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ABSTRACT 

Objectives: This study aimed to develop and validate a machine learning model to predict 

deterioration using Australian hospital data, paying particular attention to the role of 

predictors not included in current scoring systems. 

Design: Retrospective cohort study using electronic health records from a large metropolitan 

health service. 

Setting: General hospital wards, excluding the Emergency Department, Intensive Care Unit, 

or Palliative Care. 

Participants: Inpatients over the age of 18.  

Main Outcome Measures: The primary outcomes of deterioration were mortality and ICU 

transfer within 24 hours of a newly available observation. A Gradient Boosted Tree model 

was estimated using patient demographics, vital signs, pathology results, and linear trends. 

Resulting feature importance was investigated using Shapley values. The model 

performance was validated against existing scoring systems, including Between the Flags 

(BTF) and the Modified / National Early Warning Score (MEWS/NEWS).  

Results: A Gradient Boosted Tree was developed from 121,608 patients and tested in 

20,605 patients. The model, named aWARE, demonstrated higher discriminative ability 

(AUROC mortality=0.93, AUROCICU transfer=0.84), and calibration when compared to baseline 

scores. Overall, the 10 most influential features unique between both outcomes were age, 

oxygen saturation to inspired oxygen ratio, respiratory rate, white cell count, venous lactate, 

heart rate to systolic blood pressure ratio, albumin, oxygen saturation, urea and heart rate. 

Of these, only 3 are included in BTF. 

Conclusion: The machine learning model proposed in this study identified more 

deteriorating patients and produced less false positive alerts than Between the Flags. 

Feature importance highlighted the deficit between strong predictors of deterioration and the 

parameters used in current scoring systems.  
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INTRODUCTION 

Early Warning Systems (EWS), or Rapid Response Systems (RRS), were developed over 30 

years ago to identify patient deterioration before an adverse event is observed. In New South 

Wales, the ‘Between the Flags’ (BTF) system triggers clinical reviews (‘yellow zone’) or 

Medical Emergency Team (MET) calls (‘red zone’) based on derangement of vital signs1,2. 

Concerned staff may also trigger emergency responses and the calling criteria can be 

manually modified to allow personalisation of the rapid response or account for the patient 

resuscitation status or end of life wishes. 

 

EWS implementation has reduced cardiac arrests, in-hospital mortality, and Intensive Care 

Unit (ICU) lengths of stay, yet limitations of the almost 15-year-old BTF system remain3-5. 

The BTF heuristic trigger rules rely on a small set of selected vital signs, leaving other 

relevant information (such as pathology findings) to be considered at the discretion of 

individual clinicians. Trigger rules do not account for natural vital sign fluctuation nor the 

interrelation between multiple patient variables1. Numerous false positive alerts lead to alarm 

fatigue and a reluctance to escalate, and yet many deteriorating patients are left undetected, 

with approximately 43% of unplanned admissions to ICU in Australia in 2020 occurring 

without an antecedent MET call6, 7.  

 

The Modified Early Warning Score (MEWS) and the National Early Warning Score (NEWS) 

are aggregated scoring systems used internationally based on a weighted linear combination 

of selected vital sign parameters8-10. While this may provide a more accurate assessment of 

deterioration than BTF, it is also hindered by non-adherence as manual calculation is 

required11. 
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Machine Learning Prediction of Deterioration Risk 

The incorporation of machine learning and electronic monitoring systems may provide an 

avenue to reduce patient adverse outcomes12,13, 14. Although not exhaustive, Table 1 is a 

representation of promising and relatively simple machine learning algorithms of in-hospital 

deterioration across the world.  

 

Gradient Boosted Trees are a tree-based learning method which may better capture the 

complex medical data interactions than linear models, can handle missing data, and are 

more efficient computationally than higher order neural networks15, 16. Recently developed 

models of patient deterioration have shown successful performance with gradient-boosted 

trees17, 18.  

