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Abstract 

Background 

The analysis of the circulating proteome can identify translational modifiers and 

biomarkers of disease expressivity and severity at a given time point. Here we explore 

the relationships between protein measures implicated in cardiovascular disease and 

whether they mediate causal relationships between cardiovascular risk factors and 

disease development. 

Methods 

To understand the relationships between circulating biomarkers and genetic variants, 

medications, anthropometric traits, lifestyle factors, imaging-derived measures, and 

diagnoses of cardiovascular disease, we analysed measures of nine plasma proteins 

with a priori roles in genetic and structural cardiovascular disease or treatment 

pathways (ACE2, ACTA2, ACTN4, BAG3, BNP, CDKN1A, NOTCH1, NT-proBNP, and 

TNNI3) from the Pharma Proteomics Project of the UK Biobank cohort (over 45,000 

participants sampled at recruitment). 

Results 

We identified significant variability in circulating proteins with age, sex, ancestry, alcohol 

intake, smoking, and medication intake. Phenome-wide association studies highlighted 

the range of cardiovascular clinical features with relationships to protein levels. 

Genome-wide genetic association studies identified variants near GCKR, APOE, and 

SERPINA1, that modified multiple circulating protein levels (BAG3, CDKN1A, and/or 

NOTCH1). NT-proBNP and BNP levels associated with variants in BAG3. ACE2 levels 

were increased with a diagnosis of hypertension or diabetes and were influenced by 
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variants in genes associated with diabetes (HNF1A, HNF4A). Two-sample Mendelian 

randomisation identified ACE2 as protective for systolic blood pressure and Type-2 

diabetes. 

Conclusions 

From a panel of circulating proteins, the results from this observational study provide 

evidence that ACE2 is causally associated with hypertension and diabetes. This 

suggests that ACE2 stimulation may provide additional protection from these 

cardiovascular diseases. This study provides an improved understanding of the 

circulating pathways depicting cardiovascular disease dynamics.  
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Introduction 

Circulating proteomics provides information on the landscape of biological function, 

metabolism, disease, and homeostasis. While genetic testing can provide a once-off 

invariable assessment from birth, proteome analyses can identify translational modifiers 

and biomarkers of disease expressivity and severity at a particular sampling time point. 

In addition to large-scale proteome-wide discovery and risk score analyses, in-depth 

assessments of selected proteins based on a priori implication in disease are required 

to fully identify and interpret the relationships between protein measures of interest and 

cardiovascular disease, and whether they mediate causal relationships between 

cardiovascular risk factors and disease development. 

To understand these relationships, we undertook an in-depth assessment of the 

circulating levels of nine plasma proteins implicated through genetic studies for roles in 

structural cardiovascular disease or treatment pathways (aortopathies, 

cardiomyopathies, congenital heart disease, and heart failure1): ACE2 (ACE2; 

angiotensin-converting enzyme 2), ACTA2 (ACTA2; actin alpha 2, smooth muscle), 

ACTN4 (ACTN4; Actinin Alpha 4), BAG3 (BAG3; BAG cochaperone 3), BNP (NPPB; 

brain natriuretic peptide or B-type natriuretic peptide), CDKN1A (CDKN1A; cyclin-

dependent kinase inhibitor 1A), NOTCH1 (NOTCH1; Neurogenic locus notch homolog 

protein 1), NT-proBNP (NPPB; N-terminal prohormone of brain natriuretic peptide), and 

TNNI3 (TNNI3; Troponin I).  

ACE2, with functionally opposing roles of ACE1 (which is unmeasured here, is the 

target of ACE inhibitors, and is involved in the biosynthesis of the angiotensin II 

vasoconstrictor), is a part of the renin-angiotensin-aldosterone system that regulates 
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blood pressure by catalysing the hydrolysis of vasoconstrictor angiotensin II to other 

vasodilator angiotensins. ACTA2 is an actin protein involved in the contraction of 

smooth muscle and genetic variants in ACTA2 cause autosomal dominant familial 

thoracic aortic aneurysm and aortic dissection2. ACTN4 is an actin-binding protein that 

anchors the myofibrillar actin filaments in muscle cells. BAG3 is involved in chaperone-

assisted selective autophagy of damaged cytoskeletal components and variants in the 

BAG3 gene cause autosomal dominant dilated cardiomyopathy and myofibrillar 

myopathy1,3. The genetic locus of CDKN1A has been recently identified in case-control 

GWAS analyses of cardiomyopathies4,5 and it is a regulator of cardiomyocyte cell cycle 

arrest6. NOTCH1 controls cell fate decisions and variants at the locus have been 

previously associated with congenital heart disease7 and trabeculation8. PreproBNP and 

proBNP (both unmeasured here) are cleaved by a convertase to create BNP and NT-

proBNP (inactive with a longer half-life than BNP); both are biomarkers and upregulated 

with heart failure and myocardial stretching. PreproBNP is encoded by NPPB which has 

unique expression in the heart, highest in the atrial appendage (GTEx)9. BNP has roles 

in natriuresis, diuresis and vasodilatation. TNNI3 is a mediator of relaxation in the 

sarcomeric thin filament of cardiac striated muscle and is exclusively expressed in the 

heart. Variants in TNNI3 cause autosomal dominant hypertrophic cardiomyopathy1,10.  

Exploration of the relationships between circulating proteins and upstream factors that 

may influence their levels (e.g., anthropometric traits and protein quantitative trait loci 

identifiable from genome-wide common and rare genetic factors) as well as downstream 

clinical endpoints they may predict or prevent (cardiovascular diagnoses, clinical 

features, and ECG and MRI-derived traits), would aid our understanding of these 
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biomarkers of cardiovascular disease. Here, we use the results of the Pharma 

Proteomics Project of the UK Biobank cohort: Olink proteomic data from plasma 

samples collected at recruitment. We analysed the proteomics from over 45,000 

participants to identify relationships with the full spectrum of available UK Biobank data 

and tested for causal relationships (Graphical abstract).  
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Methods 

Study overview 

The UK Biobank (UKB) cohort study recruited 500,000 participants aged 40 to 69 years 

old from across the United Kingdom between 2006 and 2010 (National Research Ethics 

Service, 11/NW/0382)11. This study was conducted under the terms of access of 

projects 47602 and 40616. All participants provided written informed consent. 

Genotyping array data and exome sequencing data were available for over 450,000 

participants. Sub-studies analysed baseline plasma proteomics in over 45,000 

participants12 and recalled participants for electrocardiograms (ECG)13 and cardiac 

magnetic resonance (CMR) imaging14,15. Additional phenotypic and outcome data 

included hospital episode statistics, self-reported questionnaire data, alcohol intake16, 

and smoking status. Protein levels were assessed for association with genetic, 

phenotypic, and clinical outcome data (Figure 1). Two-sample Mendelian randomization 

was used to determine causality and risk prediction of Cox proportional hazards 

regression models were created to understand whether the biomarkers predicted 

incident diagnoses. 

Proteomics 

Plasma from the initial UKB assessment visit (2006-2010) was collected. Details of 

participant randomisation, sample handling, Olink proteomics assay through the 

antibody-based Olink Explore 3072 PEA, data processing, and quality control are as 

detailed previously12. Briefly, proteomics was undertaken on samples of a randomly 

selected subset of 46,595 UKB participants at the baseline visit, of which 46,011 
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participants had complete measures of the nine proteins of interest with a priori 

implication in structural cardiovascular disease or treatment pathway through genetic 

studies (aortopathies, cardiomyopathies, congenital heart disease, and heart failure; 

ACE2, ACTA2, ACTN4, BAG3, BNP, CDKN1A, NOTCH1, NT-proBNP, and TNNI3). 

Covariates were assessed (age at recruitment, UKB recruitment centre, genetically 

determined sex, and proteomics batch). The protein levels are provided in normalized 

protein eXpression (NPX); Olink’s arbitrary unit in log2 scale. 

