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1 Abstract 

Introduction  

Whole exome sequencing (WES) has become a more accessible diagnostic tool in clinical genetic 

context, leading to the debate of the most accurate and effective bioinformatic pipeline solutions to 

evaluate variants that explain diseases.  

Objective 

This study aimed to evaluate twenty-four pipelines in two samples comparing accuracy, time and 

computing efficiency. We also contrasted the results based on regions in two of the most common 

capture kits.  

Materials and methods 

We used two accessions of NA12872 whole exome sequencing to contrast four different free access 

software for mapping using hg38 reference genome, then we used six different software alternatives 

for variant calling process. Finally, differences in computational resources and efficacy were 

evaluated.  

Results  

Our results showed that the most accurate and fastest pipeline is BWA with Strelka for SNVs 

detection, and differences in the use of resources and efficacy were proven.  

Conclusions 

BWA and Strelka are the most accurate and fastest for detecting SNVs in clinical exomes. Significant 

differences in efficiency and resource usage exist among the workflows evaluated. These findings aid 

in selecting the best methods for clinical contexts. 

Keywords: Whole exome sequencing, variant calling, genetic diagnosis, clinical bioinformatics, 

benchmark, medical genetics, accuracy.  
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2 Introduction 

Since the introduction of DNA sequencing by Fred Sanger in 1977 and the subsequent development 

of Next-Generation Sequencing (NGS), the data resulting from the extensive application of these 

technologies in diverse fields have spurred the development of numerous algorithms to analyze vast 

datasets. Decreasing NGS costs has facilitated the utilization of these tools not only in research but 

also for clinical diagnosis, enabling the analysis of genetic variability in human populations and the 

identification of variants related to monogenic conditions and complex diseases (1). These 

advancements have optimized both the time and precision of results, contributing to the advancement 

of genomic medicine (2–6). 

Millions of individual exomes have been sequenced worldwide (7,8) with the primary objective of 

exploring variants encoded within these genomic sequences through a process known as variant 

calling. This process comprises two essential steps: mapping the sequenced DNA against a reference 

genome and identifying the set of variants (differences in sequences when compared with the 

reference) that cannot be attributed to sequencing errors. The accuracy and reliability of variant 

calling are influenced by various factors throughout this process, including the quality of the 

sequences, the reference genome, and the software employed (9). 

The entire process of detecting genetic variants is a crucial procedure with a significant impact over 

the interpretation of genomic data and its application in medical diagnosis. Consequently, multiple 

recommendations have been issued regarding the need for caution in the processing and 

interpretation of genetic tests due to the complexity of genomic information and the health risks 

associated with these tools, given the probabilistic nature of available analysis algorithms (10). 

Therefore, the evaluation and comparison of various bioinformatic tools and methods for variant 

mapping and calling are imperative for the best analysis of genomic data. 
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Currently, genomic variants such as single nucleotide variants (SNVs), insertions/deletions (InDels), 

and short tandem repeats (STRs), can be identified through pipelines that integrate short read aligners 

for the mapping process and variant callers. Concerning the mapping process, BWA-MEM (11) is 

generally recommended due to its speed and accuracy in mapping DNA sequences to a large 

reference genome, such as the human genome (12,13). There is no single pipeline that optimally 

detects different types of variants. In fact, the combination of BWA-MEM (11) with Samtools (14) 

has demonstrated superior performance in SNP detection, while BWA-MEM (11) combined with 

GATK (15) has yielded better results for indels (16). In summary, the choice of pipeline should align 

with the specific research goal, and combining results from multiple pipelines can enhance overall 

outcomes (17). 

In the field of variant identification, there are various approaches designed to detect specific sets of 

variants within genomic samples. One of the most widely utilized software tools for germline variant 

calling is the mapping tool HaplotypeCaller, part of the Genome Analysis Tool Kit (GATK-HC). 

GATK-HC identifies SNVs and InDels through haplotype construction, achieving a high level of 

accuracy at the expense of longer execution time. Considering the extensive array of tools available 

for the bioinformatic analysis of human genomic data and the imperative for precise diagnosis, we 

present a comprehensive benchmark of genome mapping and variant calling algorithms within a 

clinical-diagnostic framework. The benchmark aims to discern a fitting analysis workflow 

customized to the distinct requirements of laboratories primarily engaged in genetic medical 

diagnosis. It accomplishes this by undertaking a comparative evaluation of twenty-four distinct 

pipelines on two separate accessions of the same sample. The mapping software employed includes 

NGSEP, BWA, BWA-mem2, and Bowtie2, while variant caller software encompasses Deep Variant, 

Strelka, Free Bayes, NGSEP, Octopus, and GATK. For reference, the hg38 genome UCSC assembly 

was selected. Additionally, we assess the influence of sequencing on the variant calling process by 
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analyzing two accessions of the same samples in two times (18). This approach is highly 

recommended as a best practice tool for variant identification in medical diagnosis (19). Strelka2 

employs a Bayesian approach and represents continuous allelic frequencies while leveraging the 

expected genotype structure of normal samples to identify variants of potential interest (20). 

