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Abstract: Background: Lung transplantation is the only life-saving therapy for end-stage lung
disease. However, lung transplantation has the worst survival among all solid organ
transplants.” We applied machine learning to a large standardized electronic health record
(EHR) dataset from the United Network for Organ Sharing (UNOS) to test whether pre-
transplant and peri-transplant donor and recipient features can predict one-, three- and five-year
survival, or favorable long-term outcomes in lung transplant. Methods: We used data from
43,8609 first time lung transplant recipients >18 years old from 1987 to November 2022 for whom
one-, three-, and five-year survival outcomes were available. We applied XGBoost or a tabular
BERT model called EHRFormer to the UNOS EHR dataset. Results: Using pre-transplant
features XGBoost predicted one year mortality with a test AUC = 0.6 [0.57, 0.64] 95% CI.
Addition of peri-transplant features only modestly improved AUC for one-year mortality
prediction (test AUC = 0.63 [0.60, 0.67] 95% CI and 0.64 [0.63, 0.66] 95% CI for XGBoost and
EHRFormer, respectively). Top predictive features of one year mortality using peri-transplant
features from each model were length of index stay, transplant type, recipient age, ventilation
status during the index stay, and creatinine at the time of transplant. Both XGBoost and
EHRFormer performed better when predicting lung function at one-year post-transplant
(XGBoost test AUC = 0.74; EHRFormer test AUC = 0.76). Both models identified and used

features previously associated with transplant outcomes to inform predictions. Conclusions:
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Despite machine learning approaches identifying known risk factors for transplant outcomes,
EHR data collected by UNOS poorly predict one-, three-, and five-year mortality outcomes of
lung transplantation. These results suggest caution when using pre-transplant EHR features to

predict lung transplant outcomes.

Introduction

Lung transplantation is the only viable treatment option that confers improved survival and
quality of life for patients with advanced lung disease and respiratory failure. Despite
improvements in  surgical techniques, immunosuppressive strategies, perioperative
management, supportive strategies, and approaches for donor lung allocation over the years,
lung transplantation is persistently associated with poor survival relative to other solid organ
transplants, with a median survival of 5.8 years (1990-2014)? and a mean survival of 9.28
years.' Approximately 10-15% of all deaths after lung transplant occur in the first year.® Indeed,
in patients who survived one year after transplant, median survival is 10.2 years.* As a result,
one-year mortality is an important, trajectory-defining event and is the focus of public reporting
of transplant outcomes. Recently, investigators have suggested that three- or five-year
outcomes provide additional data with respect to center-specific transplant outcomes, leading
some to suggest these outcomes be publicly reported®. We reasoned that early prediction of
one-, three- and five-year survival based on factors available early in the transplant course
might identify patients who would benefit from targeted interventions. Further, we reasoned that
waitlist and peri-transplant factors in the donor and recipient that predict outcomes might include

modifiable factors to improve outcomes.

Conventional approaches for analyzing risk factors and predictors for lung transplant outcomes
rely on univariate or multivariate statistical approaches applied to selected variables. As such,
available predictors of lung transplant outcomes vary by center and perform poorly.*®*°
Machine learning is a powerful approach to identify predictors of outcomes from clinical data,
leading to its growing use in clinical research and care. Despite this promise, the application of
historic machine learning techniques to EHR data collected by the United Network for Organ
Sharing have been disappointing.'®'’ As machine learning approaches have dramatically
improved since the publication of those studies, we sought to test whether modern machine
learning approaches could predict one-, three-, and five-year lung transplant outcomes after
training on data extracted from the UNOS database. We found that even the best performing

models, including XGBoost® and a Bidirectional Encoder Representations from Transformers
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(BERT)'®-based model, EHRformer performed poorly in predicting one-, three-, and five-year
mortality and only modestly better when predicting lung function at one year. The predictive
performance of the models was further reduced when data collected during the index stay were
excluded. The predictions of the models were driven by factors previously reported to be
associated with poor transplant outcomes. Our findings suggest that even with state-of-the-art

machine learning models, data collected by UNOS poorly predict lung transplant outcomes.

Results

The UNOS dataset reveals changes in lung transplant practices and outcomes in the US over

time.

The UNOS dataset is a standardized, national database that includes clinical and demographic
information for candidates listed for lung transplantation.?® For the purposes of this study, we
focused on first-time lung transplant recipients >18 years old. Because the UNOS dataset is
cumulative, it reflects overall changes in national lung transplant practice over time. Our
exploratory analysis of these patients suggested these changes in practice explain a significant
amount of variance in the dataset (Figure 1A, 1B). For example, the proportion of transplants
performed for restrictive lung disease has increased relative to those performed for obstructive
lung disease. Additionally, ischemic time, age, and FEV1% at transplant have increased over
time, reflecting changes in organ storage and allocation, recipient characteristics, and indication
type.

An initial exploration of all relevant waitlist, peri-transplant, and follow-up features (at one, three,
and five years) yielded 780 features with at least 1 observation (Table S1, Figure S1A). There
were distinct patterns of feature presence and missingness in the UNOS dataset (Fig. S1B),
coinciding with the introduction of the Lung Allocation Score (LAS) in May 2005%* and changes
in data collection introduced in 2015 (Fig. 1A, S1B). Accordingly, we performed modeling
separately for each of these three time periods using all features available within a given period.
For the entire time period, we used only shared features. To inform feature selection for
machine learning applications, we first performed principal components analysis (PCA) to
identify influential features and trends present in the dataset. We included all first-time lung
transplant recipients >18 years old (47,864 observations) and all waitlist, peri-transplant, and
follow-up features at one, three, and five years for which <10% of data was missing (357
features, Fig. S1C, Table S1. Lung transplant type, indication, lung function, and transplant year

explain substantial variation in the dataset (Figure 1C-E).
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XGBoost and EHRFormer fail to predict one year mortality

We ran 4 separate models based on waitlist and peri-transplant features present in various time
frames illustrated in Fig. 1A and S1B. Briefly, features that were at least 90% complete within
each specified time frame were used for the model. For the model encompassing all
observations across all years, only features that were at least 90% complete across all years
were used. The number of features used in each time period is shown in Fig. 2A. A data
dictionary of these features is shown in Table S1. Due to class imbalance, downsampling of the
majority class was also applied such that there was a 1:1 ratio of either outcome. Additionally,
those who died within 90 days of the index stay were excluded from the initial mortality
prediction analysis and analyzed separately (see below) to prevent length of index stay from
serving as a model shortcut. A bar graph visualizing the class imbalance of outcomes is shown
in Fig 2B. Final test AUCs across all models were uniformly poor, ranging from 0.58 to 0.64
(0.64 for data from all years) for EHRFormer and from 0.62 to 0.63 (0.63 for data from all years)
for XGBoost (Figure 2C, S2A, and Table 1). Confusion matrices of both models on the test set
are shown in Figure S2B. Figure 2D shows test AUROC, accuracy, F1, precision, recall, and

specificity across all models.

Model 1987-2004 2005-2014 2015-now All years

EHRFormer | 0.61[0.56,0.67] | 0.60 [0.56,0.65] | 0.56 [0.50,0.62] | 0.64 [0.61, 0.66]
95% ClI 95% Cl 95% Cl 95% Cl

XGBoost 0.62[0.55,0.72] | 0.63[0.58,0.69] | 0.62[0.58,0.66] | 0.63 [0.60, 0.67]
95% ClI 95% Cl 95% CI 95% Cl

Table 1: Test AUROCs for EHRFormer and XGBoost predicting one year mortality across key
time periods in the UNOS dataset.

XGBoost and EHRFormer fail to predict one-, three-, and five-year mortality

XGBoost and EHRformer predict one-, three-, and five-year mortality with poor performance,
with test AUROCSs ranging from 0.61 to 0.65 across all tasks and models (Figure 2E). There
was significant imbalance in the number of patients belonging to the positive and negative
classes for the one-, three-, and five-year tasks that was corrected by downsampling (Figure
2F). Model performance did not change between one-, three-, and five-year mortality prediction
(Figure S3).
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Model 1-year test AUROC 3-year test AUROC 5-year test AUROC

EHRFormer | 0.64 [0.61, 0.66] 95% | 0.61 [0.60, 0.63] 95% CI | 0.63 [0.62, 0.64] 95% CI
Cl

XGBoost 0.63 [0.60, 0.67] 95% | 0.65 [0.63, 0.67] 95% CI | 0.63 [0.62, 0.64] 95% CI
Cl

Table 2: Test AUROCs for EHRFormer and XGBoost predicting mortality at one, three-, and

five-years post-transplant.

XGBoost and EHRFormer modestly predict patients with poor lung function at one year.
We used all waitlist and peri-transplant features (<10% missing) included in our mortality

prediction models to predict one year lung function after downsampling for class imbalance,
resulting in 4 separate models (Figure 2A, Table S1, and Figure 3A). XGBoost and EHRFormer
predicted one year lung function, with final test AUCs across all models ranging from 0.72 to
0.74 (0.74 for data from all years) for EHRFormer and from 0.74 to 0.79 (0.76 for data from all
years) for XGBoost (Figure 3B, 3C, S3A, S3B, and Table 3).

Model 1987-2004 2005-2014 2015-now All years

EHRFormer | 0.74[0.72,0.78] 0.74[0.73,0.75] | 0.72[0.70,0.73] | 0.74[0.72, 0.75]
95% CI 95% ClI 95% ClI 95% ClI

XGBoost 0.79[0.77,0.81] 0.77[0.76,0.79] | 0.74[0.73,0.76] | 0.76 [0.74, 0.77]
95% CI 95% Cl 95% ClI 95% ClI

Table 3: Test AUROCs for EHRFormer and XGBoost at across key time periods in the UNOS

dataset.

Index stay features have high importance for mortality prediction.

To identify features associated with one-year mortality in our models, we developed two
XGBoost models. The first model was trained on features from all years that were available pre-
transplant (Figure 4A, Table S1). The second model was trained on features that were available
pre-transplant and during the index hospitalization (Figure 4B, Table S1). We then obtained
SHapley Additive Probabilities (SHAP)?* from these two models. The pre-transplant features
with high importance for mortality prediction included transplant type, donor ethnicity, PCO2 at
the time of transplant, and FVC at the time of transplant (Figure 4A). The pre-transplant features
and index hospitalization features with high importance for mortality prediction included length of

stay and whether the recipient experienced acute rejection during the index stay (Figure 4B).
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Removing index hospitalization features and further subsetting on the Lung Allocation Score

(LAS) further reduces model performance

Because index hospitalization features are unavailable when clinicians make decisions to list
patients for lung transplantation, we trained another XGBoost model in which we removed the
index stay features specified in Table S1. Model performance for mortality prediction at one year
was lower when XGBoost was trained on features only available immediately preceding
transplant (Figure 4C and Table 4). Similarly, model performance for mortality prediction at one
year was significantly decreased when XGBoost was trained on the initial LAS on the waitlist,
the end LAS on the waitlist, the calculated LAS, and the match LAS (Figure 4C and Table 4).

All features Pre-transplant features LAS
0.63 [0.60, 0.67] 95% ClI 0.60 [0.57,0.64] 95% CI 0.53[0.51,0.55] 95% CI

Table 4: Test AUROCs for XGBoost for predicting 1 year mortality using all features, pre-

transplant features only, and the LAS.

Index stay features are highly influential for prediction of lung function

Features important to lung function prediction included whether the transplant performed was
single or bilateral, ischemic time, PCO2 at registration, creatinine at registration, recipient age,
donor age, days on the waiting list, and O2 requirement at rest at the time of transplant (Figure
4D and Table 5). Features unique to lung function were primarily related to lung function at the
time of transplant (FEV1 and FVC at registration), indication type (COPD and cystic fibrosis

were associated with better lung function), and recipient BMI (Figure 4D and Table 5).