Genetic analyses 

Genotyping array data and exome sequencing data were available for over 450,000 

participants. Genotype calling and exome sequencing were performed and imputed as 

described previously11,17. For genome-wide association studies (GWAS), the imputed 

UKB genotyping data was used, where a minor allele frequency of >0.001 in autosomes 

was included. Individuals with more than 5% missing genotypes and SNPs with more 

than 5% missingness were excluded. Participant sex discrepancies, heterozygosity, and 

relatedness were handled by keeping only genetically European individuals and 

participants included in the UKB principal components analysis11. SNPs deviating from 

Hardy-Weinberg equilibrium (1x10-8) and those with an imputation INFO score of <0.4 

were excluded. Individuals with proteomics data were extracted and GWAS was 

undertaken using GCTA software (version 64)18. A sparse genetic relationship matrix 

(GRM) was created and FastGWA was undertaken with a mixed linear model, adjusting 

for the genotyping array batch. Genes of independent loci were prioritized through 

LocusZoom and eQTLs from GTEx (v8). Phenotype associations through GWAS 

catalog and PheWEB, were assessed. Heritability was estimated by creating a genetic 
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relationship matrix in GCTA and using a restricted maximum likelihood analysis (REML) 

to estimate the variance explained by the SNPs that were used to estimate the GRM. 

Mendelian randomization was undertaken using GWAS summary statistics from 

published literature4,5,19,20 with NT-proBNP, BNP, and ACE2, GWAS results using the R 

package TwoSampleMR. Exposure variants were included if GWAS significant (P<5x10-

8). Tests of pleiotropy, Steiger directionality, and heterogeneity were assessed. 

Rare variant association studies (RVAS) were undertaken using Regenie software on 

the DNA Nexus Research Analysis Platform21. The genotyping data for step 1 of 

Regenie included SNPs in autosomes with a minor allele frequency <0.01, missingness 

of >0.01, a minor allele count of <20, deviations from Hardy-Weinberg equilibrium (5x10-

15), and individuals with greater than 10% missingness, were excluded from the analysis. 

Interchromosome, SNPs in linkage disequilibrium (indep-pairwise 1000 100 0.9), and 

areas of low complexity, were excluded for step 1. Exome sequencing data for step 2 

was quality controlled for variants in the autosomes with missingness less than 10%, 

variants where less than 90% of all genotypes for that variant had a read depth less 

than 10, deviations from Hardy-Weinberg equilibrium (1x10-15), and individuals with 

more than 10% missingness. Step 2 of Regenie was run over different allele 

frequencies (singletons, 0.01, 0.001) for 6 overlapping, protein-altering variant, custom 

masks (LoF only; missense only (flagged by >1 of 5 deleterious software); missense 

only (all); missense only (flagged by all of 5 deleterious software); protein-altering 

variants (LoF and missense flagged by >1 of 5 deleterious software); protein-altering 

variants (all Lof and missense)), where the minimum minor allele count was at least 3. 

Bonferroni significance for 18,117 included genes was P<2.76x10-6. 
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Cardiomyopathy-associated rare variants were identified as previously published5,22,23 

for HCM and DCM. Individuals were classified as genotype negative (SARC-NEG) if 

they had no rare protein-altering genetic variation (minor allele frequency <0.001 in the 

UKB and the Genome Aggregation Database) in any genes that may cause or mimic 

HCM or DCM. These genes represented an inclusive list of genes with definitive or 

strong evidence of an association with cardiomyopathy, moderate evidence, and genes 

associated with syndromic phenotypes1,3,10. This SARC-NEG group was compared with 

individuals with disease-associated rare variants in genes with strong or definitive 

evidence for HCM (MYBPC3, MYH7, MYL2, MYL3, TNNI3, TNNT2, TPM1, and ACTC1) 

and DCM (BAG3, DES, DSP, FLNC, LMNA, MYH7, PLN, RBM20, SCN5A, TNNC1, 

TNNT2, and TTN). Analysis was restricted to robustly disease-associated variant 

classes for each gene3,10 and to variants sufficiently rare to cause penetrant disease 

(filtering allele frequency <0.00004 for HCM and 0.000084 for DCM24). Variants were 

classified as pathogenic/likely pathogenic (SARC-P/LP) if reported as P/LP for 

cardiomyopathy in ClinVar and confirmed by manual review. 

Cardiac MRI and ECG analyses 

A sub-study recalled participants for imaging, including CMR25, and ECG. For CMR, 

volumetric traits were measured using quality-controlled deep learning algorithms14. 

Deep neural networks were used for short-axis cine segmentation via a fully 

convolutional network to label pixels containing myocardium. The performance of image 

annotation using this algorithm is equivalent to a consensus of expert human readers 

and achieves subpixel accuracy for cardiac segmentation14. 5,324 participants with 

proteomics had imaging data available. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 8, 2024. ; https://doi.org/10.1101/2024.10.18.24315790doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.18.24315790
http://creativecommons.org/licenses/by/4.0/


McGurk et al. Circulating cardiovascular proteomics 12

The ECGs were performed according to a defined protocol and analysed using 

proprietary software (GE CardioSoft, Boston, MA). Data from the first imaging visit 

(instance 2, n=42,386) was labeled using a previously trained convolutional neural 

network designed to identify six diagnoses from the ECG13: sinus bradycardia, sinus 

tachycardia, left bundle branch block, right bundle branch block, 1st degree AV block, 

and atrial fibrillation. Automated diagnoses had F1 scores above 80% and specificity 

over 99%13. The ECGs were preprocessed with a bandpass filter 0.5 to 100hz, a notch 

filter at 60hz, and re-sampling to 400hz. Zero padding resulted in a signal with 4,096 

samples for each lead for a 10s recording, which was used as input to the neural 

network model. The binary outputs (presence or absence of each diagnosis) were used 

for subsequent analyses. 4,831 participants with proteomics had ECG data available. 

For analyses comparing plasma proteomics sampled at recruitment to records from the 

subsequent imaging appointment, the analyses were duplicated to include an 

adjustment for the difference in time. 

Statistical analyses 

The analyses were undertaken using R (v4.1.2) and the UKB research analysis platform. 

The results are expressed as mean and standard deviation (SD). The Student’s t-test 

was used to assess differences in means for quantitative traits and Fisher’s exact test 

for counts. Pearson’s correlation coefficient described relationships. Effect sizes are 

presented as standardised beta coefficients. The proteomic measures were adjusted 

using multiple linear regression for age at recruitment, age2, UKB recruitment centre, 

genetically determined sex, age x sex interaction, proteomics batch, and genetically 

determined European ancestry, and the resulting standardized residuals (mean=0, 
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SD=1) were normalized by an inverse rank normalization. Cardiovascular-associated 

medication intake was self-reported and curated for participants who reported taking 

medications of interest (Table S6). Phenome-wide association studies (PheWAS) were 

undertaken using the PheWAS R package with clinical outcomes and coded 

phenotypes converted to 1,840 categorical PheCodes. P-values were deemed 

significant with Bonferroni adjustment for the number of PheCodes measured. 

Cox proportional hazards regression models were assessed with the full cohort of 

participants for NT-proBNP, BNP, and ACE2, and created using the first reported UKB 

data (summarising the first date of a report from all UKB data (Hospital episode 

statistics, primary care, self-reported, etc.)) for heart failure, cardiomyopathy, atrial 

fibrillation, hypertension, diabetes, and myocardial infarction, as identified through 

PheWAS analysis, using the survival and survminer R packages by age to death, 

diagnosis, or last date of follow up report. Participants diagnosed before recruitment 

were excluded. Participants who died without a diagnosis were also excluded as a 

sensitivity analysis (Figure S15).  
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Results 

Circulating biomarkers of age, sex, alcohol intake, smoking status, and ancestry 

46,011 participants had measures of the proteins assessed (participant characteristics: 

Table S8). The correlation between the levels of NT-proBNP and BNP was R=0.67 

(Figure S9). Levels of ACTA2 had the strongest relationships with the other circulating 

protein levels (e.g., ACTN4 (R=0.30), NT-proBNP (R=0.30), BNP (R=0.21), BAG3 

(R=0.21); Figure S9). 

A positive relationship was identified with age at recruitment for measures of ACTA2 

(R=0.42), NT-proBNP (R=0.34), BNP (R=0.23), and ACE2 (R=0.16; Figure S1). ACE2, 

CDKN1A, and TNNI3, were increased in male compared to female participants (β=0.47, 

P=1.0x10-16; β=0.20, P=6.61x10-68; β=0.21, P=3.97x10-127; respectively; Figure S2). 

NOTCH1, NT-proBNP, and BNP were increased in female participants (β=0.06, 

P=8.61x10-258; β=0.42, P=1.62x10-278; β=0.25, P=3.50x10-69; respectively; Figure S2). 