Furthermore, DeepVariant, which is based on a deep convolutional neural network (15,20,21), has 

demonstrated high precision not only in SNV identification but also in the challenging task of 

detecting Copy Number Variants (CNVs). Other available tools for germline variation analysis 

include DRAGEN Bio-IT Platform, NGSEP, Octopus, and FreeBayes (22–25). 

Considering the extensive array of tools available for the bioinformatic analysis of human genomic 

data and the imperative for precise diagnosis, we present a comprehensive benchmark of genome 

mapping and variant calling algorithms within a clinical-diagnostic framework. This benchmark is 

designed to discern a fitting analysis workflow customized to the distinct requirements of 

laboratories primarily engaged in genetic medical diagnosis. It accomplishes this by undertaking a 

comparative evaluation of twenty-four distinct pipelines on two separate accessions of the same 

sample. The mapping software employed includes NGSEP, BWA, BWA-mem2, and Bowtie2, while 

variant caller software encompasses Deep Variant, Strelka, Free Bayes, NGSEP, Octopus, and 

GATK. For reference, we selected the hg38 genome UCSC assembly. Additionally, we assess the 

influence of sequencing on the variant calling process by analyzing two accessions of the same 

samples. 

 

 

3 Materials and methods 

3.1 Data source 

A systematic comparison of variant calling performance needs a gold-standard set of reference 

variant calls. To establish this standard, a FASTQ-formatted file from sample NA12872 was 
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retrieved from the Sequence Read Archive Repository of the National Center for Biotechnology 

Information, provided by two distinct submitters: BGI-SHENZHEN submission sequenced with 

Illumina HiSeq 4000 (SRA ID: ERR1905890), and the original Broad Institute submission (SRA ID: 

SRR098401). 

3.2 Mapping and variant calling  

The process involved variant discovery and filtering through 24 distinct pipelines. Reads from both 

accessions were aligned against human reference genome, hg38 from the Broad Institute, using four 

different read aligners: BWA, BWA-MEM2, NGSEP, and Bowtie2, using default settings. BAM 

files were sorted to remove discrepancies, pairs with other orientations and pairs on different 

chromosomes. The evaluation included considerations for CPU consumption and runtime. The 

relevant reference genomes can be accessed at the following link: 

https://console.cloud.google.com/storage/browser/gcp-public-data--broad-

references;tab=objects?prefix=&forceOnObjectsSortingFiltering=false. 

The variant calling process was executed using six different tools: DeepVariant (15), Strelka2 (26), 

FreeBayes (25), NGSEP (23), Octopus (24), and GATK (27,28). To facilitate a clear comparison, 

default execution options were employed for each algorithm. After the process's completion, 24 VCF 

files were obtained. 

For the hg38 reference genome, we obtained the gold standard (release v. 4.2.1) from the GIAB FTP 

data repository (https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/). We compared each VCF file to 

the Gold Standard using the VCFGoldStandardComparator tool from NGSEP (23), utilizing Agilent 

SureSelect V.4.2.1 capture regions and Roche SeqCap (29) as references. File parsing was conducted 

using in-house scripts. All processes were executed on a DELL PowerEdge T550 Server with a 2 x 

Intel(R) Xeon(R) Gold 6338 CPU @ 2.00GHz, 128 CPUs, 256GB of RAM, and Ubuntu Server 

20.04 LTS as the operating system.sing the Samtools sort utility (11). Summary metrics for this step 
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included the percentage of mapped reads, percentage of properly paired reads, error rate, failed QC 

reads, MAPQ0 reads, discrepancies, pairs with other orientations, pairs on different chromosomes, 

CPU consumption, and runtime. The relevant reference genomes can be accessed at the following 

link: https://console.cloud.google.com/storage/browser/gcp-public-data--broad-

references;tab=objects?prefix=&forceOnObjectsSortingFiltering=false. 