Stratification by transplant type results in a small increase in model performance

After length of stay, transplant type was the most important feature for 1 year mortality.
Therefore, we trained separate XGBoost models on all single lung transplant recipients and all
double lung transplant recipients. Utilizing all features including those collected from the index
stay yielded a test AUROC of 0.67 [0.61, 0.71] 95% CI within single lung transplant recipients vs
test AUROCSs of 0.63 [0.60, 0.67] 95% and 0.57 [0.52, 0.62] CI for all patients and double lung
transplant recipients, respectively (Figure 4E, Table 5). When modeled on pre-transplant
features, subsetting on single lung transplant recipients did not increase model performance
compared to modeling on both single and bilateral lung transplants. SHAP analysis within the
model trained on single lung transplant recipients using only pre-transplant features revealed

the importance of donor and recipient age as well as hemodynamic parameters such as


https://doi.org/10.1101/2024.10.19.24315817

medRxiv preprint doi: https://doi.org/10.1101/2024.10.19.24315817; this version posted October 21, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

pulmonary arterial pressures. Interestingly, listing center code and center code also emerged as
influential features in this model (Figure 4F). Train and test AUROC curves as well as SHAP

values for XGBoost models trained on the single and bilateral subsets are shown in Figure S4.

All features Pre-tx features
Both 0.63 [0.60, 0.67] 95% CI 0.60 [0.57,0.64] 95% CI
Single transplants 0.67 [0.61, 0.71] 95% CI 0.58[0.52,0.63] 95% CI
Bilateral transplants 0.57 [0.52, 0.62] 95% CI 0.55 [0.50,0.60] 95% CI

Table 5: Test AUROCs for XGBoost for predicting 1 year mortality using all features or pre-

transplant features only stratified by transplant type.

EHRFormer permits querying the effect of multiple features simultaneously.

SHAP values for EHRFormer models are not currently accessible. Instead, we can query
feature importance by “perturbing” or changing the value of a specified feature or even a set of
multiple features and seeing what effect doing so has on the model’s output. For example, the
probability distribution of mortality by one-year does not change after perturbing transplantation
region (Figure 5A) but changes substantially after perturbing long index stay (Figure 5B) or
dialysis during the index stay (Figure 5C). One can also perform multiple in silico perturbations
simultaneously. For example, we set positive flags to the highest quartiles for complicated index
stay features, including ECMO at 72 hours, inhaled NO at 72 hours, intubation status at 72
hours, and ventilation duration post-transplant which shifted the mortality prediction towards

death at one year (Figure 5D).

Perturbing multiple features simultaneously allows EHRFormer to explain the unexpected

influence of long ischemic time on one year mortality in the XGBoost model

Prolonged ischemic time has been historically associated with worse 1-year outcomes?.
Unexpectedly, longer ischemic times were associated with improved outcomes in our XGBoost
models (Figure 3A). We hypothesized that the historic association between prolonged ischemic
time and poor outcomes were reversed by improvements of organ handling and storage,
including the use of ex-vivo lung perfusion (EVLP). Accordingly, we leveraged the ability of
EHRFormer to query multiple features at once to investigate perturbation of a feature
conditioned on the value of another feature - in this case what might happen if we prolong

ischemic time when transplant year is set to its lowest quartile (earliest) (Figure 5E). When
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setting ischemic time to its highest value alone, we see a paradoxical shift in mortality prediction
that is consistent with the direction of the SHAP values seen in XGBoost (Figure 4A and B).
However, when setting ischemic time to its highest value when conditioned on setting transplant
year to its lowest quartile, the probability distribution reverses in the opposite direction.
Additionally, when we subsetted on those whose lungs underwent EVLP prior to transplant, the
proportion of those experiencing poor outcomes such as 1 year mortality, ECMO at 72 hours

after transplant, and death during the index stay, were significantly reduced (Figure S6).

Features associated with frailty predicted death during the index hospitalization.

Those who died during the index hospitalization were excluded from our initial mortality
prediction models. To investigate features associated with mortality in this subset of patients, we
performed hierarchical clustering of all features (Figure 6A). Features associated with mortality
during the index stay included transplant indication of idiopathic pulmonary fibrosis or restrictive
lung disease, recipients of donors of black or African American ethnicity, and life support
features such as ECMO, ventilator, and ICU status. A distinct group of features associated with
recipient frailty such as functional status at the time of transplant, infection requiring IV drug
therapy prior to transplant, and hospitalization status prior to transplant were associated with
higher rates of index hospitalization mortality (Figure 6A). When we investigated features
associated with a complicated index hospitalization, those who died during the index stay
showed much higher oxygen requirements (FiO2), rates of ECMO, rates of inhaled NO, rates of
intubation, and rates of reintubation at 72 hours after transplant (Figure 6B). Similarly, we
examined additional frailty features associated with higher rates of index hospitalization
mortality. Those who died during the index hospitalization had higher O2 requirements at rest,
lower six-minute walk scores, as well as higher rates of chronic steroid use, pan-resistant
bacterial infection, infection requiring IV drug therapy, and ventilator status at the time of

transplant (Figure 6C).

Discussion

Lung transplant is a lifesaving treatment for patients with end stage lung disease. Over the
years, lung transplant allocation systems have used prediction models to guide patient eligibility
for transplant, organ allocation, and outcome reporting. The role of these models is two-fold: 1)
to prioritize organ allocation to patients who have the greatest chance of death due to their

underlying lung disease and 2) to direct scarce resources to patients who would achieve
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maximum survival benefit from lung transplantation. Achieving these goals requires robust
prediction models for post-transplant outcomes. Traditionally, these predictive models have
been informed by expert-guided supervised selection of features incorporated into traditional
statistical methods such as multilinear regression. Modern machine learning approaches such
as language models or gradient boosted decision trees can accommodate non-linear
relationships between variables and have the potential to account for the multiplicative risks of
comorbidities on lung transplant outcomes. We used two robust machine learning models,
XGBoost and EHRFormer, which have performed well in other clinical prediction tasks, to
predict one-, three- and five-year mortality and lung function after lung transplantation. Our
models were trained on data within the UNOS database up until November 2022. Even after
optimization, these models performed poorly as predictors of mortality or lung function after

transplant, particularly when data from the post-transplant index stay were excluded.

Despite their attention to known risk factors associated with transplant outcomes, the
performance of our machine learning methods in predicting outcomes was poor. There are
several possible reasons that might explain this poor performance. This suggests that data
features collected by UNOS are not predictive of transplant outcomes and that collection of
additional predictive features such as diffusing capacity of the lungs for carbon monoxide®* is
needed. The application of machine learning algorithms to the larger body of EHR data
available at individual centers or consortia of centers might identify informative features outside
of the UNOS database. Importantly, the models would incorporate molecular features, imaging
features, and other modalities outside of EHR data®. Second, batch effects in the UNOS data
related to differences in data curation, collection, reporting between centers, and changes in
practice over time might confound the models. Arguing against this, both models identified
features previously associated with transplant outcomes as important for their predictions.
Applying these models to EHR data that have been validated by clinician review is a strategy to
address this concern at the level of individual centers or consortia. Finally, drivers of transplant
outcomes might be largely independent of clinical features present before the procedure. The
limited performance of these models suggests caution in using these data for predicting lung

transplant outcomes.

Our study highlights the promise of machine learning approaches in identifying risk factors that

drive lung transplant outcomes. We observed a high level of concordance between predictors of
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poor outcomes identified by our models and those selected by experts for use in supervised
models. These included donor and recipient age, length of index stay, and renal dysfunction or
failure during the index stay as important predictors of 1 year mortality. Investigation of factors
driving our machine learning prediction also revealed biases in the data that would likely be
missed in a supervised analysis. For example, the increased risk associated with African
American donors likely suggests important risks related to social determinants of health or other
factors that would be unlikely to be included in supervised analyses. The failure to include these
factors in current models might paradoxically perpetuate these biases in the form of reporting of

higher program quality scores for centers in different geographic regions.

XGBoost provides direct measures of the relative weights of features that drive the model.
BERT-based models like EHRFormer do not provide explicit information about the factors that
drive their predictions. To address this concern, we developed perturbation tools in EHRFormer
that allow users to investigate the hypothetical effect of changing variables. We used these to
investigate the paradoxical association between prolonged ischemic time and improved
mortality after transplantation in the XGBoost models. When we fixed transplant year to the
earliest quartile, before procedures such as EVLP were available, increased ischemic time was
associated with increased mortality. We show how this tool can be used to perform multiple
“perturbations” within EHRFormer simultaneously to query multivariate hypotheses and
dependencies. These tools might be helpful to generate hypotheses that can be tested with
causal interventions or for individual programs to assess the relative benefits of interventions in

the peri-transplant period that can improve outcomes.

Conclusion

In summary, despite their ability to identify and use clinical features known to be associated with
lung transplant mortality in their predictions, modern interpretable machine learning approaches
applied to the UNOS database performed poorly in predicting one-, three- and five-year survival
and lung function after lung transplantation. We developed perturbation tools within EHRFormer
to simultaneously explore features in the UNOS database that might reflect changes in lung
transplant practice and outcomes over time and unexpected biases in the data. Our data
suggest caution when using historic UNOS data to inform clinical practice decisions by
multidisciplinary lung transplant teams and outcome reporting. The relative ease with which

these models can be applied to more comprehensive clinical and laboratory data, and their
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demonstrated ability to identify features associated with transplant outcomes, suggest them as

powerful approaches to address these limitations.
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Methods

Data preparation, cleaning, and feature encoding

All observations with a transplant date earlier than November 8, 2022 were included. All waitlist
(THORACIC_WL_DATA), peri-transplant (THORACIC_DATA), and follow-up features
(THORACIC_FOLLOWUP_DATA) with at least 1 observation were initially considered, yielding
786 features from the STAR File Data Dictionary. All features were reviewed for outliers and

unexpected values with consultation from a committee of transplant pulmonologists. Outlier data
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were treated as missing. Binary features were numerically binarized as 0 or 1. Categorical
features were ordinalized if they represented a scale or one-hot encoded. Waitlist and follow-up
features were collected at various points in time for each patient. For waitlist data only the first
and most recent values were collected. Follow-up observations closest to and within +/-3

months of one-, three-, and five-years post-transplant were used.

Principal components analysis

The features and resultant dataframe obtained from Data Preparation and Feature Encoding
were further filtered for those that were missing <10% of data, resulting in 363 features.
Numerical features were mean imputed while categorical features were mode imputed. With this
dataframe, principal components analysis was applied using scikit-learn®® in Python, with the top
50 principal components chosen for initial exploration. Matplotlib?” and seaborn® were used for

data exploration and visualization.

Statistical tests

To determine whether continuous variables change with respect to time (transplant date),
logistic regression was performed with statsmodels® to determine R-squared coefficients and p-
values. To analyze differences in categorical variables between groups, the chi-squared test
(scipy.stats)®® was used with a Benjamini-Hochberg adjustment for multiple comparisons (FDR
< 0.05) (statsmodels)®. To analyze differences in continuous variables between groups, the
wilcoxon rank sum test (scipy.stats)®*® was used with a Benjamini-Hochberg adjustment for
multiple comparisons (FDR < 0.05) (statsmodels)?. To draw statistical comparisons between
the bootstrapped AUROCs between models (50 bootstraps), a Student's t-test was performed
after assessing normality with the Shapiro-Wilk test (scipy.stats)®®. A Benjamini-Hochberg

adjustment was made for multiple comparisons (FDR < 0.05) (statsmodels)®.

Data preparation for modeling

Feature selection and preparation for modeling

Subsets of data were chosen for modeling based on observations from the following time
frames (inclusive): 1987-2004, 2005-2014, and 2015-Present. These time-related subsets were
chosen due to changes in data collection illustrated in S1. All waitlist and peri-transplant data
were included for all modeling tasks. Features were filtered for those that were missing <10% of

observations within each time period, resulting in 140, 145, 152 and 140 features for data from
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1987-2004, 2005-2014, 2015-Present, and all years. Numerical features were mean imputed

while categorical features were mode imputed.

EHRFormer feature representation and pretraining

From each of the 4 dataframes generated as described in the previous paragraph, 4 different
models were pretrained from a tabular BERT initialized with random weights, available via
Huggingface in the transformers package®. For the base architecture of this model
(EHRFormer), we set the standard Transformer Encoder with three transformer layers, with a
layer size of 64, an intermediate layer size of 128, and 4 attention heads. For input
representation of the tabular data, all numerical values were quantile-binned to represent data
from a single patient. Binary features were set to either the lowest or highest quartile bin.
Following the standard BERT procedure, we added a 64-dimensional learnable CLS embedding
at the beginning of the sequence. An additional bin was included to represent the CLS token for
each patient as well as an additional bin for missing data. Each bin and each EHR feature was
then assigned with a learnable 64-dimensional vector embedding. We later represented a single
EHR entry with a sequence of the length of the number of features, where each element of a
sequence was a 64-dimensional vector obtained by summing the feature embedding vector and
its assigned bin embedding vector for every feature in the training data. In line with the BERT
pretraining procedure, we pre-trained EHRFormer using a masked language model objective.
The observations were divided into an 80/20 train/test split for pre-training. During this phase,
we randomly masked 15% of the values in the 80% train of each entry by replacing the true bin
embedding with a learnable MASK embedding. We later equipped EHRFormer with the task of
predicting the actual bin values of the masked entries based on the unmasked EHR feature

values. None of the observations in the 20% holdout test set were seen during pretraining.

