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Abstract 

Introduction: Social contact patterns significantly influence the transmission 
dynamics of respiratory pathogens. Previous surveys have quantified human social 
contact patterns, yielding heterogeneous results across different locations. However, 
significant gaps remain in understanding social contact patterns in rural areas of 
China. 

Methods: We conducted a pioneering study to quantify social contact patterns in 
Anhua County, Hunan Province, China, from June to October 2021, when there were 
minimal coronavirus disease-related restrictions in the area. Additionally, we 
simulated the epidemics under different assumptions regarding the relative 
transmission risks of various contact types (e.g., indoor versus outdoor, and physical 
versus non-physical). 

Results: Participants reported an average of 12.0 contacts per day (95% confidence 
interval: 11.3–12.6), with a significantly higher number of indoor contacts compared 
to outdoor contacts. The number of contacts was associated with various 
socio-demographic characteristics, including age, education level, income, household 
size, and travel patterns. Contact patterns were assortative by age and varied based on 
the type of contact (e.g., physical versus non-physical). The reproduction number, 
daily incidence, and infection attack rate of simulated epidemics were remarkably 
stable. 

Discussion: We found many intergenerational households and contacts that pose 
challenges in preventing and controlling infections among the elderly in rural China. 
Our study also underscores the importance of integrating various types of contact 
pattern data into epidemiological models and provides guidance to public health 
authorities and other major stakeholders in preparing and responding to infectious 
disease threats in rural China. 
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Introduction 

Respiratory pathogens mainly spread through respiratory droplets when infected 
individuals cough, sneeze, speak, or breathe(1). The type of interaction between 
individuals, where the interaction takes place, the distance between individuals, and 
other factors play a role in shaping the transmission risk. For example, severe acute 
respiratory syndrome coronavirus 2 and Mycobacterium tuberculosis can spread 
directly with aerosols or droplets shed by an infector, specifically in poorly ventilated 
and/or crowded indoor settings(2). Therefore, most analyses of the transmission 
dynamics of respiratory pathogens require quantitative estimates of human social 
contacts and their characteristics. Many surveys have aimed to quantify human social 
contact patterns. The results were qualitatively similar between studies but depicted 
major quantitative differences(3-5), including between urban and rural areas(6, 7). 

China has 1.4 billion residents in a vast area of about 9.6 million km2, with uneven 
economic development levels and varied modes of production and lifestyle. Such a 
heterogeneous population also translates into heterogeneous contact patterns, as 
exhibited in previous social contact surveys(8-14). Numerous contact surveys have 
been conducted in other parts of the world. However, there remain significant gaps in 
the knowledge of human social contact patterns in rural China. The only published 
social contact survey conducted in rural areas of Southern China was conducted in 
Guangzhou City (a city of over 18 million people and the capital of Guangdong 
province) in 2009–2010(15). To address this gap, we conducted a cross-sectional 
survey-based study in Anhua County, Hunan Province – a rural area in Central China 
– and explored the main determinants of contact patterns. Additionally, we conducted 
mathematical modeling analysis to assess the effect of contact patterns on the 
transmission dynamics of respiratory pathogens. 

Methods 

Study site and time 

We conducted a contact survey from June to October 2021 in Anhua County, Yiyang 
City, Hunan Province, China. This county, located in Central China, is a highly rural 
area characterized by low income ($1164/year per capita for rural residents in 
2021(16)) and low population density (158 people/km2 according to the 7th China 
Population Census(17)). Since this study aimed to quantify social contact patterns 
under "normal" conditions, the survey was conducted when there were no widespread 
coronavirus disease (COVID-19) outbreaks or strict epidemic prevention and control 
measures. The Oxford COVID-19 Government Response Tracker (OxCGRT) index 
for Mainland China ranged from 67.13 to 79.17 during this time, which was higher 
than most countries in Europe and North America(18). During this period, Mainland 
China was classified into low-, medium-, and high-risk zones based on the COVID-19 
situation. For low-risk areas, routine prevention measures were recommended, such as 
reducing gatherings and wearing masks indoors, but were not strictly enforced. In 
contrast, medium- and high-risk areas faced stricter measures, such as isolation and 
venue lockdowns(19). During the survey period, the entire Hunan Province was 
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classified as a low-risk area(20). 

Study participants 

We determined the minimum sample size based on the variance in the number of 
contacts per person per day, assuming a response rate of 90%. The minimum sample 
size was 828 and was allocated into eight age groups (0–9, 10–19, 20–29, 30–39, 
40–49, 50–59, 60–69, and ≥ 70 years) according to the age structure of the Anhua 
population. Moreover, we doubled the sample size for individuals aged 0–19 to 
enhance parameter estimation accuracy, considering their significant role as the 
primary drivers of transmission for several infectious diseases(3). This resulted in a 
target sample size of 1,012 participants. Eligible participants included individuals of 
all ages who had resided in Anhua for more than three months in the year before the 
interview. 

