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Abstract
Introduction
Cancer is a leading cause of death worldwide. Early detection of cancer improves treatment options and 
patient survival but detecting cancer at the earliest stage presents challenges. Identification of circulating 
protein biomarkers for cancer risk stratification and early detection is an attractive avenue for potentially 
minimally invasive screening and early detection methods. We hypothesise that protein level changes 
resulting from cancer development can be identified via an individual’s polygenic risk score (PRS) for the 
disease, representing their genetic liability to developing that cancer.    

Methods and analysis
PRS will be calculated using the PRS continuous shrinkage approach (PRS-CS and PRS-CSx) for colorectal 
and lung cancer risk. This methodology utilises effect sizes from summary statistics from genome-wide 
association studies (GWAS) available for the cancers of interest to generate weights via the continuous 
shrinkage approach which incorporates the strengths of the GWAS associations into the shrinkage applied 
(1). This methodology both improves upon previous PRS methods in accuracy as well as improving cross-
ancestry application in the PRS-CSx approach. GWAS summary statistics will be from the Genetics and 
Epidemiology of Colorectal Cancer Consortium (GECCO) and the International Lung Cancer Consortium 
(ILCCO). The association between the polygenic risk scores and 2923 proteins measured by the Olink 
platform in UK Biobank (UKB) participants with protein measures available will be assessed using linear 
regression under the assumption of linearity in the proteomic data. The proteins identified could represent 
several different scenarios of association such as forward causation (protein causes cancer), reverse 
causation (cancer genetic liability causes protein level change), or horizontal pleiotropy bias (no causal 
relationship exists between the protein and cancer). Forward and reverse Mendelian randomization 
sensitivity analyses, as well as colocalization analysis, will be performed in efforts to distinguish between 
these three scenarios. Protein changes identified as causally downstream of genetic liability to cancer 
could reflect processes occurring prior to, or after, disease onset. Due to individuals in the UKB having 
proteins measures at only one timepoint, and because UKB contains a mix of incident and prevalent cases, 
some protein measures will have been made prior to a cancer diagnosis while others will have been made 
after a cancer diagnosis. We will explore the strength of association in relation to the time between protein 
measurement and prevalent or incident cancer diagnosis. 

Ethics and Disseminations
No additional ethical approval is required for Genome Wide Association (GWAS) data used in this analysis 
as all data from GWAS has undergone individual ethical approval prior to this study. UK Biobank protein 
measure data will be obtained under application ID: 15825/81499.
Results produced from these analyses will be submitted as an open-access manuscript to journals for 
review and all code will be made publicly available using GitHub. The PRS we generate and the results of 
the PRS-protein associations will be returned to the UK Biobank.  

Strengths and limitations of this study
- A strength of the proposed PRS method in this study is the use of all available SNPs from a GWAS, 

which may increase power to identify proteins in comparison with conventional Mendelian 
Randomisation (MR) methods that use only those SNPs that are genome-wide significant. 

- Limitations of the study:
o Lack of protein data for diverse population groups within available datasets; therefore, 

results may not be generalisable to ancestries outside of the European population for whom 
sufficient protein data was available for this study.

o UKB participants reflect a subset of the population from a higher socioeconomic position 
than average. 
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o Prevalent cancer cases will reflect a specific subset of the general population with cancer, 
individuals who have survived cancer and were able to volunteer for the study; potentially 
introducing survivorship bias. 

o It cannot be ruled out that proteins may reflect effects of processes beyond cancer liability 
to protein pathways. 

o Lack of staging information for cancer cases within the UKB limiting our ability to distinguish 
early versus more advanced cancers. 

o The proteomic technology currently used measures protein binding as opposed to protein 
levels

Introduction
Detecting cancer at an early stage is important because patients diagnosed early have a greater chance of 
being treated with curative intent and so experience increased long-term survival. Cancer is a leading 
cause of death worldwide (2) and 5-year survival rates fall considerably when diagnosis is made at a later 
stage. The 5-year survival of colorectal cancer and lung cancer is reduced from more than 9 in 10 and 6 in 
10, respectively, when diagnosed at stage 1, to 1 in 10 for colorectal cancer and less than 1 in 10 for lung 
cancer when diagnosed at stage 4 (3). The NHS Long Term Plan aims to increase early detection of cancers 
from half to three quarters by the year 2028 to improve cancer survival (4) as currently in England only 
54% of cancers are detected early (5). To meet this goal a number of research challenges need to be 
addressed, including development of methods for determining cancer risk (i.e. risk stratification) and 
identifying biomarkers which are effective for detecting cancer at an early stage (6). 