4 Results 

4.1 Mapping comparison 

We evaluated metrics by comparing twenty-four pipelines resulting from the combination of 4 

mapping and 6 Variant caller tools against the reference sample NA12878. The performance criteria 

were categorized into two main aspects: bioinformatic-quality assessment and computational 

behavior, encompassing resource consumption and execution time. 

We evaluated two different accessions of the same samples: Broad Institute accession and BGI-

SHENZHEN accession. To elucidate the distinctions in quality among the accessions, an assessment 

was conducted to evaluate the quality of the fasta files. The Broad Institute accession displayed 

substandard sequencing quality, as indicated by the Per base sequence quality statistics (Figure 1). 

None of the accessions exhibited the anticipated distribution of GC count, potentially accounting for 

the deviation in Ts/tv ratio. Furthermore, our analysis demonstrated compromised per base sequence 

quality in both samples, particularly evident in the Broad Institute accession (Figure 2). In this case, 

the mean quality surpassed the acceptable threshold for sequencing quality. Considering the Broad 

Institute accession's esteemed status as a gold standard, its mean quality score should ideally surpass 

the accepted threshold for good quality sequencing. All the experiments were carried out with both 

accessions, to check the differences in the performance of the variant calling process in contrast with 

the quality of the sequencing process. 
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In our experiments, for both accessions NGSEP exhibited one of the lowest error rates, but it yielded 

the lowest percentage of properly paired reads mapped, amounting to less than 75%. Conversely, 

Bowtie2 achieved the highest mapping rates; however, it did exhibit a higher error rate in our 

experiments. As anticipated, both BWA and BWA-mem2 demonstrated striking similarity due to 

both employing the Burrows-Wheeler algorithm. They both achieved mapping rates exceeding 90% 

while maintaining the lowest error rates, as depicted in Figure 3.  We aim to emphasize the variations 

in error rates between the same aligner used with two different accessions. For instance, in BWA-

mem and BWA-mem2, differences in error rates are evident, as shown in Figure 3. To address this, 

we took into consideration key metrics such as execution time, CPU utilization (number of cores 

employed), and RAM usage (measured as the peak of resident memory set size). These metrics 

complement the aforementioned bioinformatic quality measures and underscore the algorithmic 

constraints inherent to each solution. 

Among the evaluated software options, BWA-mem2 emerged as the fastest, boasting an average 

CPU usage when compared to other tools. However, it is noteworthy that BWA-mem2 exhibited a 

high resident set size, reaching a maximum of approximately 63GB. This behavior aligns with its 

algorithmic features, including optimizations for cache reuse, simplified algorithms, and the 

replacement of numerous small, fragmented memory allocations with fewer, larger contiguous ones. 

In contrast, both BWA-mem and Bowtie2 demonstrated similar execution times while allocating 

similar computational resources, as illustrated in Figure 4. On the other hand, NGSEP showcased an 

economical utilization of computational resources in terms of memory. Nevertheless, it is important 

to mention that its execution time exceeded 10 hours. 

4.2 Variant calling comparison  

We conducted variant calling analysis employing six distinct variant caller software: Deep Variant, 

Free Bayes, Octopus, NGSEP, GATK, and Strelka. Assessment parameters included the count of 

SNPs, indels, and the transition/transversion ratio (ts/tv) identified by each caller. Among the 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 19, 2024. ; https://doi.org/10.1101/2024.10.18.24315708doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.18.24315708
http://creativecommons.org/licenses/by/4.0/


  

9 

pipelines, the NGSEP_NGSEP configuration, employing NGSEP as both the mapping tool and 

variant caller, demonstrated the highest SNP count at 22,106,766, followed by DeepVariant_Bowtie2 

with 7,034,267 SNPs. In contrast, for BGI-SHEZHEN, the greatest SNP count reached 3,939,599 

with Bowtie2_Deep Variant, trailed by NGSEP_NGSEP with 3,723,607 SNPs. These disparities in 

SNP counts persist across accessions. In reference to indels, the Broad Institute reference revealed a 

maximum of 709,383 indels detected (NGSEP_NGSEP), while the BGI-SHEZHEN reference 

showed 435,335 indels detected (Bowtie2_NGSEP). Both accessions demonstrated a low transition 

transversion ratio (ts/tv) ranging between 1 and 2.2, as depicted in Figure 5. 

We assessed computational performance among the mentioned variant calling software, examining 

elapsed time, maximum resident set size, and CPU utilization, mirroring our approach in the mapping 

comparison. NGSEP exhibited superior performance, as illustrated in Table 1 , with an elapsed time 

of 3.82 hours. Following NGSEP were Free Bayes, Octopus, GATK, Strelka, and Deep Variant in 

terms of performance metrics. 