A probability proportional-to-population size sampling method was first applied, with 
three townships (Qingtang, Jiangnan, and Tianzhuang) in Anhua County, which were 
randomly selected for the study. In these three townships, we randomly selected 10 
villages, 2 primary schools, and 3 middle schools, along with a high school in Anhua 
County. The residents of the 10 selected villages were approached in advance by local 
collaborators to obtain their consent to participate in the survey, resulting in a list of 
candidate households. Then, our interviewers visited those households one by one 
during the formal investigation. We recruited students by selecting particular classes 
based on the availability of students in those classes during the survey dates. 
Approximately 1–3 classes per school and 50 households per village were selected 
based on convenience sampling to broadly represent the entire Anhua population 
regarding geographical distribution. All students in the selected classes and all 
household members except students in the selected households were invited to 
participate in our study until we met our predefined target sample size for each age 
group. 

Data collection 

School-aged children were enrolled at their schools, while other participants were 
recruited through door-to-door visits within the community. Well-trained interviewers 
administered face-to-face interviews, and questionnaires were completed by the 
interviewers. Participants were asked to retrospectively answer questionnaires about 
their social contact behaviors on two specific days: the most recent workday and the 
most recent weekend (i.e., the day before the interview and another most recent day 
with a different day type. If the day before the interview was a workday for the 
participant, the other day was the last weekend or holiday. If the day before the 
interview was a weekend or holiday for the participant, the other day was the last 
workday). Questionnaires were answered by guardians on behalf of children under 6 
years or those who could not answer independently. The remaining participants 
answered the questionnaires by themselves. The questionnaire contained three main 
sections: (i) general information on the study participant, (ii) social contact behaviors 
on the latest non-holiday workday, and (iii) social contact behaviors on the latest 
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weekend or holiday. 

The general information included participants' demographics, household composition, 
and travel behaviors. 

Regarding social contact behaviors, contact is defined as either a two-way 
conversation involving three or more words in the physical presence of another person 
or direct physical contact (e.g., a handshake or hug)(3). We divided social contact into 
three categories: (i) physical contact, (ii) non-physical contact at a distance of 1 m or 
less, and (iii) non-physical contact at a distance of more than 1 m. We also recorded 
the age of the contactees, the relationship between the participant and contactee, and 
face mask usage during the contact (i.e., both participant and contactee wore a mask, 
only the participant, only the contactee, or none of them), contact location (i.e., indoor, 
outdoor, or both), contact setting (i.e., house, workplace, school, or community), 
distance between home and the furthest contact setting (i.e., < 1 km, 1–3 km, 4–5 km, 
6–10 km, or > 10 km), and the frequency of contact (i.e., almost daily, 1–2 times per 
week, 1–2 times per month, less than once a month, or never met before). 

Large numbers of contacts are difficult to record individually, which can lead to 
underreporting(14). This is similar to the results of previous studies(8, 9, 14, 21). 
Contacts with individuals sharing the same characteristics (e.g., a group of classmates) 
were recorded as a single entry, and the number of individuals in the group was also 
reported. We referred to this as group contact. Contacts with individuals with different 
characteristics were reported individually, and we referred to this as individual 
contact. 

Statistical analysis 

Covariates 

Four types of explanatory variables were considered when describing human social 
contact. (i) Demographic and socioeconomic characteristics of the participants; 
specifically, sex, age, education level, occupation, individual income (in Chinese Yuan, 
CNY), household size, and number of years living in Anhua County (i.e., < 1 year, 
1–5 years, 6–10 years, and > 10 years). (ii) Factors associated with the day the 
recorded contacts took place; specifically, type of the day (i.e., workday or weekend), 
whether the day is considered as typical by the participant (i.e., contact behavior 
similar to other workdays or weekends), and weather (i.e., sunny, cloudy, rainy, or 
varied). (iii) Whether participants regularly traveled out of the village where they 
reside daily or only occasionally. (iv) Other information about the participant; 
specifically, whether the participant has an underlying disease, contacts with animals 
(including raising, touching, or slaughtering animals), health status, and a self-rated 
contact memory accuracy (i.e., very well, well, moderate well, not well, or poorly). 

Characterization of human-to-human contact patterns 

We used weighted generalized additive mixed models to explore the associations 
between participants' age and the number of overall contacts per participant while 
controlling for the covariates mentioned above. We fitted penalized splines to explore 
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the potential nonlinear relationships of continuous participants' age to the response 
variable, considering the interactions between age and day type. The sampling 
structure of our study allowed us to include the random effect in our models to 
consider the proportion of variance in response variables attributable to intra- and 
inter-household and person variation. The regression model was weighted by the 
population size of each age group in Anhua County and defined as follows: 

 ����,�,�� � �� � ��	�,�,� 
 ��,�,�� � �� 
 ���,�,� � �� 
 ���,�,� � 
 � �� 
 ���,�,� �
��,� 

where g is the link function, and the response variable was assumed with a negative 
binomial distribution; ��,�,� is the number of overall contacts of ith contact diary 
reported by participant j from household k; 	�,�,� is the age of each participant; ��,�,� 

is the day type of diary day; ��	�,�,� 
 ��,�,�� denotes the nonlinear relationship 

between participants' age and the response variable and the interactions between age 
and day type. We included this interaction because we found differences in the age 
distribution of contact between weekdays and weekends, specifically among those 
under 30 years (Figure S4). ��, … , �� are other factors related to the number of 
overall contacts; �� , … , �� are the partial regression coefficients of the above factors. 
�� is the fixed intercept; ��,� is the intercept; ��,�,� � ����,�,�|��,�� is the expected 
value of �� under a given intercept. Besides exploring the determinants of contact 
patterns, we used the same model structure to test the effect of recall bias by 
comparing the number of contacts when respondents were asked to recall the day 
before the interview versus the most recent workday/weekend (i.e. an earlier day with 
a different day type), while accounting for various covariates. 

