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Abstract: Background: Lung transplantation is the only life-saving therapy for end-stage lung 

disease. However, lung transplantation has the worst survival among all solid organ 

transplants.1 We applied machine learning to a large standardized electronic health record 

(EHR) dataset from the United Network for Organ Sharing (UNOS) to test whether pre-

transplant and peri-transplant donor and recipient features can predict one-, three- and five-year 

survival, or favorable long-term outcomes in lung transplant. Methods: We used data from 

43,869 first time lung transplant recipients >18 years old from 1987 to November 2022 for whom 

one-, three-, and five-year survival outcomes were available. We applied XGBoost or a tabular 

BERT model called EHRFormer to the UNOS EHR dataset. Results: Using pre-transplant 

features XGBoost predicted one year mortality with a test AUC = 0.6 [0.57, 0.64] 95% CI. 

Addition of peri-transplant features only modestly improved AUC for one-year mortality 

prediction (test AUC = 0.63 [0.60, 0.67] 95% CI and 0.64 [0.63, 0.66] 95% CI for XGBoost and 

EHRFormer, respectively). Top predictive features of one year mortality using peri-transplant 

features from each model were length of index stay, transplant type, recipient age, ventilation 

status during the index stay, and creatinine at the time of transplant. Both XGBoost and 

EHRFormer performed better when predicting lung function at one-year post-transplant 

(XGBoost test AUC = 0.74; EHRFormer test AUC = 0.76). Both models identified and used 

features previously associated with transplant outcomes to inform predictions.  Conclusions: 
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Despite machine learning approaches identifying known risk factors for transplant outcomes, 

EHR data collected by UNOS poorly predict one-, three-, and five-year mortality outcomes of 

lung transplantation. These results suggest caution when using pre-transplant EHR features to 

predict lung transplant outcomes.  

 

Introduction 

Lung transplantation is the only viable treatment option that confers improved survival and 

quality of life for patients with advanced lung disease and respiratory failure. Despite 

improvements in surgical techniques, immunosuppressive strategies, perioperative 

management, supportive strategies, and approaches for donor lung allocation over the years, 

lung transplantation is persistently associated with poor survival relative to other solid organ 

transplants, with a median survival of 5.8 years (1990-2014)2 and a mean survival of 9.28 

years.1 Approximately 10-15% of all deaths after lung transplant occur in the first year.3 Indeed, 

in patients who survived one year after transplant, median survival is 10.2 years.4 As a result, 

one-year mortality is an important, trajectory-defining event and is the focus of public reporting 

of transplant outcomes. Recently, investigators have suggested that three- or five-year 

outcomes provide additional data with respect to center-specific transplant outcomes, leading 

some to suggest these outcomes be publicly reported5. We reasoned that early prediction of 

one-, three- and five-year survival based on factors available early in the transplant course 

might identify patients who would benefit from targeted interventions. Further, we reasoned that 

waitlist and peri-transplant factors in the donor and recipient that predict outcomes might include 

modifiable factors to improve outcomes. 

Conventional approaches for analyzing risk factors and predictors for lung transplant outcomes 

rely on univariate or multivariate statistical approaches applied to selected variables. As such, 

available predictors of lung transplant outcomes vary by center and perform poorly.4,6–15 

Machine learning is a powerful approach to identify predictors of outcomes from clinical data, 

leading to its growing use in clinical research and care.  Despite this promise, the application of 

historic machine learning techniques to EHR data collected by the United Network for Organ 

Sharing have been disappointing.16,17 As machine learning approaches have dramatically 

improved since the publication of those studies, we sought to test whether modern machine 

learning approaches could predict one-, three-, and five-year lung transplant outcomes after 

training on data extracted from the UNOS database.  We found that even the best performing 

models, including XGBoost18 and a Bidirectional Encoder Representations from Transformers 
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(BERT)19-based model, EHRformer performed poorly in predicting one-, three-, and five-year 

mortality and only modestly better when predicting lung function at one year.  The predictive 

performance of the models was further reduced when data collected during the index stay were 

excluded. The predictions of the models were driven by factors previously reported to be 

associated with poor transplant outcomes. Our findings suggest that even with state-of-the-art 

machine learning models, data collected by UNOS poorly predict lung transplant outcomes.  

 

Results 

The UNOS dataset reveals changes in lung transplant practices and outcomes in the US over 

time. 

The UNOS dataset is a standardized, national database that includes clinical and demographic 

information for candidates listed for lung transplantation.20 For the purposes of this study, we 

focused on first-time lung transplant recipients >18 years old. Because the UNOS dataset is 

cumulative, it reflects overall changes in national lung transplant practice over time. Our 

exploratory analysis of these patients suggested these changes in practice explain a significant 

amount of variance in the dataset (Figure 1A, 1B). For example, the proportion of transplants 

performed for restrictive lung disease has increased relative to those performed for obstructive 

lung disease. Additionally, ischemic time, age, and FEV1% at transplant have increased over 

time, reflecting changes in organ storage and allocation, recipient characteristics, and indication 

type.  