Modeling one-, three-, and five-year mortality and lung function outcomes

Mortality label retrieval

To obtain the correct labels for one-, three-, and five-year mortality, we used the patient’s date
of death (COMPOSITE_DEATH_DATE) to confirm patient death. We then calculated survival in
days by subtracting the difference between the patient’'s date of death and date of transplant
(TX_DATE). Survival time was then used to further identify which patients had died within the
one-, three-, and five-year outcomes of interest. To retrieve patients who were alive at one,
three, and five years, we used the “patient status”, patient status date, and date of death
variables (PX_STAT = “A" for alive, PX_STAT_DATE, COMPOSITE_DEATH_DATE = NA).
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PX STAT_DATE was used to determine total known survival time. We then added this subset
of patients to patients who might have died but whose survival exceeded the 1-, 3-, and 5-year
outcomes of interest for each task. To further ensure the model was not relying on shortcut
features, we removed patients who died during or within 90 days of their index stay. This was
determined by filtering out patients whose length of stay (LOS) exceeded survival time by at

least 90 days.

Lung function <70% of predicted label retrieval

To obtain labels for lung function <70% of predicted, we used the follow-up feature
FEV_percent available at 1 year post transplant (+/- 3 months). For patients in which
FEV_percent at 1 year post transplant was unavailable, we used the spiref*? package with GLI-
2012 reference values to determine a calculated FEV_percent of predicted based on their
absolute FEV1(L) at one year (FEV). Downsampling of the majority class was also applied as

described in detail in the subsequent section EHRFormer fine-tuning and evaluation.

EHRFormer fine-tuning and evaluation

We used fine-tuning of the pretrained EHRFormer for binary classification of the patient's
mortality and lung function at 1 year. Specific outcome retrieval is described above. To perform
this task within specific time frames, we used one of the 4 pretrained models that corresponded
to these time frames: 1987-2004, 2005-2014, 2015-Present, and all years. With the data and
pretrained model from data spanning all years, we also performed identical binary classification
of whether the patient was alive or dead at 3 and 5 years. Due to class imbalance for all tasks,
the majority class was downsampled at random to result in a 1:1 negative to positive class ratio
in both the training and test sets separately.

For each task, following downsampling, hyperparameter tuning was performed using optuna’s®*
Parzen Tree based estimator (objective = accuracy, direction = maximize, n_trials = 75), on the
80% train split from pretraining. We searched for optimal hyperparameters within the following
space: learning_rate = [1e-6, 1le-2], per_device_train_batch_size = [16, 32, 64, 128, 256], and
weight_decay = [le-4, le-1]. With the tuned hyperparameters, we performed 5-fold cross-
validation on the 80% train split from pretraining. Splits and performance metrics (accuracy,
AUROC, F1, precision, recall, and specificity) were determined using scikit-learn®. The tuned
models were finally evaluated on their performance using the remaining 20% holdout test set

that were not seen during pre-training, hyperparameter tuning, or 5-fold cross-validation. To
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determine the variability of performance metrics within the test set, 50 random bootstraps were

performed on the test set when calculating model metrics.

XGBoost evaluation

We similarly used XGBoost for binary classification of the patient’s mortality and lung function at
1 year within time frames corresponding to 1987-2004, 2005-2014, 2015-Present, and all years.
We also performed identical binary classification of whether the patient was alive or dead at 3
and 5 years. Additional tasks included assessing the performance of XGBoost on all features,
features only available at or before the time of transplant, and on the LAS. For these additional
tasks, center-specific features were also included (ie. CTR_CODE, see Table S1). Where
center code features were included, the Catboost Encoder package was used to perform target
encoding of center codes. Finally, XGBoost was also used to determine prediction performance
on single and bilateral lung transplant recipients separately. Downsampling of the majority class
was done as was done for EHRFormer. Since there is no pre-training process, we divided entire
datasets into an 80/20 train/test split at random. 5-fold cross-validation was performed within the
training set with scikit-learn. Hyperparameter tuning was performed using a Bayesian optimizer
with a Gaussian Process based estimator (scikit-optimize's BayesSearchCV)*. The search
space was defined as follows: learning_rate = (0.01, 1.0), max_depth = (2, 12), subsample =
(0.1, 1.0), colsample_bytree = (0.1, 1.0), reg_lambda = (1e-9, 100), reg_alpha = (1e-9, 100),
min_child_weight = (1, 10), gamma = (0, 5), n_estimators = (50, 1000). To determine the
variability of performance metrics within the test set, 50 random bootstraps were performed on
the test set when calculating model metrics. For interpretability and insight into XGBoost model

decisions, we used SHAP (SHapley Additive exPlanations)*®.

EHRFormer perturbations

To gain model insights from EHRFormer, we developed a pretrained tabular BERT similar to the
pretraining process described in the modeling tasks. We specifically included data from all years
and included additional features of interest such as transplant year (TX_YEAR) as well as all the
features from the 2015-Present model. The entire dataset was used for pretraining as opposed
to setting aside a test cohort. Hyperparameter search was performed within the entire dataset
as described previously. We then ran this new model on the fine-tuning binary classification task
of 1-year mortality. To understand feature importance, we randomly sampled half of the input
observations 10 times. From these sampled observations, we manipulated features of interest

by manually changing the bins for one or multiple features in each of the sampled observations.
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These new “perturbed” inputs were fed to the model during fine-tuning. This process returned
new probabilities of a positive class outcome (ie. 1 year mortality) determined by the model
when given a perturbed set of features, visualized here as probability distributions before and

after the perturbation was applied.

Hierarchical clustering for length of stay analysis

Hierarchical clustering was performed on all observations using all the features that were used
for prediction of 1 year mortality (140 features). Numerical features were mean imputed while
categorical features were mode imputed. The ward linkage method and euclidean distance were
used. Whether an individual died during their index stay was used as the row annotation

feature.

Propensity score matching for creating matched cohorts for length of stay analysis

To examine associations between those who died during the index stay and those who did not,

37

we performed propensity score matching with psmpy”’ to generate a matched cohort of

controls. 1:5 matching was performed based on patients with similar transplant year, indication
grouping, gender, age, and ethnicity. Missing data were imputed prior to matching with a simple
mean strategy. KNN matching with propensity logits was performed at a 1:5 case:control ratio to

mitigate class imbalance.
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Figure 1: An exploratory analysis of the UNOS dataset reveals distinct indication-drive
groupings and time-associated trends. A. Histogram of the number of lung transplants by year
since 1987 split by restrictive indication (red). The timeline schematic below the x axis indicates
how many observations were included for modeling for each model across various time frames.
B. Hexbin plots showing from top to bottom the relationship of ischemic time (hours), recipient
age, and FEV1% at the time of transplant with sorted transplant date. Black dots on the
ischemic time plot indicate the yearly median of ischemic time. P values and R-squared values
were derived from linear regression on all three variables vs transplant year. C. Principal
components contour plots split by single and bilateral transplants, indicated in red. D. Principal
components contour plots split by indication (red). E. Principal components scatterplot colored
by transplant year with reference contour plot on the right. Early to most recent transplant years

are illustrated from dark to light respectively.
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Figure 2: EHRFormer and XGBoost predict one-, three-, and five-year mortality with modest
performance. A. The number of features used in each of the 4 different models. A data
dictionary of these features is available in Table S1. B. The number of patients in each model
split by class outcome of 1 year mortality. Teal indicates those who were excluded for modeling
if they died within 90 days of their index stay. D. Test set AUROCs for EHRFormer (red) and
XGBoost (blue) prediction of 1 year mortality across the 4 models. Error bars indicate 95% Cls
based on 50 bootstraps of the test set. D. Heatmap of all test set metrics normalized within each
metric (row-wise) including AUROC, accuracy, F1 score, precision, recall, and specificity for
EHRFormer and XGBoost across the 4 models. E. Test set AUROCs for EHRFormer (red) and
XGBoost (blue) prediction of 1-, 3-, and 5-year mortality. Error bars indicate 95% Cls based on
50 bootstraps of the test set. F. The number of patients split by class outcome of 1-, 3-, and 5-
year mortality. Teal indicates those who were excluded for modeling if they died within 90 days

of their index stay.
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Figure 3: EHRFormer and XGBoost predict one year lung function with strong performance. A.
The number of patients in each model split by class outcome of FEV1 <70% predicted at 1 year.
B. Test set AUROCs for EHRFormer (red) and XGBoost (blue) prediction of FEV1p <70%
predicted across the 4 models. Error bars indicate 95% Cls based on 50 bootstraps of the test
set. C. Heatmap of all test set metrics normalized within each metric (row-wise) including
AUROC, accuracy, F1 score, precision, recall, and specificity for EHRFormer and XGBoost

across the 4 models.
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Figure 4: Index stay features strongly influence 1-year outcomes. A. SHAP values from the
XGBoost model predicting 1 year mortality using pre-transplant features. B. SHAP values from
the XGBoost model predicting 1 year mortality using pre-transplant and peri-transplant features.
C. Test AUROCs from XGBoost models predicting 1 year mortality using all features (pre- and
peri-transplant), pre-transplant features only, and lung allocation score. Error bars indicate 95%
Cls based on 50 bootstraps of the test set. Statistical comparisons were made using the
student’s t-test method with correction for FDR <0.05. D. SHAP values from the XGBoost model
predicting FEV1p <70% predicted at 1 year using pre- and peri-transplant features. E. Test
AUROCs from XGBoost models predicting 1 year mortality by transplant type - all transplants,
single, and double lung transplants. Light and dark blue indicate models trained on all features
(pre- and peri-transplant features) vs. pre-transplant features only). Highlighted significant
statistical comparisons of interest are indicated on the graph. F. SHAP values from the XGBoost
model predicting FEV1p <70% predicted at 1 year within single lung transplant recipients using

pre-transplant features only.


https://doi.org/10.1101/2024.10.19.24315817

medRxiv preprint doi: https://doi.org/10.1101/2024.10.19.24315817; this version posted October 21, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

Probability distribution of mortality prediction after perturbation
A B C

Danaity

oty

Perturbed feature

Transplanted in UNOS region 27 (:)

Long index stay? ()
Dialysis during index stay? (:)

D

If patient experienced commonly co-occurring index-stay features

Perturbed feature

Intubated at 72h O (:)
inhaled NO at 72h () c
Maximum ventilation

duration post transplant (D ()

ECMO at 72h ()

— Perturbed N
" Inpdehatad
"
"
e
1
> 2
i La|
sy
i
g
8
— Perturbed -
— unperturbed
by as
bl . a - i - . . . (11 a 3] e (L] L] L] e "
Probabiity Probatity

Perturbed feature

P | | | |
Ischemic time T T - T T -

Oh 4h 5.2h 6.3h 25h Oh 4h 5.2h 6.3h 25h

Transplant year - I I

1987 2009 2015 2019 Present


https://doi.org/10.1101/2024.10.19.24315817

medRxiv preprint doi: https://doi.org/10.1101/2024.10.19.24315817; this version posted October 21, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