One of the challenges to be overcome in improving cancer early detection is the identification of specific 
biomarkers for the cancers of interest that can be measured by minimally invasive, low-cost methods and 
are able to be implemented in a clinical setting. One way to address this challenge is the measurement of 
circulating protein levels in blood serum or plasma, potentially feasible because of the widespread use of 
blood tests in healthcare. Circulating protein biomarkers are a potentially useful tool for several clinical 
areas including identifying groups at high risk of the future development of cancer (risk stratification), early 
detection, disease diagnosis and monitoring biological processes (7,8). They may provide a minimally 
invasive means of screening asymptomatic individuals for undiagnosed disease or for diagnosis of 
symptomatic patients (9,10). Advantages of measuring protein within the blood, as opposed to other 
minimally invasive methods, such as circulating-tumour DNA (ctDNA) sequencing, is the reduced volume of 
sample required for analysis and affordability. For the Olink explore 3072 panel, only 6μL of plasma or 
serum is required vs. 4-5mL of plasma to obtain 5-10ng/mL of ctDNA and with the possibility of 
implementation of protein testing via ELISA, costing around ~£4 per test (11–16).

One approach to biomarker discovery is via prospective cohort studies to identify proteins associated with 
the incidence of a disease of interest, by measuring protein levels in individuals before diagnosis. These 
methods require large sample sizes over long periods of time to capture these events, at great financial 
and time cost (17). A comparatively inexpensive technique for biomarker discovery has been formalised by 
Holmes and Davey Smith (18), and involves application of Mendelian randomization (MR) of disease 
liability as the exposure on protein levels as the outcome (sometimes described as reverse MR or reverse 
gear MR). Building on this idea, we propose that protein level changes resulting from cancer onset can be 
identified via an individual’s PRS for specific cancers, representing their genetic liability to developing that 
cancer. Defining the point of “cancer onset” remains difficult, with many possible mechanisms of initiation; 
for the purpose of this study we will use date of diagnosis to determine prevalent vs. incident cases within 
the cohort (19).  

Proteins associated with genetic liability to cancer could reflect different mechanisms of association. 
Associations could reflect ‘forward causation’ where the protein is upstream of and causal for cancer or 
‘reverse causation’ where carcinogenesis is causing the change in downstream protein level (Figure 1). 
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Proteins that are associated via forward causation are upstream of the cancer pathway and therefore do 
not always denote the presence of cancer but could identify potential therapeutic targets for disease 
prevention and cancer prediction, these protein levels will likely remain stable over long periods of time. 
Proteins downstream of cancer development will likely show more variation in levels as a result of the 
progression of cancer; we will refer to these proteins as “reverse causal”. For proteins that cause cancer, 
most of the variants in the cancer PRS will have no causal relationship to those proteins, whereas for 
proteins that are causally associated downstream of cancer liability pathways, all variants in the PRS could 
contribute to the association signal (Figure 1). We thus expect a cancer PRS to be better powered for 
discovery of proteins downstream of cancer development. However, the relative balance in findings 
reflecting scenarios one (‘forward causation’) and two (‘reverse causation') is likely to depend on the 
prevalence of disease, including early or pre-clinical stages, in the sample used to measure the proteins. In 
general, the higher the prevalence, the greater the number of associations we expect to see reflecting 
effects of cancer liability pathways on protein concentration. Association of proteins with a genetic liability 
to cancer can also be due to factors other than genetic liability such as horizontal pleiotropy bias, as 
illustrated in Figure 1 by G4 and G6; which may negate its use in risk stratification or early detection. 

Aims
The overall aim of these analyses is to identify protein changes that are the causal consequence of genetic 
liability to cancer. 