An initial exploration of all relevant waitlist, peri-transplant, and follow-up features (at one, three, 

and five years) yielded 780 features with at least 1 observation (Table S1, Figure S1A). There 

were distinct patterns of feature presence and missingness in the UNOS dataset (Fig. S1B), 

coinciding with the introduction of the Lung Allocation Score (LAS) in May 200521 and changes 

in data collection introduced in 2015 (Fig. 1A, S1B). Accordingly, we performed modeling 

separately for each of these three time periods using all features available within a given period. 

For the entire time period, we used only shared features. To inform feature selection for 

machine learning applications, we first performed principal components analysis (PCA) to 

identify influential features and trends present in the dataset. We included all first-time lung 

transplant recipients >18 years old (47,864 observations) and all waitlist, peri-transplant, and 

follow-up features at one, three, and five years for which ≤10% of data was missing (357 

features, Fig. S1C, Table S1. Lung transplant type, indication, lung function, and transplant year 

explain substantial variation in the dataset (Figure 1C-E). 
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XGBoost and EHRFormer fail to predict one year mortality 

We ran 4 separate models based on waitlist and peri-transplant features present in various time 

frames illustrated in Fig. 1A and S1B. Briefly, features that were at least 90% complete within 

each specified time frame were used for the model. For the model encompassing all 

observations across all years, only features that were at least 90% complete across all years 

were used. The number of features used in each time period is shown in Fig. 2A. A data 

dictionary of these features is shown in Table S1. Due to class imbalance, downsampling of the 

majority class was also applied such that there was a 1:1 ratio of either outcome. Additionally, 

those who died within 90 days of the index stay were excluded from the initial mortality 

prediction analysis and analyzed separately (see below) to prevent length of index stay from 

serving as a model shortcut. A bar graph visualizing the class imbalance of outcomes is shown 

in Fig 2B. Final test AUCs across all models were uniformly poor, ranging from 0.58 to 0.64 

(0.64 for data from all years) for EHRFormer and from 0.62 to 0.63 (0.63 for data from all years) 

for XGBoost (Figure 2C, S2A, and Table 1). Confusion matrices of both models on the test set 

are shown in Figure S2B. Figure 2D shows test AUROC, accuracy, F1, precision, recall, and 

specificity across all models. 

Model 1987-2004 2005-2014 2015-now All years 
EHRFormer 0.61 [0.56,0.67] 

95% CI 
0.60 [0.56,0.65] 
95% CI 

0.56 [0.50,0.62] 
95% CI 

0.64 [0.61, 0.66] 
95% CI 

XGBoost 0.62 [0.55,0.72] 
95% CI 

0.63 [0.58,0.69] 
95% CI 

0.62 [0.58,0.66] 
95% CI 

0.63 [0.60, 0.67] 
95% CI 
 

Table 1: Test AUROCs for EHRFormer and XGBoost predicting one year mortality across key 

time periods in the UNOS dataset. 

 

XGBoost and EHRFormer fail to predict one-, three-, and five-year mortality 

XGBoost and EHRformer predict one-, three-, and five-year mortality with poor performance, 

with test AUROCs ranging from 0.61 to 0.65 across all tasks and models (Figure 2E). There 

was significant imbalance in the number of patients belonging to the positive and negative 

classes for the one-, three-, and five-year tasks that was corrected by downsampling (Figure 

2F). Model performance did not change between one-, three-, and five-year mortality prediction 

(Figure S3).  
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Model 1-year test AUROC 3-year test AUROC 5-year test AUROC 
EHRFormer 0.64 [0.61, 0.66] 95% 

CI 
0.61 [0.60, 0.63] 95% CI 0.63 [0.62, 0.64] 95% CI 

XGBoost 0.63 [0.60, 0.67] 95% 
CI 

0.65 [0.63, 0.67] 95% CI 0.63 [0.62, 0.64] 95% CI 

Table 2: Test AUROCs for EHRFormer and XGBoost predicting mortality at one, three-, and 

five-years post-transplant. 

 

XGBoost and EHRFormer modestly predict patients with poor lung function at one year.  

We used all waitlist and peri-transplant features (≤10% missing) included in our mortality 

prediction models to predict one year lung function after downsampling for class imbalance, 

resulting in 4 separate models (Figure 2A, Table S1, and Figure 3A). XGBoost and EHRFormer 

predicted one year lung function, with final test AUCs across all models ranging from 0.72 to 

0.74 (0.74 for data from all years) for EHRFormer and from 0.74 to 0.79 (0.76 for data from all 

years) for XGBoost (Figure 3B, 3C, S3A, S3B, and Table 3). 

Model 1987-2004 2005-2014 2015-now All years 
EHRFormer 0.74 [0.72,0.78] 

95% CI 
0.74 [0.73,0.75] 
95% CI 

0.72 [0.70,0.73] 
95% CI 

0.74 [0.72, 0.75] 
95% CI 

XGBoost 0.79 [0.77,0.81] 
95% CI 

0.77 [0.76,0.79] 
95% CI 

0.74 [0.73,0.76] 
95% CI 

0.76 [0.74, 0.77] 
95% CI 
 

Table 3: Test AUROCs for EHRFormer and XGBoost at across key time periods in the UNOS 

dataset. 

 

Index stay features have high importance for mortality prediction. 