A positive relationship was observed between alcohol intake and smoking status 

(smoker at recruitment compared to never smoked), and measures of ACE2 (R=0.14 

and β=0.22, P=1.70x10-44; respectively) and NOTCH1 (R=-0.15 and β=-0.16, 

P=6.11x10-23). BAG3, CDKN1A, and TNNI3 also had relationships with smoking status 

(β=-0.08, P=7.94x10-8; β=0.10, P= 2.38x10-10; β=-0.05, P=0.0008; respectively). 

Proteomic variability was observed with ancestry. Participants of self-reported African or 

Caribbean ancestry (n=584 and n=434, respectively) had increased average ACE2 and 

decreased ACTA2, ACTN4, BAG3, NT-proBNP, and BNP, compared to British ancestry 

which dominates the UKB cohort (n=40,228, 87% British; Figure 2). Participants of 
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Chinese ancestry (n=131) had decreased average ACTA2, BAG3, CDKN1A, and NT-

proBNP, and participants of Indian ancestry (n=495) had increased average BAG3, 

CDKN1A, and NOTCH1, compared to British ancestry (Figure 2). 

Medication use 

Medication use was reported at recruitment when the blood was sampled for proteomics 

(n=46,011 participants) and 8.4 years later (range 3.8-12.7 years) at the imaging 

appointment (n=5,324). 39%-75% of the individuals with reported cardiovascular 

medications at recruitment also reported the medication at the imaging appointment 

(39% on antiplatelets, 57% on beta blockers, 60% on angiotensin receptor blockers 

(ARBs), 65% on ACE inhibitors, 69% on calcium channel blockers, and 75% on 

anticoagulants). 

Most of the protein levels (measured from blood samples collected at recruitment) had 

significant associations with medication use reported at recruitment (Table S6). To 

understand whether the protein levels may herald a disease that will require future 

treatment, protein measures at recruitment were assessed for an association with 

medication reported at the imaging visit. Participants with increased ACE2, NT-proBNP, 

and BNP levels at recruitment positively associated with beta-blocker use at the imaging 

visit 8 years later. ACE2 was also associated with ACE inhibitor (β=0.27, P=7.90x10-11) 

and ARB use (β=0.22, P=8.44x10-4) and participants with increased NT-proBNP or BNP 

at recruitment were more likely to report anticoagulant use (β=1.02, P=5.44x10-6; 

β=0.91, P=6.07x10-6; respectively) at the imaging visit (Table S6). The results were 

similar when the proteins were adjusted for the time between recruitment and the 

imaging visit (Table S6). 
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To further stratify these associations and understand whether the increase in plasma 

proteins at recruitment was due to medication use at recruitment or predictive of future 

medication use, we assessed the change in medication use: whether the protein levels 

at recruitment were significantly altered with medication i) intake reported only at 

recruitment, ii) uptake by the imaging visit, or iii) longer-term use and reported during 

both visits, compared to participants without reported medication (Figure 3). ACE2 

levels predicted the future uptake of beta-blockers and ACE inhibitors, suggesting that 

ACE2 levels herald prescription and associated diseases. NT-proBNP and BNP levels 

predicted long-term use and future uptake of anticoagulants (Figure 3). The increase in 

NT-proBNP and BNP levels observed for beta-blockers may be in part due to the use of 

the respective medications and/or overt disease at recruitment, as they predicted both 

current and future use. Adjustment for time since imaging had little effect on the results 

(Figure S13). 

Association with clinical features and diagnoses 

Through phenome-wide association studies (PheWAS), the most significant 

associations with each protein were with cardiac dysrhythmias (NT-proBNP), atrial 

fibrillation and flutter (BNP), chronic renal failure (ACTA2, BAG3, NOTCH1, ACTN4), 

type-2 diabetes (ACE2, CDKN1A), and congestive heart failure (TNNI3; Figure 4, Table 

S1, Figures S16-S30). Renal diseases associated with most of the protein measures 

analysed (Figure S25, Table S1). ACE2, ACTA2, NT-proBNP, and BNP levels 

associated with a range of respiratory conditions (Figure S17, Table S1). ACE2 levels 

associated with type-2 diabetes, epilepsy, tobacco use disorder, alcohol-related 

disorders, and liver diseases (Figures S16-S30, Table S1). 
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A curated analysis was used to assess associations between the nine circulating 

proteins and specific diagnoses of cardiomyopathies, muscular dystrophy, heart failure, 

scoliosis, respiratory failure, coronary disease, cardiac arrhythmia (including atrial 

fibrillation and flutter), stroke, hypertension, valve disease, hypercholesterolemia, and 

diabetes (Figure S14, Table S2). ACE2, ACTA2, TNNI3, NT-proBNP, and BNP levels, 

had the most associations with curated traits. Hypertension and heart failure correlated 

with all proteins, except NOTCH1 and CDKN1A, respectively. 

Cardiac ECG-AI diagnoses and MRI parameters 

Participants with increased NT-proBNP at recruitment were diagnosed more frequently 

with sinus bradycardia (β=0.25, P=2.82x10-7) and atrial fibrillation (β=0.92, P=7.24x10-9) 

on future ECG-AI analysis. The associations remained significant when individuals with 

reported beta-blocker use were removed from the analysis (sinus bradycardia, β=0.25, 

P=9.44x10-7; atrial fibrillation, β=0.83, P=0.0001). The association with atrial fibrillation 

was also observed for BNP (β=0.81, P=2.27x10-6). Adjustment for the time between 

recruitment and imaging had little effect (NT-proBNP and sinus bradycardia, β=0.27, 

P=2.64x10-7; NT-proBNP and atrial fibrillation, β=1.17, P=2.29x10-10; BNP and atrial 

fibrillation, β=0.96, P=1.15x10-7). 

Analyses of CMR-derived traits identified relationships between NT-proBNP and BNP 

and increased left atrial volume (R=0.14-0.17) and decreased atrial ejection fraction 

(R=-0.14--0.19). NT-proBNP also correlated with decreased ventricular wall thickness 

(R=-0.21) and volumes (R=-0.11--0.18) and increased ventricular ejection fraction 

(R=0.12). The relationships between NT-proBNP and BNP with atrial volumes (R=0.11-
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0.21) and with atrial ejection fractions (R=-0.11--0.17) were not affected by adjustment 

for the time between the recruitment and imaging visit (Table S7). 

Carriers of HCM and DCM pathogenic variants 

Participants carrying a pathogenic/likely pathogenic variant in a HCM-associated gene, 

had increased levels of ACE2 and NT-proBNP (but not BNP) at recruitment (β=0.47, 

P=0.0004; β=0.62, P=0.0007; respectively). Participants carrying a pathogenic/likely 

pathogenic variant in a DCM-associated gene also had increased NT-proBNP at 

recruitment (β=0.32, P=0.0002). These associations were likely due to overt 

cardiomyopathy, as the signals became non-significant with the removal of individuals 

with diagnosed cardiomyopathy. 

Genetic association studies 

SNP-based heritability of the protein levels, the amount of variation in the protein levels 

estimated to be due to genetic factors, identified ACE2 levels with the highest estimated 

heritability (34.5%), followed by NT-proBNP (33.5%), BAG3 (25.7%), NOTCH1 (22.3%), 

BNP (18.9%), ACTA2 (17.0%), and CDKN1A (14.2%). ACTN4 and TNNI3 levels had 

very low and non-significant heritability estimates; either more influenced by non-genetic 

factors or measurement error. 

To identify genetic modifiers of the circulating protein levels, we undertook a genome-

wide association study (GWAS; Figure 5, Table S3) and a rare variant association 

study (RVAS) for each protein measure. The GWAS and/or RVAS of the levels of 

ACTA2, BAG3, CDKN1A, NOTCH1, NT-proBNP, and BNP, identified the expected 
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gene-protein pair (cis-expression quantitative trait loci were identified at the genetic loci 

of ACTA2, BAG3, CDKN1A, NOTCH1, and NPPB). 

Recurrent modifiers included GCKR for BAG3, CDKN1A, and NOTCH1 levels, APOE 

for CDKN1A and NOTCH1 levels, and SERPINA1 for ACE2 and NOTCH1 levels (Table 

S3). Glucokinase regulator (GCKR) is a regulatory protein that inactivates glucokinase 

in liver and pancreatic islet cells and has been previously associated with 

hyperlipidemia and diabetes. Apolipoprotein E (APOE) is an apolipoprotein involved in 

lipoprotein metabolism. Serpin family A member 1 (SERPINA1) is a serine protease 

inhibitor associated with alpha 1-antitrypsin deficiency. The gene is linked to chronic 

obstructive pulmonary disease, emphysema, and chronic liver disease. 

