five electromyography (EMG) sensors (Norixon, AZ., USA, 2000 Hz, high-pass filtered 30 Hz, 4th 177 

order Butterworth, rectified and low-pass filtered at 10 Hz) were attached unilaterally to the dominant 178 

side of each participant targeting five different muscles: gluteus maximus, gluteus medius, rectus 179 

femoris, biceps femoris, and soleus following SENIAM guidance. Details of the data can be found in 180 

Altai et al.39 181 

Seven Blue Trident IMU sensors (Vicon Motion Systems Ltd, Oxford, UK, 225Hz, filtered at 200 Hz 182 

with 2nd order low-pass Butterworth) were placed on the lower body segments of the left and right 183 

sides: posterior trunk, lateral shank, lateral thigh, and foot as shown in Figure 1 (A1). For each IMU 184 

sensor, accelerations and gyroscope data were recorded in the three planes of motion; sagittal, coronal 185 

(frontal), and transverse planes (represented by three axes x, y, and z), which were then used as the 186 

predictors for the neural network models. 187 

 188 

Figure 1. Framework followed in this study to predict the femoral neck strains using 1) typical 189 

musculoskeletal - finite element modelling pipeline (represented by A1, B1, and C1) and 2) the 190 

proposed neural network model (represented by A2 and B2). The typical modelling pipeline starts by 191 

collecting anatomical landmarks trajectories, ground reaction forces and electromyography signals in 192 

a 3D motion capture laboratory setting (A1), then musculoskeletal model is built using the collected 193 

data and generic model in OpenSim to estimated muscle and joint reaction forces using inverse 194 

dynamic and static optimization methods (B1), finally, finite element model is generated from three 195 

dimensional geometry of the femur and muscle and joint forces estimated by the musculoskeletal model 196 

to predict the femoral neck stains (first and third principal strains).  The proposed pipeline predicts first 197 

and third principal stains merely from inertial measurement unit data (represented by accelerations and 198 

gyroscopes of the lower body segments) (A2) using neural network model (B2). 199 

All trials were processed in Vicon Nexus (V 2.12.1) and then the time of interest of each trail was 200 

segmented using Visual 3D (C-motion Inc., Germantown, MD, USA) as follows: walking and running 201 

from heal strike to toe-off of the same foot – a step, countermovement jump from the initial stand just 202 
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before the take-off to the lowest position of the pelvis after landing, squat jump from the lowest position 203 

of the pelvis just before the take-off to the lowest position of the pelvis after landing, and for bilateral 204 

and unilateral hopping from the foot on to foot off the force plate of the same leg). The time of interest 205 

for all trials was defined using the dominant side of the participant. Data from all trials were then time 206 

normalized to 101 time points for musculoskeletal modelling.   207 

2.2. Musculoskeletal models 208 

A generic musculoskeletal model (gait2392)40 was modified by removing the torso and associated 209 

muscles (Figure 1 (B1)). Details of the musculoskeletal models can be found in Altai et al.39. In 210 

summary, the modified lower extremity model consisted of 13 body segments, 18 degrees of freedom 211 

(DOF), and 86 Hill-type musculotendon actuators. The hip was modelled as a ball and socket joint (3 212 

DOF), while the knee was modeled as a sliding hinge joint (1 DOF rotational joint with translation 213 

coupled to the knee flexion angle), and the ankle and subtalar as revolute joints (1 DOF). Using 214 

OpenSim41, each model was scaled to match the subject's anthropometric characteristics based on 215 

marker data of anatomical landmarks at the hip, knee and ankle during a static trial. Joint angles and 216 

moments were estimated using inverse kinematics and inverse dynamics, respectively, while static 217 

optimization was used to estimate muscle forces by minimizing the sum of squared muscle activations. 218 

Muscle attachment locations were extracted using a custom MATLAB (R2022b) script while force 219 

directions were determined using the muscle force direction plugin in OpenSim42. Muscle force 220 

directions together with muscle forces from static optimization were used to calculate muscle force 221 

components in x, y, and z. Hip, knee and ankle contact forces were calculated using joint reaction 222 

analysis43. The estimated muscle forces were then applied to the finite element models using the 223 

extracted muscle attachment location.  224 

2.3. Finite element models 225 

Since personalized medical images were not available, the three-dimensional geometry of the full 226 

femur for each participant was generated using the open-source Musculoskeletal Atlas Project (MAP) 227 

Client software44, which contains data from the Victorian Institute of Forensic Medicine (Melbourne, 228 

VIC, Australia). Using a generic lower-body shape model from the database, the full femur position 229 

and general size (surface mesh) were reconstructed from the anatomical landmarks of the participant’s 230 

motion capture data following the method described in Zhang et al.44. First, a generic whole lower body 231 

shape model was registered to the marker set defined in the static trial. Then, the atlas femur mesh was 232 

morphed into the femoral landmarks according to a femur statistical shape model45. The generated 233 

surface meshes of all participants were then imported into ANSYS (SpaceClaim 2023R1, PA, USA) 234 

to generate three-dimensional solid geometries, which were then meshed using 10-nodes tetrahedral 235 

elements in ANSYS (ICEM CFD 2023R1, PA, USA) with an average element size of 3mm20,21. 236 

