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ABSTRACT 

We aimed to identify plasma cell-free transcripts (cfRNA) associated with Parkinson’s disease 

(PD) that also have a high predictive value to differentiate PD from healthy controls. Leveraging 

two independent populations from two different movement disorder centers we identified 

2,188 differentially expressed cfRNAs after meta-analysis. The identified transcripts were 

enriched in PD relevant pathways, such as PD (p=9.26×10
-4

), ubiquitin-mediated proteolysis 

(p=7.41×10
-5

) and endocytosis (p=4.21×10
-6

). Utilizing in-house and publicly available brain, 

whole blood, and acellular plasma transcriptomic and proteomic PD datasets, we found 

significant overlap across dysregulated biological species in the different tissues and the 

different biological layers. We developed three predictive models containing increasing number 

of transcripts that can distinguish PD from healthy control with an area under the ROC Curve 

(AUC) ≥0.85. Finally, we showed that several of the predictive transcripts significantly correlate 

with symptom severity measured by UPDRS-III. Overall, we have demonstrated that cfRNA 

contains pathological signatures and has the potential to be utilized as biomarker to aid in PD 

diagnostics and monitoring. 

 

INTRODUCTION 

Parkinson’s disease (PD) is a slowly progressing, complex neurodegenerative disorder, with 

higher prevalence in males.
1,2

 It is one of the most common neurodegenerative diseases 

(NDDs), second only to Alzheimer’s disease (AD).
3,4

 As with other NDDs, the greatest risk factor 

for PD development is age, with incidence peaking after 80 years of age, with contributions 

from environmental and genetic factors.
2
 PD is characterized pathologically by formation of 

Lewy bodies (LBs) and early death of dopaminergic neurons, resulting in a typical clinical 

presentation including bradykinesia, rest tremor and rigidity. Other clinical hallmarks of PD 

include a number of non-motor symptoms, such as sleep, gastrointestinal and olfactory 

disorders, which may precede motor disorders by over a decade.
2,4,5

 At the molecular level, LBs 

are primarily comprised of misfolded α-synuclein, which can spread between the cells, serving 

as a template for further α-synuclein misfolding.
5
  

 

While PD diagnoses largely depend on patient history and physical examination, no currently 

available tests enable definitive diagnosis of PD in the early stages.
2,4

 Instead, definitive 

diagnostics presently depends on neuropathological analyses upon death, typically occurring 

many years after disease onset.
1,2,4

 Several imaging methods can aid in confirm nigrostriatal 

deficits that occur in PD, but are not diagnostic.
6–9

 Dopamine transporter single-photon 

emission computed tomography (DaT SPECT) can detect cell loss in PD patients
4,6

, while 

positron emission tomography (PET) scan can point to early signs of dopaminergic neuron 

damage.
4,7,10,11

 Conversely, magnetic resonance imaging (MRI) methods provide modest benefit 

for diagnosis of PD.
4,6,7,10

 In addition to imaging, the field has strived to develop PD-specific 

cerebrospinal fluid (CSF) biomarkers, independent of clinical representation of the disease.
12

 

CSF levels of α-synuclein have been the focal point of a number of studies. α-synuclein seed 
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amplification assays (SAA) have shown a lot of promise, with the ability to differentiate 

between PD and healthy controls.
13,14

 However, results have been variable possibly due to 

clinical heterogeneity, cross-contamination with blood, or experimental differences, requiring 

further validation prior to clinical implementation. Lysosomal enzymes and neurofilament light 

chain emerged as candidates for biomarker panels, though they also require further 

investigation.
12,15,16

 Another unmet need is the differential diagnosis of PD from other NDDs. 

Though it is a very common neurodegenerative disorder, PD is misdiagnosed in clinical practice 

with error rates reported to range from 15% to 24%.
4
 The prevailing reason for disagreement 

between clinical and neuropathological diagnoses is the heterogeneity of parkinsonism with 

non-PD pathologies, including multiple system atrophy (MSA) and progressive supranuclear 

palsy (PSP).
17

 Indeed, even established PD cases are greatly heterogeneous in the age of onset, 

rate of progression as well as clinical presentation, which led to the establishment of several PD 

subtypes.
4,6

  

 

While most blood-based biomarker studies focus on measuring levels of various proteins, 

circulating nucleic acids have found their place in clinical practice. Analyses of cell-free DNA 

(cfDNA) have revolutionized the field of obstetrics and antenatal testing by allowing the 

identification of fetal aneuploidies in a sample of mother’s blood, thus reducing test-related risk 

of miscarriage.
18–20

 cfDNA has been utilized as a biomarker for cancer
20–22

, metabolic 

disorders
20

 and a way to assess the health of donor organs in a recipient’s body upon organ 

transplantation.
20,23

 In addition to cfDNA, cell-free RNA (cfRNA) can also be captured from 

plasma and provides a temporal snapshot of cellular processes throughout the body, as it is 

released from cells as part of normal cell death.
24

 Numerous studies are investigating the 

potential of using cfRNAs as biomarkers for prenatal testing
19

, cancer
21,25–28

 and AD.
29–33

 

Furthermore, a recent study provided evidence of circulating micro RNAs being involved in the 

regulation of PD-associated genes
34

, adding support to the utility of non-protein biomarkers in 

the PD field. 