Rare variant association studies (RVAS; Table S4) found that ACTA2 levels associated 

with variants in LMOD1. Leiomodin 1 (LMOD1) has been implicated in smooth muscle 

dysfunction and thoracic aortic aneurysm and dissection previously and is predicted to 

interact with ACTA226. 

ACE2 and its potential role in hypertension and diabetes 

Increasing ACE2 levels at recruitment was correlated with systolic blood pressure 

(R=0.21; Figure S14)) and was predictive of an incident hypertension diagnosis (Figure 

7, Figure S15). Two-sample Mendelian randomisation with a genetic instrument for 

systolic blood pressure19 showed evidence for decreased systolic blood pressure to 

increase circulating ACE2 (Figure 6, Figure S3-S4, Table S5). This suggests a 

protective role for increased ACE2 levels in blood pressure control. 
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We showed that ACE2 was significantly increased on average in participants of African 

or Caribbean ancestry and some guidelines suggest ACE inhibitors (targeting the ACE1 

protein) are less effective in “Black” individuals (see the Discussion). A high level of 

ACE2 at recruitment in participants of African or Caribbean ancestry was not 

significantly predictive of a hypertension diagnosis, however, a limitation of this 

experiment is the small sample size (n=682). 

ACE2 levels were associated with the loci of diabetes-associated genes HNF1A and 

HNF4A at GWAS and RVAS (Table S3-S4). Increasing ACE2 levels at recruitment 

were predictive of an incident type-2 diabetes diagnosis (Figure 7, Figure S15). Two-

sample Mendelian randomisation with the results of a GWAS of type-2 diabetes27, 

showed evidence for an inverse relationship: ACE2 genetic instrument decreased the 

risk of type-2 diabetes while type-2 diabetes increases ACE2 levels (Figure 6, Figure 

S7). The causal protective relationship of ACE2 as an exposure for type-2 diabetes can 

be exemplified through a missense variant (rs1169288) in the gene hepatocyte nuclear 

factor-1 alpha (HNF1A). The variant is associated with an increased risk of type-2 

diabetes (GWAS β=0.04) and decreased levels of circulating ACE2 (GWAS β=-0.16).  

NT-proBNP and BNP and their role in heart failure 

The GWAS of NT-proBNP identified cardiomyopathy- or heart failure-associated genetic 

loci (e.g., HSPB7/CLCNKA, CDKN1A, TTN, FLNC, and BAG3). BNP also associated 

with variants in the loci of BAG3 at GWAS. Through RVAS, NT-proBNP and BNP 

associated with variants in NPPB and the region surrounding the natriuretic peptide 

genomic locus (NPPA/NPPB). This suggests that the natriuretic peptide locus is the 
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major effect locus of NT-proBNP and BNP levels as the loci of the suggested furin and 

corin convertase enzymes involved in their biosynthesis were not identified. 

NT-proBNP and BNP levels were increased in individuals with overt cardiomyopathy 

(Figure S14) and were predictive of incident diagnoses (heart failure, cardiomyopathy, 

and atrial fibrillation (Figure 7, Figure S8, Figure S12, Figure S15)). To understand 

whether these increased levels are disease-causing or protective in cardiomyopathies, 

we undertook two-sample Mendelian randomisation with the results of GWAS of HCM28 

and DCM5. This analysis suggested that left ventricular hypertrophy increases NT-

proBNP and BNP circulating levels (Figures S5-S6, Table S5). An example of this 

effect is the lead SNP (downstream variant rs198379) of the NPPB locus associated 

with increased NT-proBNP and BNP circulating levels, here and previously29,30. The 

variant increases NPPB atrial appendage expression on GTEx9 and increases the risk 

of heart failure and HCM through case-control GWAS20,31 (Figure S5). 

The opposite was observed for the DCM Mendelian randomisation; common genetic 

variants associated with DCM risk5 predisposed to decreased NT-proBNP levels 

(Figure S5, Table S5). Using the same NPPB SNP as described as an example, the 

variant increased levels of NT-proBNP and BNP, and decreased the risk of DCM. 

Opposing genetic relationships between HCM and DCM common variants have been 

described elsewhere6,28 and indicate that genetic loci underlying the variability of left 

ventricular function in the general population may be differentially involved in 

susceptibility to HCM and DCM. 

Atrial fibrillation32 increased NT-proBNP circulating levels observationally and through 

Mendelian randomisation (Figure S10, Table S5). However, the observed association 
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between NT-proBNP and myocardial infarction33 at PheWAS (Figure 4) and with 

incident myocardial infarction risk (Figure 7, Figure S15) did not have evidence of 

causality (Table S5, Figure S11). 

NT-proBNP had a positive, relationship with a heart failure diagnosis alongside older 

age, a diagnosis of cardiomyopathy or atrial fibrillation, and carriers of pathogenic 

cardiomyopathy-associated variants (Figure 7, Figure S12, Figure S15). We showed 

that NT-proBNP and BNP were significantly decreased on average in participants of 

African or Caribbean ancestry. Increasing NT-proBNP levels at recruitment in an 

analysis of participants of African or Caribbean ancestry only remained significantly 

predictive of heart failure (BNP was not significant).  
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Discussion 

We identified relationships between circulating proteins with cardiovascular disease and 

those that mediate causal relationships between cardiovascular risk factors and disease 

development. The results presented identified age, ancestry, and sex-specific protein 

biomarkers of cardiovascular disease risk. Genetic studies identified variants in GCKR, 

APOE, and SERPINA1, as modifiers for more than one cardiovascular-associated 

protein. 

We show that variants in BAG3 influence plasma NT-proBNP and BNP levels. We have 

previously described a particular common missense variant within BAG3 (C151R; 

rs2234962) that demonstrates BAG3’s potential cardioprotective function in GWAS of 

DCM, HF, and ejection fraction, alongside risk for HCM6. The variant is associated with 

proteins maintaining myofibrillar integrity and causes improved response to proteotoxic 

stress. BAG3’s role in the protection or risk for opposing cardiomyopathies and 

carcinomas holds promise for devising therapeutic interventions, diagnostics, and 

tailored treatments. 

Six of the nine proteins assessed have been previously identified (Table S19 at 

reference34) as the strongest predictors in large-scale proteomic risk scores of atrial 

fibrillation (NT-proBNP, BNP), cardiomyopathy (NT-proBNP, TNNI3, BNP), heart failure 

(NT-proBNP), hypertension (NT-proBNP, ACE2, ACTA2), nonrheumatic mitral valve 

disorders (NT-proBNP, BNP), pulmonary hypertension (NT-proBNP, ACE2, BNP), 

stable angina (NT-proBNP), hyperplasia of prostate (NT-proBNP, ACTA2, BNP), kidney 

disease (NT-proBNP, BNP), infections (NT-proBNP, ACTN4, BNP), and pleural effusion 

(NT-proBNP). 
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ACE2 and COVID-19, diabetes, and hypertension 

The observation of the upregulation of ACE2 with smoking35,36 and alcohol37–39 has 

been identified in extensive studies of ACE2 in COVID-19 (where the COVID-19 virus 

was found to engage ACE2 for cellular entry). There is minimal information on the 

impact of this on cardiovascular disease risk. Through two-sample Mendelian 

randomisation, we showed that genetic instruments for decreased systolic blood 

pressure inversely correlated with circulating ACE2 levels. The relationship of ACE2 

circulating levels with cardiovascular risk mediators and genetic factors here suggests 

that it may be an important target for therapeutic intervention. The increased ACE2 

levels observed here with ACE inhibitor treatment (targeting the ACE1 protein) suggests 

that teasing apart the role of the increase in vasodilator ACE2 effects alongside the 

decrease in vasoconstriction ACE1 effects would aid our understanding of the success 

of ACE inhibitors, whether their impact is modified by ACE2, and whether the 

upregulation or stimulation of ACE2-induced vasodilation would be beneficial in clinical 

practice. 