Homogeneous linear elastic isotropic material properties were defined for the bone with an elastic 237 

modulus of 18.6 MPa and a 0.3 Poisson's ratio46. Figure 1 (C1) summarize the steps for generating the 238 

finite element model. 239 

Muscle forces were estimated by the musculoskeletal models and applied to the finite element model 240 

as point loads at the external surface of the femur. A list of included muscles can be found in Table 241 

3.SM. in the supplementary materials. The location of the attachment points of each muscle was 242 

estimated by the musculoskeletal model and used to allocate the point of application of the force in the 243 

finite element model. Forces were then applied at the closest surface mesh node to the point of 244 

application estimated by the musculoskeletal model20,21. The distance between the point of application 245 

of the forces estimated by the musculoskeletal model and the closest nodes in the finite element model 246 
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was less than the element size (3mm), except for three femurs, those were therefore excluded from the 247 

analysis leaving a cohort of 37 participants. The finite element models were kinematically constrained 248 

at the distal end of the femur to prevent rigid body motion ensuring that the equilibrium of the forces 249 

estimated by the musculoskeletal model was not disturbed. The most distal node of the medial condyle 250 

was fixed in all directions, while the displacement of the most distal node at the lateral condyle was 251 

constrained in the anterior-posterior and vertical (superior-inferior) directions. A third node in the 252 

patella groove was constrained anteroposteriorly20,47. These constraints were chosen to replicate the 253 

basic movements involved in the tested exercises, which are flexion-extension and rotation at the hip 254 

and knee joints; and abduction-adduction predominantly at the hip joint48.  255 

Due to the high computational cost of the finite element models, only ten of the 101 timesteps were 256 

simulated for each trial. These time steps were carefully selected to include the peak point of the hip 257 

joint contact force curve as well as the first and last timesteps, ensuring full coverage of the trial period. 258 

At each of the ten timesteps, the peak first and third principal strains at the femoral neck were averaged 259 

across the surface nodes using a circle of 3mm radius, to follow the continuum hypothesis avoiding 260 

local effects of the load49. The location of the peak strains within the femoral neck region was also 261 

analyzed. All finite element simulations were performed in a local workstation using ANSYS 262 

Mechanical (APDL 2023R1, PA, USA). The computing time was on average one minute per timestep. 263 

The peak predicted strains at each of the ten times steps were then used as the outcomes in the neural 264 

network models. 265 

2.4. Neural network models  266 

First and third principal strains data predicted by the finite element models were used as the outcome 267 

dataset (2 variables represented by first and third principal strains) for the neural network model, while 268 

data of IMU sensors were the predictors (42 variables represented by accelerations and gyroscope of 269 

seven IMU sensors in three directions x, y, and z). Since neural networks are data hungry and to match 270 

time-series data of the predictors (101 timesteps), both first and third principal strains data were 271 

interpolated to regenerate 101 timesteps for each trial. Trials data of all exercises of all participants 272 

were combined for both the predictor and outcome datasets. The total number of observations in the 273 

dataset was 1729 corresponding to 1729 trials. The predictor dataset was organized into a 3D array 274 

shape 1729×42×101, where the second dimension was the number of predictors (accelerations and 275 

gyroscopes), and the third dimension was the number of time points. The outcome dataset was 276 

organized into a 2D array shape 1729×2×101, where the second dimension was the number of 277 

outcomes (first and third principal strains), and the third dimension was the number of time points. 278 

Each dataset was then split into training (75%, n = 1296) and testing (25%, n = 433) ensuring that the 279 

training and testing datasets were split with the same percentage for each exercise.  280 

To assess the ability of the neural network to predict femoral neck strains for all tested exercises using 281 

a reduced number of IMU sensors, a subset of the predictor dataset was generated. This included data 282 

of three sensors (right thigh, left thigh, and trunk). The predictor subset data was also organized into a 283 

3D array shape 1729×18×101 (18 variables represented by accelerations and gyroscope of three IMU 284 

sensors in three directions x, y, and z) while the outcome dataset was kept the same with 2D array 285 

shape 1729×2×101 (2 variables represented by first and third principal strains). 286 

The neural network architecture was inspired by our previous work31 using eXplainable convolutional 287 

neural network XCM50. This neural network architecture has been shown to better predict 288 

biomechanical data from IMU sensors compared to other neural network architectures31. Figure 1 (2B) 289 

shows the XCM neural network model, the upper part of the XCM uses 2D convolution filters to extract 290 
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features per observed variable and is composed of a 2D convolutional block, batch normalization, and 291 

ReLU activation layers. The lower part uses 1D convolution filters to extract information relative to 292 

time and captures the interaction between different time series. The output feature maps from these 293 

two parts are concatenated to form a feature map, which is passed through a 1D convolution block and 294 

global average pooling before performing classification with a softmax layer. The cyclical learning 295 

rate method was used to find the appropriate learning rate. The loss was plotted with respect to an 296 

increasing value of the learning rate. The learning rate was chosen to be in the interval that resulted in 297 

the lowest loss, which was found to be between 1e-1 and 2e-1. The learning rate took the value of 1e-298 