 

Study Aims 

This study aims to: 1) develop and validate a simple but efficient machine learning model to 

identify deterioration in ward patients using electronic medical records (eMR) data from New 

South Wales (NSW), Australia; 2) compare the predictive performance of this algorithm 

against other proposed available tools; and 3) analyse and quantify the value added by 

predictors not currently included in implemented early warning systems in NSW.  
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Table 1: Comparison of current prominent machine learning models of deterioration in ward-based hospital patients 

ICU, Intensive Care Unit; AUROC, Area under Receiver Operating Characteristic Curve

Author Year Country  Tool Name Model Cohort Outcomes Predictors Performance 
Escobar, G. 
et. al.19  

2012 USA Advanced 
Alert Monitor 
(AAM) 

Logistic 
regression 

102,422 adult ward 
admissions across 14 
hospitals, 2006-2009 

Transfer to ICU, in-
hospital mortality 

Patient demographics, 
time of day, length of 
stay, physiological 
derangement score, 
comorbidity score, vital 
signs laboratory results 

Composite 
outcome: AUROC 
= 0.775 

Rothman, M. 
et. al.20  

2013 USA Rothman 
Index 

Logistic 
regression 

22,265 adult patients at 
one hospital in one year 
(2004). Paediatric, 
obstetric, psychiatric 
presentations excluded 

In-hospital mortality Vital signs, nursing 
assessments, 
laboratory results, 
cardiac rhythm 

AUROC = 0.93 
when predicting 
24h mortality 

Loekito, E. et. 
al.21 

2013 Australia LabMet Logistic 
regression 

71,453 Emergency 
Department patients, 
2000-2006 
 

MET calls, ICU 
admission, death 
within 24h or 
following calendar 
day 
 

Laboratory results (9 
variables), patient 
demographics 
 

AUROC = 0.69 
(MET calls), 0.82 
(ICU admission), 
0.90 (death) 
 

Churpek, M 
et. al.22  

2014 USA Electronic 
Cardiac 
Arrest Triage 
(eCART) 

Logistic 
regression 

59,301 adult patients at 
one hospital, 2008-2011 

Cardiac arrest or 
transfer to ICU 

Vital signs, 
demographics, 
laboratory values, 
length of stay 

AUROC = 0.87 for 
cardiac arrest, 
AUROC = 0.76 for 
transfer to ICU 

Bell, D. et. 
al.23  

2021 Australia Deterioration 
Index 

Logistic 
regression 

258,732 adult patient 
admissions, 2 private 
hospitals, 2016-2019 

In-hospital mortality, 
transfer to ICU, 
urgent surgery, rapid 
response alert 

Patient demographics, 
vital signs, laboratory 
results, linear trends of 
observations 

Composite 
outcome: AUROC 
= 0.89  

Pimentel, M. 
et. al.17  

2021 United 
Kingdom 

Hospital-
Wide Alerts 
Via 
Electronic 
Noticeboard 
(HAVEN) 

Gradient 
Boosted Tree 

496,710 patient (>16y) 
admissions over 4 
hospitals, 2012-2017  

Cardiac arrest, 
transfer to ICU 

Patient demographics, 
comorbidities, vital 
signs, laboratory 
results, observation 
variability 

Composite 
outcome: AUROC 
= 0.901 

Romero-
Brufau, S. et. 
al.18  

2021 USA Mayo Clinical 
Early 
Warning 
Score 
(MC-EWS) 

Gradient 
Boosted Tree 

104,240 adult patients 
across 2 hospitals, 2010-
2011 

Cardiac arrest, rapid 
response call, 
transfer to ICU 

Patient demographics, 
vital signs, laboratory 
results, nursing 
assessments 

Composite 
outcome: AUROC 
= 0.932 
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METHODS 

Data 

This study used a data set of routinely collected electronic medical data from emergency, 

inpatient and outpatient hospital visits in a large metropolitan multicentre health system 

between January 2019 and July 2021. 

 

Study population 

The study population consisted of a retrospective cohort of in-hospital admissions by patients 

over the age of 18. Admissions were included from a variety of in-patient services, including 

medical, surgical, obstetric and psychiatry. Admissions located in the Emergency 

Department, Intensive Care Unit, and palliative care wards, or those with no recorded 

measurements, were excluded. An illustration of this cohort design is shown in the 

Supplementary Material (Figure S1). 