 

In this study, we used plasma cfRNA from two independent populations of PD participants to 

capture transcriptional changes caused by PD pathology. We biologically contextualized our 

findings via pathway analyses and multiomic data integration by accessing whole blood and 

brain transcriptomic datasets and plasma and CSF proteomic datasets. Then we leveraged 

those to build a predictive model that could accurately predict PD using a limited number of 

transcripts, with the potential for translation into clinical practice. We further evaluated the 

capabilities of the best performing models to discriminate between PD and AD, dementia with 

Lewy bodies (DLB) and frontotemporal dementia (FTD) to ensure that captured changes were 

specific to PD pathobiology. 

 

METHODS 

Study design 

We analyzed acellular RNAseq data from two independent movement disorder clinical cohorts, 

Hospital Universitari Mutua Terrassa (HUMT) in Barcelona, Spain, and Washington University in 
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Saint Louis School of Medicine (WUSM) in Saint Louis, US. We performed differential expression 

(DE) analyses in HUMT (206 participants) and WUSM (175 participants) cohorts separately, 

followed by meta-analysis. Transcripts with Benjamini-Hochberg corrected p-values below 0.05 

in the meta-analysis were considered DE. To understand the biological significance of the DE 

transcripts, we performed pathway analyses and leveraged in-house and publicly available 

datasets to contextualize the expression of the identified transcripts in whole blood and brain, 

as well as the accumulation of corresponding proteins in plasma and CSF. To assess the 

diagnostic capabilities of cfRNAs, we developed several predictive models, focusing on the DE 

transcripts. We then employed a third independent dataset, consisting of participants with 

dementia with DLB, AD, and FTD, to test the specificity of the predictive models for PD. AD, 

DLB, and FTD participants were diagnosed according to the clinical criteria contained in the 

Uniform Data Set (UDS), the standard set of clinical data collected in all participants enrolled in 

any of the 37-federally funded ADRCs. Finally, utilizing the information available about 

participants’ motor symptom severity, measured by Unified Parkinson’s Disease Rating Scale 

Part III (UPDRS-III), and cognitive status measured by The Montreal Cognitive Assessment 

(MoCA), we assessed the clinical relevance of transcripts included in the predictive models. 

Research in this study was conducted in accordance with recommended protocols. Written 

informed consent was obtained from all participants or their family members. The Washington 

University in Saint Louis Institutional Review Board approved the study (IRB ID 201701124 and 

202004010). 

Study Participants 

We obtained plasma samples from two independent cohorts, HUMT and WUSM. HUMT cohort 

included a total of 206 plasma samples (87 PD participants and 119 healthy controls), while the 

WUSM cohort included 175 samples (94 PD participants and 81 healthy controls). Given the 

different geographical location and standards of care, the two cohorts show some differences 

(Table 1). They are comparable in proportion of female participants (HUMT 47.57%, WUSM 

48.57%; p=0.93). The HUMT population shows a lower mean age (68.26±8.39) compared to the 

WUSM population (72.97±6.78; p= 3.30×10
-9

). Differences are also observed in motor symptom 

severity as measured by the UPDRS-III scale. Participants in the WUSM population displayed 

greater UPDRS-III (26.03±9.10), compared to HUMT participants (18.69±8.99; p=6.39×10
-4

). 

Finally, dementia was assessed only in the WUSM participants, who presented with mild or no 

signs of dementia (25.32±4.22), as measured by the MoCA scale. Similarly, no therapeutic 

information was available for the HUMT dataset. 

RNA Extraction and Sequencing 

Whole blood samples were collected from all participants. Within 20 min of collection, blood 

samples were centrifuged for 10 min at 1500rpm to obtain plasma and subsequently stored at -

80
o
C, as previously described.

35
 Plasma samples were thawed on ice and centrifuged for 5 min 

at 2000 rpm prior to RNA extraction to remove any cells present and avoid cellular RNA 

contamination. Total plasma cfRNA was extracted from 0.5 mL of plasma using the Maxwell RSC 
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miRNA from plasma or serum kit (Ambion) and ribodepleted (NEBNext rRNA Depletion Kit). 

After total RNA quantification, libraries were generated using the NEBNext Ultra II Directional 

RNA Library Prep Kit for Illumina (New England Biolabs) using 1ng of RNA as input. Libraries 

were cleaned for adapter dimers prior to sequencing. We targeted 40 million 100 base pair 

single-end reads for each sample using an Illumina NovaSeq 6000. 