However, ACE inhibitors are thought to have less blood pressure-lowering effects and 

increased risk of angioedema in “Black” individuals with hypertension and international 

guidelines preferentially recommend diuretics and calcium channel blockers over ACE 

inhibitor treatment in these individuals. Concerns have been expressed with the 

generalisability of the guidelines and the lack of mechanistic understanding40. Further 

exploration is required into the increased average circulating ACE2 protein levels 

observed here in individuals of self-reported African or Caribbean ancestry. 
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Angiotensin receptor blockers prevent the action of angiotensin II for high blood 

pressure regulation, preventing heart failure, and preventing kidney failure in people 

with diabetes. ACE2 increased expression in the endocrine pancreas in diabetes is 

hypothesized to act in a compensatory manner41 and here we provide evidence of 

genetic associations that strengthen a potential role for ACE2 expression and ACE2 

protection against diabetes. Conversely, as a biomarker, ACE2 may have potential as a 

measure of increased cardiovascular disease risk. 

NT-proBNP: a predictive biomarker of hypertrophic cardiomyopathy 

NT-proBNP is a prohormone with an N-terminal that is cleaved to release brain or b-

type natriuretic peptide 32 (BNP). BNP is released by the heart upon myocardial wall 

stretch; it reduces fluid and sodium retention and causes mild vasodilation, regulating 

blood pressure. It has been implicated in hypertrophy, fibrosis, angiogenesis, and 

cardiomyocyte proliferation and viability. BNP and NT-proBNP are circulating 

biomarkers of heart failure and hypertrophy due to the reactivation of NPPA and 

NPPB42. Here, NT-proBNP circulating levels are associated with variants in the loci of 

these atrial-expressed genes. 

We identified an opposing relationship between HCM and DCM and the BNPs; while the 

levels of BNPs are increased with the progression of both cardiomyopathies, causality 

via Mendelian randomisation suggested that BNPs are part of HCM pathology and 

progression while the observed increase in DCM is an adaptive response to contractile 

dysfunction and cardiomyocyte stretch. The roles of BNPs in natriuresis and promoting 

hypertrophy may protect against DCM-associated systolic dysfunction. In models, 

endogenous natriuretic peptides have been shown to protect the heart in a mouse 
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model of DCM and sudden death, NPPB knockout rats at 3 months showed hypertrophy 

without alteration to the ventricles or function, which transitioned at 6 months into DCM, 

and diabetic cardiomyopathy mice models treated with exogenous BNP prevented the 

development of DCM, while knockdown of endogenous BNP accelerated DCM43–45. 

ARBs have been trialled as a treatment for early-stage HCM46 based on data that 

suggest they abrogated the development of hypertrophy and fibrosis. Initial results of 

the VANISH trial were encouraging. Other studies are investigating the combination of 

sacubitril-valsartan47 (e.g., NCT04164732). Sacubitril is a neprilysin inhibitor that inhibits 

the degradation of BNPs. Our results question whether this combination may have 

negative consequences in patients with hypertrophy, given the possible effects of 

increased BNP in this context. Our results are in keeping with existing data that support 

a positive effect in patients with heart failure with reduced ejection fraction48, including 

those with dilated cardiomyopathy. Further study is required to address this. 

We show better predictive capacity for measures of circulating NT-proBNP than BNP 

with cardiovascular disease. While the measures are highly correlated (R=0.67), NT-

proBNP is measured at a higher concentration, has a higher prognostic value49, has 

been shown to have sustained elevation for 12 weeks50, the predictive capacity of the 

ratio of NT-proBNP:BNP has been explored previously51, we show that NT-proBNP was 

more predictive of heart failure, other cardiovascular diseases, and risk factors, and is 

more influenced by genetic factors (heritability) than BNP, suggesting important 

differences in measurable levels. NT-proBNP is inactive and has a longer half-life than 

BNP which likely explains the improved prediction capacity and increased heritability of 

plasma measures of NT-proBNP identified here. 
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The relationships identified with sex, ancestry, and specific cardiovascular diseases, 

may have implications for NT-proBNP’s predictive capacity in clinical settings. It could 

be suggested that the association of NT-proBNP levels with female sex may be due to 

lower BMI, but adjustment for BMI did not alter this finding. NT-proBNP >125 pg/mL is 

common in females without classical cardiovascular risk factors as well as older 

people52. The alteration in average NT-proBNP levels with ancestry is thought to convey 

an altered risk for hypertension53,54, but as average levels are lower in individuals of 

Chinese and African ancestry, NT-proBNP may not have similar predictive capacity 

across ancestries. Analyses of proteomics in more diverse ancestries would aid this 

assessment. 

Altered NT-proBNP has been previously noted in patients with atrial fibrillation55, which 

may influence heart failure or cardiac event risk prediction capabilities in atrial fibrillation 

patients. Enlargement of the left atrium has been shown to increase NT-proBNP and 

BNP in individuals diagnosed with atrial fibrillation56. Enlarged atria are associated with 

both existing and incident atrial fibrillation and atrial fibrillation and heart failure have 

shared pathogenesis. The association of NT-proBNP (and BNP) with future uptake of 

anticoagulant medication is likely due to a diagnosis of atrial fibrillation or flutter. 

The increase of NT-proBNP circulating levels in participants with a pathogenic/likely 

pathogenic cardiomyopathy-associated variant may be indicative of individuals at 

particular risk of cardiomyopathy, incident heart failure, or atrial fibrillation. The 

association of NT-proBNP circulating levels with sinus bradycardia has been identified 

previously and thought to be through increased stroke volume and wall tension57, and 
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we show evidence here that it is unlikely to be due to beta-blockers prescribed for 

hypertension, as previously suggested58.  

Limitations 

There are several limitations to this study. The UKB has biases (survivorship, 

dominated by European ancestry, etc.). Assessing single time point data limits 

assessments of causality and directionality. While informative, assessments of 

medication use require longitudinal follow-up, and the medication associations 

described may be due to the diagnoses they were prescribed for. The proteomics was 

measured in samples collected at baseline recruitment while the imaging appointment 

was on average 8 years later and sensitivity analyses adjusting for this have been 

untaken. Participants with both proteomics and imaging is currently limited. 

Conclusions 

We describe the relationships between nine plasma proteins with roles in genetic or 

structural cardiovascular disease or treatment pathways, that may mediate relationships 

between cardiovascular risk factors and disease development. We discuss the potential 

for additional avenues of therapeutic intervention with studies of ACE2 in hypertension 

and diabetes, and BAG3 in cardiomyopathies, and the need to understand the 

relationships with NT-proBNP for diagnostic purposes in stratified groups of patients. 

This study provides an improved understanding of the circulating pathways depicting 

cardiovascular disease dynamics and the influencing modifiers and risk factors. 
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Figures 

Figure 1 Study flow chart and protein summary. A summary of the main analysis

steps and data available for the analysis of nine plasma proteins and the genetic and

outcome associations. MRI, magnetic resonance imaging; CMR, cardiac MRI; WES,

whole exome sequencing; HES, hospital episode statistics; SR, self-reported. 
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Figure 2 The relationships with proteins and ancestry. The plots depict the 

significant differences in protein levels across self-reported ancestries. Participants of 

self-reported African or Caribbean ancestry had increased average ACE2 and 

decreased ACTA2, ACTN4, BAG3, NT-proBNP, and BNP, compared to British ancestry. 

Participants with Chinese ancestry had decreased average ACTA2, BAG3, CDKN1A, 
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and NT-proBNP, and participants with Indian ancestry had increased average BAG3, 

CDKN1A, and NOTCH1, compared to British ancestry. The significance of differences 

in means as derived by Student’s t-test are denoted as stars compared to British 

ancestry. The y-axis units are Olink’s arbitrary unit in log2 scale. The sample sizes were 

as follows (African n=584, British n=40228, Caribbean n=434, Chinese n=131, Indian 

n=495, Irish n=1200, Other n=2736, Pakistani n=143). 
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Figure 3 The relationships with proteins and medication intake. The plots depict 

the proteins measured at recruitment that were significantly increased with medication 
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intake reported only at recruitment (current), or the imaging visit on average 8 years 

later (future), or reported during both visits (current (long-term)). The significance of 

differences in means as derived by Student’s t-test are denoted as stars compared to 

no report of the medication (never). The y-axis units are standardized residuals after 

adjustment for covariates. The data only includes those with proteomics who attended 

the imaging visit (n=5,324).   
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Figure 4 Phenome-wide association study results of the plasma protein levels 

with selected circulatory disorders.  