 

Primary Outcomes 

The primary outcomes for prediction were in-hospital mortality and unplanned transfer to ICU 

in the 24 hours following any newly available patient data. Unplanned transfer to ICU was 

defined as any transfer from an included hospital ward to the ICU, while transfers directly 

from operating theatres were typically considered planned and therefore excluded24. 

Coronary Care Units (CCU) or High Dependency Units (HDU) were included as wards in this 

analysis, and hence transfer to these locations was not considered under the outcome of 

unplanned transfer to ICU. 

 

Predictors 

Patient data, including age, gender, observation time, vital signs, select pathology results 

from full blood count, electrolytes urea creatinine, liver function tests, and venous blood gas 

analyses were extracted. Variables were chosen based on literature review of deterioration 
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factors, and frequency within the dataset. A full list of these variables can be found in the 

Supplementary Material (Figure S2). Fraction of inspired oxygen was estimated using the 

method of delivery and oxygen flow rate25. Three clinically used interaction predictors were 

constructed: the ratio of oxygen saturation to estimated fraction of inspired oxygen (P/F 

Ratio), the ratio of urea to creatinine, and the ratio of heart rate to systolic blood pressure 

(Shock Index), having shown previous feature importance in deterioration modeling17. To 

capture patient trajectory and improve model performance, three linear trends of each 

feature were constructed23, 26. These were the gradients of variable change over time from 

the baseline first measurement of that variable after admission, from the previous 

measurement, and from the measurement two prior. 

 

Algorithm 

A Gradient Boosted Tree algorithm was used to make predictions every time a new vital sign 

or pathology result was made available in the eMR. We called it the ‘ai-driven WArning and 

REsponse’ (aWARE) algorithm. Where no value was available for specific measurements, 

the values were imputed directly from the previous reading. Since death and ICU admission 

are competing outcomes, we chose to model these two outcomes separately, rather than as 

a composite outcome. Fig. 1 is a visual representation of how the model integrates predictors 

in real time to continuously update deterioration risk as new patient data is collected.  

 

Model development and validation 

The data was split into training (70%), validation (10%) and test (20%) sets. A 5-fold cross-

validated F1-score selected the best model hyperparameters, and isotonic regression 

calibrated probabilities. The final model was evaluated in the test set using predictive 

performance measures of discrimination (precision, recall, area under receiver operating 

characteristic curve (AUROC)) and calibration (Brier Score).  
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Figure 1. Schematic of model predictions updates  
Time progresses from left to right. New colours represent new data input, either measured or 
calculated. Vertical dashed boxes represent the time of new predictions in accordance with new 
patient data input. 
 
 

Comparisons with other proposed algorithms 

As data pertaining to actual observed alerts in the study period was not available, BTF alerts 

were calculated by simple conditions of calling criteria. MEWS and NEWS scores were 

calculated for each observation set. A logistic regression model was developed analogous to 

the eCART tool for comparison22. The Deterioration Index, HAVEN model and MC-EWS 

models, among others presented in Table 1, were not able to be directly compared due to 

missing predictor or outcome data. Using the holdout test set, the performance of the 

aWARE was compared against BTF, MEWS, NEWS and eCART with the same outcome of 

in-hospital mortality and unplanned ICU transfer in under 24 hours.  

 

Software 

The analysis was conducted in Python (v3.9.13) using the SKLearn (v1.0.2) and XGBoost 

(v2.0.0) libraries 
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Ethics approval 

Ethics approval for this study was provided by the Sydney Local Health District Human 

Research Ethics Committee under the project ‘Data derived Risk assessment using the 

Electronic Medical record through Application of Machine Learning’ (DREAM). Local 

reference number: CH62/6/2018-203. REGIS reference number: 2019/PID09922.  

 

RESULTS 

Descriptive Statistics 

Of 228,520 hospital admissions extracted from the DREAM database, 103,021 ward 

patients, across 154,654 admissions, were included in the study. Demographics of patients 

split by primary deterioration outcomes are compared in Supplementary Material (Table S1). 