Figure 5: EHRFormer perturbations allow users to query the effect of one or multiple features
simultaneously and reveal the paradoxical relationship of ischemic time on mortality. A, B, and
C demonstrate probability distribution curves for the model’s prediction of 1 year mortality and
how they change when an individual feature is toggled. A. transplantation in UNOS region 2; B.
whether patient experienced long index stay; C. whether patient experienced dialysis during
index stay. D. Changes in probability distribution curves for 1 year mortality when index stay
features reflective of complications are toggled. E. Changes in the probability distribution for 1
year mortality when all observations are set to their maximum quartile for ischemic time are
shown on the left. Changes in the probability distribution for 1 year mortality when all
observations are set to their maximum quatrtile for ischemic time and set to their lowest quartile

for transplant year are shown on the right.
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Figure 6: Those who died during their index stay have a higher proportion of flags for life
support features, features associated with frailty, and index stay complications. A.
heatmap visualization of the hierarchically clustered features used for the prediction tasks. The
annotation legend on the left indicates those who died during their index stay (yellow) vs. those
who survived the index stay (green). The heatmap also highlights groupings or clusters of
features with a higher proportion of those who died during their index stay. Blue box - those
whose indication for transplant was idiopathic pulmonary fibrosis; red box - a group of patients
highlighted by black donor ethnicity; green box - a set of features associated with life support
after transplant; grey boxes - 2 groupings belonging to separate hierarchically clustered “clades”
associated with recipient frailty. B. Life support features that were statistically significant in
patients who survived the index stay vs. those who died during the index stay, where stacked
proportional bar plots were used to represent categorical features (green indicates “yes” and
blue indicates “no” for the feature value) and violin plots were used to show continuous features.
C. Frailty features that were statistically significant in patients who survived the index stay vs.
those who died during the index stay. For graphs in B and C a chi-square (categorical) or
Wilcoxon-rank sum (continuous) test was applied with FDR correction <0.05 for multiple

comparisons.
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Figure S1: Heatmaps showing data missingness of features from Table S1. A. Missingness of
all waitlist, follow-up, and peritransplant features sorted by transplant date (780 features). B.
Missingness of all waitlist, peritransplant features sorted by transplant date that were at least
90% complete and used for modeling. 2005 and 2015 are indicated on the heatmap to
demonstrate features that are missing from the time periods used for modeling. Missingness of
all waitlist, follow-up, and peritransplant features sorted by transplant date, used for PCA and at