To identify features associated with one-year mortality in our models, we developed two 

XGBoost models. The first model was trained on features from all years that were available pre-

transplant (Figure 4A, Table S1). The second model was trained on features that were available 

pre-transplant and during the index hospitalization (Figure 4B, Table S1). We then obtained 

SHapley Additive Probabilities (SHAP)22 from these two models. The pre-transplant features 

with high importance for mortality prediction included transplant type, donor ethnicity, PCO2 at 

the time of transplant, and FVC at the time of transplant (Figure 4A). The pre-transplant features 

and index hospitalization features with high importance for mortality prediction included length of 

stay and whether the recipient experienced acute rejection during the index stay (Figure 4B). 
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Removing index hospitalization features and further subsetting on the Lung Allocation Score 

(LAS) further reduces model performance 

Because index hospitalization features are unavailable when clinicians make decisions to list 

patients for lung transplantation, we trained another XGBoost model in which we removed the 

index stay features specified in Table S1. Model performance for mortality prediction at one year 

was lower when XGBoost was trained on features only available immediately preceding 

transplant (Figure 4C and Table 4). Similarly, model performance for mortality prediction at one 

year was significantly decreased when XGBoost was trained on the initial LAS on the waitlist, 

the end LAS on the waitlist, the calculated LAS, and the match LAS (Figure 4C and Table 4).  

All features Pre-transplant features LAS 
0.63 [0.60, 0.67] 95% CI 0.60 [0.57,0.64] 95% CI 0.53 [0.51,0.55] 95% CI 

Table 4: Test AUROCs for XGBoost for predicting 1 year mortality using all features, pre-

transplant features only, and the LAS. 

 

Index stay features are highly influential for prediction of lung function 

Features important to lung function prediction included whether the transplant performed was 

single or bilateral, ischemic time, PCO2 at registration, creatinine at registration, recipient age, 

donor age, days on the waiting list, and O2 requirement at rest at the time of transplant (Figure 

4D and Table 5). Features unique to lung function were primarily related to lung function at the 

time of transplant (FEV1 and FVC at registration), indication type (COPD and cystic fibrosis 

were associated with better lung function), and recipient BMI (Figure 4D and Table 5). 

 

Stratification by transplant type results in a small increase in model performance 

After length of stay, transplant type was the most important feature for 1 year mortality. 

Therefore, we trained separate XGBoost models on all single lung transplant recipients and all 

double lung transplant recipients. Utilizing all features including those collected from the index 

stay yielded a test AUROC of 0.67 [0.61, 0.71] 95% CI within single lung transplant recipients vs 

test AUROCs of 0.63 [0.60, 0.67] 95% and 0.57 [0.52, 0.62] CI for all patients and double lung 

transplant recipients, respectively (Figure 4E, Table 5). When modeled on pre-transplant 

features, subsetting on single lung transplant recipients did not increase model performance 

compared to modeling on both single and bilateral lung transplants. SHAP analysis within the 

model trained on single lung transplant recipients using only pre-transplant features revealed 

the importance of donor and recipient age as well as hemodynamic parameters such as 
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pulmonary arterial pressures. Interestingly, listing center code and center code also emerged as 

influential features in this model (Figure 4F). Train and test AUROC curves as well as SHAP 

values for XGBoost models trained on the single and bilateral subsets are shown in Figure S4. 

 All features Pre-tx features 
Both 0.63 [0.60, 0.67] 95% CI 0.60 [0.57,0.64] 95% CI 
Single transplants 0.67 [0.61, 0.71] 95% CI 0.58 [0.52,0.63] 95% CI 
Bilateral transplants 0.57 [0.52, 0.62] 95% CI 0.55 [0.50,0.60] 95% CI 
Table 5: Test AUROCs for XGBoost for predicting 1 year mortality using all features or pre-

transplant features only stratified by transplant type. 

 

 

EHRFormer permits querying the effect of multiple features simultaneously. 

SHAP values for EHRFormer models are not currently accessible. Instead, we can query 

feature importance by “perturbing” or changing the value of a specified feature or even a set of 

multiple features and seeing what effect doing so has on the model’s output. For example, the 

probability distribution of mortality by one-year does not change after perturbing transplantation 

region (Figure 5A) but changes substantially after perturbing long index stay (Figure 5B) or 

dialysis during the index stay (Figure 5C). One can also perform multiple in silico perturbations 

simultaneously. For example, we set positive flags to the highest quartiles for complicated index 

stay features, including ECMO at 72 hours, inhaled NO at 72 hours, intubation status at 72 

hours, and ventilation duration post-transplant which shifted the mortality prediction towards 

death at one year (Figure 5D). 

 

Perturbing multiple features simultaneously allows EHRFormer to explain the unexpected 

influence of long ischemic time on one year mortality in the XGBoost model 

Prolonged ischemic time has been historically associated with worse 1-year outcomes23. 

Unexpectedly, longer ischemic times were associated with improved outcomes in our XGBoost 

models (Figure 3A). We hypothesized that the historic association between prolonged ischemic 

time and poor outcomes were reversed by improvements of organ handling and storage, 

including the use of ex-vivo lung perfusion (EVLP). Accordingly, we leveraged the ability of 

EHRFormer to query multiple features at once to investigate perturbation of a feature 

conditioned on the value of another feature - in this case what might happen if we prolong 

ischemic time when transplant year is set to its lowest quartile (earliest) (Figure 5E). When 
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setting ischemic time to its highest value alone, we see a paradoxical shift in mortality prediction 

that is consistent with the direction of the SHAP values seen in XGBoost (Figure 4A and B). 