There were 5,780,061 sets of patient results, of which 46,929 (0.81%) occurred within 24 

hours of a deterioration event. The final model contained 125 predictors: 33 unique patient 

variables and 92 corresponding trends (Supplementary Material Table S2). 

 

Performance Metrics 

Calibration curves (Fig. 2(a,b)) display how closely the calibrated model probability predictions 

match observed event proportions. aWARE showed better calibration than the other scores, 

with the strongest Brier scores of 0.0013 and 0.0068 for mortality and ICU transfer, 

respectively (lower scores indicating better accuracy). aWARE outperformed all baseline 

scoring systems in discriminative ability for both outcomes (Table 2). AUPRC was a 

comparatively small number across all scores, owing to the imbalanced prevalence of 

deteriorating patient observation points (0.81%). The Receiver Operating Characteristic 

curves (Fig. 2(c,d)) visualise discriminative performance across prediction thresholds. 
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Figure 2(a)(top left): Calibration curve for all scores predicting mortality. (b)(top right): 
Calibration curve for all scores predicting unplanned ICU transfer within 24h. (c)(bottom 
left): Receiver Operating Characteristic Curve for all scores predicting mortality in the 
entire test set. (d)(bottom right): Receiver Operating Characteristic Curve for all scores 
predicting ICU transfer in the entire test set. 
Brier score is shown for each model in calibration plots. Between the Flags Yellow Zone and 
Between the Flags Red Zone are represented by a singular point of predictive performance on 
Receiver Operating Characteristic curves, as these are not continuously modelled scores. 
aWARE, ai-driven WArning and REsponse system; BTF, Between the Flags; MEWS, Modified 
Early Warning Score; NEWS, National Early Warning Score; eCART, Electronic Cardiac Arrest 
Triage score; AUC, Area under Curve. 
  

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted November 18, 2024. ; https://doi.org/10.1101/2024.10.20.24315403doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.20.24315403


Table 2: Comparison of discriminative performance metrics in the entire test 
set for all scoring systems across primary prediction outcomes 

Between the Flags is not able to be modelled continuously and rather represents a singular threshold 
of prediction. BTF, Between the Flags; MEWS, Modified Early Warning Score; NEWS, National Early 
Warning Score; eCART, Electronic Cardiac Arrest Triage score; aWARE, ai-driven WArning and 
REsponse system, AUROC, Area under Receiver Operating Characteristic Curve; AUPRC, Area 
under Precision-Recall Curve   

Prediction of mortality 
Scoring System 

 
AUROC (95% CI) 

 
AUPRC (95% CI) 

BTF Yellow Zone - - 

BTF Red Zone - - 

MEWS 0.755 (0.742 – 0.768) 0.012 (0.012 – 0.021) 

NEWS 0.798 (0.785 – 0.812)  0.019 (0.018 – 0.026) 

eCART 0.892 (0.884 – 0.901) 0.028 (0.073 – 0.092) 
aWARE 0.926 (0.920 – 0.933) 0.064 (0.060 – 0.082) 

Prediction of ICU transfer 
Scoring System 

 
AUROC (95% CI) 

 
AUPRC (95% CI) 

BTF Yellow Zone - - 

BTF Red Zone - - 

MEWS 0.736 (0.729 – 0.741) 0.047 (0.057 – 0.065) 

NEWS 0.736 (0.730 – 0.742)  0.040 (0.044 – 0.050) 

eCART 0.783 (0.778 – 0.789) 0.050 (0.066 – 0.074) 
aWARE 0.844 (0.839 – 0.845) 0.124 (0.124 – 0.139) 
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Model Performance matched to Between the Flag Alert Zones 

Where a true positive is defined by a calculated alert or model prediction followed by 

mortality or ICU transfer within 24 hours, metrics of sensitivity and specificity may be 

calculated for BTF. For aWARE, the threshold at which a positive prediction is made was 

adjusted to match the closest specificity of each BTF Zone calling criteria, constructing two 

potential model ‘alert’ zones (aWARE Yellow and aWARE Red) that simulate current 

escalation practises (Table 3) and do not increase risk of false positive predictions. For each 

of these threshold zones, and for both outcomes of prediction, aWARE outperformed the 

sensitivity and precision of BTF, such that aWARE statistically only increases true positive 

predictions. Supplementary Material Figures S2&3 show the percentage of deteriorating 

patients identified by BTF and aWARE Red preceding primary outcome.  
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Table 3: Comparison of performance metrics predicting mortality and ICU 
transfer in entire test set for Between the Flags and aWARE with varying 
thresholds 