To select the explanatory variables for the final model, we first fitted univariate 
regression models (generalized linear models with the same link functions as the 
multivariate model mentioned above) to identify candidate variables, using a 
significance level of 0.1. Next, we calculated Spearman's correlation coefficient for 
each pair of candidate variables and excluded variables with a correlation threshold 
above 0.6. Finally, we used the multivariate regression model defined above, 
employed a bidirectional stepwise selection process based on Akaike's Information 
Criterion to determine the final set of variables, and used a significance level of 0.05 
in the multivariate regression models. We followed the same procedure to explore 
factors associated with the number of indoor and outdoor contacts. 

Contact matrices by age 

We considered 17 age groups (0–2, 3–6, 7–9, 10–14, 15–19, …, and 75 years and 
above) to define age-specific contact matrices (��,�) representing the average number 
of contacts per day that an individual in age group i have with individuals in age 
group j using the "socialmixr" package in R 4.3.2. We used a bivariate smoothing 
approach to estimate the elements of the contact matrices(3). The basis was a 
tensor-product spline ensuring flexibility when modeling the average number of 
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contacts as a function of the participant's and contact's age over the 1-year band. The 
average number of contacts between a participant of age i and individuals of age j was 
modeled using a two-dimensional continuous function applied to the age of 
participants and contacts via a generalized additive model (GAM). To allow for 
over-dispersion in the number of contacts, we assumed that they were distributed 
following a negative binomial distribution with the mean ��,�, dispersion parameter 

�, and variance ��,� � ��,�
� /�. We used the basis dimension K = 10 to be large 

enough to fit the data well but small enough to keep the fitting procedure efficient. We 
then selected a thin plate regression spline to avoid the selection of the number of 
knots and a log link function for the GAM. Finally, we accounted for the reciprocal 
nature of the data and predicted the expected number of contacts at the population 
level. 

Transmission model 

To estimate the impact of contact patterns on the transmission of respiratory 
pathogens, we used a deterministic age-structured compartmental 
Susceptible-Infected-Removed (SIR) model. Susceptible individuals were exposed to 
an age-specific force of infection regulated by the average number of contacts per day 
that an individual of a given age group had individuals of all age groups (i.e., the 
contact matrix estimated using the collected survey data). The model is described by 
the following set of differential equations: 

���
�� � ����������� 

���
�� � ���	��� � ������ 

���

�� � ������ 

where i represents the age group (0–2, 3–6, 7–9, 10–14, 15–19, …, and 75 years and 
above); ����� is the number of susceptible individuals in age group i at time t; 
����� is the number of infected individuals in age group i at time t; ����� is the 
number of removed individuals in age group i at time t, and � represents the removal 
rate, which corresponds to the inverse of the generation time in a SIR model(22). 

The force of infection to which age group i is exposed to, denoted with �����, is 
defined as follows: 

����� � � ! ��,�

�

�
�

�����
"�

 

where "�  is the number of individuals in age group i, and �  represents the 
per-contact transmission risk, and it is determined to obtain the desired value of the 
basic reproduction number (��) using the next-generation matrix (NGM) approach: 
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� � ���


���
, where #��� represents the spectral radius of contact matrix M. 

In this study, we did not aim to simulate a specific respiratory pathogen or model a 
particular epidemic phase. Therefore, as an illustrative scenario, we assumed �� � 2 
and the generation time to be 5.1 days, both in line with values observed during the 
COVID-19 pandemic(23, 24). Moreover, to represent the transmission of pathogens 
with potentially different characteristics, we investigated scenarios where we altered: 
(i) the transmission risk of outdoor relative to indoor contacts (namely, 10%, 50%, 
and 90%); (ii) non-physical relative to physical contacts (namely, 10%, 50%, and 
90%); and (iii) non-physical contacts at more than 1-meter distance relative to 
physical or non-physical contacts at less than 1-meter distance (namely, 10%, 50%, 
and 90%). Then, we estimated the reproduction number based on the relative 
transmission risk of different types of contacts. The number of individuals by age 
corresponded to that of the population in Anhua County (780,969 individuals). Model 
simulations were initialized with one infected individual per hundred thousand, and 
all other individuals were considered susceptible. The model was run for 180 days, 
and epidemic sizes obtained using different contact matrices were compared. 

Ethical approval 

All procedures performed in this study were approved by the ethics committees of the 
School of Public Health at Fudan University, Shanghai, China (Ref: 2020-11-0857-S2) 
and the London School of Hygiene and Tropical Medicine, London, UK (Ref: 
22684-04), and were following the 1964 Helsinki declaration and its later 
amendments or comparable ethical standards. Informed consent was obtained from all 
individual participants included in the study (from a guardian if the participant was 
under 6 years old; from both a guardian and the study participant if the participant 
was 7–17 years old; from the participant if the participant was 18 years or above). 