Data Processing and Quality Control 

FastQC (v0.11.7)
36

 was used to evaluate the sequencing quality of each sample. Reads were 

aligned to the human reference genome GRCh38 using STAR (v2.7.1a).
37

 The quality of 

sequences and alignments was assessed with PICARD (v2.26)
38

 and SAMtools
39

, and transcripts 

quantified using Salmon (v0.11.3).
40

 Quality control measures were gathered via MultiQC 

(v1.9)
41

 followed by stringent quality control (QC). Briefly, all genes with less than ten reads in 

90% or more of the individuals were removed. Subsequently, transcriptome Principal 

Component Analysis (PCA) were performed and screened for correlation with technical and 

methodological variables to detect potential biases. A strong correlation was observed with 

total reads and coding bases; thus, all samples with less than 10% of coding bases and less than 

1,000,000 total reads were removed. Outlier samples identified via transcriptome PCA, defined 

as samples whose first two principal component values deviated more than three standard 

deviations from mean values of either of the respective principal components, were also 

removed.  

Despite following the same protocol for data generation, processing, and QC, the two datasets 

included in the present study (HUMT and WUSM) were sequenced at different timepoints. Each 

dataset underwent QC separately. ComBat_seq function from the sva package
42

 was used to 

adjust for technical variation within each dataset. Batch effect correction was followed by PCA 

and removal of any additional outliers. As previously described, there is RNA degradation 

associated with plasma long-term storage (up to 20 years).
33

 Consequently, we addressed 

degradation using DESeq2 (v1.22.2)
43

 to find transcripts associated with storage time in control 

participants as previously reported.
33

 All transcripts nominally (p<0.05) associated with storage 

time were removed from the analyses from both HUMT (n=486 transcripts) and WUSM (n=221 

transcripts) datasets. Further, due to prevalence of PD therapies and lack of medication data for 

HUMT population, transcripts associated with PD-medication usage were identified in the 

WUSM dataset using DESeq2
43

 and any nominally significant transcripts (p<0.05) were removed 

from further analyses from both datasets (n=630 transcripts). Overall, 27832 transcripts passed 

QC and were included used in subsequent analyses. 

Differential Expression Analyses and Pathway Analyses 

Differential expression (DE) analyses were performed using DESeq2
43

 in HUMT and WUSM data 

separately, followed by meta-analysis using metaRNASeq.
44

 All analyses were adjusted by sex 

and age at blood draw. Benjamini-Hochberg correction (FDR) was used to correct for multiple 

testing, considering meta-analysis FDR p-values lower than 0.05 as significant. No effect size 

(log2 fold change) value cut-off was applied. Pathway enrichment analyses were carried out 
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using clusterProfiler
45

 to functionally characterize the identified transcripts and FDR p-values 

below 0.05 were regarded as significant. 

Multi-omic data integration 

To biologically contextualize our findings, we cross-checked the results from the cfRNA DE 

meta-analysis with: (i) in-house brain bulk RNAseq, (ii) publicly available, whole blood bulk 

RNAseq
46

, (iii) publicly available plasma and (iv) CSF proteomic data
46

, and (v) in house and (vi) 

publicly available brain single-cell RNAseq data
47,48

 including substantia nigra scRNAseq (Figure 

1). Following differential expression or accumulation analyses in each of the RNAseq or 

proteomic datasets, we identified the overlap between nominally significant findings and the 

DE plasma acellular transcripts and each accessed dataset. The significance of each overlap was 

tested using hypergeometric test (phyper function in R), p-values lower than 0.05 considered 

significant. 

Additionally, to investigate whether any of the DE transcripts mapped to PD associated loci 

identified by genome wide association analyses (GWAS), we leveraged the information 

available in the PD GWAS locus browse and in the latest multi-ancestry genome-wide 

association study.
49,50

 We browsed the PD GWAS locus browser and recorded the scores that 

rank the genes based on the amount of supporting evidence compiled in the PD GWAS locus 

browser.
50

 Next, to compare our results to the multi-ancestry GWAS, we converted locations of 

all lead SNPs from hg19 version of the human genome to the respective locations in hg38 

version of the human genome and then found coordinates 500kb upstream and downstream 

from each SNP.
49

 All regions that overlapped after the coordinate conversion were collapsed 

into 69 non-overlapping genomic regions. Subsequently, collapsed PD-associated genomic 

regions were overlapped with genomic start and end coordinates of the identified DE genes 

using bedtools intersect from BEDTools tool suite.
51

 

Predictive Models Construction and Evaluation 

To build and evaluate predictive models we used the previously published in-house pipeline.
33

 

In brief, glmnet (v4.1.6)
52

 was leveraged to produce a suitable classifier to identify PD cases 

based on plasma acellular gene expression. HUMT was used as the training and WUSM as the 

testing dataset. After ComBat_seq
42

 regression, transcript counts were further scaled between 

the two datasets by computing the z-score using the mean and standard deviation. With the 

transcripts that were significantly DE in the meta-analysis after multiple test correction 

(FDR<0.05), we calculated Kullback-Leibler divergence (KLD) between the training (HUMT) and 

the testing (WUSM) dataset for each transcript using R package entropy v1.3.1.
53

 A hundred L2 

regularization linear models were trained with increasing number of transcripts, ranging in KLD 

value from 0.01 to 1 in increments of 0.01. The Area Under the Receiver Operating 

Characteristic (ROC) Curve (AUC) value was computed for all models in the training dataset. 

