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Abstract

Understanding the past, current, and future dynamics of dengue epidemics is challenging yet increasingly
important. To date, many techniques across statistics, mathematics, and machine learning have provided
us with quantitative tools for studying dengue epidemics. Here, using data from provinces in northern
Peru across 2010 to 2021, we provide a new interdisciplinary pipeline that draws on a new and existing
techniques to provide comprehensive understanding and robust prediction of dengue epidemic dynamics.

Wavelet analyses can unveil spatiotemporal patterns in epidemic dynamics across annual and multi-
annual time periods. Here, these included climatic forcing and greater spatial similarity in large outbreak
years. Space-varying epidemic drivers included climatic influences and shorter pairwise distances driv-
ing greater epidemic similarity in more northerly coastal provinces. Then, using a Bayesian model,
we can probabilistically quantify the timing, structure, and intensity of such climatic influences on
Dengue Incidence Rates (DIRs), while simultaneously considering other influences. Recognising that
a single model is generally sub-optimal for any forecasting task, we demonstrate how to form trained
and untrained probabilistic ensembles for forecasting dengue cases in settings reflective of real-world
conditions. We introduce a suite of climate-informed and covariate-free deep learning approaches that
leverage big data and foundational time series, temporal convolutional networks, and conformal infer-
ence. We complement these modern techniques with statistically principled training and assessment of
ensemble frameworks, while explicitly considering strong benchmark models, computational costs, pub-
lic health priorities, and data availability limitations. In doing so, we show how ensemble frameworks
consistently outperform individual models across space and time, and produce sharp and accurate fore-
casts with robust, reliable descriptions of uncertainty. We report interpretable classification metrics for
detection of outbreaks to communicate our outputs with the wider public and public health authorities.

Looking forward, whether the objective is to understand and/or to predict epidemic dynamics, our
modelling pipeline can be used in any dengue setting to robustly inform the decision-making and
planning of public health authorities.

1. Introduction

Dengue is a mosquito-borne disease which poses an increasingly global public health threat. Endemic
in tropical and subtropical regions, reported annual incidence has risen from 500,000 cases in 2000 to

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
granted medRxiv a license to display the preprint in perpetuity. 

 is the author/funder, who has(which was not certified by peer review)copyright holder for this preprint 
Thethis version posted October 18, 2024. ; https://doi.org/10.1101/2024.10.18.24315690doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.18.24315690
http://creativecommons.org/licenses/by-nc-nd/4.0/


2

over 5 million cases in 2023. 80% of the reported cases in 2023 occurred in the WHO Region of the
Americas, yet dengue is endemic in over 100 nations1,2. Primarily spread by Aedes mosquito vectors
(female Ae. aegypti and Ae albopictus), the viral infection is caused by the dengue virus (DENV), a
flavivirus with four genetically distinct serotypes. Infection with an individual serotype offers long-term
immunity to the specific serotype, but only short-term immunity to others3. Symptoms of dengue vary
in severity, and up to 80% of all infections are asymptomatic1.

The increasing number of dengue outbreaks has been linked to human, viral, and environmental
factors. Climatic conditions such as temperature, precipitation, and humidity influence the mosquito
abundance and DENV replication, as Aedes mosquitoes thrive in warm, humid conditions and pre-
cipitation is necessary for a mosquito’s juvenile stages4,5,6,7. Extreme climatic conditions, including
drought and heavy precipitation, instigated by events such as the El Niño phenomena, have been iden-
tified as epidemic drivers8,9,10. Human factors like rapid urbanisation have contributed to the creation
of mosquito breeding sites and addition of susceptible hosts in close proximity. Similarly, increased
travel, human mobility, and globalisation have contributed to greater incidence and potential for rapid
geographic spread11,12.