Results 

Analyzed sample 

A total of 1,522 participants were recruited for this study. The data analysis was based 
on a sample of 1,499 participants, and 23 (1.5%) were excluded due to data quality 
issues (Figure S1). Among the participants, 575 (38.4%) were male, and the average 
age was 29. A comparison between the characteristics of the study participants and 
those of the Anhua County population is reported in Table S1 and Figure S2. For each 
participant, we recorded their contact behaviors for two days. 

Overall, 2912 contact diaries (1496 from the day before the interview and 1416 from 
the other day) (Figure S3) were collected, corresponding to 34,802 contacts, which 
consisted of 33,609 recorded contacts with details and 1193 contacts that respondents 
estimated they had left out. When the survey was conducted, there were no statutory 
holidays and no reports of COVID-19 cases in Anhua County and Yiyang City, with 3 
local COVID-19 cases in Hunan Province and fewer than 15 new COVID-19 cases 
daily in Mainland China. No stringent epidemic prevention and control measures were 
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in place(25). From June to July 2021, the daily maximum temperatures in Anhua 
County ranged between 21 and 36 �; in October 2021, the daily maximum 
temperatures ranged from 11 to 21 � (Figure S3)(26). 

Number of contacts 

According to the results of the recall bias test, the number of contacts on the other day 
was 1.1 times that of the day before the interview after correcting for covariates, with 
an absolute mean increase of 0.9 contacts per person per day (Table S2), suggesting 
that the recall bias did not have a large effect on the results. The frequency 
distribution of the number of contacts was right-skewed (Figure 1A). The mean 
number of contacts was 12.0 (95% confidence interval [CI]: 11.3–12.6), the median 
number of contacts was 7 (interquartile range: 4–14), and the number of contacts was 
heterogeneous according to participant characteristics (Tabs. 1 and S3 and Figure 1B). 
For example, participants aged 7–19 reported the highest number of contacts with 
15.4 (95% CI: 14.4–16.4). The mean number of contacts for individuals under 30 
years exhibited notable differences between weekends and workdays, whereas for 
those over 30 years, the differences almost disappeared (Figure S4). Participant 
characteristics also influence the distribution of contacts by social setting. For 
instance, children aged 0–2 years had most of their contacts at home (69.0%), while 
participants aged 7–19 had most of their contacts at school (75.2%) (Figure S5A). 
Face-mask usage was low, with 93.7% of contacts occurring without masks (Figure 
S5C). Across all age groups, most contacts occurred within a 1 km radius of the 
participants' homes and involved individuals they met almost daily (Figure S5D-E). 
Of the 34,802 contacts, 27,419 indoor, 6,078 outdoor, and 1,305 contacts with 
unknown settings were recorded. Indoor contacts were more prevalent across all age 
groups, with 9.4 (95% CI: 9.0–9.9) contacts per day as compared to 2.1 (95% CI: 
1.8–2.4) outdoor contacts per day (Table 1). Indoor contacts mainly took place at 
school for participants aged 7–19 (76.0%) and at the workplace for those aged 20–39 
(44.8%). For the other age groups, the home was the primary setting for indoor 
contact (Figure S5F). Outdoor contact primarily occurred in the community setting for 
most age groups (Figure S5K). Physical contact was reported in 38.2% of the 
interactions, with the proportion of physical contact decreasing with participant age. 
Individuals aged 18 years and younger reported more physical contact than 
non-physical ones, whereas adults had a higher proportion of non-physical contacts 
(Figure 1C-D). 

Determinants of contact patterns 

Our statistical model illustrated different nonlinear patterns on workdays and 
weekends. Individuals under 30 years had more contacts on workdays than on 
weekends. However, for those over 30 years, the number of contacts was similar on 
workdays and weekends. We found a significant nonlinear association between the 
number of contacts and the age of participants, with the highest number of contacts 
for respondents aged approximately 20 years on workdays (Figure 2A). Workdays, 
higher level of education, higher individual income, larger household size, worse 
self-rated contact memory accuracy, and daily travel out of the village of residence 
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were significantly associated with a larger number of contacts (Figure 2B). 

The number of indoor contacts was the highest for respondents aged around 20 years 
on workdays and around 40 years on weekends (Figure 2C). Workdays, higher level 
of education, higher individual income, larger household size, worse self-rated contact 
memory accuracy, and daily travel out of the village of residence were significantly 
associated with larger number of indoor contacts. Moreover, rainy days were 
associated with fewer indoor contacts compared to sunny days (Figure 2D). The 
number of outdoor contacts was the highest for respondents aged around 30–50 years 
both on workdays and weekends (Figure 2E). Workdays, typical days, worse 
self-rated contact memory accuracy, and cloudy weather were significantly associated 
with larger number of outdoor contacts (Figure 2F). 