1 at the first epoch and then gradually increased to reach a final value of 2e-1 at the last epoch (500 299 

epoch). Analyses were performed in Python (version 3.9.0), with packages (Numpy v1.20.3, Pandas 300 

v1.3.4, Scipy v1.7.1) and models were trained using Tsai (version 0.3.1) from fastai with Google 301 

Collab.  302 

2.5. Analysis 303 

For the finite element predictions, initially, the curve of the peak femoral neck first and third principal 304 

strains in macrostrains along each trial period were found. Curves were then averaged across repetitive 305 

trials. The peak value of these averaged trials was then determined. The mean and standard deviation 306 

of the peak values for each exercise were then calculated and reported across all subjects. A repeated 307 

measure 2-way ANOVA was performed on the peaks of the first and third principal strains of all 308 

subjects to test the significant difference of femoral neck strains under various exercises compared to 309 

walking using the General Linear Model in SPSS (Chicago, USA). The dependent variable was the 310 

first and third principal strains, whilst the independent variables were the various exercise types and 311 

intensities. Where significance was found (significance level α = 0.05), Bonferroni post hoc test was 312 

conducted to quantify pairwise differences. 313 

For the neural network predictions, for each exercise (including the three different levels), the 314 

agreement between the first and third principal strains estimated by the finite element models against 315 

their predicted values by the neural network model was derived from Pearson’s correlation coefficients 316 

(r)51, which were categorized as weak (r ≤ 0.35), moderate (0.35 < r ≤ 0.67), strong (0.67 < r ≤ 0.90) 317 

and excellent (r > 0.90). Additionally, the Root Mean Squared Error (RMSE) (Equ.1 SM. In 318 

supplementary materials), relative RMSE (relRMSE) (Equ.2 SM. In supplementary materials) 319 

expressed as a percentage (%) of the average peak-to-peak amplitude for the outcomes52 were 320 

determined to assess the accuracy of the neural network model predictions. RMSE, relRMSE, and r 321 

were assessed for each trial of each exercise and each participant, then means and standard deviations 322 

were then found for each exercise across all participants. The same analysis was conducted for: 1) the 323 

full set of seven IMU sensors and 2) the subset of three IMU sensors. Then relative difference between 324 

the two were evaluated to analysis the performance of the neural network with only three sensors 325 

compared to seven sensors. 326 

3. Results 327 

3.1. Strains predicted by finite element model 328 

Exercises with various intensity levels were ranked with respect to the averaged peak first principal 329 

strain and averaged peak third principal strain (in macrostrains (×106)) of the femoral neck predicted 330 

by MSK-FE as shown in Figure 2. Exercises with a significant difference (p < 0.05) compared to 331 

habitual walking at self-selected speed were marked with an asterisk. The estimates of the lower and 332 

upper limits and p-values as well as the results from a repeated measure 2-way ANOVA for General 333 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 21, 2024. ; https://doi.org/10.1101/2024.10.20.24315745doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.20.24315745
http://creativecommons.org/licenses/by/4.0/


10 

 

Linear Model were reported in supplemental material (Table 1.SM.). The mean and standard deviation 334 

of the average peak values for the first and third principal strains over the entire trial period for each 335 

exercise type and intensity level are reported in Table 1. 336 

 337 

Figure 2. Box plot of large significant difference of peak first principal strain (left) and peak third 338 

principal strain (right) of the femoral neck under different levels of various ballistic exercises compared 339 

to walking at a self-selected speed indicated by the horizontal line. Asterisks denote the exercises with 340 

significant difference (*p < 0.05) compared to walking. Peak strains are ranked from left to right for 341 

the first principal strains and right to left for the third principal strains for the highest to the lowest 342 

estimated values for all included exercises. 343 

Table 1. Mean and standard deviation of the average peaks (throughout the entire trial period) of the 344 

vertical ground reaction force (vGRF) and hip joint reaction force (JCFhip), both normalized by the 345 

body weight, and of the peak first (e1) and third (e3) principal strains at the femoral neck predicted by 346 

the MSK-FE models for various exercise types and levels. 347 

Exercise  vGRF JCFhip e1 (µε) e3 (µε) 