Specificity Analyses 
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Performance of the best predictive models was evaluated in 44 AD, 16 FTD and 17 DLB cases 

from a publicly available dataset from the Knight-ADRC
33,54

, as well as twelve DLB participants 

available in the HUMT dataset. Knight-ADRC data has been generated and processed as 

described above for the HUMT and WUSM datasets. Transcript counts were scaled by 

computing the z-score using the mean and standard deviation. Then, risk score for each 

individual was calculated using the previously defined predictive models. Scores higher than 

0.50 were considered cases. ROC curve was computed by comparing the predicted to the actual 

disease status for each compared group. We assessed the ability of the predictive models to 

differentiate between AD, DLB or FTD and healthy controls, as well as between AD, DLB or FTD 

and PD. Additionally, we evaluated if the addition of the APOE genotype to the cfRNA predictor 

improved the model performance in differentiating between PD and AD, as APOE is a crucial 

genetic risk factor for AD. APOE genotype data was available for AD and WUSM PD participants. 

To discern whether the effect of APOE was captured by the predictor, we included the APOE 

genotype in the model coded by two variables representing the number of ε2 alleles and ε4 

alleles. 

Evaluation of predictive models’ clinical relevance 

To explore the relationship of selected transcripts with PD clinical manifestations, we calculated 

Spearman correlations between normalized and age and sex adjusted transcript counts with 

UPDRS-III or MoCA scores. We did it for those PD participants with available data. UPDRS-III 

information was available for 76 participants from HUMT and 27 participants in the WUSM 

population. To maximize our sample size and statistical power for this exploratory analysis, the 

two populations were combined for correlation with UPDRS-III. MoCA scores were not available 

for the HUMT population, thus correlation to MoCA analysis was carried out only in the WUSM 

population (n=28). Correlations were considered significant if p-value was lower than 0.05. 

 

RESULTS 

Acellular transcriptomic patterns translate to changes of plasma protein abundances 

We leveraged two independent movement disorder clinics (Hospital Universitari MutuaTerrassa 

(HUMT), and Washington University School of Medicine (WUSM)) with a total of 181 PD 

participants (nHUMT=87; nWUSM=94) and 200 healthy control participants (nHUMT=119; nWUSM=81) 

(Figure 1, Table 1). All PD participants had a clinical diagnosis of PD at the time of sample 

collection.
55

 After stringent quality control (QC), we performed differential expression (DE) 

analyses comparing PD to healthy control participants using DESeq2
43

, followed by integration 

of HUMT and WUSM results through meta-analysis. We performed meta-analyses on 6,496 

transcripts which had same direction of effect in both HUMT and WUSM populations, and 

identified 2,188 DE transcripts, 1,101 of which were upregulated and 1,087 downregulated 

(Supplementary Figure 1, Supplementary Table 1). To evaluate the biological relevance of the 

DE transcripts, we performed Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 

enrichment analyses. We found significant enrichment in PD (p=9.26×10
-4

), endocytosis 
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(p=4.21×10
-6

) and ubiquitin mediated proteolysis (p=7.41×10
-5

), along with other nervous 

system diseases such as Huntington’s disease (HD; p=6.35×10
-4

) and amyotrophic lateral 

sclerosis (ALS; p=6.10×10
-4

; Figure 3A, Supplementary Table 2). Additionally, we preformed 

Gene Ontology (GO) enrichment analyses and found enrichment in the cellular components 

primary lysosome (p=4.19×10
-3

) and ubiquitin ligase complex (p=2.12×10
-3

), and biological 

processes such as late endosome to lysosome transport (p=8.18×10
-4

) and exocytosis 

(p=9.48×10
-6

; Supplementary Table 3). 

To further replicate our results, we used publicly available whole blood RNAseq data
56

 from the 

Parkinson’s Progression Markers Initiative (PPMI)
46

 and Parkinson’s Disease Biomarkers 

Program (PDBP)
57

  and found 424 of the 2,188 DE transcripts identified in plasma were also DE 

in whole blood
56

 (Figure 2A), which represents a significant overlap (p=4.65×10
-60

). These 424 

transcripts were enriched in ubiquitin mediated proteolysis (p=8.96×10
-5

; Supplementary Table 

2). Additionally, we investigated if the abundances of the proteins encoded by the identified 

RNAs were also significantly different. We leveraged plasma proteomic data from PPMI 

generated with Olink. We found a significant overlap (p=5.00×10
-3

) of twelve differentially 

accumulated proteins out of the 2188 transcripts DE in plasma (Figure 2A). Further, six of the 

twelve proteins have the same direction of effect as the respective mRNAs from plasma 

(Supplementary Table 1). Looking back to the pathway analysis, we find that the twelve 

proteins were present in the immune response pathways. Two of the twelve acellular 

transcripts that are differentially accumulated in plasma, at both transcript and protein level, 

are also DE in whole blood (Figure 2A, Supplementary Table 1). 