Contact patterns by age 

A prominent feature of the contact matrix by age was the presence of a strong 
diagonal, indicating that participants in all age groups mixed assortatively by age, 
with more than 85.0% of all contacts occurring within the same age group. This 
assortativeness was most pronounced in the 15–19-year age group (Figure 3 and 
Figure S6). The bottom-left corner of the matrices, corresponding to contacts between 
school-age children, recorded the largest number of contacts. We also found 
intergenerational contacts, such as contacts between those aged 0–10 years and those 
aged 20–30, contacts between those aged 20–30 and those aged 50–60, or contacts 
between those aged 0–10 and those aged 50–60 (Figure 3A). For those aged 7–19, 
social contacts mainly occurred in schools, while adults aged 20 years and above 
primarily made contacts in workplaces or communities (Figs. S7A–D). The indoor 
contact matrix was similar to the overall contact matrix, albeit with relatively fewer 
contacts (Figure 3B). The outdoor contacts were assortative by age (Figure 3C) and 
mainly occurred in the community (Figure S7I–L). We found similar mixing patterns 
by age between weekends and weekdays for adults over 30 years. However, 
individuals under 30 had fewer contacts during the weekend, specifically with 
individuals in the same age group (Figure S8). This difference is mainly evident for 
outdoor contacts. Physical contacts mainly occurred between people of the same age 
and between those aged 0–10 and 20–60, primarily corresponding to the contact 
matrices in households and schools (Figure 3D). Non-physical contacts at less than 
1-meter distance are predominantly found among people aged 7–25 years and among 
people aged 30 years and above, mainly occurring in schools, workplaces or 
communities (Figure 3E). 

Contact patterns and transmission risk 

In our baseline analysis, we assumed that all contacts had the same transmission risk. 
By setting �� � 2, our mathematical model estimated a final infection attack rate of 
54.5% (95% CI: 47.3%–60.7%) (Figure 4A-B). By considering a 10%–90% reduction 
in transmission risk for outdoor contacts relative to indoor ones, we estimated a 
0%–5.0% reduction in the reproduction number, which led to an 11.7%–36.5% 
reduction in the final infection attack rate. Similar reductions in the estimated 
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reproduction number and final infection attack rate were estimated when considering 
a 10%–90% reduction in transmission risk for non-physical contacts at more than 
1-meter distance relative to physical or non-physical contact at less than 1-meter 
distance (Figure 4A-B). A more marked reduction was observed when considering a 
10%–90% reduction in transmission risk for non-physical contacts relative to physical 
ones. Specifically, we estimated the reproduction number to decrease by 5.0%–45.0%, 
leading to a 13.6%–99.1% decrease in the final infection attack rate. When 
considering the relatively lower transmission risk for outdoor contacts, non-physical 
contacts, or non-physical contacts at more than 1-meter distance, lower peak 
incidences were observed (Figure 4C). Regarding the infection attack rate by age, all 
the analyzed scenarios led to the same qualitative trend with higher infection rates in 
younger individuals. However, quantitative differences exist depending on the 
assumed scenarios regarding the relative transmission risk by contact type (Figure 4D 
and S9). 

Discussion 

We conducted a social contact survey from June to October 2021 in Anhua County, 
Hunan Province, a rural area in Central China. Our findings depicted that participants 
reported an average of 12.0 (95% CI: 11.3–12.6) contacts per day, with significantly 
more indoor than outdoor contacts. The number of contacts was associated with 
several socio-demographic characteristics of the study participant, including age, level 
of education, income, household size, and travel patterns. Contact patterns were 
assortative by age and differed based on the type of contact (e.g., physical versus 
non-physical). Finally, we estimated the reproduction number, the infection attack rate, 
and the daily incidence of simulated stylized epidemics of generic respiratory 
pathogens to be remarkably stable under different assumptions on the relative 
transmission risk of various types of contacts (e.g., indoor versus outdoor, physical 
versus non-physical). 

Our study is the first to quantify human-human contact patterns in rural areas of 
Central China. We compared our results to other contact studies conducted in rural 
areas and other studies in China in urban and rural areas. In comparison to surveys in 
rural areas, our mean daily contact (12.0) was similar to studies in Peru (12.0)(27), 
Zimbabwe (10.8)(6), and England (10.5)(28), which was higher than those in Ethiopia 
(5.73-6.19)(29), Vietnam (7.7)(30), Uganda (7.2)(31), and lower than those in rural 
Guangzhou (18.6)(15), Kenya (17.7)(32), and India (21.4)(33). Compared with other 
Chinese studies, we found fewer contacts than studies in Shanghai (18.9)(14), urban 
Guangzhou (18.6)(15), and Wuhan (14.6)(9), similar numbers to studies in urban 
Taiwan (12.5)(10), and higher numbers than those in Shenzhen (7.9)(8), Changsha 
(9.5)(8), and Hong Kong (8.1)(11). The differences could result from the combined 
effects of study location, study population, and survey methods. Additionally, we 
identified typical age assortativity in age-specific contact matrices, where individuals 
predominantly interact with others of a similar age. However, strong intergenerational 
contacts were observed within the population, consistent with findings from previous 
studies in rural areas(7, 33) and other regions of China(8, 9, 14, 21, 34, 35), but 
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contrasting with the infrequency of such interactions in European contact matrices(3). 
This discrepancy may be attributed to cultural differences, as people in rural areas and 
China are more likely to have adults caring for older family members and 
grandparents caring for grandchildren(36). This may lead to older adults in rural areas 
having a higher risk of acquiring close-contact infections from younger people 
compared to those in other regions. 

Contact patterns varied between workdays and weekends, primarily for students and a 
small portion of workers. However, for most participants, the patterns remained 
similar throughout the week. This consistency is likely due to the unique 
characteristics of agricultural and rural lives in Central China. In contrast, previous 
studies conducted in urban areas within and outside China found more pronounced 
differences between workdays and weekends(3, 14, 21). Despite the analysis being 
conducted in a rural area, we estimated a significantly higher number of indoor than 
outdoor contacts. This is particularly relevant for studying respiratory pathogens, as 
they spread predominantly indoors(37-40). 