To assess the quality of variant calls, VCF files were compared against a gold standard reference over 

specific regions captured by two widely used commercial kits used in medical diagnosis — Sure 

Select V8 (SS) from Agilent and SeqCap (SC) from Illumina—.We assessed sensitivity as a measure 

of true positives for homozygous and heterozygous SNVs, Indels, and short tandem repeats (STRs) 

along the 24 different pipelines (4 mapping software + 6 variant calling software) in both accessions . 

Our findings underscore the substantial impact of the capture kit on these metrics, with SS 

demonstrating superior metrics compared to SC. As anticipated, homozygous variants outperformed 

heterozygous variants. Notably, a sensitivity difference of more than 10 percent was evident among 

accessions in heterozygous variants using the SS capture kit. 
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In the assessment of heterozygous variants, the most effective pipeline for SNVs was BWA-

mem2_DeepVariant. For indels, the Broad Institute accession displayed superior metrics with BWA-

mem2_Octopus, whereas the BGI-SHEZHEN accession yielded better results using BWA-

mem2_DeepVariant. STRs typically pose significant challenges for mapping software. The top-

performing results for both accessions were attained with BWA-mem2_GATK and BWA-

mem2_Strelka2, demonstrating similar performance. 

Additionally, our analysis across various pipelines revealed distinct outcomes, comparing 

homozygous variants that typically yield higher sensitivity metrics and fewer false positives (results 

not shown). The BGI-SHEZHEN accession delivered the optimal SNV result, achieving a sensitivity 

of 96.55% via the NGSEP_DeepVariant pipeline. Meanwhile, for this accession, BWA_Strelka2 

yielded the highest sensitivity for indels (85.9%), and Bowtie_FreeBayes for STR (88.4%). In 

contrast, the Broad Institute accession showcased differing best-performing pipelines: BWA_NGSEP 

for SNVs (90.6%), BWA-mem2_Octopus for Indels (58.0%), and Bowtie_FreeBayes for STR 

(73.6%) (Figure 6) . 

Another widely used capture kit in clinical diagnosis is SeqCap. By comparing previously acquired 

VCF data after filtering regions from this new capture kit, improvements were observed across all 

experiments. For heterozygous variants, sensitivities of 85.59% (Broad Institute) and 92.72% (BGI-

SHEZHEN) were achieved for SNVs using the BWA_Strelka2 and NGSEP_FreeBayes pipelines, 

respectively. Regarding indels, sensitivities were 69.52% (Broad Institute accession) and 88.12% 

(BGI_SHEZHEN) using BWA_Octopus and BWA_GATK, respectively. Furthermore, STR 

detection sensitivity improved to 80.12% (Broad Institute) and 92.17% (BGI-SHEZHEN) utilizing 

Bowtie2_FreeBayes in both cases (Figure 7) . 

The study yielded optimal metrics for homozygous variants using SC. Within the Broad Institute 

accession, sensitivity values were observed at 91.41% for SNVs, 76.35% for indels, and 80.12% for 
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STR. Conversely, within the BGI-SHEZHEN accession, sensitivity registered at 95.73%, 91.74%, 

and 92.17% for the respective variants. The utilized pipelines for these metrics were 

NGSEP_Octopus and NGSEP_DeepVariant for SNVs, BWA_Octopus and BWA_DeepVariant for 

Indels, and Bowtie_FreeBayes for STR (Figure 7). 

5 Discussion 

In the realm of clinical diagnostics, the establishment of standardized pipelines for exome analysis is 

imperative due to the pervasive inconsistencies affecting variant identification, annotation, filtration, 

classification, and reporting. The discrepancy in variant classifications among submitters, as 

evidenced by the 17% variability in ClinVar variants, underscores the urgency for uniform guidelines 

in interpreting variants (30). The complexity of genome-wide variant analysis amplifies the challenge 

for clinical laboratories, necessitating a structured approach from raw data processing to phenotype-

associated variant reporting. The bioinformatics pipeline involves a multitude of steps, encompassing 

diverse algorithms, software, databases, and operational environments. Yet, the absence of a defined 

standard for integrating these components to analyze outputs across sequencing platforms impedes 

the reliability and comparability of results, hampering their effective use in patient care (17). 