Methods and Analysis
Polygenic Risk Score Analyses
PRS can be developed using GWAS summary statistics on the associations of many SNPs across the genome 
with cancer. In this way millions of SNPs can be combined to develop an individual’s PRS for a disease. A 
PRS is the sum of the number of copies of risk alleles individuals have for SNPs across the genome, 
weighted by the effect size of these SNPs in relation to the disease of interest (20). While the initiation of 
cancer and the factors that contribute to the onset and progression of cancer are still not fully understood 
(21); by calculating a PRS using data from all SNPs across the genome, SNPs involved in initiation, 
promotion and progression of cancer will be captured by this score, reflecting the complex process of 
cancer development (19).
In this study, PRS will be calculated for UKB participants (Application ID: 15825/81499) with proteomic 
measurements (N=49,542), individuals with sex-mismatch (derived by comparing genetic sex and reported 
sex) or individuals with sex-chromosome aneuploidy will be excluded from the analysis (N=814) as well as 
highly related individuals related to a 3rd degree to >200 individuals (N=2) (22). For colorectal cancer, we 
will use effect weights derived from GWAS summary statistics of the: i) Genetics and Epidemiology of 
Colorectal Cancer Consortium (GECCO) (GWAS Catalog Accession: GCST90255675) for Europeans; and ii) 
the Asia Colorectal Cancer Consortium (ACCC)/Korean-National Cancer Centre CRC Study 2 (Korea-NCC2) 
for GWAS summary statistics for East Asians. For lung cancer, we will use effect weights derived from 
GWAS summary statistics from the International Lung Cancer Consortium (ILCCO) (GWAS Catalog 
Accession: GCST004748). Sample selection and quality control within these studies has been previously 
described (23,24). 
PRS will be derived from the PRS-CS and PRS-CSx approaches, using summary statistics from GWAS for the 
cancer of interest along with an external linkage disequilibrium (LD) reference panel corresponding to the 
ancestry of the GWAS. The continuous shrinkage approach incorporates the strengths of the GWAS 
associations into the shrinkage applied to shrink small SNP effects towards zero, while large effects are 
unaffected (25), generating a posterior effect size for each SNP (1). These weights will be used to calculate 
the PRS of UK Biobank participants for colorectal and lung cancer, calculating the sum of risk increasing 
alleles across all genetic variants weighted by the effect sizes generated by PRS-CS (1,26). PRS-CSx applies 
the same methodology as PRS-CS to multi-ancestry GWAS summary statistics, improving generalisability of 
results to more ancestry groups within the global majority. In an effort to reduce the Eurocentric bias and 
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to increase power, we will be utilising GWAS summary statistics for colorectal cancer from European and 
East Asian ancestries to develop polygenic risk scores (23,27,28).  

Cancer Subgroup Analyses
In addition to a PRS for overall colorectal and lung cancers, we will calculate a PRS for colon cancer and 
rectal cancer specifically and for lung cancer subgroups (adenocarcinoma, squamous cell carcinoma, small 
cell carcinoma). Additionally, PRS scores will be calculated for never smokers and ever smokers using 
weights generated from summary statistics of GWAS for lung cancer in never smokers and lung cancer in 
ever smokers.

Olink Proteins
Olink protein measurements were performed as part of the Pharma Proteomic Project (UKB-PPP) on blood 
plasma samples using the antibody-based protein Olink Explore 3072 Proximity Extension Assay. 
Proteomics were generated for 54,219 participants considered to be highly representative of the UK 
Biobank population on baseline characteristics, enriched for selected diseases (29). The number of 
participants with colorectal and lung cancers can be seen in Table 1. Quality control, sample selection and 
data processing has been described previously (29). Associations between the participants’ PRS and 2923 
Olink protein measures from the UK Biobank will be tested via linear regression, adjusting for age, sex, 
principle components and sample storage time where this has an impact on protein level variation (30). 
Protein measures will undergo inverse rank normal transformation (INT) for each protein (31). The number 
of independent proteins will be calculated using the metaboprep R package (32). False discovery rate 
correction will be applied to p-values, proteins with p-value less than the calculated alpha will be 
prioritised for further analyses. 