 

Table1. Summary demographics of the two populations included in the main analyses 

Hospital Universitari Mutua Terrassa 

(Barcelona, Spain) 

Washington University School of 

Medicine (Saint Louis, US) 

  
Healthy Controls 

Parkinson’s 

Disease 
Healthy Controls 

Parkinson’s 

Disease 

Participants (N) 119 87 81 94 

Mean age (IQR) 

67.78 (61.00-

74.00) 

68.91 (65.00-

74.00) 

74.07 (69.00-

78.00) 

72.02 (67.00-

77.00) 

Female (N, %) 63 (52.94%) 35 (43.21%) 49 (60.49%) 36 (38.29%) 

Mean UPDRS-III 

(IQR) 
- 

18.70 (14.00-

22.00) 
- 

26.03 (20.69-

30.00) 

Mean MoCA (IQR) 
- - - 

25.32 (24.00-

28.00) 
N=Sample size; IQR=Interquartile Range; UPDRS=Unified Parkinson’s Disease Rating Scale; MoCA=Montreal Cognitive Assessment; 

US=United States 

 

Figure 1. Study Design Infographic depicting the study participants from two independent 

cohorts, summary of the experimental approach including data processing and analyses, 

biological contextualization of the results via multiomic data integration with available 

independent datasets, and leverage of results to build predictive models. 
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Expression patterns in plasma follow those observed in brain 

We compared our findings to an in-house brain RNAseq dataset
54

 to test whether the changes

we capture in plasma might have their origin in pathological changes taking place in the brain

Out of the 2,188 transcripts, we found 537 transcripts that were DE in both plasma and brain

(p=4.22×10
-105

; Figure 2B, Supplementary Table 1), 278 of which were upregulated and 259

downregulated. Of the 537 transcripts, 286 (142 upregulated and 144 downregulated) have the

same direction of effect in plasma and brain. Transcripts that were DE in both plasma and brain

were enriched in neurodegenerative diseases including PD (p=7.86×10
-7

), HD (p=6.27×10
-8

), and

AD (p=2.16×10
-6

), as well as endocytosis (p=8.91×10
-4

) and ubiquitin mediated proteolysis

(p=2.47×10
-3

; Supplementary Table 2). 

Next, we compared our DE transcripts with differentially expressed genes derived from three

independent single-nucleus RNA-seq datasets from individuals with PD and controls: i)

subcortical putamen tissue
48

, ii) anterior cingulate cortex
47

, and iii) in-house and publicly

available
58

 substantia nigra. Out of the 2,188 transcripts DE in plasma, 222 were also DE in at

least one cell type in the subcortical putamen (Figure 2C, Supplementary Table 4). The greatest

overlap between plasma and subcortical putamen was in transcripts expressed by ependyma

cells (a type of glial cells), with 162 shared DE transcripts, followed by 41 transcripts in GRIK3-

enriched neuronal cells and eleven transcripts in astrocytes (Supplementary Table 4)

Transcripts DE in both plasma and subcortical putamen were nominally enriched in HD

(p=3.51×10
-3

) and general pathways of neurodegeneration (p=0.03; Supplementary Table 2)

Next, we found 77 DE transcripts shared between plasma and the anterior cingulate cortex. The

greatest overlap between plasma and anterior cingulate cortex was in neuronal cells (47

transcripts), followed by myeloid cells (27 transcripts), while only three transcripts were shared

between plasma cfRNA and cortical astrocytes (Supplementary Table 5). These transcripts were

enriched in PD (p=7.59×10
-4

), as well as pathways of neurodegeneration (p=1.35×10
-3

,

Supplementary Table 2). Of the 222 transcripts shared between plasma and subcortica

putamen and 77 transcripts shared between plasma and anterior cingulate cortex, 35 were DE

in both subcortical putamen and anterior cingulate cortex (Figure 2C, Supplementary Tables 4

and 5). 
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In-house substantia nigra had 411 DE transcripts in common with plasma (Figure 2C, 

Supplementary Table 6). These transcripts were enriched in PD (p=3.35×10
-4

), endocytosis 

(p=4.26×10
-5

) and ubiquitin mediated proteolysis (p=6.92×10
-4

; Supplementary Table 2). Similar 

to subcortical putamen, ependymal cells from the in-house substantia nigra dataset showed the 

greatest overlap with plasma cfRNA transcripts (245 transcripts; Supplementary Table 6). In 

parallel, 370 of the 2,188 DE cfRNA were DE in the public substantia nigra dataset
58

 (Figure 2C, 

Supplementary Table 7). They were enriched in ubiquitin mediated proteolysis (p=6.06×10
-5

), 

dopaminergic synapse (p=8.19×10
-3

) and general pathways of neurodegeneration (p=9.10×10
-3

; 

Supplementary Table 2). Furthermore, 229 plasma DE transcripts were shared with both the in-

house and the public substantia nigra. Additionally, 72 of those 229 were in the same direction 

of effect in the two substantia nigra datasets. 