Faced with a difficult-to-detect, climate-sensitive disease, public health authorities require a quanti-
tative understanding of epidemic dynamics and drivers to inform their decision-making. In the absence
of complete spatial or temporal coverage of dengue surveillance, authorities may also seek alternative
ways to fill gaps in surveillance. Prospectively, public health authorities aim to have early warning sys-
tems which probabilistically predict future epidemic trajectories and the likelihood of outbreaks, thus
allowing sufficient time for design of evidence-based public health policies. Therefore, in Brazil, South-
east Asia, and Barbados, modellers have used wavelets, Bayesian hierarchical models, deep learning
(DL)-based methods, and ensemble frameworks as effective modelling techniques. These have provided
model-based understanding of spatial patterns (e.g. highly correlated outbreaks and amplifying effects),
temporal patterns (e.g. strong seasonality), demographic patterns (e.g. mean ages of infection), and key
epidemic drivers (e.g. climatic and human influences)9,13,14,15,16,17. In our studied region of northern
Peru, dengue is a substantial, year-round public health burden where climate-based modelling analy-
ses have also separately involved wavelets, ensemble forecasting, and Bayesian hierarchical models to
quantify relationships between climatic conditions and reported dengue cases, and forecast short-term
future epidemic trajectories10,18,19.

Here, we build upon these previous works as we introduce an interdisciplinary pipeline to address
many requirements of public health authorities. To date, modelling workflows have been presented
for a single modelling class, yet are not dengue-specific nor focused on learning from and integrat-
ing approaches from multiple modelling disciplines20,21,22,23. Similarly, approaches rarely focus on a
pipeline to assess past, current, and future dynamics. As a model is an imperfect description of reality,
there is no reason to assume (potentially restrictively) that a single technique for modelling is correct and
appropriate. Here, we explicitly acknowledge this fact to avoid drawing results and conclusions from a
single modelling domain. Instead, our approach leverages strengths from statistical time series, wavelet
analysis, Bayesian statistics, DL, and probabilistic ensemble forecasting. In doing so, we demonstrate a
new pipeline to more robustly and comprehensively analyse past, current, and future dengue epidemic
dynamics. Across fourteen provinces in Peru, we describe how our interdisciplinary approach can be
used to make inferences from seemingly distinct approaches. These inferences should provide insights
that aid policy-makers with monitoring and controlling dengue transmission. So, whether our objective
is to understand (modelling climatic drivers) or predict (forecasting dengue cases), we show how supe-
rior, robust results and conclusions can be obtained. This bridges the gaps in the literature regarding
modelling and forecasting beyond single domains.
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2. Materials and methods

2.1. Data

We used province-level reported dengue cases per month from May 2010 to December 2021 across the
14 provinces in Piura, Tumbes, and Lambayeque (on the northern coast of Peru) which had registered
dengue cases, as per the National Centre for Epidemiology, Disease Prevention and Control (Peru CDC)
in Peru’s Ministry of Health24. The reported cases included both confirmed and probable cases across
all serotypes. Probable dengue cases were defined as an individual with i) febrile illness for a maximum
of seven days, ii) two or more specific symptoms, and iii) resides in or has recently visited areas with
dengue transmission or known Ae. aegypti populations. Confirmed dengue cases met the same exposure
and symptoms criteria, and had a positive dengue test25. Monthly data were used to align with other
data sources (see below).

We interpolated population data from the 2007 and 2017 national censuses, and the 2022 mid-year
population estimates26,27,28. Then, we defined Dengue Incidence Rates (DIRs) per 100,000 by converting
reported new dengue cases to rates per 100,000. Data on the proportion of provinces’ populations living
in urban areas were also sourced from the 2007 and 2017 censuses.

Climatological data were as previously described in [19] but we now calculated the average values
across the individual province areas. Briefly, we sourced total monthly precipitation and monthly aver-
ages of daily maximum (and minimum) temperature from the WorldClim 2·1 dataset29,30, a drought
indicator called the Standardized Precipitation Index (SPI-6)31,32 from the European Drought Observa-
tory33, and El Niño Southern Oscillation (ENSO) indicators, namely the El Niño Coastal Index (ICEN)
and the Oceanic Niño Index (ONI) from the Geophysical Institute of Peru (IGP)34,35 and the National
Oceanic and Atmospheric Administration36,37 respectively. Each of these climatological variables have
been used in previous modelling studies in Peru and/or in other nations10,13,17,19,38.

2.2. Wavelet and exploratory analyses

We employed wavelet methods to analyse epidemic dynamics and drivers. These methods have been
used for dengue analyses in neighbouring Brazil and across Southeast Asia9,14,15, and can analyse signals
(such as DIR time series) with sharp discontinuities and time-varying periodicity (i.e. non-stationarity).