BTF, Between the Flags; aWARE, ai-driven WArning and REsponse system; TPR, true positive 
rate; FPR, false positive rate. 
aModel thresholds are between 0 and 1; bColour name and shading indicates the zone of Between the 
Flags which closest specificity is matched to. cShown for comparison, rather than being a true ‘default’ 
model performance. 
 
 
 
 
 
 
 
  

Scoring System Sensitivity (%) Specificity (%) Precision (%) Thresholda 
Prediction of mortality 

BTF Yellow Zone 40.1 87.6 0.45 - 

aWARE Yellowb  82.5 87.9 0.94 0.014 

BTF Red Zone 25.1 97.8 1.6 - 

aWARE Redb 50.6 97.9 2.3 0.002 

aWARE Defaultc 88.2 55.5 1.42 0.500 

Prediction of ICU transfer 
BTF Yellow Zone 36.5 87.8 2.1 - 

aWARE Yellowb 61.1 90.1 4.3 0.011 

BTF Red Zone 23.6 98.0 7.8 - 

aWARE Redb 34.4 98.1 11.7 0.004 

aWARE Default 96.6 52.9 0.29 0.500 
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Feature Importance 

We calculated Shapley values for each feature to explain their contribution to the model's 

predictions, considering all possible feature combinations27. Figure 3 shows the top 10 model 

predictors ranked according to their relative importance as estimated by their mean absolute 

Shapley values. The 10 most influential features unique between both outcomes were age, 

SpO2:eFiO2, respiratory rate, white cell count, venous lactate, Shock Index, albumin, oxygen 

saturation, urea and heart rate. Of these, only three are included in BTF, while four were 

pathology results, two were vital sign interaction variables, and one was demographic. 

Adding demographics and pathology findings, interaction terms, and trends stepwise 

increases the predictive performance for mortatility and ICU transfer (Table 4).  

 

Shapley partial dependence plots (Figures 4&5) for the top four predictors of each outcome 

illustrate in detail how feature value influences the model's predictions. Figure 4 shows that 

older age (>85), lower SpO2:eFiO2 (<4.5), higher respiratory rate (>20 breaths per minute) and 

white cell counts above the normal range are strong predictors of short-term death. Figure 5 

indicates that the risk of ICU transfer was higher for patients with lower SpO2:eFiO2, higher 

venous lactate and haemoglobin outside the normal range. The probability of ICU transfer 

became lower for the youngest (<45) and the oldest (>85) age cohorts. Figures S4 and S5 in the 

Supplementary Material provide an overview of how prediction varies with other top 

predictors. 

 

The Shapley partial dependence plot in Figure 6(a) explores the physiological interrelations 

of model predictions, where a low haemoglobin (blue) is correlated with stronger prediction of 

deterioration in scenarios of hypotension; potentially reflecting, for instance, a more acute 

pathology (i.e. bleed). The partial dependence plot for heart rate correlated with age in Figure 

6(b) shows that age modulates the severity of an abnormal heart rate measurement. A slow 

heart rate is weighted more heavily towards predicting ICU transfer in an older patient than in 

a younger patient, whereas a faster heart rate (>100bpm) in younger patients indicates an 

increased risk of an ICU transfer.  
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Shapley force plots (Figure 7) sum the relative positive and negative influence of features on 

a single point prediction and offers further depth to correlating model output with clinical 

values. Figure 7(a) explains a scenario where an elderly patient admitted under the Geriatric 

service experiences an isolated hypotension of 86mmHg (BTF red zone), with aWARE 

correctly weighting patient factors away from this heralding a deterioration outcome (no 

mortality or ICU transfer in this admission). Figure 7(b) shows the converse, with a correct 

positive prediction of deterioration 12 hours from death, for a middle-aged Cardiothoracic 

patient with all BTF vital signs in the normal range. 