Table 1. Disease frequency within the UKB cohort and within the UKB-PPP study participants.

ICD10/ICD9 
code Disease Number of cases 

(UKB) Number of cases (UKB-PPP)

C18/153 Malignant neoplasm of colon 5751 (1.14%) 602 (1.13%)

C19/1540 Malignant neoplasm of 
rectosigmoid junction 635 (0.13%) 65 (0.12%)

C20/1541 Malignant neoplasm of rectum 2562 (0.51%) 254 (0.48%)

C34/162 Malignant neoplasm of 
bronchus and lung 4917 (0.98%) 552 (1.04%)

ICD-O-3 Code Histological Subset Number of cases 
(UKB) Number of cases (UKB-PPP)

8140, 8211, 
8250–8260, 
8310, 8323, 
8480–8490, 

8550

Lung adenocarcinoma 2200 (0.43%) 238 (0.45%)

8070-8072 Lung squamous cell carcinoma 1164 (0.23%) 142 (0.27%)
8041–8042 Lung small cell carcinoma 465 (0.09%) 60 (0.11%)

Number of cases for each cancer type derived from UK biobank phenotypic data with percentage of cases 
out of overall individuals in represented in brackets. UKB overall n = 502,178, UKB with protein measures 
(UKB-PPP)  n = 53,058.

Table 2. Prevalent and incident cases from UKB cohort and within the UKB-PPP study participants.

ICD10/ICD9 Code Disease UKB Overall UKB-PPP

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 18, 2024. ; https://doi.org/10.1101/2024.10.18.24315725doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.18.24315725
http://creativecommons.org/licenses/by/4.0/


6

Prevalent 
Cases

Incident 
Cases

Prevalen
t Cases

Incident 
Cases

C18/153 Malignant neoplasm of colon 1098 4653 105 497

C19/1540 Malignant neoplasm of 
rectosigmoid junction 441 1964 23 42

C20/1541 Malignant neoplasm of rectum 598 1964 63 191

C34/162 Malignant neoplasm of 
bronchus and lung 248 4669 31 521

ICD-O-3 Code Histological Subset Prevalent 
Cases

Incident 
Cases

Prevalen
t Cases

Incident 
Cases

8140, 8211, 8250–
8260, 8310, 8323, 
8480–8490, 8550

Lung adenocarcinoma 78 2122 8 230

8070-8072 Lung squamous cell carcinoma 75 1089 14 128
8041–8042 Lung small cell carcinoma 24 441 3 57

Number of incident and prevalent cases for each cancer type derived from UK biobank phenotypic data.
Sensitivity Analyses
Proteins identified from association analyses may reflect different scenarios, including causation or 
confounding from population stratification or dynastic effects. Some possible scenarios include: (1) a 
protein may be a cause of cancer risk, which we define as “forward causation”; (2) an alternative scenario 
is that the protein identified is causally downstream of cancer liability, which we refer to as “reverse 
causation”; (3) there is no causal relationship between the protein and cancer and the identified 
association reflects horizontal pleiotropy, (4) due to population stratification where spurious associations 
are due to differences in the GWAS population and those that the PRS is calculated on. We will perform 
various sensitivity analyses to distinguish amongst these scenarios, described below. 

Bidirectional Mendelian Randomisation Sensitivity Analyses
MR uses genetic variants, associated with the phenotype of interest as the instrumental variable to assess 
the effect of the phenotype on an outcome. Due to the random nature of inheritance of genetic variants 
there is an advantage over observational epidemiology whereby confounders may influence both the 
exposure and outcome of interest (33–35). Genetic associations used in MR analyses often come from 
GWAS summary data, whereby association is conventionally defined by a p-value threshold of 5 x 10-8.  

Assumptions
The three core assumptions of MR, known as the instrumental variable (IV) assumptions (Figure 2), are 
relevance (IV1) – is the instrumental variable (G) associated with the exposure (E), independence (IV2) – 
there is no confounding of the association between the instrument (G) and outcome (O) (this can arise 
through population stratification, dynastic effects and assortative mating) and exclusion restriction (IV3) – 
the instrumental variable (G) does not act on the outcome (O) except via the exposure (E) e.g. no horizonal 
pleiotropy (red dashed line, IV3); (36–38). 