least 90% complete (357 features).
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Figure S2: Area under the receiver operating curves (A) and test set confusion matrices
(B) for the prediction of 1 year mortality using data from 1987-2004, 2005-2014, 2015-
present, and from all years. The top row and bottom row in each panel shows the performance
in EHRFormer and XGBoost respectively.
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Figure S3: Area under the receiver operating curves (A) and test set confusion matrices
(B) for the prediction of 1, 3, and 5 year mortality using data from 1987-2004, 2005-2014,
2015-present, and from all years. The top row and bottom row in each panel shows the
performance in EHRFormer and XGBoost respectively.
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AUROC curves for the prediction of lung function <70% predicted at 1 year in
EHRFormer and XGBoost across time frames
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Figure S4: Area under the receiver operating curves (A) and test set confusion matrices
(B) for the prediction of FEV1 <70% at 1 year using data from 1987-2004, 2005-2014, 2015-
present, and from all years. The top row and bottom row in each panel shows the performance
in EHRFormer and XGBoost respectively.
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Figure S5: Area under the receiver operating curves and additional SHAP values for the
prediction of 1 year mortality stratified by transplant type using all features vs. pre-
transplant features only. A. Area under the receiver operating curves for XGBoost models
predicting 1 year mortality in single vs bilateral lung transplant recipients using either all features
or only pre-transplant features as specified in Table S1. B. SHAP values for 1 year mortality
prediction single lung transplant (left) vs bilateral lung transplant (right) recipients using only pre-
transplant features.
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Figure S6: Stratification of patients by prolonged ischemic time (>10h) reveals a higher
proportion of 1 year mortality, ECMO at 72 hours after transplant, and death during the
index stay. Stacked proportional bar plots demonstrating the differences in proportions of 1
year mortality, ECMO at 72 hours after transplant, and death during the index stay (rows)
between different stratifications of the patients (columns). Green indicates a positive flag for the
binary outcome of interest whereas blue indicates a negative flag. Stratification by EVLP in
comparison to matched controls with <10h of lung ischemic time (middle column) revealed
some mitigation of poor outcomes. On the other hand, stratification by EVLP in comparison to
those with >10h of lung ischemic time (last column) revealed greater mitigation of poor
outcomes. Numbers of patients in each grouping are indicated on the graphs.
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CARDARREST NEURD DECEASED DONOR CARDING ARREST POGT GRAMN DEATH T Yes ver vas vos vas
CIE GRT 10 OLD TISTORY OF CIGARETTE USE 10 PACK YEARS @ REGISTRATION i tima cEtnsglant |vas  |Ma Mo ™ m m m
G USE USTORY OF CIGARETTE USE AL tma of FAnapant |ves | o ™ o o o
MV _DON DOHDR SERDLOGY ANTI CMV (FOR LIVING DONOR, PRE UNET BATA DHLY) Attima stimnaplant  lves  [ves Yes Yes Yes ey Yes
CMV GG T CWIV BY G TEST RESULT @ AN ume of banaplanl  |yes  [Mo m ™ o ™ ™
oMy 1GM RECIFIENT GV BY 1GM TEST RESULT 3 TRANSPLAN] Al time of banaplanl |y,
COMPOSITE_DEATH_DAT [Campsite Paent eath Date Som OFTH or Venibed bom Extemal Sources Al time of tranapiant  |yas m ™
il DECEASED DONCR-HISTORY OF ALCOHOL DEPENDENCY+ RECENT BMD USE Altime of bansplant fves  [No Mo Mo Mo Ho Ho
DECEASED DONOR-HISTORY OF CIGARETTES IN PAST® *20PACK YRS+RECENT BMO USE fime Fransplant  [ves o Mo roc o o to
RETTE USE » 10 PACK YRS AND CONINUED USE DURING LAST SIX MOHTHS. tima of transplant  lyes s Mo (] o No o
DECEASLD DONORHISTORY OF COCARIE USEeRLCENT GO USE time of AnSEIANt |vey o m ™ o tio tio
DECEASED DONDR-HISTORY OF IV DRUG USE+RECENT MO USE Attima of tanaplant — yey  |Hg Mo ™ m & an
[DECEASED DONOR-HISTORY UF OTHER DRUGS 1N PAST*RECENT 6MO USE Al time of transplanl  yeq '; Mo ';_, m 'F., 'F.,
Al time of bransplanl  |yas i
Al time of tramsplant  |yas ™ ™ ﬁ E E
Altime of tansplanl  |yes  |'Yes s Yoz Yos Yos
ALtime oftransplant  yes  [ves Yex Yos o5 o5
i timo of transplant — yes  |vas ™ tin 1in Hin
|DAL_PRIOR_TX Calculated Ever Dualysis Prior 17 ALume of tansplant vy Mo e ho Ha Ha
|DISTANCE DISTANCE FROM DONOR HOSP TO TX CENTER {Mautical Milag) A tima clisnaplent  lves  |vas Yes Yes Vs Y3
|[ECMO_TIHOURS et al 2 Hown Altime of bandplanl [ves (Mo | Yes My My
l‘""___'—gg JOTCR__ [PATIENT ONLIFE SUPPORT - ECWO @ REGISTRATION Allime of bandptant |ves |ves Yes Yes [Yes [Yos
[ECMO_TRR. (PATIENT Cf LIFE SUPPORT - ECMIO @ TRANSPLANT Altime of banapianl  lyas  |Yes Yes Yos s Yes
ENi [ LUNG FREFERENCE AT REMOVALCURRENT TIVE TCR - BOTH (157) Altime oftiansplant. ves (Vs ti Mo o o
[END_BMI CALG Icmm Candiawe B 1 RemovalCuriont Tame fima A tansganl_ |ves |ves Yes Yex ves vas vas
|END CALC LAS REMOVALICURRENT CALCULATED LUNG ALLOCATION SCCRE time of transplant vy |na Mo o Mo 2 2
|END_CREAT |Sanam Craatinee at TRR/OfsRemoai Cumam Time (HL. LU any) tima cftransplant  |ves  |Yes m ™ ™ ™ ™
[END LLU FLG LUNG PREFERENCE AT REMOVALICURRENT TIMES TCR - LEFT (1=Y) Attima of tansplant ey |yey Mo ™ m m m
[END_MATCH_LAS RETMOVALCLRIRENT LUNG ALLOCATION SCORE AT MATCH T ALTMa of tanSpiant  |ves [N No 'Fu Mo 'Fn hn
[END_02 02 - Alime of banapianl  |yes E v |¥es Yes [ves
|[END_RLU_F LLIN - RIGHT (1=7) Altime of tansplant [ves  [Yes ™ | |hn m
|ETHHICH RECIFIENT ETHNICITY {HISPANIC VS NON-HESRANIC) ALtime ofwansplant lves  |ves Y Yes Yon Yos Yos
|EXTRACRANIAL CANGER DON | DECEASED DONOR EXTRACATAL CANCER A1 PROCUREMENT Time S UANSpNt |ver |Yes o o 1o i o
[FEV TRR [FULHOARY STATUS TEVT % FAEDICTED @ TRANGPLANT d fime fanspant[vas [vas [ves ver ves ves ves
[FI02 72HOURS ¢ tima of tansplant  |ves (Mo Mo (e (Yen Ho Ho
Altima cllmnaplant  fves  Yes Yes Yes Yes Yes Yes
[FUNC._STAT TRF Aitima of trAndplant  [yes (Mo Fl“ ™ B B Bio
[FUNC_STAT_TRR A Lime: f irnrisplank Jvu o Yes Yes Yes Yes Yes
I R [PULMOMARY STATUS. FVC % PREDICTED @ TRANSPLANT 42 tirme of ransplet yas flﬂ Yos Yis Was ¥ 5
|GENDER [RECIFIENT GEHDER A e ol ranspla |vns [vos Yes Yon I\__ru g E:v
|GENDER D [DOHOR GERDER A2 tirne of ransplst  |vas  |vas Yes Y5 {vos o5 a5
|GRF_STAT [GRAFT STATUS A timne of transplast — |van [N m ™ o o
|GETATUS [GRAFT FALED (1=YES) A1 tenw of trankplant  |vaw  [Vas Ha o m m N
|GTME | GRAFT LIFESFAN-Days From Transpiant 1o FadssDaathiLasi Felloe-Up At ma ofraneplet vy |ves ha |Hg Mo Ho o
[HEMD_CO_TRR {DST RECENT HEMODTHAMICS CO LW @ TRAITSPLANT A2 ume of iranepia®[ves [Ho Yes. Yos h'.. s Yes
HEMO Pa, D, TRR [MOET RECENT HEMOD THAMICS PA (OUA) MWHG G TFRANSPLANT A e of transpiset |y Yes Yes Ves v
HEMO_PA_MN_TRR MO ; OO YHARICS FA (MEAN) NG @ TRAHSPLANT 42 e of ransplsst  [yay E; es Yan as E, 08
[HEMO PCW TRR [MOST RECENT HEMODYNAMICS PCW (MEAN] MWHG @ TRANSPLANT A trme of vansplan |ves  [Ho Yes Yos s, Yas s
HEMO 55 TRR MOST RECENT HEMODYHAMICS PA (5Y5) MMHG @ TRANGPLANT A2 tirne oftransplast  [vag  [hg Yes LS L Yo [vos
HIST ALCOMOL OLD DON [DECEASED DONCR-HISTORY OF ALCOHOL DEPENDENCY As bme ol transplast |yas  [ho |ha o No. Ho Ho
|HIST CiG DON [DECEASED DONDR-HISTORY OF CIGARETTES IN PAST @ >20PACK YRS a2 e of ransplant vy |Yas Yes Yes Yun i i
HIST COCAINE DON [DECEASED DONDR-HISTORY OF COCAINE USE I PAST 4 bma of tranepiast vy [Ho Yes. Yes us ‘a3 us
DECEASED DLUNDR-HISTORY OF O DRUG USE 1N PA 2 e of rAnEpiEt  |Yes  [Yes Yes. Vs (:3 (1] (]
A e of transpled— [ves [N o o m
(LA MiSHiA A e of transplant Vas Yes Yot (]
[FIFECTION REQUIRING 1V DRUG THERARY (WITHIN 2 WEERS FRIOR TO TRANSPLANT) A2 lime of transpla®. |vps  [Yes Yes as s
[TCR Patient o Lie Support.iinhaled ND A4 tire of transplast  |vas  |vas Vs o5 LLL)
[TRR Patient on L Suppart Jinhaled HO #atime ofiranspla® |ves  |¥as Yo vas m
[Rocipent inhaled 190 2t 72 Mours 48 i of transplast [y [Ng Ha 13 .
[Recipees Intubated 8t T2 Hewrs A2 tirna of transpleet  [ves  [No E 7] Ho
A Urms of IFBRBPLET  Jyeg lTn Yes. (1} s
ALbme of transplet  [vge  [ves Yes ez Yos
42 lirne of ransplst Jyas Yes Wis
A2 i of transpla® [ves  |Ho o Ho
A2 tirne of transplst  |vag  [no E (i3 o
A timne of transplast — |van  |vas Yes A1) Yo
A2 timw of Tanspia® |ves |ves [Yes Yes o
A2 ma oftraneplet  Jves  [No Yes. (1] B3
A e of (ranEspiant  |yyy h: Ha s ﬁn
A e of lransplaet |y | M H
42 tme of transplat Jygs E Yes Yo (o3 En
At e of ransplart |vos [Ho Ha Ha s o
A2 e oftransplast  |vas  |ves Yes ras LLED LLI]
Ae bme ol transplast |yas  |ho [Ha tin e Ho
o tme of transplant |yey o Mo Ho Hu o
At tima o transpiant Jyey  [Hg Yes s s s
A e of Iranspent [ves [Ny |Yes Yes E.. s s
At ime ol {ranspled — Jyes [N Mo Ho Mo
A e of transplant [Yos E No No No
fs e of transpla® [ves o o Ho Ho o
[ tive o transplatt  |vas [hio ey to m m m
A time of transplact [ves  [wn Mo Mo ™ Hn o
[RECIPIENT mmﬁml@mm Az time of transplant s [Hu [Na Na {ars {rs o
[CALCLRATED Prvaous Tramsgiant of Any Organ Typs A8 ima of rRnsplent  [vey  |Yes Yes Yes s s s
] A2 lime of ransplast  [yyy o Ha Ho Eﬂ ﬁw Eﬂ
[PRIOR_LUNG_SURG TR s et Jves s [CH o o Mo Ho
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RR RECIFIENT PROSTACYCLIN INFUSION ver |ves Yes ves [wes [¥es e
[PROSTAGYCLIN TRR________|TAR RECIFIENT PROSTACYCLIN INHALATION Yes |Yos Yes Yes as [¥as o
PST ARWAY _ [EVENTS FROOR 10 DISCHARGE. ARVAY DENISCENCE Yo [Yes Yes Yas vas [ves o
FsTow [rVeTS PO TO DSCRRGE DALV ves[res ves ves [re i
FST PACENAKER  [FVENTS PRORTO DISCHARGE PERWANENT PACEAVER Yoo [¥es Yes ves tas rus o
[PsT STRONE ~  [EVEWTS PRaOR TO GISCHARGE: STRORE Yes |Yes Yes Yes Yus IYes m
PETATUS Hoclaan Most Fecent Patient Siaiis (based on composde death data) {1=0sad, 0=Alne) Yes  [Yes Mo Mo Mo hn h‘
;- Paten Sunval T1me m days J ot mgoate Sl Jaa) Yer |Yer E | [Ho [Ho [Ho
PUM INE DON_ |DECEASED DONORINFECTION PULMGHARY SOURCE Yer [Yes Yes Yas [Yas AL} L]
EFEM— ORGAN RECOVERED OUTSIDE U S Yes |You Yes Yes Yas [¥as [¥as
[RECIFIENT REINTUBIATED PQIST TRANSPLANT Yes  [mo Mo Yes Yas o
[PAN-RESISTANT BACTERIAL INFECTION @ REGSTRATION Yas  |Yes Yes Yes [¥es ALl ALl
[EVENTS OCCURRING BETWEEN LISTING AND TRANSPLANT STERNOTOMY ™M Mo M an [t [Ha
Elﬁoﬁl: sremuse ¥ & TRANSFLANT es [Yes 'Y—es ey ey (+] (+]
(DUFATION OF WCE FOR CIGARE] SE Yes [Mo (] (] o o Mo
- 2 L Yes  [Ho Me E o o
riomacor T o [cawae TATOSTIG ves e o
(TOTAL PERFUSION TME  [TOTAL TINE MNLTES) LLIIB(SJ G PERFUSION ves  |Ma o Mo o Ho
[TRACHEQSTOMY TRR  [TRR TRACHEDSTOMY rer  [na Ha vex ves o
[rrRes  —  [WEAYED FoR RElECTOU T VIR ves o bio e i o m
TX_YEAR TRANSFLANT VLAR Yes |Yes o o m o o
THED EAM:I:\A\‘E MENEEI DECEASED DONCR TRANSPLANTY 1=YES es  [Yes Yes Yes [Yes 1] i
! BE *4' AND TRANSPLANT EMISOUE OF VENTILATORY SUP ves |to res Yes s Eﬂs
VENT su»oa‘r TRR R ‘-" WY SUPPOR oo o Yes Yar Yos Yos
ENT_TIMEFRAME TRR mma‘raﬁc&mvsmsummem ™ ma s e
VENTILATOR TR FATIENT O LIFE SUPPORT - VENTILATOR @ TRANSPLANT Yes [Yes Yes Yes os Yos
ENTILATOR_TCR [PATIENT OH LIFE SUPPORT - VENTILATOR @& REGISTRATION Yes  [Yes Yes Yos Yo (vas
WORK BCOME TRR RECIFIENT WORK T0R HGOME AT TRANGPLANTT var  un Ho o o Ho Ho
Amm DarS TGAN # OF DAYS INDUCTION (ARTIL YMPHOCYTE RECEPTOR ANTIOOT] ™ o 1a [tia o o
rwwarmawumwmmmm Yes _|Mo Mo Ho Ho o
AINTERLS ] JF TR (AT YNPHOCT TE RECERTOR A 1 Yes o Ho 'Fu 'F., ﬁ: hn
= Yes
WAT"'WDN AT TME OF T Yes [No Ho o o Ho
[CAMPATH MAINT _____ [CAMPATH MAINTERICE AT TINE OF 11 Yer |na o o o m 1o
CELLCERT ANTRE] CELLCEPT ANTIREJECTION (T CELL ACTIVATION HHINTOR) vas |no Mo 1o o o m
CELLCEPT DAYS CELLCEPT # OF DAYS MDUCTION [T-CELL ACTIVATION INHIBITOR) ™ m ™ ™ m™ ™
CELLCEFT D EELLCEPT INDUCTION AT TIRE OF T4 (T-CELL ACTIVATION INFIBITOR) Yes |t o o m o o
CELLCEPT_MAINT + A es  [No Mo (] [Ho LTII h!
TATION IO Yes |Mo e H & &
T.CELL ACTIVATION INHIETOR] Yoz ™ m
CYCLOSPORM MANTENANCE AT TME OF T (T-CELL ACTIVATION INFIBITOR) Yes [to Ho Ho Ho ™
[GENERICMME MANT  [SENERICMUF MANTENARCE AT TME OF TX rer  [na Ha 1o tia tin
[ GENERICTACROUMUS WA [GENERCTACROLIUS HANTENAICE AT TIE O T res o bio e o o o
IMURAN ANTIREJ IMURAN ANTIREJECTION (ANTIMETABOLITE ) Yes (Mo Mo 73 an [ Ho [ Ho
IMURAN DAYS HLIRAH # OF DAYS INDUCTION [ANTIMETABOLITE] res | o o m [tin m
MURAWIND [ WURAN WDUCTION AT T OF T [AHTME TABOLI Y._|..-' fio o 'En pis bio bio
URAN AT A ASTEAGHE ATTRE T 1T WaTha- [ ITE res [ o e o e o
[SMULECT ANTIRE) _ [SWULECT ANTRREJECTION (ANTHLTMHOCYTE RECEPTOR MMBCOY) res It o Tro Tty Tto Tt
5“: ¥ OF DAYS INDUCTION (ANTH YMPHOCY Yes _[No Mo o g g
SMULECT D |SIMULECTINDUCTION AT Tile OF T (A il ¥ i
5 ECT MARITENANCE AT TIME OF T jANTILYMP Yes [Nn o o o o
m STERDIDS ANTIREJECTION Yor_|Yer Yes es vas |¥as m
STEROIDS DAYsS  |STEROIDS # OF DAYS INDUCTION Yas (Mo Mo ras Ho o o
[STERQIDS D |STEROIDS MOUCTION AT TIME OF TX Yes  |Yes Yo Yeu [Yos 1] [Hu
sremos MAINTEHAIICE AT T OF 10 B time oA vamigiant |ves |Yes res e Yes s m
TR CROSSATER ETOTOaTY A TEST T Tt o I e i m T
o CeLooNE unr +ow Gri{ P G STRESA e s [ve, oo T— o T—
q DONi 40 ANG  |RH PHYSICAL CROSSMATCH - B-CELL CROSSMA A lime o transgiant |ves [N ™ ™ o o
PRAL FRA (%) MOGT RECENT CLASS | ALtme AU |ver [N ba ™ o tio ltio
Yen  [No (3] (5] [Ho (No (No
Yes  [Ho (0s] Mo (Ho Ho o
Yes (Mo Mo (] No Ho [Ho
ez No Mo 'ﬁu o Mo
o Ina tia [ [t [tia [ta
Mo [Ma ™ o Ho Ho m
= Mo [Ma Mo [No (No o
e Mo o o o m m
™ Mo o m m
Vs [Mo Mo '; h! &: [No
Y_uENo [t J1io [tio [t
of wailst Yes [Ma Mo o Ho tin o
c«wmmcun start of wadlisy Yox (Mo (25] rda Ho [Ho
Crastines ot stan of wathst Yos |Mo o o m [in m
| Actum FPost Bionchodilator FEW at start of waitiist Yeu _[Mo (273 Mo (Ha (Ha (Ha
[Farcnt Pont Pont Bronchodiatar £V at s13A of watial Ve e o tia m T Tie
|2l Predicied Pre Branchedlilr FEV al slan of wasbisl ves Mo M | |
[Perceen Predcted Pre Bronchodiistor FEV o1 ta of waist Yes |Ho m ™ E o o
Functional Status at start of wallist fes (Mo Mo (Ho (o o
[Actusl Forced Vilal Capacay (FVC] at 1an of waithsl Yes |na ho i tia o 1o
Predictod PVE Pro Bronchodior & atar of wagkst Yes_ |na Ho o Ha o Ho
YA, initial Haw Vork Hean Assoc Class al stan of wailiel ™ ho o o m m
Supplamental Coxygen Amoun o SLan of WaRkE Yes [No Ho ™ Ho m Ho
Pulmonary Artery Systobc Pressure st start of wadhst Yz E {No m Mo
monary Artery Dustobe Pressure at slar of watlist es  [Ma (™ {Ho (Ho. Ho
[Puimenary atery Pressure Mean at stad of wakst Yes  [Ma ria tin [tin
¥ Cagallary Wodge Minan af sia of waillist var s o o s 1o o
| Six Mnute Walk Dhtance & stan of washst Yas Mo No Na [Ho [Ng (Mo
[lonar Crises - Accapl DCD demer 3t sian of waitist yes [to Mo o o o
Daner Crilena - Maximum Accepatie Danar Age (moniha) al sar ol wallst ves _ |Mo o 'F., 'E E: h
[oror Crteris - Maximum Acceptsble Donor Hegh (cm) o st of wakkst ves e i [hie [he
Donor Ciitena - Maximum Acceplatie Donor Weight (kg) 3t stan of watist Yes [No o Mo o o m
[Danor Critesia - Misimum Acceptable Doscd Age [months) ot stan of waithst res  [ro o ria Ho Ho Ho
| Ponor Criteria - Minimum Acceptabln Donor Height {cm) at stan of watiist i™Em m ™ m [t o
Dan:m-u « Minmum Accaptable Donos Weeght (kg) at starm of watist es (Mo Mo ta [N
===
) w.l.mumm-m al #nd ol wadhsl Tres |no Mo ™ o | |



https://doi.org/10.1101/2024.10.19.24315817

medRxiv preprint doi: https://doi.org/10.1101/2024.10.19.24315817; this version posted October 21, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