Phenotypes as phecodes are described on the y-axis and the protein traits on the x-axis. 

Each point denotes a significant PheWAS association with a Bonferroni correction for 

the number of analyzed phecodes. The shape and colour denote the direction of effect 
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and odds ratio. Only the most significant associations with selected, non-redundant 

phenotypes of the circulatory disorder category are presented for clarity. See Table S1 

for the full PheWAS results.  
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Figure 5 Significant genome-wide association study results. The Manhattan plots 

present the GWAS significant SNPs for the nine protein levels. The prioritized gene is 

noted for the significant loci identified. A subset of gene labels for ACE2, CDKN1A, and 

NT-proBNP, have been selected to allow for presentation. The y-axis is cut at a 

minimum of 5e-08 (7.3). Please see Table S3 for the full GWAS results. 
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a) 

 

b)     c) 

  

Figure 6 Evidence of a causal relationship between systolic blood pressure, type-

2 diabetes, and ACE2. Increased circulating ACE2 can decrease blood pressure 

through the creation of vasodilators and is causally associated with type-2 diabetes. A 

genetic predisposition for decreased systolic blood pressure is associated with 

increased ACE2. a) Mendelian randomization genetic determination model of systolic 
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blood pressure (mmHg decrease) genetic instruments as exposures for ACE2 outcome. 

Two-sample Mendelian randomization was undertaken with ACE2 (using the GWAS 

results) and decreased systolic blood pressure (from GWAS summary statistics of 

published data). b) Mendelian randomization genetic determination model of type-2 

diabetes genetic instruments as exposures for ACE2 outcome. Two-sample Mendelian 

randomization was undertaken with ACE2 (using the GWAS results) and type-2 

diabetes (from GWAS summary statistics of published data). c) Mendelian 

randomization genetic determination model of ACE2 genetic instrument as an exposure 

for type-2 diabetes. See Table S5 and Figures S3-S4 for further details.  
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a) NT-proBNP and HF          b) NT-proBNP and HF 

 

c) NT-proBNP and Afib          d) NT-proBNP and MI         
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e) ACE2 and hypertension          f) ACE2 and type-2 diabetes 

 

Figure 7 Increasing levels of NT-proBNP are observed in participants diagnosed 

with incident heart failure, atrial fibrillation, and myocardial infarction. Increasing 

levels of ACE2 are observed in participants diagnosed with incident hypertension 

and type-2 diabetes. a) The figure shows the sequential increase in mean NT-proBNP 

with overt diseases and other modifiers influencing the protein’s levels. This includes a 

heart failure (HF) diagnosis alongside sex, age at recruitment, a diagnosis of 

cardiomyopathy or atrial fibrillation, and carriers of pathogenic cardiomyopathy-

associated variants. The Student’s t-test compared “No HF diagnosis” as the reference 

group. The groups contained the following sample sizes, respectively: (No HF 

diagnosis) 44050, (female groups:) 103, 286, 12, 33, 234, 2, (male groups:) 202, 496, 7, 

42, 470, 14. NT-proBNP units are Olink’s arbitrary unit in log2 scale. HF, heart failure; 

plp, P/LP variant carrier; Afib, atrial fibrillation; CM, cardiomyopathy diagnosis. The 

forest plots (b)-f)) of Cox proportional hazards regression models were created 

assessing death or diagnosis from recruitment with those diagnosed before recruitment 
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excluded. Sex (increasing risk is male), European ancestry (increasing risk is 

European), and age at recruitment (incremental risk per year lived), were added to this 

multivariable analysis for comparison. Forest plots are presented for deciles of NT-

proBNP levels with incident b) heart failure (HF), c) atrial fibrillation (Afib), d) myocardial 

infarction (MI), from recruitment, and ACE2 levels by decile with incident e) 

hypertension and f) type-2 diabetes, from recruitment.   
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Supplementary information 

 

Supplementary figures 

 

 

 

Figure S1 The relationships with age. The plots depict the relationships between age 

at recruitment (x-axis, years) and the nine plasma protein levels. Pearson’s correlation 

coefficient between the protein levels and age were as follows; R=0.16 ACE2, R=0.42 

ACTA2, R=0.34 NT-proBNP, R=0.06 ACTN2, R=0.06 BAG3, R=0.02 CDKN1A, R=0.06 

NOTCH1, R=0.06 TNNI3, and R=0.23 BNP. 
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Figure S2 The relationships with sex. The distributions depict the relationships 

between sex and the nine plasma protein levels. ACE2 (P=1.0x10-16, β=0.47), ACTA2 

(P=1.08x10-13, β=0.04), BAG3 (P=4.97x10-85, β=0.08), CDKN1A (P=6.61x10-68, β=0.20), 

and TNNI3 (P=3.97x10-127, β=0.21) were significantly increased with male sex. 

NOTCH1 (P=8.61x10-258, β=0.06), NT-proBNP (P=1.62x10-278, β=0.42), and BNP 

(P=3.50x10-69, β=0.25), were significantly increased with female sex. 
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a)      b) 

 

c)      d) 

 

Figure S3 Mendelian randomization analysis of decreased systolic blood 

pressure as an exposure for ACE2 levels. The plots show summary information on 

the analyses, performed as per the TwoSampleMR R package. a) Mendelian 

randomization scatter plot for decreased systolic blood pressure as an exposure for 

ACE2. b) Mendelian randomization single SNP funnel plot for decreased systolic blood 
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pressure as an exposure for ACE2. c) Mendelian randomization single SNP forest plot 

for decreased systolic blood pressure as an exposure for ACE2. d) Mendelian 

randomization leave one out plot for decreased systolic blood pressure as an exposure 

for ACE2.  
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a)      b) 

 

c)      d) 

 

Figure S4 Mendelian randomization analysis of ACE2 levels as an exposure for 

systolic blood pressure. The plots show summary information on the analyses, 

performed as per the TwoSampleMR R package. a) Mendelian randomization scatter 

plot for systolic blood pressure as an outcome of ACE2 exposure. b) Mendelian 

randomization single SNP funnel plot for systolic blood pressure as an outcome of 
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ACE2 exposure. c) Mendelian randomization single SNP forest plot for systolic blood 

pressure as an outcome of ACE2 exposure. d) Mendelian randomization leave one out 

plot for systolic blood pressure as an outcome of ACE2 exposure.  
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a)      b) 

 

c)      d) 
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e)      f) 

 

g)      h) 
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i)      j) 

 

Figure S5 Mendelian randomization analysis of cardiomyopathies as an exposure 

for NT-proBNP levels. Mendelian randomisation for cardiomyopathy exposures: a)-d) 

DCM and e)-h) HCM, for NT-proBNP outcome. Summary plots are presented in i)-j). 

Left ventricular hypertrophy increases NT-proBNP and BNP circulating levels, with the 

effect mainly through variants in BAG3 and CLCNKA. The plots show summary 

information on the analyses, performed as per the TwoSampleMR R package. a) 

Mendelian randomization scatter plot for dilated cardiomyopathy (DCM) as an exposure 

for NT-proBNP. b) Mendelian randomization single SNP funnel plot for DCM as an 

exposure for NT-proBNP. c) Mendelian randomization single SNP forest plot for DCM 

an exposure for NT-proBNP. d) Mendelian randomization leave one out plot for DCM as 

an exposure for NT-proBNP. e) Mendelian randomization scatter plot for hypertrophic 

cardiomyopathy (HCM) as an exposure for NT-proBNP. f) Mendelian randomization 

single SNP funnel plot for HCM as an exposure for NT-proBNP. g) Mendelian 

randomization single SNP forest plot for HCM as an exposure for NT-proBNP. h) 
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Mendelian randomization leave one out plot for HCM as an exposure for NT-proBNP. i) 

Mendelian randomization genetic determination model of CM and HF genetic 

instruments as exposures for NT-proBNP outcome. j) The effect size of the lead NPPB 

SNP (downstream variant rs198379) identified here to associate at GWAS with 

increased NT-proBNP and BNP, and from GWAS summary statistics of published case-

control studies of cardiomyopathies and heart failure. The eQTL variant increases 

NPPB expression in the atria (GTEx). The results suggest that the variant increases NT-

proBNP and BNP production, the risk of HCM and heart failure, and decreases the risk 

of DCM. See Table S5 for further details.  
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a)      b) 