Study Design
MR will be performed in the forward and reverse direction: forward MR will be used to estimate the effect 
of selected proteins on the cancer of interest and reverse MR will be used to estimate the effect of cancer 
liability on circulating protein concentration (18). Forward MR will be performed using cis-pQTLs to 
instrument proteins identified as being associated with the cancer PRS, the threshold for these will be p < 
3.4 x 10-11 (39). Cis-pQTLs will be defined as within < 1Mbp of the protein coding gene and trans-pQTLs willl 
be defined as > 1Mbp away from the protein coding gene (40). Reverse MR will be performed using SNPs 
associated with the cancer PRS at a threshold of p < 5 x 10-8. If association is found in the forward direction 
this may suggest that the protein is causal for the disease but if association is found in the reverse direction 
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this may suggest that genetic liability to cancer is causing the protein level change (18); to elucidate this 
causality, different MR estimation methods will be employed, the application and conditions of these are 
described below. 

Instrument & Method Selection
The strength of instrument will be determined by calculating the F-statistic, a measure of potential weak 
instrument bias that could arise from the use of IVs as a proxy for the effect of exposure on outcome (38). 
The F-statistic takes into account the genetic variance (R2), the sample size and how many instruments are 
present. An F-statistic greater than 10 indicates that the bias from weak instruments is small, where this F-
stat is less than 10 this indicates a possibility of bias and will be noted (41).  

Dependent on the number of SNPs available, the appropriate method of effect-estimation will be selected 
for MR analyses. For proteins with a single pQTL SNP the Wald ratio will be calculated as the ratio of SNP-
outcome/SNP-exposure association (42). For proteins with two or three independent SNPs, a fixed-effects 
inverse variance weighted (IVW) model will be used. For four or more independent SNPs, a random effects 
inverse variance (IVW) model, combining multiple SNP outcome/exposure Wald ratio, will be used (43). In 
the event of multiple independent SNPs, pleiotropy will be considered by calculating Cochran’s Q statistic, 
a method for assessing global and individual pleiotropy across instruments (44). Weighted mode and 
weighted median methods will also be used when > 10 SNPs are available (45,46). 

The MR-PRESSO, weighted mode and weighted median methods will be used to assess IVs for horizontal 
pleiotropy, violation of IV3 where the IV acts on the outcome not via the exposure, by comparing estimates 
with and without suspected pleiotropic variants, this will be repeated for both forward and reverse MR 
(45,46, 47). In addition being robust to pleiotropy methods such as MR robust adjusted profile score (RAPS) 
also accounts for other potential sources of bias such as weak instruments and measurement error in the 
exposure (48). MR-CAUSE (Causal Analysis Using Summary Effect estimates) is another method that can be 
used when IV3 is violated due to pleiotropic effects of correlated pleiotropy, where the pleiotropic factor is 
a confounder of the exposure-outcome association versus when the IV has effects on pleiotropic factor 
independently of the effect of the IV on the exposure this is uncorrelated pleiotropy (49). 

When performing reverse MR using a larger numbers of SNPs, clustered heterogeneity can occur when 
different genetic variants are causally associated via distinct pathways, to assess this, clustering based 
methods can be used to divide groups based on these estimates of causality (50). MR-Clust will be used to 
investigate clustered heterogeneity across IVs and identify potential distinct pathways that make up the 
effect estimate; clustering works by separating the variants into clusters with additional null and junk 
clusters, representing no causal effect or those that do not fit within the distinct clusters (50,51). Another 
clustering method that will be used is the Noise-Augmented von Mises-Fisher Mixture model (NAvMix), 
this method allows for variants to belong to multiple clusters based on their probability of membership to 
that cluster (52,53). The contamination mixture model method can also be used to cluster into distinct 
groups based on the IVs causal effect estimate even when invalid IVs are present (54). PheWAS-based 
clustering will also be used to cluster SNP associations based on different pathways and thus help identify 
other causal pathways of the PRS – protein associations found (55). The methods of MR described make 
different assumptions and aim to address different violation of the IV assumptions, testing of these 
different methods has illustrated the variation in accuracy and the need for appropriate method selection 
based on the datasets used (56).