BMI_end 5\t ot end of wastist |ves [no [t [1ie s e
Cl end (Cardiac Index (CIf at end of watast es Ile Hy ™ ™ ™
CREATIINE end | Ceeatining at end of watist Yes  [Ho (] (] (]
FEV_POST ACT end [Actual Peat Bremchodtaten FEV ot end of wadial es  |No m lio i 1
FEV_POST PCT end [Fercent Post Past Bvonchodimoir £V l end of wailist [Yes Ihe
FEV_PRE ACT end [Actual Predeted Fre FEV at end of wailiat Yos__|No m o o o
FEV PRE PCT end [Fercont Predicled Fre Bionchodilator FEV at ond of wathsl Yas__|No m ™ o o
FLING STAT end [Functional S2atus at end of waitlis? ¥ag__ Mo o L= =) =)
FVC ABS end [Actual Forcad Vital Capacity (FVC) & end of waitlist Yes  [No g i i i
FVC PRE end [Fradicied FVL Pre Bionchodiator at end of waitlist Yen  [Ho e e e
NYHA end Tiww Verk Fiasrt Aatoc Ciass 3t and of wathsl 'TIE, ﬁ '; '; ';u
02 _end [Sappemental Omygen Amaunt at snd of warlisl T m Itio tio o o
PA_and [Fumonary Adtery Syatcec Preasure sl end of waillist s o
PADIAST BT end iy Aftary Drasiohc Pressure at end of waliat Yos_ |No Ho ™ o o
PAP MEAN end [Puimonary aery Pressare Mean al end of waiisl Yos [Ho 3 tio o L]
PCW end [Pulmonary Capllary Wedgs Moan a2 end of waitkst [¥as  [No o () () ()
S0 MM WALK, end [Scx Minute Walk Distance at end of waitlist ves  Ino m ™ ™ ™
DIONCRIT ACPT DCD_end [Oonor Crtwris - Accept DCO donior af wnd of wiitist Yeu _[Ho u Jtis s s
DONCRIT MAX AGE end [Danar Crtana - Maarmum Azcapenbls m}\y{mn}. and of watiat ey 5 @D ™ Ho o
DONCRIT_IAX_HGT_end [Bonor Crena - Masmam Accestabie Dunar gt (cre] ol end of warlisl Yos_|ves v ves s s
DONCRIT_MA and [Gonor Criteria - faimum Acceptable Donor Weight (kg at end of wailist vaos [No. Mo s [
DONCRIT_MN_AGE end [Donor Cetnia - Minimum /Acceptatie Donor Age (monihs) al end of wallist Yos_|Ves o o tio o
DONCRIT_MIN_HGT_end [Donor Ceieia - Minimum Acceptabie Donor Huight (cm) a1 end of maillist Yas__[Yes s Yes Yes Yes
DONGAIT MIN WGT end [Damn Coeria - Minimum Accaptatie Donor Waight (k) a end of waflhes ven Mo m ™ ™ ™
TIME_ O WL Tima on wattist jdaya) [ves |No Mo (i =] =]
DAYS ON_WL Tirme on wasliial {days) M m o o o
BMI year 1 Fecipient G st year 1 [Yes Iin hﬂ Fu (i) (i)
BRONC_OBLIT year 1 L Grhl Stlus — Brorchectiis ObMerans wnee Lasl Fallow-up o year 1 s [No Ho ™ ™ 1o
BRO TRIC year | [omg Gl Saais — Bromcheal Stniclure smce Lt Foloweap ol yemr 1 ves l& e
HRONIC_ DAL yess_1 [Bioet Transplan Everts since Last Folow-up — I Renal Dyskanction, Chome Dalysis? al year 1 os  [Ho o ™ ™ ™
EAT yem 1 |Must Recen Serum Creatming o yoar 1 [Yas__[Ho o o 3 3
CURRENTOZREQUIREMENTSYN y|Curent Supplomental 2 Raguiremonts af Rest andioe Execcise at yoar 1 vas  |ho m i ras ras
GRF STAT vear 1 Grat Siatus at Time of Fallow Up [7=T unctiaring 1=T aled) m yoar 1 res [tio o I g tis
HOSP year 1 Haspéakzatcns dunng Follow-Up Penod at year 1 Yos__[Ho i i L)
HOSE BIF yea T e TR T 73 e e e
HOSP REJ year 1 [Fasptakzed for Fapechon dunng Falow-up Penod ol ye 1 Yes _|No Itie tio o o
BAMUNG MAINT_MED year 1 Aty Medications Gren duting folow-up for Mainlenance of Actiiejection? ot year 1 es o b b b
02 REQ year 1 [[omg Gk Sxatus — Oicygen Requirement (Limn) at sust i the e of Fellow.ap al year 1 Yoz |No Ho o o ™
R T year 1 Pos Trangplart Events sincy Last Folowup — If Renal Dyshanction, Renal Transplant sece Thoracc Tran: ¥as _ [Ho o Mo Mo Mo
TRT RES year 1 [Patiort Traatad for Rapection (Y/NAI) during Fallow-Up Penad at year 1 ¥as  [No o re ras ras
WORK INCOME year 1 [RECIPIENT WORIC FOR INCOME? at year 1 Yes  [No Ho i i tio
CELLCEPT RE. 1 c!uczﬁl ANTIREJECTION m:eu AEWANDN mDﬂJl w 1 Yes  fHo o i s s
e * [Yes Fo Ho ';u ';w ';
I Jri I I
[ves % e tic tic
FOLLOWUP 2t yuar 1 Yes_|Ho o o o
;1 WWTWCEWWWWUPMDWFNWIW‘ a5 __[Ho INo (3 (] (]
GENENJC‘MC’ROLI-MS MANT Cu (GENERICTACRUOLIAIS CURRENT MAINTEMAGE AT TIME OF FOLLOWUR at yoar 1 T [tin e ™ ™
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[GENERICTACROLMUS_MAINT_PRIGENERICTACROLIMUS MAINTENANCE BETWEE LAST FOLLOVIJR AN THIS FOLLOWUP o y99f 1| Followsp Yos__|No o o 1r_«. m

(MURAN ANTIRE) year 1 |IMURAN ASTEEJECTION (ANTIMETABOLITE | at year 1 Fellowup vas_|Nn s ™ s m

[MURAN MAINT CUR, year 1 |MURAN CURRENT MAINTENAHCE AT TME OF FOLLOWUP GAHTIME TABCLITE] i yoar 1 Fellowas o INa e ™ Thie ™

|u.l‘uN FAINTENANCE !I\N‘B!N LAST I‘DLLDWLPAND THIS FOLLOAWUP (ANTIME TABOUTE] 3t WE cllgwug ws  [No ™ N ™ m

ANTIRE S yea ANTIREJECTIO i Fellow.up () 'Eu 'Fn N Ho

L Fellow up s ™ ™ m

.WH". BET Fellow-up Mo N N

[PROGRAF ANTIREJECTION (ANTIMETABOLITE} at year 1 Foilow-up ¥es  [No 1 Mo Mo Ho

[FROGRAF CURRENT MANTENANCE AT TIME OF FOLLOWUP (AHTIVE TABOLITE ] at year 1 Fallowisp ¥as Mo s Mo ™ Hn

[PROGRAF MAINTENARCE BETWEEN LAST FOLLOWLP AND THIS FOLLOMWUP (ANTIMETABOUITE) alF ciigw-wn LiT] o (7] [£7] LTIU Hu

[RAPAMUNE ANTIREJECTION [T-CELL ACTIVATIGN INFIBITOR)  year 1 Fves  ho ™ o ™ ™

nRE MCE AT T HVUP ws__|No (3 'Fu o Ho.

Followp o

AREJECTION at year 1 Followsp (3 (53 o, EA

[STEROID'S CURRENT MAINTENANCE AT TIME OF FOLLOWUP at yeat 1 Follow-sp as__[No () (3 (3 Ho

[STERDMDIS MAINTENANCE BETWEEN LAST FOLLOWUP AND THES FOLLOWUR at yeat 1 Fallowsp vas  [Mo 1 re He No