However, when setting ischemic time to its highest value when conditioned on setting transplant 

year to its lowest quartile, the probability distribution reverses in the opposite direction. 

Additionally, when we subsetted on those whose lungs underwent EVLP prior to transplant, the 

proportion of those experiencing poor outcomes such as 1 year mortality, ECMO at 72 hours 

after transplant, and death during the index stay, were significantly reduced (Figure S6). 

 

Features associated with frailty predicted death during the index hospitalization. 

Those who died during the index hospitalization were excluded from our initial mortality 

prediction models. To investigate features associated with mortality in this subset of patients, we 

performed hierarchical clustering of all features (Figure 6A). Features associated with mortality 

during the index stay included transplant indication of idiopathic pulmonary fibrosis or restrictive 

lung disease, recipients of donors of black or African American ethnicity, and life support 

features such as ECMO, ventilator, and ICU status. A distinct group of features associated with 

recipient frailty such as functional status at the time of transplant, infection requiring IV drug 

therapy prior to transplant, and hospitalization status prior to transplant were associated with 

higher rates of index hospitalization mortality (Figure 6A). When we investigated features 

associated with a complicated index hospitalization, those who died during the index stay 

showed much higher oxygen requirements (FiO2), rates of ECMO, rates of inhaled NO, rates of 

intubation, and rates of reintubation at 72 hours after transplant (Figure 6B). Similarly, we 

examined additional frailty features associated with higher rates of index hospitalization 

mortality. Those who died during the index hospitalization had higher O2 requirements at rest, 

lower six-minute walk scores, as well as higher rates of chronic steroid use, pan-resistant 

bacterial infection, infection requiring IV drug therapy, and ventilator status at the time of 

transplant (Figure 6C).  

 

Discussion 

Lung transplant is a lifesaving treatment for patients with end stage lung disease. Over the 

years, lung transplant allocation systems have used prediction models to guide patient eligibility 

for transplant, organ allocation, and outcome reporting. The role of these models is two-fold: 1) 

to prioritize organ allocation to patients who have the greatest chance of death due to their 

underlying lung disease and 2) to direct scarce resources to patients who would achieve 
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maximum survival benefit from lung transplantation. Achieving these goals requires robust 

prediction models for post-transplant outcomes. Traditionally, these predictive models have 

been informed by expert-guided supervised selection of features incorporated into traditional 

statistical methods such as multilinear regression. Modern machine learning approaches such 

as language models or gradient boosted decision trees can accommodate non-linear 

relationships between variables and have the potential to account for the multiplicative risks of 

comorbidities on lung transplant outcomes. We used two robust machine learning models, 

XGBoost and EHRFormer, which have performed well in other clinical prediction tasks, to 

predict one-, three- and five-year mortality and lung function after lung transplantation. Our 

models were trained on data within the UNOS database up until November 2022. Even after 

optimization, these models performed poorly as predictors of mortality or lung function after 

transplant, particularly when data from the post-transplant index stay were excluded.  

 

Despite their attention to known risk factors associated with transplant outcomes, the 

performance of our machine learning methods in predicting outcomes was poor. There are 

several possible reasons that might explain this poor performance. This suggests that data 

features collected by UNOS are not predictive of transplant outcomes and that collection of 

additional predictive features such as diffusing capacity of the lungs for carbon monoxide24 is 

needed. The application of machine learning algorithms to the larger body of EHR data 

available at individual centers or consortia of centers might identify informative features outside 

of the UNOS database. Importantly, the models would incorporate molecular features, imaging 

features, and other modalities outside of EHR data25. Second, batch effects in the UNOS data 

related to differences in data curation, collection, reporting between centers, and changes in 

practice over time might confound the models. Arguing against this, both models identified 

features previously associated with transplant outcomes as important for their predictions. 

Applying these models to EHR data that have been validated by clinician review is a strategy to 

address this concern at the level of individual centers or consortia. Finally, drivers of transplant 

outcomes might be largely independent of clinical features present before the procedure. The 

limited performance of these models suggests caution in using these data for predicting lung 

transplant outcomes. 

 

Our study highlights the promise of machine learning approaches in identifying risk factors that 

drive lung transplant outcomes. We observed a high level of concordance between predictors of 
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poor outcomes identified by our models and those selected by experts for use in supervised 

models. These included donor and recipient age, length of index stay, and renal dysfunction or 

failure during the index stay as important predictors of 1 year mortality. Investigation of factors 

driving our machine learning prediction also revealed biases in the data that would likely be 

missed in a supervised analysis. For example, the increased risk associated with African 

American donors likely suggests important risks related to social determinants of health or other 

factors that would be unlikely to be included in supervised analyses. The failure to include these 

factors in current models might paradoxically perpetuate these biases in the form of reporting of 

higher program quality scores for centers in different geographic regions. 

 

XGBoost provides direct measures of the relative weights of features that drive the model. 