Walking 1.28±0.09 6.31±1.23 1985 ± 802 5053 ± 181 

Running Fast 2.51±0.26 8.21±1.32 3731 ± 1472 9541 ± 3610 

Running Moderate 2.62±0.27 9.47±2.17 3534 ± 1197 9127 ± 2972 

Running Natural (slow) 2.62±0.30 11.56±4.1 3389 ± 1321 8613 ± 2975 

Counter Movement Jumps Max 1.05±0.15 4.06±1.33 1693 ± 1072 4190 ± 2470 

Counter Movement Jumps Med 1.08±0.14 4.47±1.45 1392 ± 769 3377 ± 1742 

Counter Movement Jumps Min 1.03±0.11 5.83±2.21 1164 ± 935 2715 ± 1148 

Squat Jumps Max 1.22±0.18 4.18±1.52 1664 ± 935 3977 ± 2071 

Squat Jumps Med 1.18±0.13 4.59±1.44 1302 ± 825 3003 ± 1310 

Squat Jumps Min 1.19±0.14 5.63±2.38 1132 ± 744 2476 ± 1092 

Unilateral Hopping Max 2.36±0.27 7.65±1.43 2439 ± 1061 6342 ± 2473 

Unilateral Hopping Med 2.59±0.25 7.56±1.46 2729 ± 1112 7076 ± 2858 

Unilateral Hopping Min 2.59±0.22 6.98±1.14 3003 ± 1189 7755 ± 3040 

Bilateral Hopping Max 1.63±0.29 3.50±0.74 723 ± 407 1878 ± 926 

Bilateral Hopping Med 1.76±0.24 3.18±0.57 795 ± 377 2050 ± 826 

Bilateral Hopping Min 1.73±0.22 2.93±0.76 935 ± 459 2344 ± 1090 

Not all exercises demonstrated statistically significant differences in predicted peak strains compared 348 

to walking. Only running at all three intensity levels—fast speed 5.26 m/sec (3731 ± 1472 µε and 9541 349 

± 3610 µε for first and third principal strains, respectively), moderate speed 4.25 m/sec (3534 ± 1197 350 
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µε and 9127 ± 2972 µε), and natural speed 2.98 m/sec (3389 ± 1321 µε and 8613 ± 2975 µε)—and 351 

unilateral hopping at low intensity with a 0.31 sec stance duration (3003 ± 1189 µε) produced 352 

significantly higher peak strains (P < 0.001) than walking at a self-selected speed of 1.59 m/sec (1985 353 

± 802 µε and 5053 ± 181 µε for first and third principal strains, respectively). This indicates that, 354 

among the exercises tested, running at any intensity and low-intensity unilateral hopping have the 355 

potential to stimulate an osteogenic response in the femoral neck. In contrast, bilateral hopping at all 356 

intensity levels—maximum with stance duration of 0.19 sec (723 ± 407 µε and 1878 ± 926 µε), medium 357 

with stance duration of 0.21 sec (795 ± 377 µε and 2050 ± 826 µε), and minimum with stance duration 358 

of 0.25 sec (935 ± 459 µε and 2344 ± 1090 µε)—generated significantly lower peak strains than 359 

walking (P < 0.001). Similarly, the low-intensity squat jump with a 0.21 m jump height (1132 ± 744 360 

µε and 2476 ± 1092 µε) and countermovement jump with a 0.23 m jump height (1164 ± 935 µε and 361 

2715 ± 1148 µε) showed lower peak strains, with P-values of < 0.016 and < 0.028, respectively, for 362 

the first principal strain, and P < 0.001 for the third principal strain. While no significant differences 363 

were observed between walking and the squat jump at moderate and high intensities (0.28 m and 0.33 364 

m jump heights, respectively) or the countermovement jump at moderate and high intensities (0.26 m 365 

and 0.32 m jump heights, respectively) (Table 1.SM). These findings suggest that neither of the two 366 

tested jump types nor bilateral hopping, at any intensity level, have the potential to induce an osteogenic 367 

response in the femoral neck. 368 

The distribution of the first and third principal strains across the femoral head region under all tested 369 

exercises is shown in Figure 3 for a presentative case. Under walking and running, peak strains were 370 

located at the superior aspect of the femoral neck, noting that the second peak strains region where at 371 

the inferior aspect region. For both types of jumping and hopping exercises, peak strain locations 372 

shifted toward the inferior aspect of the femoral neck. Changing exercise intensity did not show any 373 

effect on the peak strain location at the femoral neck region. 374 

 375 

Figure 3. Distribution of the first and third principal strains predicted by MSK-FE model at the femoral 376 

neck under various ballistic exercises of a representative case. 377 

3.2. Strains predicted by neural network model 378 

Figure 4 illustrates the mean curves for the first and third principal strains, as estimated by the neural 379 

network model for all exercises, using a comprehensive set of seven IMU sensors, while Figure 5 380 

shows the predicted strains using a reduced set of three IMU sensors. These are compared with 381 

predictions from the MSK-FE model. An overview of the neural network model’s estimated accuracy 382 

across all exercises is provided in Table 2. The relative differences in neural network model accuracy 383 

of the reduced set of IMU compared to the comprehensive set, are also reported for all exercises.384 
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 385 

Figure 4. Mean first and third principal strains curves predicted by the XCM neural network compared to the original curves estimated by 386 

the finite element models for the different tested exercises using seven IMU sensors (trunk, right thigh, left thigh, right shank, left shank, 387 

right foot, and left foot). 388 
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 389 

Figure 5. Mean first and third principal strains curves predicted by the XCM neural network compared to the original curves estimated by 390 

the finite element models for the different tested exercises using three IMU sensors (trunk, right thigh, and left thigh). 391 