Finally, using publicly available CSF proteomic data generated with Somalogic (PPMI)
46

, we 

tested whether any of the DE transcripts correspond to differentially abundant CSF proteins. 

We uncovered a significant overlap (p=4.90×10
-6

) of 89 acellular plasma transcripts and their 

respective protein products in CSF (Figure 2B), which were enriched in endocytosis (p=8.10×10
-

7
) and nominally enriched in HD (p=1.83×10

-2
), and general pathways of neurodegeneration 

(p=4.40×10
-2

; Supplementary Table 2). Of the 89 transcripts whose protein products were 

differentially accumulated in CSF, 24 are also DE in bulk brain RNAseq (Supplementary Table 1). 

 

Figure 2. Multiomic integration summary. Integration between differential expression analysis 

of cfRNA (maroon) with A. whole blood RNAseq (orange) and plasma proteomics (light yellow); 

B. brain RNAseq (dark blue) and CSF proteomics (light blue); C. single nuclei datasets; and D. 

GWAS data (rosy-brown). The y-axes in panels A, B and D represent -log10 of differential 

expression p-value, while x-axes represent genomic coordinates of the respective 

transcript/gene. Dotted lines symbolize the same transcript/gene or its protein product that are 

significantly differentially expressed across the multiple omic layers displayed in each respective 

panel, A, B or D. 
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Plasma differentially expressed transcripts originate from PD-risk loci 

We then investigated if any of the transcripts DE in plasma was encoded in PD risk loci. We

detected a significant overlap of 190 transcripts (p=2.88×10
-272

) that mapped to PD-associated

GWAS loci
49

 corresponding to 69 non-overlapping genomic regions (Figure 2D, Supplementary

Table 8). We found an average of 3 (±2) overlapping transcripts per genomic region, 27 regions

overlapping with only one of the identified transcripts, and 14 regions overlapping five to nine

transcripts each. Further, we found that six DE transcripts overlapped (p=1.47×10
-8

) PD-

associated loci on the X chromosome
59

 (Supplementary Table 8). Next, we compared the
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nominated genes in the PD GWAS locus browser
50

 with the DE transcripts identified in our 

analyses to assess if there is an agreement with the nominated gene. We found varying levels 

of support for 121 of the 190 autosomal genes, with an average score of 4.42±1.88 

(Supplementary Table 8). Genes located on the X chromosome cannot be evaluated due to the 

unavailability of sex chromosome data in the GWAS browser. We checked if any of the 121 

genes were DE in whole blood or brain RNAseq, or if their protein products were differentially 

accumulated in plasma or CSF. We found 26 of the 121 genes DE In whole blood and 24 of the 

121 DE in brain (Supplementary Tables 1 and 8). Similarly, we observed that corresponding 

protein products of two of the 121 genes (ITGAM and PARP1) were differentially accumulated 

in plasma, and four (GCH1, HEXIM2, LGALS3 and UFC1) differentially accumulated in CSF 

(Supplementary Tables 1 and 8). 

 

cfRNA captures transcriptomic signatures corresponding to Parkinson’s disease 

We wanted to assess if cfRNA changes can be leveraged to build predictive models. To utilize 

the two independent RNAseq data sets for the development of predictive models, we 

employed an approach similar to that used previously focusing only on the 2,188 DE 

transcripts.
33

 HUMT was used as training and WUSM as testing. We generated a total of 100 

predictive models corresponding to 100 KLD threshold values (increments of 0.01). Based on 

the balance between ROC-AUC and number of transcripts included in the model we selected 

three transcript subsets for further follow up (Supplementary Figure 2). Of note, each larger 

subset is inclusive of the smaller ones. The three selected subsets contained 26, 87 and 191 

transcripts, with ROC-AUC values of 0.86, 0.87 and 0.88 in the testing data set (Figure 3B, 

Supplementary Table 9), respectively. 

To contextualize the role of transcripts included in the predictive models, we checked whether 

any of the transcripts were enriched in the pathways identified in KEGG pathway enrichment 

analyses described including all the DE transcripts. We found that our smallest subset, 

consisting of 26 transcripts, captured transcripts that pertain to PD, ubiquitin mediated 

proteolysis, HD, and ALS (Figure 3A). The next subset, with 87 transcripts, further captures 

transcripts involved in endocytosis (Figure 3A). Next, we checked whether proteins translated 

from any of the transcripts included in the predictive models were differentially accumulated in 

plasma and found two proteins, BMP6 and PARP1, to be differentially accumulated. 