Using the R package WaveletComp, we employed a Morlet wavelet with non-dimensional frequency
𝜔0 = 6, as used previously for wavelet analysis of epidemic dynamics9,14,39,40. The Morlet wavelet
allowed us to decompose DIRs into reconstructed annual cycles (maximum period of two years) and
multiannual cycles (period of two to twelve years). The wavelet transform produced a wavelet power
spectrum, and we averaged across the provinces’ reconstructed annual and multiannual cycles to obtain
the average wavelet power of the annual and multiannual cycles per province per month.

For both annual and multiannual cycles, for each province pair, we computed the cross-wavelet
power (the wavelet analogue of covariance) and wavelet coherence (the wavelet analogue of correla-
tion) to compare the relative timing of epidemics across province. To measure epidemic synchrony
(how the amplitude of the incidence time series covary), for each province pair, we computed the Pear-
son correlation coefficient between their raw DIR time series and between their reconstructed (annual
and multiannual) cycles. We also quantified potentially time- and space-varying geographic, human,
and climatic drivers via the cross-wavelet power and coherence between climatic conditions and recon-
structed dengue cycles. This was complemented by developing generalised additive models (GAMs) for
epidemic synchrony using smooth functions (thin-plate splines) of temporal random effects (month and
year), spatial random effects (province), climatic variables (all variables above), and human mobility
approximations (the pairwise product of provinces’ populations)41,42. We fitted the GAMs using the
mgcv package in R version 4·2·139,42, and we evaluated model performance using the minimised gen-
eralised cross-validation score (GCV), Akaike Information Criterion (AIC) and Bayesian Information
Criterion (BIC) [43,44,45].
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Figure 1: Modelling and forecasting pipeline. Our proposed pipeline which takes the researcher from studying
past to future dengue epidemic dynamics. Retrospective analyses: Wavelets and Bayesian modelling are used to
provide a model-based understanding of past epidemic dynamics and drivers. Future dynamics: Our interdisciplinary
framework is used to probabilistically estimate dengue cases with a forecast horizon of one month, and forecast
evaluation takes place with both statistically rigorous and public-health focused criteria.

Other exploratory analyses involved computing the cross-correlation between past climatic conditions
and current DIR at different time lags. These cross-correlations were computed for each province.

2.3. Bayesian climate-based modelling

We developed a Bayesian climate-based modelling framework which was similar to existing models
from other nations13,17 and our previous work in Peru19. Here, we focus on recent modifications.

We modelled province-level dengue incidence using a zero-inflated Poisson distribution, thus
accounting for anticipated excess zero counts. The final model, informed by exploratory analyses, was
developed using data across 2010 to 2017, and contained: i) fixed effects (to estimate effects of recent
incidence trends relative to the preceding year, shared seasonality across provinces, urbanised popula-
tions, and epidemic momentum), ii) province-level temporal effects (to estimate monthly patterns and
year-to-year heterogeneities), iii) spatiotemporal random effects via an adapted Bayesian version of the
Besag-York-Mollié model46,47 (to account for similarities and uniqueness across provinces), and iv)
non-linear, delayed climatic influences via distributed lag non-linear models (DLNMs)48. We provide
additional model details in Supplementary Material 4.

Models were assessed using information criteria (e.g. Widely Applicable Information Criteria, WAIC
and cross-validated logarithmic score), in-sample predictive accuracy, and leave-one-time-point-out
cross-validation (with assessments of prediction interval (PI) coverage and probabilistic calibration).
We fitted all Bayesian models using Integrated Nested Laplace Approximation (INLA) in R version
4·2·139,49.

2.4. Probabilistic ensemble forecasting

By sampling from the posterior predictive distribution, the climate-based model above readily produces
probabilistic forecasts of future dengue incidence with a forecast horizon of up to one month. However,
any model is just an abstraction of reality, and individual models can have contrasting strengths yet can
be wrong in different ways (e.g. predictive vs understanding transmission mechanisms).