 392 
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Table 2. Performance of XCM neural network in predicting first and third principal strains using two 393 

datasets: 1) data of seven IMU sensors, and 2) data of three IMU sensors, relative differences between 394 

the two also reported. 395 

Task 
e1 (µε) e3(µε) 

RMSE relRMSE (%) r RMSE relRMSE (%) r 

1) Using seven IMU sensors 

Walking 182.85 ± 104.81 8.96 ± 3.80 0.96 ± 0.04 381.37 ± 119.22 8.01 ± 2.25 0.97 ± 0.02 

Running 550.70 ± 412.97 17.86 ± 12.13 0.83 ± 0.27 1278.70 ± 797.85 16.51 ± 11.07 0.84 ± 0.26 

Unilateral Hopping  309.18 ± 164.55 14.02 ± 9.74 0.95 ± 0.13 841.99 ± 578.01 14.22 ± 11.05 0.95 ± 0.08 

Bilateral Hopping 169.15 ± 96.73 24.26 ± 15.06 0.81 ± 0.25 452.68 ± 255.16 25.36 ± 15.02 0.83 ± 0.20 

Counter Jumps 145.20 ± 75.02 14.96 ± 11.34 0.93 ± 0.11 400.26 ± 233.87 16.37 ± 12.41 0.88 ± 0.22 

Squat Jumps 238.84 ± 300.41 23.52 ± 16.64 0.80 ± 0.21 522.66 ± 719.28 22.64 ± 15.64 0.78 ± 0.26 

Mean 278.70 ± 281.05 18.21 ± 13.58 0.87 ± 0.21 683.61 ± 641.99 18.22 ± 13.55 0.86 ± 0.22 

2) Using three IMU sensors 

Walking 220.48 ± 124.98 10.73 ±4.11 0.95 ± 0.04 446.26 ± 110.66 9.78 ± 4.01 0.94 ± 0.07 

Running 531.22 ± 363.79 17.08 ± 11.27 0.85 ± 0.22 1532.62 ± 1026.49 19.49 ± 12.18 0.81 ± 0.25 

Unilateral Hopping 333.26 ± 240.89 14.05 ± 9.87 0.95 ± 0.10 898.75 ± 453.46 14.99 ± 7.88 0.93 ± 0.13 

Bilateral Hopping 191.70 ± 120.74 25.94 ± 13.76 0.81 ± 0.21 507.65 ± 295.52 28.55 ± 15.81 0.78 ± 0.26 

Counter Jumps 156.78 ± 94.28 15.47 ± 11.39 0.92 ± 0.17 437.26 ± 224.95 18.80 ± 14.24 0.87 ± 0.19 

Squat Jumps 248.91 ± 298.53 23.43 ± 13.30 0.79 ± 0.18 623.66 ± 749.58 27.25 ± 18.78 0.72 ± 0.28 

Mean 289.85 ± 274.46 18.55 ± 12.98 0.87 ± 0.19 783.52 ± 728.63 20.95 ± 14.91 0.83 ± 0.23 

Relative difference (%) 

Walking 20.58 19.67 0.32 17.02 22.13 2.28 

Running 3.54 4.33 2.37 19.86 18.05 4.13 

Unilateral Hopping 7.79 0.17 0.38 6.74 5.47 2.64 

Bilateral Hopping 13.33 6.92 0.56 12.14 12.56 5.26 

Counter Jumps 7.97 3.44 0.92 9.24 14.86 1.98 

Squat Jumps 4.22 0.40 1.31 19.32 20.37 7.89 

Mean 4.00 1.87 0.01 14.62 15.03 4.11 

Data is presented as mean ± standard deviations. µε is macrostrains. Relative difference is the percentage of the relative differences of the neural 

network predictions using data of the three IMU sensors in respect to using data of seven IMU sensors 

The predicted strain curves by the neural network revealed strong to excellent correlations for both 396 

the first and third principal strains when using data from a comprehensive set of seven IMU sensors 397 

and when using data from a reduced set of three IMU sensors (Table 2). When using data from seven 398 

IMU sensors, the highest correlation for the first and third principal strain was observed for walking (r 399 

= 0.96 ± 0.04 and r = 0.97 ± 0.04, respectively) and for unilateral hopping (r = 0.95 ± 0.13 and r = 0.95 400 

± 0.08, respectively) with excellent correlations. The lowest correlation was for the squat jump, but 401 

still with good correlation for both first and third principal strains (r = 0.80 ± 0.21 and r = 0.78 ± 0.26, 402 

respectively). Across all exercises, the RMSE for first principal strains ranged between 145.20 ± 75.02 403 

µε (counter movement jump) and 550.70 ± 412.97 µε (running), whereas for third principal strains, 404 

that was between 400.26 ± 233.87 µε (counter movement jump) and 1278.70 ± 797.85 µε (running). 405 