Finally, we explored whether the selected transcripts reflected motor symptom severity, 

measured by Unified Parkinson’s Disease Rating Scale (UPDRS) Part III (UPDRS-III), and cognitive 

status measured by The Montreal Cognitive Assessment (MoCA). UPDRS-III scores were 

available for both datasets, but not for all participants. Due to sample size (nHUMT=78, 

nWUSM=28), we combined HUMT and WUSM data for UPDRS-III analysis and observed that three 

(PLAC8, p=1.82×10
-4

; PTK2B, p=0.02; ATP5F1B, p=0.04) of the 191 selected transcripts 

correlated negatively, and one (RPS27P8, p=0.02) correlated positively, with UPDRS-III 

(Supplementary Table 10). MoCA information was available for a subset of the WUSM 

population (n=28). We found two cfRNA transcripts (FCGR3A, p=0.01; RERE, p=0.04) with 

significant positive correlations to MoCA scores (Supplementary Table 10). 
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Figure 3. Plasma cfRNA capture signatures associated with PD pathology. A. Scatter plot

summarizing the significant results of KEGG pathway analysis, in gold are pathways first

captured in all the predictive models and in blue pathways captured in 87 and 191 transcript

models; Whisker plot showing the performance of the evaluated predictive models to

differentiate between B. PD and HC; C. AD, DLB, or FTD, and HC; and D. AD, DLB, or FTD, and

PD. 

 

 

The predictive models are specific to PD 

To assess whether the predictive models were specific to PD, we tested the models in samples

from Dementia with Lewy bodies (DLB, n=29), Alzheimer’s disease (AD, n=44), and

Frontotemporal dementia (FTD, n=16), using two approaches. Firstly, we evaluated if the

models could differentiate between each neurodegenerative disease and healthy controls and

secondly, if they could discern between PD and DLB, AD, or FTD. The models exhibited low

predictive power to differentiate between healthy controls and AD (0.53<AUC<0.55), DLB
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(0.51<AUC<0.57), or FTD (0.52<AUC<0.59; Figure 3C, Supplementary Table 11), confirming that 

the models are specific to PD. Models performed slightly better in classifying AD 

(0.64<AUC<0.67), DLB (0.65<AUC<0.67), or FTD (0.67<AUC<0.68; Figure 3D, Supplementary 

Table 11) when compared to PD. Given the know association between APOE genotype and AD 

risk
60

, we tested whether the addition of APOE genotype affects the ability of the predictive 

models to differentiate between AD and PD. With the inclusion of APOE information, we 

observed an increase in the power of our predictive models to discern between AD and PD 

(0.85<AUC<0.88). 

To gain more insight about whether any of the transcripts included in the predictive models 

were commonly dysregulated across different NDDs, we investigated plasma expression 

patterns across PD, DLB, AD and FTD. We observe the most remarkable difference in FTD, 

where the same transcripts seem to be dysregulated in opposite direction to PD 

(Supplementary Figure 3). 

 

 

DISCUSSION 

In the present study, we leveraged two independent datasets to identify plasma cfRNAs that 

were dysregulated in PD participants and, for the first time in PD, employ plasma cfRNAs to 

develop predictive models that can distinguish between PD and healthy controls. Overall, we 

identified 2,188 transcripts that were DE in plasma of PD participants. Through pathway 

analyses we showed that the identified transcripts are part of PD-associated pathways, such as 

endocytosis
61

, ubiquitin mediated proteolysis
62–64

, PD, and PD-related cellular components and 

biological processes such as ubiquitin ligase complex
62–64

, primary lysosome, lysosome 

transport
65

 and exocytosis.
66,67

 Furthermore, we show that our findings in plasma are consistent 

with those in blood by utilizing publicly available PD blood bulk RNAseq data to replicate 424 of 

our findings. Additionally, we find that protein products of twelve of the identified acellular 

transcripts are also dysregulated in plasma. One of the twelve transcripts, COL6A3, has 

previously been indicated in other neurologic disorders, namely muscular dystrophy
68

 and 

dystonia
69

. Interestingly, three of the twelve transcripts, ITGAM
70

, SERPINB8
71

, and 

SLC27A4
72,73

, are associated with dry, flaky skin, which is a common symptom of PD. 

Leveraging an in-house brain bulk RNAseq dataset, we showed that plasma cfRNA captures 

changes occurring in the brains of PD participants, most likely due to blood-brain barrier (BBB) 

leakage.
74,75

 Moreover, we found a significant overlap between transcripts DE in plasma and the 

corresponding proteins in CSF. Specifically, 24 differentially accumulated CSF proteins are 

produced from transcripts DE in both plasma and brain. Several of these proteins/transcripts 

are associated with other neurodegenerative or movement disorders, such as AD (KLC1
76

) and 

dystonia (SYNE2
77

), or PD-related pathologies and pathways (ARF3
78,79

, DCTN2
80

, HERC1). 