So, we consider ensemble frameworks which combine the probabilistic forecasts of several indi-
vidual models. Ensemble frameworks have demonstrated strong predictive performance for many
dynamical systems (from forecasting of COVID-19, seasonal influenza, and dengue to weather forecast-
ing50,51,52,53). Ensemble forecasts are often represented in one of two ways; using samples or quantiles
(our primary focus) of the predictive distribution. We focus on quantile-based forecasts as i) it provides
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access to a wider range of models which directly target quantiles (i.e. quantile regression for which no
there is no assumed likelihood), and ii) it is reflective of a computationally cheaper environment (versus
processing thousands of samples) that has been regularly employed in recent years54,55. The combina-
tion of the individual model components can be achieved by stacking, weighted density ensembles, or
model averaging56,57,58. Some existing ensemble approaches for dengue have not always assessed prob-
abilistic forecasts of (e.g. [59,60]), instead focusing on pointwise accuracy metrics (which do not measure
uncertainty in our predictions). These approaches also have not always separated the model develop-
ment period from the testing period nor have they benchmarked performance using iteratively updating
models, all of which is necessary to reflect a realistic application without bias in our conclusions. In
recent years, probabilistic ensembles have been increasingly used with equal weighting of quantiles or
trained weighting of sample distributions (e.g. Bayesian stacking)51,52,53,61.

For the forecasts of dengue incidence at a one-month horizon, we used 23 quantile levels (identical
to past forecasting studies55). Untrained approaches used the median or mean average of individual
modelling components’ predictive quantiles. We also briefly explored trained approaches via linear
stacking with the quantgen package in R [62], as we weighted individual models’ quantile forecasts for
a given month based on weights that would have optimised the sum of the quantile losses for forecasts
(of the logarithm of cases – see below) over the past twelve months (not including the forecasting date).
We performed this weighting for each province independently (to derive province-dependent weights
for each time point) and for all provinces jointly (to derive province-independent weights for each time
point). We iteratively updated the model weights as each month’s data became available (i.e. an online
procedure)

While we performed our study retrospectively, to reflect a realistic application, we forecasted dengue
cases with a one-month horizon and left the current and all future data out of model training. The four-
year period of January 2018 to December 2021 was our testing period. This allowed sufficient data for
the model development period (2010 to 2017 inclusive), where we also performed leave-one-time-point-
out cross-validation and forecasting with leave-future-out cross-validation. This allowed for learning
of spatial, temporal, and climatic relationships. The covariates and hyperparameters of each model
(Section 2.5 were selected solely from performance of candidate models in the model development
period. Conclusions and results were then based on subsequent performance in the testing period.

To evaluate forecasts, we used the weighted interval score (WIS) – a proper scoring rule that is
a discrete approximation to the continuous ranked probability score (CRPS)54,63. The WIS measures
the absolute distance between our predictive distribution and the observed data, and simultaneously
assesses model calibration (compatibility of forecasts with observations) and sharpness (concentration
of predictive distributions). Lower scores indicate better performance. As the WIS rigorously accounts
for distributional uncertainty, we avoided focusing excessively on pointwise accuracy metrics. We also
used the decomposition of the WIS into over-prediction, under-prediction and dispersion. Recently, it
has been shown that it matters to our forecast assessment and model rankings how we apply a scoring
rule. Applying these scores at the level of case counts is likely inappropriate, due to vastly different
epidemic properties across space and time [64]. So, in the current work, we i) follow the recommended
procedure to score forecasts on a natural-logarithm-transformed scale (i.e. log(Cases + 1)), and ii) also
score forecasts on a DIR scale. While we primarily focused on the recommended logarithmic scale,
the latter assessment is motivated by a desire to be comprehensive and to provide interpretable and
comparable information for public health authorities across space and over time. Alongside the WIS,
we assessed bias, quantile coverage, and PI coverage.