 

c)      d) 
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e)      f) 

 

g)      h) 

 

Figure S6 Mendelian randomization analysis of NT-proBNP as an exposure for 

cardiomyopathies. Mendelian randomisation for cardiomyopathy outcomes: a)-d) DCM 

and e)-h) HCM, for NT-proBNP exposure levels. The plots show summary information 

on the analyses, performed as per the TwoSampleMR R package. a) Mendelian 

randomization scatter plot for NT-proBNP as an exposure for dilated cardiomyopathy 
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(DCM). b) Mendelian randomization single SNP funnel plot for NT-proBNP as an 

exposure for DCM. c) Mendelian randomization single SNP forest plot for NT-proBNP 

as an exposure for DCM. d) Mendelian randomization leave one out plot for NT-proBNP 

as an exposure for DCM. e) Mendelian randomization scatter plot for NT-proBNP as an 

exposure for hypertrophic cardiomyopathy (HCM). f) Mendelian randomization single 

SNP funnel plot for NT-proBNP as an exposure for HCM. g) Mendelian randomization 

single SNP forest plot for NT-proBNP as an exposure for HCM. h) Mendelian 

randomization leave one out plot for NT-proBNP as an exposure for HCM. 
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a)      b) 

 

c)      d) 

 

  

−0.1

0.0

0.1

0.1 0.2 0.3
SNP effect on Type 2 diabetes

S
N

P
 e

ffe
ct

 o
n

 A
C

E
2

MR Test

Inverse variance weighted

MR Egger

Simple mode

Weighted median

Weighted mode

All − Inverse variance weighted

All − MR Egger

rs1169288

rs6762208

rs140386498

rs72928978

rs7572857

rs60980157

rs1800574

rs9379084

rs328

rs56200889

rs2032844

rs35720761

rs1127787

rs13266634

rs146886108

rs4077129

rs5215

rs5219

rs41278853

rs35658696

rs35742417

rs665268

rs7607980

rs16826069

rs2296172

rs58542926

rs2073721

rs1801282

rs1060105

rs738409

rs1800961

−4 −2 0 2
MR effect size for

'Type 2 diabetes' on 'ACE2'

All

rs1801282

rs1800961

rs738409

rs7607980

rs1060105

rs2296172

rs16826069

rs58542926

rs2073721

rs35658696

rs5219

rs5215

rs13266634

rs41278853

rs665268

rs35742417

rs146886108

rs4077129

rs35720761

rs1127787

rs2032844

rs56200889

rs328

rs72928978

rs1800574

rs7572857

rs9379084

rs60980157

rs6762208

rs140386498

rs1169288

−0.2 −0.1 0.0 0.1 0.2 0.3
MR leave−one−out sensitivity analysis for

'Type 2 diabetes' on 'ACE2'

5

7

9

11

−4 −2 0

βIV

1
S

E
IV

MR Method

Inverse variance weighted

MR Egger

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 8, 2024. ; https://doi.org/10.1101/2024.10.18.24315790doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.18.24315790
http://creativecommons.org/licenses/by/4.0/


McGurk et al. Circulating cardiovascular proteomics 68

e)      f) 

 

g)      h) 

 

Figure S7 Mendelian randomization analysis of type-2 diabetes and ACE2 levels. 

Mendelian randomisation for type-2 diabetes as an exposure a)-d) and outcome e)-h) 

for ACE2 levels. The plots show summary information on the analyses, performed as 

per the TwoSampleMR R package. a) Mendelian randomization scatter plot for type-2 

diabetes (T2D) as an exposure for ACE2. b) Mendelian randomization single SNP 
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funnel plot for T2D as an exposure for ACE2. c) Mendelian randomization single SNP 

forest plot for T2D as an exposure for ACE2. d) Mendelian randomization leave one out 

plot for T2D as an exposure for ACE2. e) Mendelian randomization scatter plot for 

ACE2 as an exposure for T2D. f) Mendelian randomization single SNP funnel plot for 

ACE2as an exposure for T2D. g) Mendelian randomization single SNP forest plot for 

ACE2as an exposure for T2D. h) Mendelian randomization leave one out plot for ACE2 

as an exposure for T2D.  
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a)      b) 

 

c)      d) 
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e) 

 

Figure S8 Increasing levels of BNP are observed in participants diagnosed with 

incident heart failure, cardiomyopathies, atrial fibrillation, and myocardial 

infarction. a) The figure shows the sequential increase in mean BNP with a heart 

failure diagnosis alongside sex, age, a diagnosis of cardiomyopathy or atrial fibrillation, 

and carriers of pathogenic cardiomyopathy-associated variants. The Student’s t-test 

significance was using “No HF diagnosis” as the reference group. The groups contained 

the following sample sizes, respectively: (No HF diagnosis) 44050, (female groups:) 

103, 286, 12, 33, 234, 2, (male groups:) 202, 496, 7, 42, 470, 14. NT-proBNP units are 

Olink’s arbitrary unit in log2 scale. HF, heart failure; plp, P/LP variant carrier; Afib, atrial 

fibrillation; CM, cardiomyopathy diagnosis. b, c, d) Forest plots of Cox proportional 

hazards regression models for deciles of BNP levels with incident b) heart failure, c) 

cardiomyopathy, d) atrial fibrillation, and e) myocardial infarction, since recruitment. The 

forest plots were created assessing death or diagnosis from recruitment with those 

diagnosed before recruitment excluded. Sex (increasing risk is male), European 
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ancestry (increasing risk is European), and age at recruitment, were added to this 

multivariable analysis.  
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Figure S9 Correlation between nine circulating protein levels. The plot depicts the 

Pearson’s correlation coefficient (R) between the raw levels of the circulating proteins 

analysed. ACTA2 had the most relationships. BNP and NT-proBNP correlated with the 

strongest relationship to R=0.67. 
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e)      f) 

 

g)      h) 
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i) 

 

Figure S10 Mendelian randomization analysis of atrial fibrillation and NT-proBNP 

levels. Mendelian randomisation for atrial fibrillation (afib) as an exposure a)-d) and 

outcome e)-h) for NT-proBNP levels. The plots show summary information on the 

analyses, performed as per the TwoSampleMR R package. a) Mendelian randomization 

scatter plot for afib as an exposure for NT-proBNP. b) Mendelian randomization single 

SNP funnel plot for afib as an exposure for NT-proBNP. c) Mendelian randomization 

single SNP forest plot for afib as an exposure for NT-proBNP. d) Mendelian 

randomization leave one out plot for afib as an exposure for NT-proBNP. e) Mendelian 

randomization scatter plot for NT-proBNP as an exposure for afib. f) Mendelian 

randomization single SNP funnel plot for NT-proBNP as an exposure for afib. g) 

Mendelian randomization single SNP forest plot for NT-proBNP as an exposure for afib. 

h) Mendelian randomization leave one out plot for NT-proBNP as an exposure for afib. 

i) Summary plot of Mendelian randomization genetic determination model of atrial 

fibrillation genetic instruments as exposures for NT-proBNP outcome.  
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e)      f) 

 

g)      h) 

 

Figure S11 Mendelian randomization analysis of myocardial infarction and NT-

proBNP levels. Mendelian randomisation for myocardial infarction (MI) as an exposure 

a)-d) and outcome e)-h) for NT-proBNP levels. The plots show summary information on 

the analyses, performed as per the TwoSampleMR R package. a) Mendelian 

randomization scatter plot for MI as an exposure for NT-proBNP. b) Mendelian 
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randomization single SNP funnel plot for MI as an exposure for NT-proBNP. c) 

Mendelian randomization single SNP forest plot for MI as an exposure for NT-proBNP. 

d) Mendelian randomization leave one out plot for MI as an exposure for NT-proBNP. e) 

Mendelian randomization scatter plot for NT-proBNP as an exposure for MI. f) 

Mendelian randomization single SNP funnel plot for NT-proBNP as an exposure for MI. 

g) Mendelian randomization single SNP forest plot for NT-proBNP as an exposure for 

MI. h) Mendelian randomization leave one out plot for NT-proBNP as an exposure for 

MI.   