BERT-based models like EHRFormer do not provide explicit information about the factors that 

drive their predictions. To address this concern, we developed perturbation tools in EHRFormer 

that allow users to investigate the hypothetical effect of changing variables. We used these to 

investigate the paradoxical association between prolonged ischemic time and improved 

mortality after transplantation in the XGBoost models. When we fixed transplant year to the 

earliest quartile, before procedures such as EVLP were available, increased ischemic time was 

associated with increased mortality. We show how this tool can be used to perform multiple 

“perturbations” within EHRFormer simultaneously to query multivariate hypotheses and 

dependencies. These tools might be helpful to generate hypotheses that can be tested with 

causal interventions or for individual programs to assess the relative benefits of interventions in 

the peri-transplant period that can improve outcomes.  

 

Conclusion 

In summary, despite their ability to identify and use clinical features known to be associated with 

lung transplant mortality in their predictions, modern interpretable machine learning approaches 

applied to the UNOS database performed poorly in predicting one-, three- and five-year survival 

and lung function after lung transplantation. We developed perturbation tools within EHRFormer 

to simultaneously explore features in the UNOS database that might reflect changes in lung 

transplant practice and outcomes over time and unexpected biases in the data. Our data 

suggest caution when using historic UNOS data to inform clinical practice decisions by 

multidisciplinary lung transplant teams and outcome reporting. The relative ease with which 

these models can be applied to more comprehensive clinical and laboratory data, and their 
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demonstrated ability to identify features associated with transplant outcomes, suggest them as 

powerful approaches to address these limitations.   
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Methods 

Data preparation, cleaning, and feature encoding 

All observations with a transplant date earlier than November 8, 2022 were included. All waitlist 

(THORACIC_WL_DATA), peri-transplant (THORACIC_DATA), and follow-up features 

(THORACIC_FOLLOWUP_DATA) with at least 1 observation were initially considered, yielding 

786 features from the STAR File Data Dictionary. All features were reviewed for outliers and 

unexpected values with consultation from a committee of transplant pulmonologists. Outlier data 
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were treated as missing. Binary features were numerically binarized as 0 or 1. Categorical 

features were ordinalized if they represented a scale or one-hot encoded. Waitlist and follow-up 

features were collected at various points in time for each patient. For waitlist data only the first 

and most recent values were collected. Follow-up observations closest to and within +/-3 

months of one-, three-, and five-years post-transplant were used.  

  

Principal components analysis 

The features and resultant dataframe obtained from Data Preparation and Feature Encoding 

were further filtered for those that were missing <10% of data, resulting in 363 features. 

Numerical features were mean imputed while categorical features were mode imputed. With this 

dataframe, principal components analysis was applied using scikit-learn26 in Python, with the top 

50 principal components chosen for initial exploration. Matplotlib27 and seaborn28 were used for 

data exploration and visualization.  

  

Statistical tests 

To determine whether continuous variables change with respect to time (transplant date), 

logistic regression was performed with statsmodels29 to determine R-squared coefficients and p-

values. To analyze differences in categorical variables between groups, the chi-squared test 

(scipy.stats)30 was used with a Benjamini-Hochberg adjustment for multiple comparisons (FDR 

< 0.05) (statsmodels)29. To analyze differences in continuous variables between groups, the 

wilcoxon rank sum test (scipy.stats)30 was used with a Benjamini-Hochberg adjustment for 

multiple comparisons (FDR < 0.05) (statsmodels)29. To draw statistical comparisons between 

the bootstrapped AUROCs between models (50 bootstraps), a Student's t-test was performed 

after assessing normality with the Shapiro-Wilk test (scipy.stats)30. A Benjamini-Hochberg 

adjustment was made for multiple comparisons (FDR < 0.05) (statsmodels)29. 

 

Data preparation for modeling 

Feature selection and preparation for modeling 

Subsets of data were chosen for modeling based on observations from the following time 

frames (inclusive): 1987-2004, 2005-2014, and 2015-Present. These time-related subsets were 

chosen due to changes in data collection illustrated in S1. All waitlist and peri-transplant data 

were included for all modeling tasks. Features were filtered for those that were missing <10% of 

observations within each time period, resulting in 140, 145, 152 and 140 features for data from 
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1987-2004, 2005-2014, 2015-Present, and all years. Numerical features were mean imputed 

while categorical features were mode imputed. 

 

EHRFormer feature representation and pretraining 

From each of the 4 dataframes generated as described in the previous paragraph, 4 different 

models were pretrained from a tabular BERT initialized with random weights, available via 

Huggingface in the transformers package31. For the base architecture of this model 

(EHRFormer), we set the standard Transformer Encoder with three transformer layers, with a 

layer size of 64, an intermediate layer size of 128, and 4 attention heads.  For input 

representation of the tabular data, all numerical values were quantile-binned to represent data 

from a single patient. Binary features were set to either the lowest or highest quartile bin. 

Following the standard BERT procedure, we added a 64-dimensional learnable CLS embedding 

at the beginning of the sequence. An additional bin was included to represent the CLS token for 

each patient as well as an additional bin for missing data. Each bin and each EHR feature was 

then assigned with a learnable 64-dimensional vector embedding. We later represented a single 

EHR entry with a sequence of the length of the number of features, where each element of a 

sequence was a 64-dimensional vector obtained by summing the feature embedding vector and 

its assigned bin embedding vector for every feature in the training data. In line with the BERT 

pretraining procedure, we pre-trained EHRFormer using a masked language model objective. 