While all such measures provided aggregate and statistically rigorous perspectives of performance,
we also included a public-health-oriented measure. This measure focused our attention on times of the
year and areas of the predictive distribution of public health urgency. Here, we carried out a setting-
specific evaluation of the ability to correctly classify (i.e. binary forecast) the following month’s DIR
reaching thresholds of 50 or 150 per 100,000. These thresholds were pre-specified by us to indicate
different magnitudes of dengue outbreaks, and we report classifications as these can be easily interpreted
by public health authorities and the wider public. We used our model-based quantile forecasts to
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Table 1: Quantile-based forecasting models and abbreviations. The six individual forecasting models are
described first (above the double lines), followed by ensemble models that are highlighted with an asterisk. The
equal weighting (EW) scheme applies equal weights to the quantile of that ensemble model’s individual predic-
tions for each quantile. The median of individual models means that we take the median of the individual models’
predictions for each quantile.

Model Abbreviation Description

Baseline Epidemiologically naive random walk model that uses the most recent month’s observed cases as a
forecast for the next month.

Bayes-Climate Bayesian spatiotemporal model with non-linear, delayed climatic effects, spatial random effects, a
momentum indicator, and temporal effects

SARIMA Seasonal Auto-Regressive Integrated Moving Average model specified for each province independently
at each time

TCN Temporal Convolutional Network with climatic covariates specified for each province independently
TimeGPT Transformer-based foundational time series forecasting model with climatic covariates specified for

each province independently
TimeGPT-NoCov Transformer-based foundational time series forecasting model without any covariates specified for each

province independently
EW-Mean * Equally-weighted mean average of all individual forecasting models
EW-Mean-NoBase * Equally-weighted mean average of all individual forecasting models, excluding the baseline model
EW-Mean-NoBayes * Equally-weighted mean average of all individual forecasting models, excluding the Bayesian climate-

based model
EW-Mean-NoCov * Equally-weighted mean average of all covariate-free individual forecasting models. This excludes

covariate-based models – the Bayesian climate-based, TimeGPT, and TCN models.
Median * Median of all individual forecasting models, including the baseline model
Median-NoBase Median of all individual forecasting models, excluding the baseline model
Median-NoBayes * Median of individual forecasting models, excluding the Bayesian climate-based model
Median-NoCov * Median of individual forecasting models, excluding covariate-based models (the Bayesian climate-

based, TimeGPT, and TCN models)
Prov-Trained* Trained ensemble with province-dependent weights determined to minimise the sum of the quantile

losses
Trained* Trained ensemble with spatially homogeneous weights determined to minimise the sum of the quantile

losses

determine a cut-off quantile level (i.e. forming a decision rule based on historical performance) which
determined whether we classify an outbreak (of DIR ≥ 50 or 150 per 100,000) for the next month. An
outbreak is forecasted if the prediction at the (historically calibrated) cut-off quantile level exceeded the
corresponding outbreak threshold (e.g. 50 per 100,000). We allowed for decision rules to be iteratively
updated as each month’s data became available – in each month, the rule was determined to maximise
the historical AUC (the area under the receiver operating curve) for classifying outbreaks. In doing
so, we separated the inference stage (modelling) from the decision-making stage, and ensured that
our classifications were motivated by maximising public health utility. This is because simultaneously
maximising true positives and minimising false alarms helps to avoid wasted resources and lack of
public confidence. We repeated this outbreak detection evaluation in the setting of detecting first onsets
of outbreaks, where we assessed performance for forecasts of initial onset of outbreak with DIR ≥ 50
(or 150) per 100,000. This smaller dataset includes classifications for each province for months of a
year corresponding to the outbreak onset, months before the onset, or in a year with no eventual onset.
This classification can be important as it focuses on a public health priority of dengue incidence first
reaching pre-defined thresholds.

2.5. Our ensemble framework components

Our ensemble frameworks contained two or more forecasting model components whose predictive
distributions (for one-month-ahead cases), were represented by predictive quantiles (23 levels).

Our baseline model was an epidemiologically naive model which forecasted next month’s dengue
cases as the current month’s dengue cases. This was a direct application of an existing strong bench-
marking model from the U.S. COVID-19 Forecast Hub, and is a random walk model with innovations
(i.e. uncertainty) based on past observed differences in monthly dengue cases [55].
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Our Bayesian climate-based model (described in Section 2.3) used information up to one month
before the target month to generate samples from a posterior predictive distribution – from which we
computed quantile forecasts. We also developed Seasonal Auto-Regressive Integrated Moving Average
(SARIMA) models. These statistical time series models were fitted independently to the logarithm of
monthly cases for each province independently using the Auto-ARIMA (Auto-Regressive Integrated
Moving Average) implementation of the Statsforecasts package and Darts library in Python65,66. This
implementation selects the order of the ARIMA model based on the Akaike Information Criterion43,
and quantile forecasts are generated by assuming normality in forecast errors. We refitted the model at
each individual time point to reflect real-world conditions as new information becomes available. For
the baseline, Bayesian, and SARIMA models, we generated quantile forecasts by taking quantiles of the
5,000 samples of the predictive distributions.