 

Clinical Utility and Subgroup Analysis 

Clinical utility (Figures S3 and S4) to summate impact and subgroup analysis (Tables S3 and 

S4) to examine for demographic bias are shown in the Supplementary Material. 
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Figure 3(a)(top): Mean absolute Shapley values of model features which predict mortality. 
Figure 3(b)(bottom): Mean absolute Shapley values of model features which predict ICU 
transfer. 
SpO2:eFiO2, ratio of oxygen saturation to estimate fraction of inspired oxygen; Shock Index, ratio 
of heart rate to systolic blood pressure 
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Table 4: Model performance as patient predictors are added 

AUROC, Area under Receiver Operating Characteristic curve  

Predictors Mortality (AUROC) Unplanned transfer to ICU 
(AUROC) 

Vital signs only 0.867 0.699 

+ demographics & pathology 0.907 0.777 

+ interaction terms 0.921 0.810 

+ trends  0.926 0.844 
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Figure 4: Partial dependence plots for 4 most influential predictors of mortality within 
24 hours 
Dashed lines indicate reference ranges, and colours indicate Between the Flags intervals 
where relevant. A positive value indicates an increase in the probability of the outcome. 
SpO2:eFiO2, ratio of oxygen saturation to estimated fraction of inspired oxygen.   
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Figure 5: Partial dependence plots for 4 most influential predictors of unplanned ICU 
transfer within 24 hours 
SpO2:eFiO2, ratio of oxygen saturation to estimated fraction of inspired oxygen; Shock 
Index, ratio of heart rate to systolic blood pressure. Dashed lines indicate reference ranges.   
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Figure 6(a)(top): Partial dependence plot of SHAP values for systolic blood pressure 
predicting mortality with associated haemoglobin. Figure 6(b)(bottom): Partial dependence 
plot of SHAP values for heart rate predicting ICU transfer with associated age. Figures 
visualise the impact of the specified vital sign on model predictions, with higher SHAP values 
indicating higher relative weighting of the feature towards predicting the outcome of deterioration, 
and negative values weighting towards a negative prediction (no deterioration). The colour 
gradient represents the interacting lab value, showing how the interaction between the vital sign 
and lab value influences the model's prediction of mortality. Vertical dashed lines indicate the 
colour coded Between the Flags thresholds for the corresponding vital sign 
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Figure 7(a)(top): Force plot illustrating the Shapley values for a model negative prediction 
of ICU admission. Figure 7(b)(bottom): Force plot illustrating the Shapley values for a 
model positive prediction of mortality.  
The plots visualise the impact of individual features on the model's prediction for a specific 
instance. Features pushing the prediction higher (towards deterioration) are shown in blue, while 
those pushing it lower (away from deterioration) are in red. Age has been omitted for deidentifying 
purposes.  
ALT, Alanine Transaminase; DBP, Diastolic blood pressure; SpO2:eFiO2, ratio of oxygen 
saturation to estimated fraction of inspired oxygen. 
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DISCUSSION 

This study represents a promising application of a simple but highly efficient machine 

learning algorithm, Gradient Boosted Trees, for the identification of ward patients at risk of 

deterioration. 

 

Predictive Performance 

BTF, MEWS and NEWS scores validated in the DREAM dataset were similar to prior 

studies28. aWARE outperformed all scoring systems internally tested on this dataset, 

including BTF. These results demonstrate that Gradient Boosted Trees are powerful for 

predicting deterioration, validating the work of previous similar models17, 18. To the authors’ 

knowledge, this study is the first to show similar applicability in the Australian hospital setting. 

 

Implications 

The two aWARE models showed some divergence of influential predictors. This confirms 

that mortality and ICU transfer should be modelled as competing outcomes. Analysis of 

feature importance confirms that vital signs alone may not give a complete clinical picture of 

deterioration17, 29, 30. Enumerated in prior models, aWARE likewise increased in performance 

as demographics and pathology results, constructed variables, and linear trends were added 

beyond vital signs only31, 32. Additionally, aWARE’s ability to make predictions automatically 

even in the absence of pathology results, may broaden clinical implementation. 