The observations were divided into an 80/20 train/test split for pre-training. During this phase, 

we randomly masked 15% of the values in the 80% train of each entry by replacing the true bin 

embedding with a learnable MASK embedding. We later equipped EHRFormer with the task of 

predicting the actual bin values of the masked entries based on the unmasked EHR feature 

values. None of the observations in the 20% holdout test set were seen during pretraining. 

 

Modeling one-, three-, and five-year mortality and lung function outcomes 

Mortality label retrieval 

To obtain the correct labels for one-, three-, and five-year mortality, we used the patient’s date 

of death (COMPOSITE_DEATH_DATE) to confirm patient death. We then calculated survival in 

days by subtracting the difference between the patient’s date of death and date of transplant 

(TX_DATE). Survival time was then used to further identify which patients had died within the 

one-, three-, and five-year outcomes of interest. To retrieve patients who were alive at one, 

three, and five years, we used the “patient status”, patient status date, and date of death 

variables (PX_STAT = “A“ for alive, PX_STAT_DATE, COMPOSITE_DEATH_DATE = NA). 
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PX_STAT_DATE was used to determine total known survival time. We then added this subset 

of patients to patients who might have died but whose survival exceeded the 1-, 3-, and 5-year 

outcomes of interest for each task. To further ensure the model was not relying on shortcut 

features, we removed patients who died during or within 90 days of their index stay. This was 

determined by filtering out patients whose length of stay (LOS) exceeded survival time by at 

least 90 days. 

 

Lung function <70% of predicted label retrieval 

To obtain labels for lung function <70% of predicted, we used the follow-up feature 

FEV_percent available at 1 year post transplant (+/- 3 months). For patients in which 

FEV_percent at 1 year post transplant was unavailable, we used the spiref32 package with GLI-

201233 reference values to determine a calculated FEV_percent of predicted based on their 

absolute FEV1(L) at one year (FEV). Downsampling of the majority class was also applied as 

described in detail in the subsequent section EHRFormer fine-tuning and evaluation. 

 

EHRFormer fine-tuning and evaluation 

We used fine-tuning of the pretrained EHRFormer for binary classification of the patient’s 

mortality and lung function at 1 year. Specific outcome retrieval is described above. To perform 

this task within specific time frames, we used one of the 4 pretrained models that corresponded 

to these time frames: 1987-2004, 2005-2014, 2015-Present, and all years. With the data and 

pretrained model from data spanning all years, we also performed identical binary classification 

of whether the patient was alive or dead at 3 and 5 years. Due to class imbalance for all tasks, 

the majority class was downsampled at random to result in a 1:1 negative to positive class ratio 

in both the training and test sets separately. 

For each task, following downsampling, hyperparameter tuning was performed using optuna’s34 

Parzen Tree based estimator (objective = accuracy, direction = maximize, n_trials = 75), on the 

80% train split from pretraining. We searched for optimal hyperparameters within the following 

space: learning_rate = [1e-6, 1e-2], per_device_train_batch_size = [16, 32, 64, 128, 256], and 

weight_decay = [1e-4, 1e-1]. With the tuned hyperparameters, we performed 5-fold cross-

validation on the 80% train split from pretraining. Splits and performance metrics (accuracy, 

AUROC, F1, precision, recall, and specificity) were determined using scikit-learn26.  The tuned 

models were finally evaluated on their performance using the remaining 20% holdout test set 

that were not seen during pre-training, hyperparameter tuning, or 5-fold cross-validation. To 
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determine the variability of performance metrics within the test set, 50 random bootstraps were 

performed on the test set when calculating model metrics. 

 

XGBoost evaluation 

We similarly used XGBoost for binary classification of the patient’s mortality and lung function at 

1 year within time frames corresponding to 1987-2004, 2005-2014, 2015-Present, and all years. 

We also performed identical binary classification of whether the patient was alive or dead at 3 

and 5 years. Additional tasks included assessing the performance of XGBoost on all features, 

features only available at or before the time of transplant, and on the LAS. For these additional 

tasks, center-specific features were also included (ie. CTR_CODE, see Table S1). Where 

center code features were included, the Catboost Encoder package was used to perform target 

encoding of center codes. Finally, XGBoost was also used to determine prediction performance 

on single and bilateral lung transplant recipients separately. Downsampling of the majority class 

was done as was done for EHRFormer. Since there is no pre-training process, we divided entire 

datasets into an 80/20 train/test split at random. 5-fold cross-validation was performed within the 

training set with scikit-learn. Hyperparameter tuning was performed using a Bayesian optimizer 

with a Gaussian Process based estimator (scikit-optimize's BayesSearchCV)35. The search 

space was defined as follows: learning_rate = (0.01, 1.0), max_depth = (2, 12), subsample = 

(0.1, 1.0), colsample_bytree = (0.1, 1.0), reg_lambda = (1e-9, 100), reg_alpha = (1e-9, 100), 

min_child_weight = (1, 10), gamma = (0, 5), n_estimators = (50, 1000). To determine the 

variability of performance metrics within the test set, 50 random bootstraps were performed on 

the test set when calculating model metrics. For interpretability and insight into XGBoost model 

decisions, we used SHAP (SHapley Additive exPlanations)36.  