The models above are all reflective of traditional model frameworks, yet in recent years, DL
approaches have demonstrated strong performance for forecasting of infectious diseases [67]. We intro-
duce here the first known application of a foundational time series model for forecasting dengue cases.
We used TimeGPT, a transformer-based foundational time series model with self-attention that has been
pre-trained on over 100 billion data points from different domains68,69. We implemented this model
(for the logarithm of cases) with and without climatic covariates (two-month rolling averages of precip-
itation and minimum temperature). The model readily produces quantile forecasts by using conformal
inference — a distribution-free way to produce statistically rigorous PIs [70]. We also developed a fore-
casting model that used a temporal convolutional network (TCN) from the Darts library in Python [65].
This DL architecture has dilated causal convolutional nets which preserve the local and temporal struc-
tures of the data. To avoid making distributional assumptions, we used quantile regression to directly
estimate the quantiles of the predictive distribution. We again used climatic covariates of two-month
rolling averages of precipitation and minimum temperature. These covariates were based on exploratory
analyses from the model development period.

We outline model abbreviations in Table 1 and additional details on ensemble forecasting models
in Supplementary Material 5. We followed EPIFORGE 2020 guidelines [71] throughout the forecasting
analysis (Table SI 3).

3. Results

3.1. Investigation of epidemic dynamics using wavelets and climate-based analyses

We used wavelet analysis to analyse simultaneously signals (of our incidence and climatic time series)
in both the time and frequency domains. Our wavelet-transform-based reconstructions of annual and
multiannual (two to five years) cycles of DIRs enabled a range of findings. First, similar to wavelet
analyses in Southeast Asia9,15, large dengue epidemic years (such as 2015 and 2017) were characterised
by statistically significant peaks in the average wavelet power and amplitude of reconstructed cycles
(Figures 2, SI 3). There was a spatial trend of common large peaks across reconstructed cycles in
provinces of the north and west of the region, with slightly more widespread incidence peaks in the
second large epidemic year of 2017. The mean period of multiannual cycles reduced during such years,
whilst across the study period, we observed similar overall trajectories of the mean period (Figure
SI 7) across the provinces (median pairwise Pearson correlation: 0.66, Interquartile Range – IQR: 0.25,
0.84). Complementary visualisations of monthly DIRs suggested strong similarity in the province-level
dengue incidence, in terms of both timing and magnitude. Trends in dengue incidence included waves
in the south preceding increases in northerly provinces and waves in the west preceding surges in the
east. The trends were observed within individual years and when analysed using monthly averages over
the study period (Figures SI 4, SI 5, SI 6).

Employing wavelet coherence (measuring the relative timing of epidemics), we found generally
widespread coherence across time and space (Table SI 5, figures SI 11, SI 10). Coherence generally
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Figure 2: Wavelet reconstructions of Dengue Incidence Rate (DIR) time series. Reconstructed annual cycles
of province-level DIRs, where provinces are sorted in ascending order by (A) longitude (from west to east) and (B)
latitude (from south to north). Reconstructed multiannual cycles of DIRs are shown in (C) and (D), where provinces
are also sorted in ascending order by longitude and latitude respectively. Figure SI 2 depicts the reconstructed cycles
with provinces sorted by percentage of population living in urban areas.

amplified (i.e. more widespread) during epidemic years when more provinces shared statistically sig-
nificant coherence with the (annual and multiannual) dengue cycles of other provinces (Figure 3).
Spatially, more northerly and more westerly provinces tended to possess a greater proportion of statis-
tically significant coherent relationships with annual and multiannual cycles of other provinces, whilst
more southerly and easterly provinces had more out-of-sync (or equivalently, self-contained) cycles.
The spatial trends were observed at individual time points within years (Figure 3) and across the entire
study period of 140 months (Figure SI 11), yet come with the caveat that Chiclayo (the most southerly
province) had more coherent cycles, reflective of a general trend of more urbanised provinces possessing
more significantly coherent annual and multiannual cycles (Table SI 6, Figure SI 2).