According to our mathematical modeling analysis, heterogeneity in contact patterns 
across different age groups, social settings, and environments translates into 
heterogeneous epidemiological outcomes. Our analysis also exhibits the importance 
of obtaining reliable estimates of the relative transmission risk of different types of 
contacts (e.g., physical versus non-physical contacts or indoor versus outdoor contacts) 
and the effectiveness of various interventions in reducing different types of contacts. 
Indeed, considering such differences could have a remarkable impact in estimating the 
effectiveness of public health interventions targeting certain social settings (e.g., 
museums and restaurants) or restricting certain behaviors (e.g., being at least 1 meter 
apart). 

To interpret our findings properly, it is crucial to consider the limitations of our 
analysis. First, asking participants to report their contact behaviors retrospectively can 
introduce recall bias. The results of the multivariate analysis support this possibility, 
as we found that self-rated contact memory accuracy was negatively associated with 
the number of contacts. Likely, participants with numerous contacts struggled to recall 
all individuals they encountered, leading to lower self-ratings of their contact memory. 
Second, we defined group contacts to record interactions with individuals sharing 
identical characteristics systematically. While this approach may have reduced the 
burden on the study participants, it likely came at the cost of reduced accuracy in the 
information collected for each contact. The participants may have grouped contacts 
with similar rather than identical characteristics. Third, mathematical modeling 
analysis represents a simplified illustrative example of the spread of respiratory 
pathogens with potentially different characteristics. As such, it does not consider other 
nuances that may shape the transmission process, such as contact duration, 
susceptibility to infection by age, and waning immunity. 

In conclusion, our analysis provides new knowledge on contact patterns in rural areas 
of Central China that are relevant to the transmission of respiratory pathogens. Future 
integration of contact pattern data with local epidemiological surveillance and 
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seroepidemiological data could represent the next step to improve our understanding 
of the spread of respiratory pathogens. This could also provide major public health 
benefits by creating the capacity to prevent better, prepare, and respond to infectious 
disease threats. 
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Figure 1. Distribution of the number of contacts. (A) Frequency of the number of 
contacts. The inset depicts the cumulative probability distribution disaggregated by 
indoor and outdoor contacts. (B) Mean and 95% CI of the number of indoor (right) 
and outdoor (left) contacts by participants' characteristics. (C) Cumulative probability 
distribution of the number of contacts by type of contact (namely, physical, 
non-physical at ≤ 1 m distance, and non-physical at > 1 m distance). (D) The 
proportion of contacts by contact type disaggregated by study participant age. 
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Figure 2. Determinants of contact patterns. (A) Variation by age in the number of 
total contacts compared to the reference level. (B) Variation by factors other than age 
in the number of total contacts compared to the reference level. (C) Same as A, but 
for the number of indoor contacts. (D) Same as B, but for the number of indoor 
contacts. (E) Same as A, but for the number of outdoor contacts. (F) Same as B, but 
for the number of outdoor contacts. Reference level means 60-year-old participants 
with other factors at the first level. For example, for panels (A) and (B), the reference 
level means 60-year-old participants on workdays, with non-education, no income, 
household size is 1–3, self-reported accuracy of contact memory being very well, and 
traveling outside the village of residence almost daily.  
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Figure 3. Smoothed symmetric contact matrices by age. (A) Total contact. (B) 
Indoor contact. (C) Outdoor contact. (D) Physical contact. (E) Non-physical contact 
at less than 1-meter distance (F) Non-physical contact at more than 1-meter distance. 
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Figure 4. Effects of different assumptions on the relative transmission risk of 
different contact types. (A) Estimated R based on different scenarios of relative 
transmission risk of different types of contact. (B) Estimated infection attack rate 
based on different scenarios of relative transmission risk of different types of contact. 
(C) Estimated daily incidence based on different scenarios of relative transmission 
risk of different types of contact. (D) Estimated infection attack rate by age group 
based on different scenarios of relative transmission risk of different types of contact. 

Table 

Table 1. Mean (95%CI) number of contact diaries and mean number of total, 
indoor, and outdoor contacts by participant’s characteristic (see Table S3 for 
median and IQR). 

Characteristics N (%) a 
Mean (95%CI) b 

Total Indoor  Outdoor 

Overall 2912 (100)  12.0 (11.3, 12.6)  9.4 (9.0, 9.9)  2.1 (1.8, 2.4)  

Sex         

Male 1108 (38.0)  11.7 (10.8, 12.8)  8.9 (8.2, 9.6)  2.4 (1.8, 3)  

Female 1804 (62.0)  12.1 (11.4, 12.9)  9.7 (9.2, 10.4)  1.9 (1.6, 2.3)  

Age group         

0-2 yrs 214 (7.3)  6.0 (5.5, 6.4)  5 (4.7, 5.3)  0.9 (0.6, 1.2)  

3-6 yrs 343 (11.8)  10.4 (9.2, 11.6)  9 (7.9, 10.2)  1.3 (0.9, 1.7)  