[Detiow Sod Tumae - Enasder at your 1 Fellowun ves |tio ™ ™ Tnie M

a Detioen Solid Tumor - Colo-actal 2 year | Followzn Yes Mo (£ Mo N o
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[COD_GRAFT FAILURE. REJECTIONRECIPIENT PRIMARY CAUSE OF DEATH GRAFT FAILURE. REJECTION-HYPERACUTE (A1 tima ef trnsplant Ho E E ™
COD GRAH Fuuks TECHNICAL RECF‘EN‘I Pmmmcwsaosns.ml GRAFT FAILURE. TECHNICAL A bime of branaplant e o [ Eo
SAENT A time of tiansplant ™
UAEY CA EES (A tima of transplant ™ ™ o ™
nzcsﬁwrmmcwsawnsm msscnow (A time of transplant ™ ™ ™ ™
[COD MALIG  |RECIFIENT PRIMARY CAUSE OF DEATH MALIGNANCY [ time of transplant ™ o o ™
[coD OoTHER  |RECIFIENT PRIMARY CAUSE OF DEATH OTHER |t Eimo of ransplamt e ™ ™ ™
zemmmmuseo«mmam [ tima of trans plant e ™ ™ ™
! GORY Amar indiAlasks Naths, Hon Hispeme A BT B MR s Yes Yes Yes
m-ﬂ_ S CATEGORY Awan TiorrHiapae Al e of Lanaplant s Yes Yes Yes
ETHCAT Black, mﬂw EGONH . Ton-His pansc A1 time of tranaplan Yes ves Yes Yes
AT_Hispanic/l atno RECIPIENT ETHNCITY CATEGORY Hisparwe /Lating At time of transplant ves ves ez ves
on-Hsparw:  |RECIFIENT ETHRICITY CATEGORY Multinacial, Nen Hispanic AL e of Lrangplant o5 Yas Yes ez
RECIFIENT ETHNIITY CATEGURY Hativt Hawaianicthst Pachc lslander_ Hon-Haganc A tima of transplant Yas yas vas yas
s RECIFIENT ETHRCITY CATEGORY White_ Hon-Hisparic |4 time of tranaplant ves ™ ™ ves
(A1 time of transplant Yes Yes Yes Yes
AL tima of ansplant kﬂ Yes e Yes
tume of branaplant Yos Yes Yoz Yes
(A1 time of wansplant s ves s
(A1 ime of wanaplan " Vs Yex s
umonamuwmzm atssh Pl ihar Pacite Iiandar_Hee Hhapan [ i of ransglant 1 vas vas vas
mg,q-[ DOt W TGNOR ETHHIGITY CATEGORY Weite, Hon Hispanic (AL time of transpant Yes Yes ves ves
GRF_FAIL_CAUSE Acute Rejection |CAUSE OF GRAFT FALURE Aculs Rewcton s b of brangplant o o o i
2 FGRAFT FAILURE Chionic Rechon/Atharosciarosis A1 time ef transglam m ™ 'E, 'E,
m i : : AL time of lransplant o o
H n A P imary Non-Function AL time of Lransplant o ™ b tph
GROUPIN LUHL DIAGNOSIS GROUPING OF WLION THORACIC_DGNTCR_TGNTRR_DGH) Cystic Fibrosis 1 time of tansplant No [y 3 b
GROUPING O ; LU DIAGHUSIS GROUPING ON WLION THORALIC_DGNTCR_TGITRR_DGH) Dbstnstve A time of bransplan |L“’ ™ ™ ™
GROUPING Pulmonary vastular  |LUML DIAGNOSIS GROUFING ON WLIGH THORACIC DGN/TCH. TGH/TRA DG Pulmenary Vascular |4 ime of transplant m ™ o o
ON THORACIC DGHTCR TONTRR DG Resretne |t tima cf trans piam ™ ™ ™ o
E LA (A1 time of bransplant s Yes Yes Yes
AL time of bansplant ves res ™
d g ALIZED (AL time of ansplant s Yes Yo Yes
PERFUS E perhsion dTAR LUNGIS] PWWPERFWEDBI’ EXTERNAL PERFUSION CENTER At tima of manspian Mo ™ ™ ™
PERFUSED BY oPD RR LUNG{S) PERFUSION PERFORMED BY OPQ |t time of transplant |,3 raa ia o
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T [ e of ranspiaen o e e o
i e o it i ves ves s
i v of ranspiat v s vz vs
Ricpimpmmm\mmmemsmm (A tiene of transant es es es es
OR SURG [TRR LUNG SURGERY TYFE BETWEEN LISTING AND TRANSPLANT (NOH TRAHSPLART) Lobectomy |41 tene of transplant i Yes Yes Yes
TRRLLNGSURGERYT\‘PE BETWEET LISTIG AND TRANSPUANT (HON TRANSPLANT] Ot 74 T of trans plact es ves ves ™
|PRIOR_LUNG_SURG_TYPE TRR_FTFH LUNG SURGERY TYPE BETWEEN LISTRG AND TRANESEUANT (NGH TRANSPLANT) Preumareda) A2 fime of transplant e ™ ™ ™
m Luns SURGERY TYPE DETWELN LISTING AND TRANSFLANT (HON-TRAHSFLANT) Thaeacaioemy| A2 ime of transplarm e s es es Ves
& s of trans plaet Ha o o o o
A4 e of trans st ™ E‘n ™ ™ ™
At tirme of transplent M E E
A2 tirne of transplant | Na [No. ™ ™ ™
A tim of irans plant o tio tio tio
SHARE TY Mationsl [ ALLOCATION TYPE Naticnal e of transplant Na. o i ria ria
SHARE TY R OCATION TYPE A4 time of transplant [Na o fie tis tis
TCR DGN AIAT [CANDIDATE [NAGHOSIS AT LISTING Alpha 1 Antarypsin Dedciancy 2 tma of trans plant ™ ™ es ves ves
TCR DN BRONCHECTASIS  [CANDIDATE DLAGNOSIS AT LISTING Bronchiectasss. 42 e of transplant Yes Yes Yes Yes Yes
TCR_DGH_CF CANDIDATE DIAGHNOSIS AT LISTING Cystic Fibrosis A4 e of iranspiant s s Yes Yes Yes
TCR_DGN_COPD ANDIDATE DIAGNOSIS AT UISTING CORD (A4 e ol transpant v " ves Yes yes
TCR_DGN_COVID ARDS DIDATE DIAGHDSIS AT LISTING COVID uiene of transplant Eg %, Yes Yes Yes
Ti DOH COVID PF o AT LISTING COVID Pulmonary Fibrmsis A4 tire of trans plan 5 Yos Yes Yes Yes
DGH_HP DIDATE DIAGHOSIS AT LISTRIG A e of trans plar [Yes Yas Yor Yes Yes
TCR_DGN_IPF CANDIDATE (HAGNOSIS AT LISTING isepsthis Pulmanary Fisenss Ad tirne of transplam =3 Yas Yes Yer Yer
[TCR DGN LYMPHANGIOLEIOMYONCANDIDATE DIAGHOSIS AT LISTIG LYMPHANGIAEIOMYOMATOSIS A4 timna of irans plant es s Yes Yes Yes
TCR DGH NSIP [CANDIDATE DIAGNOSIS AT LISTING Honapecibe elershisl prsumonis Aty of traniplant s Yes Yes Yes Yes
TCR_DGN 08 CANDIDATE DIAGHOSIS AT LISTNG Obiteratiee bronchiolitis (A e of tranapaant s Yes Yes ves
TCR_DGN_OCCUPATIONAL CANDIDATE msnoslsnusmo i A4 bee of lrans pant F s Yes Yes Yes
TCR_DGN_OTHER DIDATE D AT UISTING Othor A1 ara o tranatack Yes (1] ez Yes Yes
TCR_DGN_PF_OTHER CANDINATE THAGHDSIS a\r Pulmonary $rasis - cther A2 tirne of transplan Al 0s Yes Yes Yes
TCR_DGN_PULM_HTN AT Pulmanary #a irme of transplant E.. Yes Yas Yas
TCR DN RHEUMATOID [CANDIDATE DIAGNOSIS AT LISTRG Rhoumatost A e of trans plant = s Yes Yes es
TCR DGN_SARCOIDOSIS CANDIDATE DIAGHOSIS AT LISTHG A time of transplanm i [¥as vas Yas Yas
TCR DGN SCLEROCERIA WXELICANDIDATE DISGOSIS AT USTAIG Sclaadsima meced comactis bisee dussse A2 time o ransplam g_u E_.. ves Ves Ves
A4 ena of transplent (=3 (1] Yes Yey ey
(A2 e of rams et |ves s Ves Ves ves
At birne ol lransplant ¥ o hiz] et et
A2 tire of transplam i b ™ ™
(A tiene of transpant ™ ™ o o
A e of trans plant a m i i tio
THORACIC. DGN COPD Vimalst CANDICIATE CXAGHOS CoPT A% tiene of transplant ™ o ™ Mo Mo
THORACIC DGN COVID ARDS  |Wankst CANDIDATE DIAGHDSES COVID ARDS A4 time of trans plant Ha o lia e e
THORACIC DGN_COVID PF Waitlist CANDIDATE DIAGHOSIS COVID Pumonary Fibioais A2 e of iransplant o o tio tio tio
THORACIC_DGN_HP Waitlst CANDIDATE DIAGHOSS Hyp ity Preumortis 4 i of temnsplen Ha o '; o ';
THORACIC_DGN_IPF [Waitist CANDIDIATE DINGNOSIS Idopsthic mm Fatvasis A4 e of ranspiset Na E-n E o E
THORACIC DGN_LYMPHANGIOLEIQWaitlist S LY DMATOS A tirne of transplent m
THORACIC_DGN NSIP Winitlis2 i At tirna of transplant [Ha [ [ (3
ORACKC_DON_OB .t CANDIDATE DIAGNOSS ™~ A2 time of transplant o oo oo I
THORACIC DGN oo::umm [aniin CANIINATE DIAGNOSIS Occupational A2 e of trans plat o Itia [pae [rae ™
THORACIC._DGN_OTHER Watiist CANDIDATE DIAGNOSIS O Mo Mo o [t
THORACIC DGH PF_OTHER \éatiist CANDIDATE DAGNOSIS Pulmanary fbrosis « other AL Mo rio o m m
THORACIC OGN PULM HTN Wisthist CANDIDATE DIAGHOSIS v an-nllmm es [Yen bo o m o o
THORAGIC DGN RHEUMATOID |Waslhsl CANDIDATE DIAGNOSIS A6 time cftanapiant  Jves  [Yes Ho o o o o
THORACIC DGN_SARCODOSIS |Wasthst CANDIDATE LAGNOSIS Sarcoidasis Yes |Yes Mo o m m m
THORACIC_DGN_SCLERCDERMA |Wathst CANDIDATE DIAGNOSIS Scherodeima mi issue ds Yes |Yeu Mo 1o o o o
DGN_SCLERODERMA |Watist CANDIDATE DIAGHD es [Yes
DGN_SCLEROUERMA |Watist Yes_|Yes Mo Mo Mo [Ho [Ho
DGN_S Waithist CANC 515 5 Yes [Yos Ho o Ho Ho Ha
TX_PROCEDUR_TY Biateral RECIFIENT PROCEDURE TYPE Béateral Seguéntial Lung or_|vas Ho tia m i m
TX FROCEDUR TY En-Bloc [RECIFIENT PROCEDURE TYPE En-Bloc Double Lung You  [Yex (L2} rin tin o o
T PROCEDUR TY ¢. Both LefgRECIFIENT PROCEDURE TYPE Lobe. Both Left & Right AL fime of tansplant vy  |ves ™ ™ ™ ™ ™
TH_PROCEDUR_TY Lobe. Left ﬂﬁmm FROCEDURE TYPE Lobe, Let |7nm-dlr-um Yes [Yes o o o o o
| TX_PROCEDUR TY Lobe, R RE e 7 7Y Ho o h: o o
| TX_PROCEDUR_TY_Singie Lefi L time o tianagdant  [ves  |Yes rio i [N o o
[%_PROCEDUR_TY Single Fight Lul® AL time of tramsgiant |ves |ves Mo Mo [Ho
T, AL time of uansplant vy  |vas Yes Yes Yos [Yos [Yos
[%_TYPE_Sngle TYPE OF TRANSFLANT Smgly A time oA tansglant |ves  |Yer Pu i Ho o m
GROUPING initial Obstructive LU DIAGHUSIS GROUPING ON WLION THORAGI_DGHTCR_TGITRR_DGH] Cysbe Fibross|Veathsl ar_|1es Ho o m m m
GROUFING initial Puimonary_vaseu] UL DIAGHGSIS GROUETG ON VL{OH THORACIC_DGHITCR_TGHTRR_DGH) Obsiraciie Wastist Yes [Yen [hua o m o m
Yes [Yes Mo £ |Na |Na
LUHL DIAGHOSIS GROUPING ON R AR et Yes |Yes Ho o ':‘i: [t m
2 HOD whether calculsied af slart of warial ves  |Yes o ™ m m
{02 Ca THOD whether used devce o slat of watial Yes [Yes ho. me o o s
LUHL DIAGHOSIS GROUPING ON WLION THORACIC_DGNTCR_TGHTRR_DGH] Cyate Fibrasa ves |ves ™ ™ ™
GROUPING end_Pulmarnary i LUTHL DIAGHOSIS GROUFING ON WLIOH THORACIC_DGHITCR_TGITRR_DGH) Obstractie Yes |Yer Ho It Ho [Ho
GROUPING end CF LML DIAGNOSIS GROUFING ON WLION THORACIC DGNITCR TGMITRR DGH) Pulmensey Yassusr |Watist var  [ves Mo s m m [t
GROUFING end Restrictive LML DIAGHDSIS GROUPING Of WLION THORACK: DGHTCR TGITRR DG Restictie Yer  [Yen Mo 1o o o
(02 CALC METHDD end Calc C_CALC_METHOD whether calculated at snd of wathst ves  |Yes ™ ™ ™ ™ ™
02 CALC_WETHOD end Read D _WETHOU whethar Used Gevce a nd of waniat Yes _|Yes Mo o m
, AR |RECFIENT PRIMANY CAUSE GF Dt ASCULAR LFl] Folowup es |ves 'ﬁ, }}T, ﬁ ﬁ
oF DEA Lt year 1 Folowup ves |Yes ™ ha ha ha
gRECIFIENT PRIMARY CALISE OF DEATH GRAFT FPAILURE. REJECTION CHRONIC 3 year 1 Folowup Yas_|Yeu Mo o [tia o Ho
RECPEN’I PRIMARY CAUSE OF DEATH MULTICRGAN at year 1 Fedaw-up Yas  [¥es Mo s o n o