We found moderate-to-strong epidemic synchrony between annual raw DIR time series. Similar to
phase coherence, there was strong synchrony between reconstructed cycles (both annual and multiannual,
Table SI 7), and synchrony was high during large epidemic years (Figure SI 13). Spatially, particularly
in the reconstructed multiannual cycles, synchrony tended to be stronger in more northerly and westerly
provinces (Figure SI 12), thus capturing that correlations between epidemic curves shared similar
patterns as was previously observed for seasonality of epidemics (i.e. coherence).

We quantified geographic, climatic, and human drivers. Coherence and cross-wavelet power measured
the agreement between the seasonality of climatic variables and the reconstructed cycles. Here, we
found widespread statistically significant coherence, and consistently greater average cross-wavelet
power between climatic variables (maximum temperature, precipitation, and El Niño Coastal Index)
and reconstructed dengue cycles (both annual and multiannual) during epidemic years of elevated
incidence (Figure SI 14). Peaks in the average cross-wavelet power were always observed during
periods of elevated incidence across each of the climatic variables and across almost all of the provinces
(Figures SI 15, SI 16, SI 17). Spatially, more northerly provinces shared greater levels of statistically
significant coherence with climatic variables. The El Niño Coastal Index had a greater coherence (with
reconstructed cycles) in more westerly (and hence, coastal) provinces, and had a spatial gradient over
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Figure 3: Coherence of reconstructed annual dengue cycles. Proportion of a focal province’s annual dengue
cycles which share statistically significant coherence with the cycles of other provinces at each time point. Provinces
are sorted in ascending order by (A) longitude (from west to east) and (B) latitude (from south to north).

time in the cross-wavelet power with annual cycles, whereby greater agreement in seasonality of cycles
was observed over time as one progresses from west to east and from north to south (Figure SI 17).

To assess the influence of lagged climatic conditions on human disease incidence and to inform model
development, we computed cross-correlations between climatic variables and the raw monthly DIR time
series (during the model development period; 2010 to 2017). There were generally moderate-to-strong,
and spatially consistent, relationships between climatic conditions and DIRs across the provinces,
particularly across temperature, drought, and precipitation. From a forecasting perspective, the strongest
relationships were inferred with climatic lead times of one to three months and cyclical patterns in the
relationship were visibly pronounced (Figure SI 1).

We investigated the impact of pairwise distance between provinces on their corresponding average
correlation and proportion of significant coherent cycles. Within some provinces, there were clear
relationships between shorter distances and greater average correlation or coherence (which was most
widespread for coherence between multiannual cycles). There was a spatial trend of shorter pairwise
province distances being associated with similar annual epidemic dynamics (timing and amplitudes,
across annual and multiannual cycles) in more northerly provinces (Figures SI 18, SI 19).

We extended previously-employed modelling methodology15 (to further incorporate the pairwise
product of population sizes) as we developed GAMs to identify predictors of epidemic synchrony
(see Materials and methods). Our best-fitting GAM, based on generalised cross-validation score and
corrected AIC72,73, included climatic influences (minimum temperature and precipitation), year-to-
year heterogeneity, and the (logarithmic) pairwise product of population sizes. We estimated negative
coefficients in 12 of the 14 provinces for the pairwise distance-province interaction effect on epidemic
synchrony, whilst 6 of the 14 provinces had statistically significant (all negative) effects (Figure SI 20).
Significant positive (partial) effects were also estimated for temporal (yearly) random effects during
epidemic years, whilst lower (and higher) values of the pairwise product of populations were associated
with statistically significant negative (and positive) effects on synchrony respectively. Climatic partial
effects were subject to greater uncertainty, but greater minimum temperatures and greater precipitation
were estimated to have increasingly negative and increasingly positive effects respectively (Figure SI 20
and see Discussion).