 

EHRFormer perturbations 

To gain model insights from EHRFormer, we developed a pretrained tabular BERT similar to the 

pretraining process described in the modeling tasks. We specifically included data from all years 

and included additional features of interest such as transplant year (TX_YEAR) as well as all the 

features from the 2015-Present model. The entire dataset was used for pretraining as opposed 

to setting aside a test cohort. Hyperparameter search was performed within the entire dataset 

as described previously. We then ran this new model on the fine-tuning binary classification task 

of 1-year mortality. To understand feature importance, we randomly sampled half of the input 

observations 10 times. From these sampled observations, we manipulated features of interest 

by manually changing the bins for one or multiple features in each of the sampled observations. 
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These new “perturbed” inputs were fed to the model during fine-tuning. This process returned 

new probabilities of a positive class outcome (ie. 1 year mortality) determined by the model 

when given a perturbed set of features, visualized here as probability distributions before and 

after the perturbation was applied. 

 

Hierarchical clustering for length of stay analysis 

Hierarchical clustering was performed on all observations using all the features that were used 

for prediction of 1 year mortality (140 features). Numerical features were mean imputed while 

categorical features were mode imputed. The ward linkage method and euclidean distance were 

used. Whether an individual died during their index stay was used as the row annotation 

feature.  

 

Propensity score matching for creating matched cohorts for length of stay analysis 

To examine associations between those who died during the index stay and those who did not, 

we performed propensity score matching with psmpy37 to generate a matched cohort of 

controls. 1:5 matching was performed based on patients with similar transplant year, indication 

grouping, gender, age, and ethnicity. Missing data were imputed prior to matching with a simple 

mean strategy. KNN matching with propensity logits was performed at a 1:5 case:control ratio to 

mitigate class imbalance. 
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Figure 1: An exploratory analysis of the UNOS dataset reveals distinct indication-drive 

groupings and time-associated trends. A. Histogram of the number of lung transplants by year 

since 1987 split by restrictive indication (red). The timeline schematic below the x axis indicates 

how many observations were included for modeling for each model across various time frames. 

B. Hexbin plots showing from top to bottom the relationship of ischemic time (hours), recipient 

age, and FEV1% at the time of transplant with sorted transplant date. Black dots on the 

ischemic time plot indicate the yearly median of ischemic time. P values and R-squared values 

were derived from linear regression on all three variables vs transplant year. C. Principal 

components contour plots split by single and bilateral transplants, indicated in red. D. Principal 

components contour plots split by indication (red). E. Principal components scatterplot colored 

by transplant year with reference contour plot on the right. Early to most recent transplant years 

are illustrated from dark to light respectively. 
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Figure 2: EHRFormer and XGBoost predict one-, three-, and five-year mortality with modest 

performance. A. The number of features used in each of the 4 different models. A data 

dictionary of these features is available in Table S1. B. The number of patients in each model 

split by class outcome of 1 year mortality. Teal indicates those who were excluded for modeling 

if they died within 90 days of their index stay. D. Test set AUROCs for EHRFormer (red) and 

XGBoost (blue) prediction of 1 year mortality across the 4 models. Error bars indicate 95% CIs 

based on 50 bootstraps of the test set. D. Heatmap of all test set metrics normalized within each 

metric (row-wise) including AUROC, accuracy, F1 score, precision, recall, and specificity for 

EHRFormer and XGBoost across the 4 models. E. Test set AUROCs for EHRFormer (red) and 

XGBoost (blue) prediction of 1-, 3-, and 5-year mortality. Error bars indicate 95% CIs based on 

50 bootstraps of the test set. F. The number of patients split by class outcome of 1-, 3-, and 5-

year mortality. Teal indicates those who were excluded for modeling if they died within 90 days 

of their index stay. 
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Figure 3: EHRFormer and XGBoost predict one year lung function with strong performance. A. 

The number of patients in each model split by class outcome of FEV1 <70% predicted at 1 year. 

B. Test set AUROCs for EHRFormer (red) and XGBoost (blue) prediction of FEV1p <70% 

predicted across the 4 models. Error bars indicate 95% CIs based on 50 bootstraps of the test 

set. C. Heatmap of all test set metrics normalized within each metric (row-wise) including 

AUROC, accuracy, F1 score, precision, recall, and specificity for EHRFormer and XGBoost 

across the 4 models. 
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Figure 4: Index stay features strongly influence 1-year outcomes. A. SHAP values from the 

XGBoost model predicting 1 year mortality using pre-transplant features. B. SHAP values from 

the XGBoost model predicting 1 year mortality using pre-transplant and peri-transplant features. 