7-19 yrs 660 (22.7)  15.4 (14.4, 16.4)  13.4 (12.5, 14.4)  0.6 (0.5, 0.8)  

20-39 yrs 685 (23.5)  14.5 (12.8, 16.5)  10.7 (9.6, 12)  3.7 (2.6, 5.1)  

40-59 yrs 690 (23.7)  11.3 (10.3, 12.6)  8 (7.2, 9.1)  2.9 (2.4, 3.4)  

60-75 yrs 254 (8.7)  6.6 (5.8, 7.4)  4.9 (4.3, 5.7)  1.5 (1.2, 1.9)  

≥76 yrs 66 (2.3)  5.6 (4, 7.7)  3.4 (2.9, 4)  2 (0.5, 3.7)  

Education         

None 1133 (38.9)  8.9 (8.3, 9.5)  7.3 (6.8, 7.8)  1.5 (1.3, 1.8)  

Primary school 670 (23.0)  11.5 (10.4, 12.7)  8.4 (7.4, 9.4)  2.1 (1.7, 2.4)  
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Middle school 711 (24.4)  13.4 (12.5, 14.3)  11.4 (10.5, 12.2)  1.5 (1.1, 1.8)  

High school 232 (8.0)  13.1 (10.7, 15.5)  10.3 (8.4, 12.9)  2.6 (1.5, 4)  

College or above 166 (5.7)  26.6 (20.6, 32.8)  18.4 (15, 21.8)  8 (3.7, 13.6)  

Occupation         
Enrolled in 

pre-kindergarten 
310 (10.6)  6.4 (5.9, 6.9)  5.1 (4.9, 5.4)  1.1 (0.8, 1.5)  

Enrolled in kindergarten  212 (7.3)  12.2 (10.5, 13.9)  11.1 (9.5, 12.8)  0.9 (0.6, 1.4)  

Student 691 (23.7)  14.8 (13.8, 15.8)  12.9 (12, 13.7)  0.7 (0.6, 0.9)  

Self-employed 86 (3.0)  20.4 (16.9, 24.2)  15.5 (12.2, 19.4)  2.8 (1.4, 4.5)  

Farmer 754 (25.9)  8.3 (7.5, 9.2)  5.9 (5.2, 6.7)  2.2 (1.9, 2.6)  

School staff 70 (2.4)  33.4 (22.9, 46.9)  25.7 (20, 32.1)  7.6 (2, 16.6)  

Other staff 72 (2.5)  29.9 (21.5, 40.8)  16.3 (12.1, 21.2)  
12.9 (5, 
22.2)  

Others 327 (11.2)  14.2 (12.3, 16.2)  11.4 (9.7, 13.4)  2.5 (2, 3.1)  

Unemployed 390 (13.4)  7.4 (6.8, 8.1)  5.3 (4.9, 5.8)  2.1 (1.6, 2.6)  

Individual income (CNY)         

No income 342 (11.7)  7.5 (6.8, 8.2)  5.2 (4.9, 5.6)  2.2 (1.7, 2.8)  

<￥1 k 20 (0.7)  7.0 (4.1, 11.5)  5.9 (3, 10.2)  1.1 (0.4, 2)  

￥1-9 k 166 (5.7)  10.3 (8.8, 12)  6.7 (5.5, 8.1)  3.2 (2.3, 4.3)  

￥10-29 k 322 (11.1)  14.3 (12.6, 16.3)  10 (8.7, 11.5)  3.6 (2.6, 4.8)  

≥￥30 k 291 (10)  20.8 (17.1, 24.9)  15.6 (13.2, 18.2)  5 (2.4, 8)  

Not available 1213 (41.7)  12.2 (11.5, 12.8)  10.6 (10, 11.2)  0.9 (0.7, 1)  

Unwilling to answer 531 (18.2)  8.6 (7.5, 9.8)  6.6 (5.6, 7.7)  2 (1.6, 2.4)  

Unknown/no response 27 (0.9)  13.3 (7.5, 19.4)  11.7 (6.3, 18.2)  1.6 (0.5, 2.9)  

Household size         

1-3 1216 (41.8)  10.1 (9.2, 11)  7.4 (6.7, 8.2)  2.3 (1.8, 2.9)  

4-6 1258 (43.2)  12.3 (11.5, 13.3)  9.8 (9.1, 10.5)  2.2 (1.7, 2.8)  

≥7 436 (15)  16.2 (15.0, 17.3)  14 (13, 15)  1.2 (0.9, 1.6)  

Unknown/no response 2 (0.1)  5.0 (5.0, 5.0)  1 (1, 1)  4 (4, 4)  
Number of years living in 
Anhua county 

        

<1 yrs 56 (1.9)  8.1 (6.4, 10.4)  7.2 (5.6, 9.6)  0.8 (0.3, 1.3)  

1-5 yrs 507 (17.4)  9.0 (8.3, 10.0)  7.9 (7.1, 8.8)  1 (0.7, 1.3)  

6-10 yrs 327 (11.2)  11.7 (10.6, 13.0)  9.8 (8.8, 10.8)  1.3 (0.8, 1.8)  

>10 yrs 2004 (68.8)  12.8 (12.1, 13.7)  9.8 (9.2, 10.5)  2.5 (2.1, 3.1)  