The relRMSE ranged between 8.96 ± 3.80% (walking) and 24.26 ± 15.06% (bilateral hopping) for the 406 
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first principal strain and between 8.01 ± 2.25% (walking) and 25.36 ± 15.02% (bilateral hopping) for 407 

the third principal strain.  408 

Similar trends were observed when using data of a reduced set of three IMU sensors with very small 409 

reduction in the neural network estimated accuracy in respect to using data of a comprehensive set of 410 

seven IMU sensors. The relative difference for the RMSE ranged from 4% (running and squat jumps) 411 

to 21% (walking) for the first principal strains and from 7% (unilateral hopping) to 20% (running) for 412 

the first principal strains. Details of the relative differences of all exercises can be found in Table 2.  413 

4. Discussion 414 

This study had two primary aims: first, to investigate the osteogenic response of the femoral neck to 415 

various ballistic exercises and intensity levels by predicting strains using the gold-standard MSK-FE 416 

modeling approach; and second, to investigate the ability of a neural network model to estimate the 417 

predicted strains only from body-worn IMU sensors, thereby bypassing the expensive and time-418 

consuming MSK-FE modeling approach traditionally used in biomechanical research. Our results 419 

demonstrated that running at any speed (from slow jogging to fast sprinting), and unilateral hopping 420 

with longer stance durations, have the potential to stimulate an osteogenic response in the femoral neck. 421 

In contrast, jumping on both legs, regardless of intensity level, did not show such potential. While the 422 

neural network demonstrated excellent accuracy in predicting MSK-FE-derived strains based solely 423 

from IMU sensors data, highlighting its promising potential for clinical integration. By using femoral 424 

neck strains as an indicator of femoral neck health, this method could enhance fracture risk assessment 425 

and inform more targeted interventions, offering a practical and efficient alternative for routine clinical 426 

use. 427 

Our MSK-FE predictions showed that not all ballistic exercises tested in this study induced 428 

significantly higher femoral neck strains compared to walking. Among the various exercises and 429 

intensity levels, fast running (5.26 m/sec), moderate running (4.25 m/sec), slow running (2.98 m/sec), 430 

and unilateral hopping with the longest stance duration (0.25 sec, categorized as a low intensity level) 431 

generated statistically higher femoral neck strains than walking at 1.59 m/sec (P < 0.001), indicating a 432 

potential osteogenic effect of the femoral neck. However, bilateral hopping at faster speeds, 433 

characterized by shorter stance durations (0.28 sec for moderate intensity and 0.31 sec for high 434 

intensity), did not show statistically significant differences compared to walking, yet still produced 435 

higher strain values. The reduced strain in faster hopping was associated with lower ground reaction 436 

forces and joint contact forces (Table 1) compared to slower hopping which may explain the reduction 437 

in the strain values. Our findings align with previous studies15–17. Similar trends were observed by 438 

Pellikaan et al.15 with peak femoral neck strains during unilateral hopping and various running speeds 439 

(1.95 m/sec to 2.5 m/sec) exceeding those during walking at 1.11 m/sec. However, they reported 440 

noticeably higher strain values during running (tensile strain 5412 µε at 2.5 m/sec) compared to our 441 

prediction (tensile strain 3389 µε at 2.98 m/sec), and during hopping (tensile strain 10373 µε vs. our 442 

prediction of 3003 µε). These discrepancies can be attributed to several factors, including modelling 443 

methodology and differences in participant demographics, which very likely played a role. Pellikaan 444 

et al.'s study15 involved postmenopausal women with an average age of 63, whereas our cohort 445 

consisted of highly active, younger males and females, with an average age of 40 ranging from 18 446 

years to 70 years old. Anderson and Madigan53 showed that younger participants (aged 25 ± 4 years) 447 

exhibited 9% higher ground reaction forces and 18% higher hip contact forces, and 59% larger peak 448 

strains in early stance phase compared to older participants (aged 79 ± 5 years) walking at the same 449 

speed. In contrast to running and unilateral hopping, other exercises (countermovement jumps, squat 450 

jumps, and bilateral hopping) generated lower peak strains compared to walking. Bilateral hopping at 451 
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all intensities, as well as both jump types at their minimum intensity levels, produced significantly 452 

lower strains than walking (P < 0.001), indicating that these exercises are not recommended for 453 

promoting an osteogenic effect in the femoral neck. Even at maximum intensity, jumping exercises 454 

still produced lower strains than walking with no statistical differences compared to walking. Our 455 

findings align with those of Martelli et al. 16, who also reported lower tensile strain peaks for vertical 456 

jumps (≈2500 µε in their study, compared to our range of 1164 µε to 1693 µε) and squat jumps (≈1800 457 

µε in their study, compared to 1132 µε to 1664 µε in ours) when compared to walking (≈2700 µε). 458 

Kersh et al.17 also reported lower strain overall the femoral neck region than walking during landing 459 

on both feet from a light jump in place.  460 

The higher strains observed during running, unilateral hopping, and walking, compared to 461 

countermovement, squat jumps, and bilateral hopping can be attributed to the nature of the exercises. 462 

When landing on both feet, impact forces are distributed across both legs, on the other hand, walking, 463 

running, and unilateral hopping involve periods where ground reaction forces act on a single limb. 464 