Therefore, establishing standardized pipelines is therefore indispensable to enhance the consistency, 

accuracy, and clinical utility of exome analysis in healthcare settings and optimizing computational 

resources is crucial to minimize processing time and maximize throughput. 

Mapping is a fundamental process in variant detection in clinics. Borrows-Wheeler transform was 

developed in 1994 and it started to call bioinformatics attention around 2010, Bowtie, BWA 

implemented this as the basis of their mapping software (11,31). BWA was originally developed by 

Heng Li (11). It constructs a prefix based on a transformation, it is optimized for short reads, 

especially single end but it also supports paired ends. In the original publication of BWA, it 

accomplished a fastest execution time compared with Bowtie2 and a higher percentage of paired 
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reads. Despite the use of the same algorithm, we evidence differences in the use of computational 

resources between Bowtie, BWA-mem and BWA-mem2, a previous study showed that low quality 

samples can change the performance among different software, additionally, they highlight that all 

repetitive regions are usually aligned incorrectly decreasing accuracy (32). 

We also evidenced difference in metrics between capture kits despite both are based on hybridization 

and sonication for fragmenting DNA sample, one of the main differences is that SureSelect uses 

RNA probes, while SeqCap uses DNA with a bigger size per library (33). Moreover, manufacturer 

specifies an alignment percentage of 30-70% for SureSelect and 70-80% for SeqCap, which can 

explain why the analysis with SeqCap showed a better performance, this capture kit is the one with a 

better mapping rate among capture kits evaluated by Samorodnitsky, et al., 2015 (SureSelect, 

HaloPlex, Nextera and SeqCap) (33). 

Regarding the inconsistent in ts/tv ratio, some studies have reported the association between ancestry 

and variants, a value of 2.0 in whole genome sequencing has been observed in African ancestry 

population. European, Asian, and American samples usually show lower values (34), NA12878 

sample has been described as European Ancestry, our observed ts/tv ratios were lower in both 

accession than the reported for exome data, that is usually between 2.6 and 3 (34) which may be 

explained by the capture kit used that is taking intron sequences deviating the ratio, or the low-

quality sequencing. 

In our experiments, the best mapping tool was BWA due to its computing performance and mapping 

quality, using less than one hour and the lowest error rate. Some studies have shown the good 

performance of this mapping software in SNV and indel detection using samtools as a variant calling 

tool (14,16), however it has shown that it has a weak performance with heterozygous SNVs (16). 
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We evidenced the influence of the mapping process to variant calling sensitivity. The sequence 

quality showed to be fundamental in the variant detection, with the BGI-SHEZHEN accession we 

were able to obtain sensitivity values up to 93%, meanwhile with a lower quality sample the 

maximum sensitivity was 85%. It is also important to select the variant type of interest (SNVs, 

Indels, STR) for optimizing the pipeline. 

In concordance with prior research findings, DeepVariant has demonstrated superior performance. 

Previous studies have documented that DeepVariant, while making fewer calls, exhibits a low rate of 

false positives and fewer false negatives in identifying variants of interest (21). Consequently, there 

have been suggestions for its widespread adoption on a larger scale, with some reports even 

indicating a reduction in computational costs (35). However, in our specific case, this tool has 

exhibited the highest computational resource consumption. This limitation restricts its extensive use 

for medical diagnoses and the analysis of large sample cohorts. 

In short-read sequencing, one of the primary challenges arises in the presence of tandem repeated 

regions, primarily due to the inadequate sequencing method's representation of these regions. 

Generally, variant calling algorithms exhibit reduced performance in identifying indels compared to 

SNVs, making the identification of these variants a significant challenge (24). Nevertheless, as 

observed in other studies, our data indicated that Octopus outperformed in the identification of indels. 

It has been reported that this tool has the capability to detect a broader range of indels and 

demonstrates greater precision when identifying deletions smaller than 15 base pairs (24). 

Furthermore, it exhibited a better performance when used in conjunction with BWA for mapping (9), 

a finding that aligns with our own data. 

In consequence, the optimal pipeline for the SureSelect capture kit involves using BWA-mem2 for 

mapping and DeepVariant for variant detection. Despite not yielding the best results in all tests, this 
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combination demonstrated superior performance for SNVs, processing within 8 hours, and achieving 

sensitivity values exceeding 90% when assessed using BGI-SHEZHEN data. 