 

Partial dependence plots (Figures 6(a,b)) demonstrate two examples of how the various 

interactions between deranged patient variables which trigger MET calls (e.g. hypotension or 

bradycardia) may account for the false positives of simpler scores33. Depending on the value 

of certain laboratory values (e.g. haemoglobin) or demographic baseline characteristics (e.g. 

age), a single abnormal vital sign (e.g. systolic blood pressure or heart rate) shows variance 

in its weighted effect towards predicting deterioration, where the absolute thresholds of BTF 

or MEWS/NEWS do not. The addition of linear trends incorporated into this model stratify the 
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risk of acutely against chronically deranged patient variables, enhancing model accuracy. 

The force plots (Figure 7(a,b)) show the potential for a model integrated within the eMR to 

display prediction rationale as needed, allowing the clinician to integrate their own judgement 

of the interplay of deteriorating patient factors. 

 

Early detection and intervention of deteriorating patients has been shown to reduce adverse 

outcomes34-36. As aWARE displays an increased sensitivity to detect deterioration earlier 

than BTF, its implementation represents a strong opportunity to improve patient outcomes. 

Adequate warning of potential deterioration may also allow time for facilitated ceilings-of-care 

discussions, which may manifest as decreased unnecessary costly interventions32. Use of 

the aWARE model may yield economic benefit through reduction of false positive alerts and 

MET calls. 

 

Strengths and Limitations 

The data used to train this model was adequately large to develop a machine learning model 

of deterioration. Despite this, given that risk of ICU transfer decreased in the oldest (>85) age 

cohort in Figure 5, the training data for predicting ICU transfer was evidently biased by the 

lack of palliation data needed to exclude older patients who were not indicated for ICU care. 

Where this model excluded patients admitted to the Palliative Care service, future iterations 

necessitate training datasets with more specific determination of end-of-life care for patient 

exclusion, such as Advanced Care Directives and Do Not Resuscitate orders. Additionally, 

local hospital policy and case mix determine the indication for escalation, especially 

considering the variation in capabilities of high-risk units (CCU and HDU). Exclusion of these 

from the outcome of ICU transfer may have misidentified some deteriorating patients. 

Therefore, implementation into other local health districts may require expert review of 

whether transfer to these ought to be included in the primary outcome. 

 

Comparing the developed model to the current standard of care by matching closest false 

positive rates allows for easy interpretation of the model’s superiority over BTF. This use 
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case demonstrated clear gains in early detection without increasing false positives. A 

comparison to observed MET calls, not available in this data, rather than calculated BTF 

alerts, would provide a more accurate assessment of the model’s expected utility gain. 

 

The included predictors were not exhaustive. Future models require expert review of 

variables and should explore the value of other predictors not currently included, such as 

inflammatory markers and arterial blood gas results. Predictions may be enhanced by 

multiclass prediction of specific outcomes of deterioration – including cardiac arrest, sepsis, 

acute kidney injury or need for mechanical ventilation37, 38. Furthermore, the addition of out-

of-hospital outcomes may improve the accuracy of deterioration prediction. 

 

While the model performed strongly on this dataset, it has only been internally validated. 

External validation trials are needed in hospitals to test the predictive performance and 

generalisability of the algorithm, and to measure patient outcomes to assess clinical benefit. 

 

Conclusion 

There are currently no machine learning models that have been widely implemented in 

Australia which monitor patients and identify deterioration. This study proposed the aWARE 

method for prediction of in-hospital patient deterioration. This included extended analyses of 

feature importance, which highlight the deficit between the capabilities of an electronic 

deterioration tool which integrates large eMR data, and current practises of simple vital sign 

tracking. Ultimately, the performance of aWARE, developed for Australian health standards, 

demonstrates clear superiority to the outdated use of Between the Flags by identifying more 

at-risk patients while reducing false positive alerts. For the patient to reap the full benefit of 

such an algorithm, external validation is needed. 
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