Consequently, our findings suggest that exercises involving bilateral jumps may be less effective in 465 

promoting femoral neck health compared to exercises involving unilateral jumps like running and 466 

unilateral hopping. This finding is also supported by several previous clinical trial studies, which 467 

indicated that fast walking programs54,55 and hopping exercises56,57 can lead to an increase in femoral 468 

neck BMD in elderly populations. 469 

We observed that activities generating relatively similar ground reaction forces can produce relatively 470 

different levels and distributions of strain in the femoral neck. For instance, high-intensity unilateral 471 

hopping resulted in 34% higher peak strain compared to walking, and slow speed running (low 472 

intensity) produced 41% more strain than walking, despite both activities having roughly equivalent 473 

peak vertical ground reaction forces (Table 1). Forward propelling activities such as walking and 474 

running exerted maximal load on the superior region of the femoral neck, the thinnest part of the cortex, 475 

while, jumping in place shifted the peak strain towards the inferior aspect of the femoral neck (Figure 476 

3), aligning with previous findings15,17,20. These results indicate that, when assessing femoral neck 477 

loading, the traditional assumption that the mechanical load correlates directly with ground reaction 478 

force58 requires reconsideration. The type of activity itself is a key determinant of femoral neck loads. 479 

We propose that the distinct anatomical arrangements and activation patterns of muscle groups around 480 

the hip contribute to varying mechanical stimuli on the femoral neck. For example, the gluteus 481 

maximus exerts direct effects on neighboring bone regions, while muscles like the semimembranosus 482 

influence hip-joint reaction forces indirectly. Additionally, muscles not spanning the hip may still 483 

contribute to these forces, albeit to a lesser extent, by dynamically accelerating body segments through 484 

musculoskeletal coupling59,60. 485 

In general, agreement between neural network predictions and MSK-FE predictions ranged from 486 

excellent (r  0.90 and relRMSE ≤ 15%) to good (r  0.78 and relRMSE ≤ 25%) for all the ballistic 487 

exercises analyzed. Among these, walking demonstrated the highest estimation accuracies (r = 0.96 488 

and relRMSE = 8.96%, r = 0.97 and relRMSE = 8.01% for first and third principal strains respectively), 489 

while there was a pronounced drop in estimation accuracies of the squat jump predictions (r = 0.80 and 490 

relRMSE = 23.52%, r = 0.78 and relRMSE = 22.64% for first and third principal strains respectively). 491 

One potential reason for the superior predictive power of walking is that it is performed at a consistent, 492 

self-selected intensity level, while other exercises are performed across three distinct intensity levels 493 

(maximum, medium, and minimum), which introduces a higher degree of variation in the movement 494 

dynamics. This variability could make it more challenging for the neural network model to generalize 495 

and predict accurately across all intensities. The increased variability in execution during squat jumps 496 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 21, 2024. ; https://doi.org/10.1101/2024.10.20.24315745doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.20.24315745
http://creativecommons.org/licenses/by/4.0/


17 

 

is further reflected in the high standard deviation for both the first and third principal strains across the 497 

cohort, indicating a wider dispersion in strain values among participants (Figure 4 and Figure 5). 498 

Similarly, running showed lower predictive accuracies (r = 0.83 and relRMSE = 17.86%, r = 0.84 and 499 

relRMSE = 16.07% for first and third principal strains respectively). The reduction in accuracy for 500 

running can also be attributed to the high inter-individual variability in predicted strain values, which 501 

is a common characteristic of more dynamic and explosive movements. This trend between predictive 502 

accuracy reduction and higher rate of data variation is consistent with findings reported by Setter et 503 

al.35 and Fluit et al.61. Stetter et al.35 observed a similar reduction in the accuracy of knee joint force 504 

predictions made by a neural network model for walking, which was associated with higher variability 505 

in knee joint forces, compared to running. Similarly, Fluit et al.61 observed similar changes in 506 

estimation accuracy when they assessed a prediction model for ground reaction forces and moments 507 

during various daily activities using 3D full-body motion analysis. This suggests that the performance 508 

of a machine learning model is sensitive to the consistency of movement and the level of variability in 509 

the data it is trained on. Furthermore, this may indicate that the model should not be trained on 510 

generalized data; instead, it should be population specific if precise accuracy is required. However, the 511 

reduction in model accuracy observed in our study was minimal. Future studies should further 512 

investigate the impact of data variability on machine learning prediction accuracy. 513 

Distinct differences in neural network estimation accuracy were seen between unilateral hopping and 514 

bilateral hopping (r = 0.96 and relRMSE = 14.02 %, r = 0.81 and relRMSE = 24.26% respectively). 515 

This has also been observed in Setter et al. study35, where model accuracy for predicting knee joint 516 

forces was lower for two-leg jumps than for one-leg jumps (r for take-off = 0.92 vs. 0.60; r for landing 517 