COD_year 1 COD_PULM  |FECIIENT PRIMARY CAUSE OF DEATH PULMGRARY at yoar 1 Falow ip Yes [ves No m m i o
[RECIENT PRIMARY CAUSE OF DEATH COVID-1 & yvar 1 Fatowip Yes [Yes m ™ m
COD_year_ | GRAFT FALURE GRARECEIENT PRIMARY CAUSE OF DEATH GRAFT FALLE GRAFT INFECTION st your 1 Falow-up Yes _|Yes Mo 1o Ho E: E
ATH GRAFT FAILURE MO SPECIFIC at yoar 1 Fotavup Yes  |Yeu Mo o o
\TH GRAFT FAILURE PRIMARY FALLURS :uuu\ Folowap Yes [You Mo
. FIE SE OF DIEATH GRAFT FAILURE RECURRENT DESEASE at year § Falow-up e [Yes (L2} b tin o
COD year 1 amﬁuune REMRECIFIENT PRIMARY CALISE OF DEATH GRAFT FAILURE. REJECTIONACUTE at yaar 1 Folowap Tas [Yes Mo ™ m [t m
COD year 1 GRAFT FALURE. REJRECIPIENT PRIMARY CAUSE OF DEATH GRAFT FALURE REJECTIONHYPERACUTE ot year 1 Falaw up Yes  [Yes Ho o o m m
COD _year 1 GRAFT FALURE TEG u&awam Pmmvcwse OF DEATH GRAFT FALLRE. TECHNICAL # yew 1 Falowap Yes |Yes Mo Mo o o m
MORFHAGE al year 1 Falowup Yes [Yes Ho o 'E: Ho Ho
ATH IS UPPHESSIVE al year 1 Folowup es  |ves m m
A CATH INFECTION t year 1 Fofowup Yes _|Yes 1 ™ m ﬁ: 3
RECIFIENT PRIMARY CAUSE OF DEATH MALIGHANCY ot year 1 Follow-up ez [Yex o m
RECIFIENT PRIMARY CALSE OF DEATH OTHER at yoar | Felowup res_ |vex Ho | | | o
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[RECIPIENT FRIMARY CAUSE OF DEATH SUICIDE ot year 1 [Folkre-up [Ho L L L)
Follew-up o o i (]
Follow-up o tis ] Ha
3 COD GRAFT FAILURFFRECIPIENT PRIMARY CALUSE OF OEATH GRAFT FAILURE REJECTION-CHROHIC at year 3 Foliow-up ™ ™ ™ ™
Foliow-up o hio o
Folizie-up. o tio i i
Foewie m s s
O ot year 3 Foliawup [1e e [Me
OH_SPECIFIC at yoar 1 Folloe up Hio o Mo (]
FRINASY FAILURE o yoas 3 Foliowup. m ™ rea ™
3 GRAFT FALURE REECNMMMWWMMPM HECURAENT DISEASE ai yoar 3 Foliowup o i s his
3 GRAFT FAILURE: REJ|RECIPIENT PRIMARY CAUSE OF DEATH GRAFT FALURE REJECTION-ACUTE af year 3 Foliow-up No M Mo Mo
3 GRAFT FAILURE: REJIRECIPIENT PRIMARY CAUSE OF DEATH GRAFT FALURE REJECTION-HYPERACUTE sl year 3 Fotiow-up i (] (]
3_GRAFT FAILURE: EMMM&DFDE&?HMFALURE TECHMICAL al year 3 Folizw-up: ﬁ '; (= (]
ear_3_HEMORRHAGE R RHAGE o year 3 Follsw-up o o s s
o _ e Fo r——
ear_3_hA R FRIMARY CAUSE OF DEA w)-3 Fullow up Ha tio tia o
pear 3 MUL TICHRCA [RECIPIENT FRIMARY CAUSE OF DEATH MALIGNANCY o yuar 3 Follow-up m 3 0y b
3 OTHER [RECIFIENT PRIMARY CALFSE OF DEATH DTHER 3 yéar 1 Folkw-up. m o o o
3 SWICIDE [RECIPIENT PRIMARY CAUSE OF DEATH SUICIDE at year 3 Foliow-up m ras ™ ™
5 CARDIOVASCULAR Hcmmm Dﬂmmmmwmnws Foliow-up ™ ™ ™ ™
TEOFT [Folizw-up hn o (] tio
= ST O ATH GFA E T p— Fallewup o ™ ™ ™
[ \_COD_ TPRAARY CASE OF : R o yewr 5 Foliwup ko o o o
|coD_year 5 coo_puim [RECIPIENT PRIMARY CALISE OF DEATH PULMONARY ot year 5 Folkow-up 1o [tis [tis [tis
|COD_year 5 COMD 19 [RECIFIENT FRIMARY CAUSE OF DEATH COVID-1 l year 5 Follow-up m 3 Mo It
[COD 5 GRAFT FAILURE GRARECIMENT PRIMARY CAUSE OF DEATM GRAFT FARURE GRAFT INFECTION at year & F k- Mo e (] (]
[COD. 5_GRAFT FAILURE NONRECIPIENT PRIMARY CAUSE OF DEATH GRAFT FALURE NON SPECIFIC & year § Follow up {Ho (] (= (=
COD year 5 GRAFT FAILURE- PRIRECIPIENT PRIVARY CALSE OF DEATH GRAFT FANURE PRIMASTY FAILURE of yes 5 Foliow-up o tio ™ ™
(COD_year 5 GRAFT FAILURE- RE.J|RECIMENT PRIMARY CALISE OF DEATH GRAFT PAIURE. REJECTION ACUTE at year § Foliztie-up (N (] (= (=
oo A AILURE: RE.|R DEATH GRAFT FA 0N HYPERACLTE at yuar & Follow-up [Ho. ';w Eﬂ Eﬂ
|G year ¢ A = Folowin Jtin Jris tic tis
COD yesr RECHENT FRAARY CHjS= OF DEATH WWDOSURPRESSIVE %730 5 [Foliow up o tic hio o
GO0 year [RECIPIENT PRIVARY CAUSE OF DEATH DIFECTION ot yoar & Fallcwup ho Mo ™ e
[coD 5 MULTIORGAN [RECIPICHT PRIMARY CALISE OF DEATH MALIGHANCY at yoar § Followup ™ ™ ™ ™
[COD year 5 OTHER m‘.cum mchm OF DEATH DNRI yoar & Foliow-up m ™ ™ ™
(COD_year 5 SUSCIDE Folizw-up: Er; 'E 'Fu 'Fu
O0._CAD. DON_AR: A e of trans plar [roe E E
DON_Ci A2 fime of transplar | o
DON_CNS A tieme of trans plant m o ™ ™
CODCADDONHEADTRAUHA thusaufmmmmm | A e of trans plant m ™ ™ Na
(COD_CAD DON OTHER [DONOR CAUSE OF DEATH OTHER A4 tierw of transplack tio i o o
PX_STAT wear 1 Alive nuecw_m STATUSDd, RTX, Lost, Alten) Alve at year 1 Folkoe-up. ™ ™ ™ ™ ™
S TR Lo i st e Fotws e hie e e ho
5 2 <plant R FeTR, Loal, Alrve} al yeat 1 Folin-up |
. Loat, Alrve) Alve al yuar 3 Follow-up E ™ ™ ™
|PX_STAT year 3 Dead  |RECIPIENT STATUS(Dwd, ReT¥, Lost, Alvw) Dead al yvat Follrw-up IE o o
[PX STAT year 3 Retransplanied | FECIPIENT STATUSER3, ReTX. Lodt, Avs) Rersnsslantsd 3 yesr T Fotowup o o i
|PX_STAT ye [RECIFIENT STATUS{Died, ReTH, Losi, Adve) Al ot year 5 Wlww Mo b ha ha
[PX_STAT year 5 om RECIFIENT STATUS(Dod, ReTX Lost, Ab) Dnad at year & Folliw-ug: ™ ™ ™ ria
|PX_STAT year 5 Refransplanted |[RECIPIENT STATLASDied, ReTX, Lost. Alve) Retransplacted at year & [Follow-up ™ ™ ™ ™
|REGION 1 UNOS REGION WHERE TRANSFLANTEDLISTED REGICH 1 A tima of trans plant Yes Yes Yes Yes
REGION_10 UNOS RECION WHERE TRANSPLANTED/LISTED REGION 10 A time of transpiam (13 Yes Yes Yes
o [ e of trans plart Vas ™ s res
i |41 teme of ransplant Vs Yes e e
INOS REGID 1 tima of Lransplant B Y Yas Yas
[LINDS REGION WHERE TRANSPLANTEOLISTED REGION 4 M tine of transplam Yas s Yan Yan
[UNOS REGION WHERE TRANSPLANTED/WUISTED REGION § Ad tier of tranaplavi e Yes yes Yes
INOS RECHON WHERE TRANSPLANTEDLISTED REGION & A1 tima of transplant Jes Yes Yes Yes
umsmwﬁﬁimmwm REGION 7 A1 tma of transpiam s Yes. Yes Yes
TRANSPLANTEDIL REGICH A e of Leansplant ez Yes Yes
INOS REGON WHERE TRANSPLANTEDLISTED REGION 3 At time of ransplant Yos Yes es es
ERM §I’AT§ year 1 10 Rucipient Permanent Residential State Grouped by UNOS Region 11 year 1 Follow-up No. Mo N Na
|[PERM STATE year 1 100 [Riecipatnt Paemanant Residential State Gréaped by UNDS Ragion 10 # year 1 Folltia-up Ne ras ras res
|PERM_STATE vear 1 110 |Ricipiest Permanent Residontial Stato Grouped by UNOS Ragion 11 ai year 1 [Follow-up ™ ™ ™ ™
|PERM STATE year 1 20 [Facipent Farmanant Residential State Grouped by NS Region 7 a1 year 1 Follow-up ™ ™ ™ 1
|PERM_STATE vear 1 3.0 Bcipent Ragidential Stata Growped by WNDS 3 at e 1 Fellow-un Mo has M M
|PERM_STATE year 1 eCipweenl Parmanant Hesidential State Groaped by UHOS Hegon 4 ol yee 1 Foliow-un
|PERM_STATE year 1 cipen Permanent Resiential State Grouped by UHOS Regon & ol yes 1 Feliomup ﬁ ™
[PERM_STATE year 1 [Rocipien Pevmanent Residential State Groaped by UNOS Region & at yea 1 [Follgw.up m M 1 ™
|PERM_STATE year 1 [Rocipent Pecmanant Risidential State Growped by UNDS Region 7 at year 1 [Follow-up ™ ™ ™ ™
|PERM_STATE year 1 B0 [Recipiess Permanant Rusidontial State Groaped by UHOS Rogan & a yea 1 [Followup ™ ™ ™ ™
|PERM STATE vear 1 8.0 lemmnmms’-wwmnwup‘ Foliowug o ™ e ™
|PERM_STATE year 3 1.0 [Recipenn Permanant Residential Stme by on 1 .at year 3 Fellow-up m™ ™ ™ ™
PERI STAT [ Tlecimend Permanent Reaidenbal Stale Groaped by UHOS Hegion 10 al year 3 Foliowun
PERM_STATE year 'T?‘g_hﬁ,.-m Permanent Residential Stale Grouped by UNOS Region 11 ol yes 3 Feliom-up ﬁ g
|PERM STATE year 3 20 Recipsent Permanent Residential State Grouped by UNCS Region 2 a1 year 3 [Follow.up m M hae ™
[PERM_STATE year 3 30 [Recipieet Parmanant Residential Stato Groaped by UNGS Region 3 ot yea 3 Followup ho. ris ™ ™
|PERM_STATE vear 3 40 [Rucipie Permanant Rosidential State Gioaped by UHGS Rogion 4 a year 3 Followup ™ ™ ™ ™
|PERM STATE 3 50 Rocipent Permanant Residential State Groaped by UNOS Regan & a yea 3 ¥ cllrw-up ™ ™ ™ ™
EMEAIeEE e e ver 3 60 JRacipe Pemarin FesGanTaT SRS Gruped by UGS Fagon € oy 3 T e ™ ™ o
|PERM_STATE year 3 70 Feciped Permanent Hesidenlial Stale Groaped by UNOS Hegon 7 ol yes 3 Foliow-ua ™ ™ ™ ™
|PERM_STATE year 3 80 iprert Permanent esidential Stale Grouped by UHOS Region 8 al yes 3 Feliowup k, b ™ ™
|PERM_STA [Recipent Permanent Residential State Grouped by UNOS Region 3 al year 3 Follon-up ™ ™ ™ ™
|PERM_STATE year 5 10 [Recipient Permanent Rasidential State Growped by UNDS Region 1 a1 year 5 [Folloar up ™ ™ ™ ™
|PERM_STATE vear 5 10.0 [Rocipier Permanant Rusidontial State Groaped by UGS Region 10 m year § Followup ™ ™ e ™
|PERM STATE vear 5 11.0 F;_lﬂmmﬁﬂmﬂgllﬁmwmﬁw"tws Foliow-up o lia tia tia
|PERM_STATE year 5 20 Beip 3idential by on 2 8t yaa & Fellow-up IE, ™ ha b
|PERM_STATE year 5 30 (Fiaciprerd Parmansnt Reaidenhal Stale Growped by UHOS Hegion 3 ol yes & Felion-us m
TAT T Tecipeet Permanant Residential State Grodped by UNOS Regon 4 ol yes 5 Feliow-up ™ ™ ™ s
|PERM STATE year 5 50 Recipiert Permanent Residential State Grouped by UNDS Region 5 a1 year § [Follgw-up Mo ha b b
|PERM_STATE year 5 80 [Rocipient Pacmanant Residontial Stats Groupd by UNDS Ragion & af yead 5 [Follow-up o ™ ™ ™
|PERM _STATE vear 5 7.0 |Ricipiers Pesmanent Residoniial Stato Grouped by UNOS Ragian 7 a1 year Follaw-up ™ ™ ™ ™
|PERM STATE year 5 80 [Flacipent Farmanant Residential State Groped by UNOS Region B a1 year 5 Foliow-up ™ ™ o Na
|PERM_STATE vear 5 8.0 Bcipent Ragidential Stata Growped by WNDS 5 e 5 Fellow-up Mo has M M
VENT_USE_MEW._imtial_BiPAP | Asaistad Veriiator Use 725 al star o waiie [ o o o o
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Table S1: Data dictionary of all UNOS features used for analysis. The columns indicate
which features were used for data exploration and which features were used in various models.
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