C. Test AUROCs from XGBoost models predicting 1 year mortality using all features (pre- and 

peri-transplant), pre-transplant features only, and lung allocation score. Error bars indicate 95% 

CIs based on 50 bootstraps of the test set. Statistical comparisons were made using the 

student’s t-test method with correction for FDR <0.05. D. SHAP values from the XGBoost model 

predicting FEV1p <70% predicted at 1 year using pre- and peri-transplant features. E. Test 

AUROCs from XGBoost models predicting 1 year mortality by transplant type - all transplants, 

single, and double lung transplants. Light and dark blue indicate models trained on all features 

(pre- and peri-transplant features) vs. pre-transplant features only). Highlighted significant 

statistical comparisons of interest are indicated on the graph. F. SHAP values from the XGBoost 

model predicting FEV1p <70% predicted at 1 year within single lung transplant recipients using 

pre-transplant features only. 
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Figure 5: EHRFormer perturbations allow users to query the effect of one or multiple features 

simultaneously and reveal the paradoxical relationship of ischemic time on mortality. A, B, and 

C demonstrate probability distribution curves for the model’s prediction of 1 year mortality and 

how they change when an individual feature is toggled. A. transplantation in UNOS region 2; B. 

whether patient experienced long index stay; C. whether patient experienced dialysis during 

index stay. D. Changes in probability distribution curves for 1 year mortality when index stay 

features reflective of complications are toggled. E. Changes in the probability distribution for 1 

year mortality when all observations are set to their maximum quartile for ischemic time are 

shown on the left. Changes in the probability distribution for 1 year mortality when all 

observations are set to their maximum quartile for ischemic time and set to their lowest quartile 

for transplant year are shown on the right. 
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Figure 6: Those who died during their index stay have a higher proportion of flags for life 

support features, features associated with frailty, and index stay complications. A. 

heatmap visualization of the hierarchically clustered features used for the prediction tasks. The 

annotation legend on the left indicates those who died during their index stay (yellow) vs. those 

who survived the index stay (green). The heatmap also highlights groupings or clusters of 

features with a higher proportion of those who died during their index stay. Blue box - those 

whose indication for transplant was idiopathic pulmonary fibrosis; red box - a group of patients 

highlighted by black donor ethnicity; green box - a set of features associated with life support 

after transplant; grey boxes - 2 groupings belonging to separate hierarchically clustered “clades” 

associated with recipient frailty. B. Life support features that were statistically significant in 

patients who survived the index stay vs. those who died during the index stay, where stacked 

proportional bar plots were used to represent categorical features (green indicates “yes” and 

blue indicates “no” for the feature value) and violin plots were used to show continuous features. 

C. Frailty features that were statistically significant in patients who survived the index stay vs. 

those who died during the index stay. For graphs in B and C a chi-square (categorical) or 

Wilcoxon-rank sum (continuous) test was applied with FDR correction <0.05 for multiple 

comparisons. 
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Figure S1: Heatmaps showing data missingness of features from Table S1. A. Missingness of 

all waitlist, follow-up, and peritransplant features sorted by transplant date (780 features). B. 

Missingness of all waitlist, peritransplant features sorted by transplant date that were at least 

90% complete and used for modeling. 2005 and 2015 are indicated on the heatmap to 

demonstrate features that are missing from the time periods used for modeling. Missingness of 

all waitlist, follow-up, and peritransplant features sorted by transplant date, used for PCA and at 

least 90% complete (357 features). 
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Figure S2: Area under the receiver operating curves (A) and test set confusion matrices 
(B) for the prediction of 1 year mortality using data from 1987-2004, 2005-2014, 2015-
present, and from all years. The top row and bottom row in each panel shows the performance 
in EHRFormer and XGBoost respectively. 
 
 
 
 
 
 
 
 
 
 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 21, 2024. ; https://doi.org/10.1101/2024.10.19.24315817doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.19.24315817


  
 

  
 

 
Figure S3: Area under the receiver operating curves (A) and test set confusion matrices 
(B) for the prediction of 1, 3, and 5 year mortality using data from 1987-2004, 2005-2014, 
2015-present, and from all years. The top row and bottom row in each panel shows the 
performance in EHRFormer and XGBoost respectively. 
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Figure S4: Area under the receiver operating curves (A) and test set confusion matrices 
(B) for the prediction of FEV1 <70% at 1 year using data from 1987-2004, 2005-2014, 2015-
present, and from all years. The top row and bottom row in each panel shows the performance 
in EHRFormer and XGBoost respectively. 
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Figure S5: Area under the receiver operating curves and additional SHAP values for the 
prediction of 1 year mortality stratified by transplant type using all features vs. pre-
transplant features only. A. Area under the receiver operating curves for XGBoost models 
predicting 1 year mortality in single vs bilateral lung transplant recipients using either all features 
or only pre-transplant features as specified in Table S1. B. SHAP values for 1 year mortality 
prediction single lung transplant (left) vs bilateral lung transplant (right) recipients using only pre-
transplant features. 
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Figure S6: Stratification of patients by prolonged ischemic time (>10h) reveals a higher 
proportion of 1 year mortality, ECMO at 72 hours after transplant, and death during the 
index stay. Stacked proportional bar plots demonstrating the differences in proportions of 1 
year mortality, ECMO at 72 hours after transplant, and death during the index stay (rows) 
between different stratifications of the patients (columns). Green indicates a positive flag for the 
binary outcome of interest whereas blue indicates a negative flag. Stratification by EVLP in 
comparison to matched controls with <10h of lung ischemic time (middle column) revealed 
some mitigation of poor outcomes. On the other hand, stratification by EVLP in comparison to 
those with >10h of lung ischemic time (last column) revealed greater mitigation of poor 
outcomes. Numbers of patients in each grouping are indicated on the graphs. 
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Supplemental Table 
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Table S1: Data dictionary of all UNOS features used for analysis. The columns indicate
which features were used for data exploration and which features were used in various models. 
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