= 0.84 vs. 0.61). One reason for the reduced estimation accuracy for bilateral hopping may be the 518 

bipedal characteristic of the movement. Potential inaccuracies in the strain estimations are caused by 519 

the distribution of the total external load on both legs. Stetter et al.35 suggested that incorporating an 520 

activity recognition approach could help mitigate these limitations. By selecting individualized 521 

prediction models based on specific movement categories, the model could account for the distinct 522 

characteristics of different movement types and improve accuracy.  523 

Reducing the training data for the neural network model by using only three IMU sensors instead of 524 

seven had minimal impact on prediction accuracy, which remained excellent (r = 0.95, relRMSE < 525 

16%) to good (r = 0.72, relRMSE < 16%) across all tested exercises, following similar trends as with 526 

seven IMUs. Walking showed the largest reduction in prediction accuracy, with relative differences 527 

compared to the seven-sensor setup as r = 0.32%, relRMSE = 19.62%, and RMSE = 20.58% for first 528 

principal strains, and r = 2.28%, relRMSE = 22.13%, and RMSE = 17.02% for third principal strains. 529 

This again may be due to the imbalance in the data size between walking (fewer trial numbers) and 530 

other exercises, especially, when using minimal training data size. This imbalance could lead to a 531 

neural network bias toward other exercises, reducing walking prediction accuracy. Type and size of 532 

training data plays a key role in improving neural network training efficiency and test accuracy62. 533 

Additionally, by excluding sensors from the shank and foot, important biomechanical data—such as 534 

foot strike patterns, ankle movements, and shank rotation—are not captured, limiting the model's 535 

ability to fully understand lower limb mechanics and so struggle to capture important biomechanical 536 

details. However, in general, the reduction in accuracy of our neural network was minimal, and the 537 

performance remained nearly as high as when using seven IMU sensors. Our finding is supported by a 538 

number of recent studies which used artificial neural network with a limited amount of IMU 539 

measurement information, but to predict ground reaction forces during walking and running28,38,63. For 540 

example, Guo et al.28 used a single IMU measurements taken at the sacrum to predicted the vertical 541 

ground reaction forces and reported an average prediction error of less than 5.0% for walking. Ngoh et 542 
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al.63 demonstrated that neural network predict vertical ground reaction forces with one uniaxial IMU 543 

sensor located at the foot with average errors ranging between the 0.10 and 0.18 of body weight at 544 

different running speeds. It may be important to note that a full set of IMUs may be beneficial where 545 

high precision is required, depending on the application. However, if the goal is to obtain an indication 546 

of strain patterns and levels during a specific exercise, our results suggest that a reduced set of IMU 547 

sensors can still provide sufficient accuracy. This may be especially advantageous when considering 548 

cost, data size, and time. 549 

One of the main limitations of the current study is that strain data predicted by the MSK-FE model 550 

were not fully personalized. Multi-level personalization of neuromusculoskeletal models can 551 

significantly influence the estimation of internal loading64. As a result, our MSK-FE predictions may 552 

not entirely capture the individual variations among participants, which could also impact the accuracy 553 

of the neural network predictions62. This limitation was primarily due to the lack of available data, 554 

particularly the absence of medical images necessary to create personalized FE models for each 555 

participant. A full set of personalized data, required of such modelling pipeline, has been and still is a 556 

big challenge in the biomechanical field. Previous studies have relied on body-matched 557 

volunteers16,65,66, synthetic model19, or generic scaled bone model67, similar to the approach followed 558 

in our study. In the future, our model can be tested with personalized data as it becomes available. 559 

Another limitation is that hyperparameter tuning has not been explored in the current study, hence, our 560 

findings can provide a more conservative estimation of the predictive performance of the neural 561 

network. Lastly, the characteristics of the participants (e.g., sex and age group) may be important 562 

determinants in model prediction accuracy. A machine-learned model used for prediction purposes 563 

must be trained on data that has similar characteristics to the data needed to be predicted. Yet, although 564 

our cohort included a large age group ranging from 18 to 70 years, all participants were healthy and 565 

active individual who exercise regularly which was confirmed by the relatively lower variation in the 566 

estimated joint forces and strains.   567 

In this work, the increased strain observed in activities like running and unilateral hopping, compared 568 

to walking, suggests these exercises could form the basis for early intervention strategies aimed at 569 

enhancing bone health and mitigating fracture risk over the course of a lifetime, particularly in 570 

individuals at risk of osteoporosis. These findings emphasize the potential benefits of incorporating 571 

high-impact, weight-bearing exercises into preventive and therapeutic programs to stimulate bone 572 

adaptation and improve skeletal strength. Additionally, we demonstrate that combining IMU sensor 573 

data with neural network modeling provides an efficient and accurate method for predicting femoral 574 

neck strain during ballistic exercises. This approach is significantly faster than traditional MSK-FE 575 

modeling, which can take hours or days due to complex processes like model scaling, 3D 576 

reconstruction, and meshing. This makes it an accessible, scalable tool for both clinical and sports 577 

applications, reducing reliance on specialized expertise and high-end computational resources. 578 

Moreover, this method opens the possibility for near-real-time biomechanical analysis, facilitating 579 

timely and practical insights into bone health and injury prevention in various settings.580 
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