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 8, 2024. ; https://doi.org/10.1101/2024.10.18.24315790doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.18.24315790
http://creativecommons.org/licenses/by/4.0/


McGurk et al. Circulating cardiovascular proteomics 80

 

Figure S12 NT-proBNP increases with incident cardiomyopathy. Forest plot of 

cardiomyopathies by NT-proBNP deciles. The forest plots of Cox proportional hazards 

regression models were created assessing death or diagnosis from recruitment with 

those diagnosed before recruitment excluded. Sex (increasing risk is male), European 

ancestry (increasing risk is European), and age at recruitment, were added to this 

multivariable analysis.  
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Figure S13 Relationships with medication intake adjusted for time between 

recruitment and imaging visit. The plots depict the proteins measured at recruitment 

and adjusted for days to the imaging visit that were significantly increased with 

medication intake reported only at recruitment (current), or the imaging visit on average 

8 years later (future), or reported during both visits (current (long-term)). The 

significance of differences in means as derived by Student’s t-test are denoted as stars 

compared to individuals with no report of the medication (never). The data only includes 

those with proteomics who attended the imaging visit (n=5,324).  
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a)            b) 

 

Figure S14 Curated cardiovascular disease association study and ACE2’s 

relationship with systolic blood pressure. a) ICD codes as diagnoses are described 

on the x-axis and the protein traits are on the y-axis. Each point denotes a significant 

association. The shape and colour denote the direction of effect and odds ratio. The 

size represents the significance (where larger is more significant). See Table S2 for the 

full results. DCM, dilated cardiomyopathy; HCM, hypertrophic cardiomyopathy. b) The 

linear relationship between ACE2 levels and an automatic measure of systolic blood 

pressure measured at recruitment (R=0.21).  
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a)      b) 

 

c)      d) 
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e)      f) 

 

g)      h) 
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i)      j) 

 

Figure S15 Sensitivity analysis of removing all-cause death from Cox proportional 

hazards regression models. Deciles of ACE2 levels with incident a) hypertension and 

b) diabetes, since recruitment. Deciles of NT-proBNP levels with incident c) heart 

failure, d) atrial fibrillation, e) myocardial infarction, and f) cardiomyopathy, since 

recruitment. Deciles of BNP levels with incident g) heart failure, h) atrial fibrillation, i) 

myocardial infarction, and j) cardiomyopathy, since recruitment. The forest plots were 

created assessing diagnosis from recruitment with those diagnosed before recruitment 

or died without a diagnosis excluded. Sex (increasing risk is male), European ancestry 

(increasing risk is European), and age at recruitment, were added to this multivariable 

analysis for comparison.  
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Figure S16 Phenome-wide association study results of the plasma protein levels 

with the symptoms category of phenotypes.  

Phenotypes as phecodes are described on the y-axis and the protein traits on the x-

axis. Each point denotes a significant PheWAS association with a Bonferroni correction 

for the number of analyzed phecodes. The shape and colour denote the direction of 

effect and odds ratio. See Table S1 for the full PheWAS results.  
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Figure S17 Phenome-wide association study results of the plasma protein levels 

with the respiratory category of phenotypes.  

Phenotypes as phecodes are described on the y-axis and the protein traits on the x-

axis. Each point denotes a significant PheWAS association with a Bonferroni correction 

for the number of analyzed phecodes. The shape and colour denote the direction of 

effect and odds ratio. See Table S1 for the full PheWAS results.  
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Figure S18 Phenome-wide association study results of the plasma protein levels 

with the neurological category of phenotypes.  

Phenotypes as phecodes are described on the y-axis and the protein traits on the x-

axis. Each point denotes a significant PheWAS association with a Bonferroni correction 

for the number of analyzed phecodes. The shape and colour denote the direction of 

effect and odds ratio. See Table S1 for the full PheWAS results.  
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Figure S19 Phenome-wide association study results of the plasma protein levels 

with the neoplasms category of phenotypes.  

Phenotypes as phecodes are described on the y-axis and the protein traits on the x-

axis. Each point denotes a significant PheWAS association with a Bonferroni correction 

for the number of analyzed phecodes. The shape and colour denote the direction of 

effect and odds ratio. See Table S1 for the full PheWAS results.  
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Figure S20 Phenome-wide association study results of the plasma protein levels 

with the musculoskeletal category of phenotypes.  

Phenotypes as phecodes are described on the y-axis and the protein traits on the x-

axis. Each point denotes a significant PheWAS association with a Bonferroni correction 

for the number of analyzed phecodes. The shape and colour denote the direction of 

effect and odds ratio. See Table S1 for the full PheWAS results.  
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Figure S21 Phenome-wide association study results of the plasma protein levels 

with the mental disorders category of phenotypes.  

Phenotypes as phecodes are described on the y-axis and the protein traits on the x-

axis. Each point denotes a significant PheWAS association with a Bonferroni correction 

for the number of analyzed phecodes. The shape and colour denote the direction of 

effect and odds ratio. See Table S1 for the full PheWAS results.  
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Figure S22 Phenome-wide association study results of the plasma protein levels 

with the injuries and poisonings category of phenotypes.  

Phenotypes as phecodes are described on the y-axis and the protein traits on the x-

axis. Each point denotes a significant PheWAS association with a Bonferroni correction 

for the number of analyzed phecodes. The shape and colour denote the direction of 

effect and odds ratio. See Table S1 for the full PheWAS results.  
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Figure S23 Phenome-wide association study results of the plasma protein levels 

with the infectious diseases category of phenotypes.  

Phenotypes as phecodes are described on the y-axis and the protein traits on the x-

axis. Each point denotes a significant PheWAS association with a Bonferroni correction 

for the number of analyzed phecodes. The shape and colour denote the direction of 

effect and odds ratio. See Table S1 for the full PheWAS results.  
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Figure S24 Phenome-wide association study results of the plasma protein levels 

with the hematopoietic category of phenotypes.  

Phenotypes as phecodes are described on the y-axis and the protein traits on the x-

axis. Each point denotes a significant PheWAS association with a Bonferroni correction 

for the number of analyzed phecodes. The shape and colour denote the direction of 

effect and odds ratio. See Table S1 for the full PheWAS results.  
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Figure S25 Phenome-wide association study results of the plasma protein levels 

with the genitourinary category of phenotypes.  

Phenotypes as phecodes are described on the y-axis and the protein traits on the x-

axis. Each point denotes a significant PheWAS association with a Bonferroni correction 

for the number of analyzed phecodes. The shape and colour denote the direction of 

effect and odds ratio. See Table S1 for the full PheWAS results.  
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Figure S26 Phenome-wide association study results of the plasma protein levels 

with the endocrine and metabolic category of phenotypes.  

Phenotypes as phecodes are described on the y-axis and the protein traits on the x-

axis. Each point denotes a significant PheWAS association with a Bonferroni correction 

for the number of analyzed phecodes. The shape and colour denote the direction of 

effect and odds ratio. See Table S1 for the full PheWAS results.  
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Figure S27 Phenome-wide association study results of the plasma protein levels 

with the digestive category of phenotypes.  

Phenotypes as phecodes are described on the y-axis and the protein traits on the x-

axis. Each point denotes a significant PheWAS association with a Bonferroni correction 

for the number of analyzed phecodes. The shape and colour denote the direction of 

effect and odds ratio. See Table S1 for the full PheWAS results.  
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Figure S28 Phenome-wide association study results of the plasma protein levels 

with the dermatologic category of phenotypes.  

Phenotypes as phecodes are described on the y-axis and the protein traits on the x-

axis. Each point denotes a significant PheWAS association with a Bonferroni correction 

for the number of analyzed phecodes. The shape and colour denote the direction of 

effect and odds ratio. See Table S1 for the full PheWAS results.  
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Figure S29 Phenome-wide association study results of the plasma protein levels 

with the congenital anomalies category of phenotypes.  

Phenotypes as phecodes are described on the y-axis and the protein traits on the x-

axis. Each point denotes a significant PheWAS association with a Bonferroni correction 

for the number of analyzed phecodes. The shape and colour denote the direction of 

effect and odds ratio. See Table S1 for the full PheWAS results.  
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Figure S30 Phenome-wide association study results of the plasma protein levels 

with the circulatory system category of phenotypes.  

a)-d) results are separated into four plots for clarity. Phenotypes as phecodes are 

described on the y-axis and the protein traits on the x-axis. Each point denotes a 

significant PheWAS association with a Bonferroni correction for the number of analyzed 

phecodes. The shape and colour denote the direction of effect and odds ratio. See 

Table S1 for the full PheWAS results. 
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