Data Harmonisation
Harmonisation of the effect alleles across the GWAS summary statistics datasets will be performed using 
the TwoSampleMR R package (57). 
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Colocalization
Associations may be due to genomic confounding, where genetic variants in linkage disequilibrium (LD) at 
the same locus act on the cancer and protein via separate pathways, a form of horizontal pleiotropy bias. 
Colocalization analyses will be used to assess if genetic associations with cancer and proteins are due to 
shared causal variants at the same locus through genomic confounding (58,59). 

Further Analyses
“Time-to” and “Time-from” Diagnosis 
In observational analyses, we will evaluate the magnitude of the relationship between proteins, taken 
either pre or post-diagnosis, and cancer risk. This will involve an analysis of prevalent and incident cancer 
cases in UKB (Table 2) and a time variable derived from date of cancer diagnosis and time of blood 
collection (60,61). To adjust for any variation in protein concentration as a result of sample storage and 
protein degradation over time (30), the relationship between storage time and protein level for all protein 
measures available will be assessed. Proteins are more likely to be causally downstream of cancer onset if 
the association with cancer is sensitive to time between protein measure and cancer diagnosis, a potential 
route for differentiating between normal baseline levels and levels that suggest the presence of cancer. If 
protein levels are detectable prior to patient reported symptoms proteins may be more suited for 
screening and early detection. 

Replication of Findings
Replication of protein association and MR will be carried out in the DECODE cohort (62) and EPIC study (63) 
where proteins are available. 

Software
This work will be carried out using the computational facilities of the Advanced Computing Research 
Centre, University of Bristol - http://www.bristol.ac.uk/acrc/. 
PRS-CS (https://github.com/getian107/PRScs) and PRS-CSx (https://github.com/getian107/PRScsx) will be 
used to calculate polygenic risk scores, using R, Python and PLINK. 
Metaboprep (https://github.com/MRCIEU/metaboprep) R package will be used to calculate independent 
proteins (32). Mendelian Randomization analyses and data harmonisation will be performed using the R 
packages TwoSampleMR (https://github.com/MRCIEU/TwoSampleMR) and MendelianRandomization 
(https://cran.r-project.org/web/packages/MendelianRandomization/index.html) (64).
Proteins will be inverse rank normal transformed using the “RankNorm” function in R package “RNOmni” 
(https://cran.r-project.org/web/packages/RNOmni/index.html) (31). 

Patient and Public Involvement
A summary of the proposed research was presented to members of a patient and public involvement 
group, with either personal experience with cancer or experience via a family member. The feedback 
received was that this was very important research and that they believe it would be useful for early 
detection for cancers that do not yet have specific screening via a blood test. Updates about this study will 
also be disseminated to the group. 

Ethics and Dissemination
The colorectal cancer GWAS conducted by Fernandez-Rozadilla et al. (2022) was approved by the South 
Central Ethics Committee (UK) under the reference number 17/SC/0079 (23). 

All studies used in the lung cancer GWAS conducted by McKay et al. (2017) obtained local ethics 
committee approval and all participants gave informed consent (24).

Application for colorectal cancer site specific GWAS summary statistics from GECCO has been submitted.
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Application for summary statistics from the Asian Colorectal Cancer Consortium (ACCC) and the Korean-
National Cancer Center CRC Study 2 (Korea-NCC2) will be submitted.

UK Biobank was approved by the North West Multi-centre Research Ethics Committee (MREC) as a 
Research Tissue Bank (RTB) approval renewed in 2021, all participants in the study have given informed 
consent (65). Genotype, phenotype and Olink protein measure data access has been obtained under 
Application ID: 15825/81499.

Results of these analyses will be disseminated via the University of Bristol MRC Integrative Epidemiology 
Unit IEU Portal and submitted as a manuscript to a peer-reviewed journal for publication. All statistical 
code will be made available via GitHub. 

Polygenic risk scores and PRS-protein associations will be returned to the UK Biobank in line with the UK 
Biobank obligation for researchers outlined (66). 

Data Availability Statement
No data has been collected or generated as part of this protocol.
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