In situations of limited computational resources, the BWA-mem2_Strelka2 pipeline offers an 

efficient solution, significantly reducing processing time to a few seconds while achieving a 

sensitivity of 92.21% based on BGI-SHEZHEN accession data. This accelerated processing time 

holds considerable promise for expediting clinical recurrent tasks, where minimizing opportunity 

time is crucial. Noticeable variations in metrics were observed between accessions, with lower 

metrics recorded in the Broad Institute dataset, possibly due to differences in sequencing processing 

methodologies. The BGI-SHEZHEN accession utilized the SeqCap V5 kit, while information 

regarding the lab processing for the Broad Institute accession remains unavailable. 

Bioinformatic tools have shown a relevant importance in the past years in clinical context, pipeline 

selection can improve a patient's diagnosis (36). Considering that the current guidelines of ACMG 

(37) are designed to classify SNV and there is more information about the functional effect of SNV 

than other types of variation, the most accurate and fast pipeline was BWA and Strelka2. 

We obtained better metrics for the SecCap capture kit than for the SureSelect V8. Considering the 

best metrics in both kits, the best workflow for SNVs were BWA, BWA-mem2, and NGSEP in 

combination with DeepVariant and Strelka2. Regarding computational resource consumption, the 

most sensitive workflow with a smaller number of false positives was the BWA_Strelka2 workflow. 

On the other hand, if the main purpose is to detect indels properly, the best solutions are BWA and 

BWA-mem2 as mapping algorithms, along with Octopus, GATK, and DeepVariant as variant callers. 

Where the fastest and least resource-consuming option is BWA_Octopus. Meanwhile, for STR, the 

best pipeline in most of the experiments was Bowtie2_FreeBayes. 
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Lastly, it is crucial to emphasize that, when selecting the most appropriate tool for genetic diagnosis, 

consideration must be given to computational resources. Various tools have demonstrated their 

efficacy in mapping and variant calling for clinical purposes. Laboratories equipped with GPUs or 

access to cloud processing may find tools like DeepVariant advantageous for variant identification, 

owing to their ability to handle computational-intensive tasks. Conversely, in scenarios involving 

large-scale processing with limited computational resources, tools such as BWA_Strelka2 offer 

significant benefits. 
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Table 1. Computational performance for variant calling process.  

Accession Metric DeepVariant Strelka NGSEP Octopus FreeBayes GATK 

BGI-SHENZHEN 
(ERR1905890) 

Maximum resident set 
size (Gbytes) 14.3 0.3 5.4 10.9 1.1 17.9 

Number CPU this job 
got 29.0 27.0 1.2 0.9 0.9 24.4 

Elapsed time (hours) 4.6 0.1 3.1 14.3 3.3 2.4 

BROAD 
INSTITUTE 
ACCESSION 
(SRR098401) 

Maximum resident set 
size (Gbytes) 13.7 0.0 0.7 0.8 2.4 18.3 

Number CPU this job 
got 28.0 27.0 1.2 1.0 1.0 23.9 

Elapsed time (hours) 1.5 6.3 3.8 9.1 2.6 2.7 

 

 

 

 

  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 19, 2024. ; https://doi.org/10.1101/2024.10.18.24315708doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.18.24315708
http://creativecommons.org/licenses/by/4.0/


  

21 

 

 

Figure 1. Fastq quality stats (per base sequence quality and per sequence GC content) for Broad 

Institute accession. A. Forward reads stats. B. Reverse reads stats.  
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Figure 2. Fastq quality stats (per base sequence quality and per sequence GC content) for BGI-

SHEZHEN accession. A. Forward reads stats. B. Reverse reads stats.  
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Figure 3. Percentage of reads mapped to the reference genome, properly paired reads and error rate in 

mapping process using NGSEP, BWA, BWA-mem2 and Bowtie2. 
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Figure 4. Computational resources used during mapping process using NGSEP, BWA, BWA-mem2 

and Bowtie2.  
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Figure 5. SNVs, Indels counts and ts/tv ratio for all variant calling pipelines evaluated with the two 

accessions.  
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Figure 6. Sensitivity metrics for VCF gold standard comparison using SureSelect capture kit. A. 

Heterozygous variants for Broad Institute accession. B. Homozygous variants for Broad Institute 

accession. C. Heterozygous variants for BGI-SHENZHEN accession. D. Homozygous variants for 

BGI-SHENZHEN accession.  
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Figure 7. Sensitivity metrics for VCF gold standard comparison using SecCap capture kit. A. 

Heterozygous variants for Broad Institute accession. B. Homozygous variants for Broad Institute 

accession. C. Heterozygous variants for BGI-SHENZHEN accession. D. Homozygous variants for 

BGI-SHENZHEN accession.  
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