Unknown/no response 18 (0.6)  12.4 (9.0, 16.4)  9.1 (5.9, 13.2)  1.3 (0.6, 2.2)  

Day type         

Workday 1424 (48.9)  14.5 (13.5, 15.6)  11.6 (10.8, 12.4)  2.3 (1.8, 3)  

Weekend 1488 (51.1)  9.5 (8.9, 10.2)  7.3 (6.9, 7.8)  1.9 (1.5, 2.3)  

Typical day         

Yes 2656 (91.2)  11.5 (10.8, 12.1)  9 (8.6, 9.5)  2 (1.7, 2.4)  

No 239 (8.2)  17.5 (14.9, 20.2)  13.9 (11.6, 16.6)  3.1 (2.2, 4.2)  

Unknown/no response 17 (0.6)  11.7 (6.5, 17.9)  8.7 (4.2, 13.7)  1.1 (0.3, 2)  

Weather         

Sunny 1739 (59.7)  11.7 (10.9, 12.6)  8.7 (8.2, 9.3)  2.5 (2, 3)  

Cloudy 361 (12.4)  11.8 (10.3, 13.3)  9.8 (8.7, 11.1)  1.7 (1, 2.6)  

Rainy 663 (22.8)  12.7 (11.8, 13.7)  10.9 (9.9, 11.9)  1.4 (1.1, 1.8)  

Variable 101 (3.5)  13.2 (9.9, 17.9)  11.5 (8.1, 15.5)  1.5 (0.9, 2.1)  

Unknown/no response 48 (1.6)  9.0 (5.6, 13.9)  6.9 (4.4, 10.8)  1.2 (0.5, 2)  
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Frequency of travels 
outside the village of 
residence 

        

Almost daily 329 (11.3)  19.2 (16.2, 22.9)  14 (12.2, 16.2)  4.4 (2.3, 7.1)  
At least once a week but 

not daily 
586 (20.1)  12.9 (11.7, 14.1)  10.1 (9.1, 11.1)  2.1 (1.6, 2.7)  

At least once a month but 
not each week 

777 (26.7)  11.8 (10.8, 12.9)  9.8 (8.8, 11)  1.6 (1.4, 2)  

Less than monthly, but 
not never 

925 (31.8)  9.7 (9.0, 10.4)  7.5 (7, 8.1)  1.9 (1.5, 2.3)  

Never 239 (8.2)  7.7 (6.7, 8.7)  6.2 (5.3, 7.3)  1.2 (0.8, 1.8)  

Unknown/no response 56 (1.9)  17.4 (14.3, 20.8)  14.3 (11.4, 17.6)  1.5 (0.7, 2.5)  

Underlying conditions         

Yes 597 (20.5)  10.5 (9.2, 12.1)  7.3 (6.5, 8.3)  3 (2.1, 4.1)  

No 2200 (75.5)  12.3 (11.7, 13.1)  10 (9.4, 10.5)  1.9 (1.6, 2.3)  

Unknown/no response 46 (1.6)  14.9 (11.0, 20.1)  12.7 (9.1, 17.7)  0.1 (0, 0.2)  

Unwilling to answer 69 (2.4)  9.6 (7.5, 12.1)  8 (6.3, 9.8)  0.7 (0.3, 1.1)  

Contact with animals         

Yes 1713 (58.8) 10.9 (10.2, 11.7) 8.4 (7.8, 9)  2.3 (1.9, 2.8)  

No 1195 (41.0) 13.4 (12.6, 14.4) 11 (10.3, 11.7) * 
1.7 (1.3, 2.4) 
* 

Unknown/no response 4 (0.1)  7.5 (5.0, 10.0) 3.5 (1, 6)  4 (4, 4)  
Self-rated contact memory 
accuracy 

        

Very well 1439 (49.4)  10.0 (9.3, 10.8)  7.9 (7.4, 8.5)  2.1 (1.7, 2.6)  

Well 1021 (35.1)  12.2 (11.2, 13.4)  9.8 (9.2, 10.6)  1.9 (1.4, 2.6)  

Moderate well 390 (13.4)  18.0 (16.1, 20.3)  14.1 (12.4, 16.2)  2.3 (1.5, 3.3)  

Not well 45 (1.5)  16.8 (12.8, 20.9)  7.4 (5.8, 9.1)  5.4 (2.5, 8.8)  

Unknown/no response 17 (0.6)  13.0 (6.6, 19.4)  10.3 (4.8, 16.2)  0.6 (0.1, 1.4)  

Health status         

Very well 1973 (67.8)  11.9 (11.2, 12.7)  9.3 (8.8, 9.9)  2.2 (1.8, 2.7)  

Well 641 (22.0)  12.2 (11.1, 13.2)  10 (9.1, 11)  1.6 (1.3, 2)  

Moderate well 229 (7.9)  11.8 (10.2, 13.5)  9.1 (7.8, 10.5)  2.2 (1.6, 2.9)  

Not well 51 (1.8)  11.5 (7.7, 15.5)  7.1 (4.6, 10.1)  3.7 (1.4, 6.5)  

Unknown/no response 18 (0.6)  11.3 (6.4, 16.7)  8.4 (4.3, 13.1)  0.7 (0.1, 1.4)  
a Number of contact diaries. 
b Based on 100 bootstrap samples. 
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