Specifically, ARF3 contributes to the disruption of Golgi apparatus
78,79

 and there is evidence of 

Golgi fragmentation in PD.
81

 DCTN2 colocalizes with phosphorylated SNCA in Lewy bodies in 

participants with PD and DLB.
80

 HERC1 is an E3 ubiquitin protein ligase whose dysregulation 
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leads to alterations in the endosomal system
82

, and both atypical ubiquitination and 

dysfunction of endosomal system are hallmarks of PD pathobiology.
63

 

Lastly, we showed that 196 of the 2188 identified transcripts originate from genomic regions 

associated with PD. Of those, 121 have some level of support as the driving gene for a given 

locus.
49,50

 Remarkably, six of these transcripts are encoded by genes nominated by the PD 

GWAS studies (ADORA2B, DYRK1A, GCH1, PNA1, MCCC1, TMEM163), adding additional 

evidence to the already prioritized genes.
49,83

 All but ADORA2B had high supporting scores, 

ranging from seven (MCCC1) to ten (DYRK1A), in the GWAS browser. Interestingly, DYRK1A has 

the same level of support as SNCA, a well-known PD-associated gene, in the locus browser
50

, 

adding evidence of the involvement of DYRK1A in the pathobiology of PD. 

To date, there are no established biomarkers for accurate PD diagnosis, yet with α-synuclein 

seed amplification assays (SAA) having promising performance in CSF.
14

 We utilized the 

identified DE transcripts to develop minimally-invasive predictive models capable of 

differentiating between PD and healthy controls. We developed three scalable models with 

high predictive power to classify PD, with AUC values between 0.86 and 0.88. Two of the 

predictive transcripts, BMP6 and PARP1, are also dysregulated on a protein level in plasma, 

which opens additional possibilities to leverage the proteins as biomarkers. Interestingly, 

increased levels of BMP6
84

 have been associated with AD, while PARP1 is connected with α-

synuclein pathology and PD
85

, but they have not been explored as biomarkers. Regardless, we 

showed that the transcriptomic models are specific to PD, as they are unable to differentiate 

between DLB, FTD or AD and healthy controls and capture pathways relevant to the known 

pathobiology of PD. Notably, we observed that the predictive transcripts are dysregulated in 

FTD in the opposite direction to PD, suggesting that underlying molecular pathways could be 

shared between PD and FTD, though regulated differently. Due to the complexity of PD, and the 

biological interplay between DNA, RNA, and protein functions, we believe that future PD 

biomarkers might benefit from integrating proteomic and transcriptomic data. Mapping the 

predictive model transcripts to the pathway analysis results, we show that model transcripts 

are involved in PD relevant pathways, such as PD, ubiquitin mediated proteolysis, as well as 

other nervous system disorders, like HD and ALS, adding further evidence of the potential 

translatability of these models, and their biological relevance.  

Four transcripts, PLAC8, PTK2B, RPS27P8, ATP5F1B, included in the models correlate 

significantly with motor symptoms measured by UPDRS-III scale, several of which have known 

links to PD. PTK2B is highly expressed in the nervous system and has been indicated in AD for its 

role in synaptic homeostasis.
87–89

 In PD, PTK2B is associated with variant rs11060180 

(p=1.12×10
−4

), considered to be a PD-risk allele.
90

 Similarly, ATP5F1B has no known correlation 

to PD, but is associated with dystonia, which, like PD, is a movement disorder, further 

supporting its potential relation with UPDRS-III.
92

 Finally, two transcripts, RERE and FCGR3A, 

correlate with dementia symptoms measured by MoCA scores. The latter of the two have 

already been associated with memory disorders, highlighting the biological relevance of our 

predictive models .
93

 Together, this further shows that acellular transcripts are truly capturing 
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PD pathology and the complexity of the movement disorder diseases and potentially points to 

different mechanisms causing the motor versus cognitive symptoms in PD participants. 

This study has several limitations. While we accessed two independent populations from 

different repositories, we are limited by sample size and in the amount of clinical information 

we had available for HUMT population. This has made it challenging to account for all relevant 

biological, medical, and technical variables. Further, samples have been stored in the freezer for 

varying amounts of time, which is known to affect the quality of RNA, and thus can potentially 

impact our findings. To minimize the effects of missing clinical information and storage time, 

we removed from the analyses any transcripts that showed selective degradation or were 

associated with medication in WUSTL population as previously described.
33

 Finally, larger 

sample sizes of both PD samples, as well as other NDDs, would allow for further validation and 

sensitivity testing of the developed predictive models. 

Nonetheless, this study is the first of its kind and shows that cfRNAs have a potential to aid in 

diagnosis of PD as cost effective, minimally invasive biomarkers. We identified several plasma 

transcripts that have already been associated to PD or relevant pathways, correlate with 

symptom severity, and could potentially be leveraged for disease monitoring. On top of that 

not only are some of those transcripts dysregulated in different tissues, but they are also 

encoded in known PD loci. Additionally, some of them result in alterations in protein 

abundance when compared to healthy controls in relevant tissues. Overall, we believe that we 

have demonstrated that cfRNA has the power to capture changes relevant to PD pathology, has 

the potential to be translated to the clinic, and if replicated and validated in larger samples 

sizes, would benefit the whole PD community by providing non-invasive biomarkers, that are 

cost-effective and can be implemented in remote areas, providing access to care for all. 
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