3.2. Bayesian climate-based modelling

We now describe results from our Bayesian spatiotemporal model, whose inferences complement and
enhance the details provided by our wavelet- and climate-based analyses above. During the model
development period (2010 to 2017), we inferred strong generalisability of our climate-based Bayesian
spatiotemporal model due to accurate estimated out-of-sample trends. The leave-one-time-point-out

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
granted medRxiv a license to display the preprint in perpetuity. 

 is the author/funder, who has(which was not certified by peer review)copyright holder for this preprint 
Thethis version posted October 18, 2024. ; https://doi.org/10.1101/2024.10.18.24315690doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.18.24315690
http://creativecommons.org/licenses/by-nc-nd/4.0/


10

posterior predictive distributions’ 95% credible intervals contained 82.3% of the observations (indicative
of a reasonably calibrated model), the corresponding posterior median explained 66% of the variation
in the DIR (i.e. 𝑅2 = 0.66).

Briefly, with respect to the climatic inferences from the model fitted to the entire study period (of
2010 to 2021), we analysed risk profiles (Figure SI 21), where relative risk of greater DIR was measured
with respect to the risk induced by the mean average of each climatic variable. Higher (lower) values
of the two-month-rolling-averaged, monthly average of daily minimum temperature were associated
with elevated (diminished) relative risk of human disease incidence. Similarly, there was a consistent
estimated risk profile for the cumulative drought indicator with elevated DIR risk for extreme values
(large surpluses or deficits of accumulated precipitation). Intermediate values of the indicator were
associated with lower relative risk. In terms of the two-month rolling average of monthly precipitation,
we estimated greater risk of disease incidence for values between 150mm and 200mm at lags of
approximately one month, whilst extreme large precipitation values, except at very small time lags,
were associated with diminished risk of DIR. Finally, a complex risk profile was estimated for the sea
surface temperature indicator (ICEN) whereby extreme large values (El Niño events) and extreme small
values (La Niña events) were each associated with both elevated and diminished risk at different time
lags across four months. It was difficult to infer the reasoning behind some of the complex behaviour in
the risk profile for the ICEN (see Discussion).

3.3. Ensemble forecasting

We first deployed our Bayesian climate-based model in a forecasting setting (excluding the current and
all future months’ data from model training) for each month in the model development period (2010 to
2017). We found inferior results versus the leave-one-time-point-out analysis. Irrespective of assessment
on a logarithmic or DIR level (see Materials and methods), we identified model calibration issues due to
frequently underpredicting posterior predictions and hence, poor interval and quantile coverage values
(Figures SI 28-SI 29). This suggested that the Bayesian climate-based model alone would likely be
inappropriate and unreliable for probabilistic forecasting, and reinforced our motivation for extending
to an ensemble framework. While it would be unwise (due to potential bias from model tweaking after
seeing the training data) to focus heavily on results from the model development period, we found
stronger performance for each of our other ensemble candidate members (see Section 2.5). This was
reflected in assessment of the whole predictive distribution (via the WIS), pointwise accuracy metrics
(e.g. 𝑅2), PI and quantile interval coverage, and bias (Table SI 8). For example, the simple yet flexible
SARIMA models (which were refitted for each province at each time point) improved the calibration (e.g.
quantile and interval coverage in Figures SI 28 – SI 28), accurate pointwise predictions (e.g. 𝑅2 = 0.79,
see Table SI 8 and Figure SI 23), and overall distributional accuracy (as summarised by the WIS). Our
DL models, particularly TimeGPT (the foundational time series model), which incorporated climatic
covariates also yielded strong forecasting performance relative to the baseline forecaster, models without
climatic covariates, and our Bayesian climate-based model (Figures SI 22-SI 27, Table SI 8). Simple,
untrained ensemble forecasting frameworks also consistently produced accurate pointwise estimates
and strong forecasting skill (in terms of calibration and sharpness).

Our four-year testing window of 2018 to 2021 was an environment to assess performance in a setting
reflective of a real-world application, as all models (including hyperparameters, covariates, and ensemble
weights) were pre-defined from only historical data. In this testing period, we found strong predictive
performance in forecasting cases for each of our ensemble models (Tables 2, SI 9). This performance was
captured by values for our WIS (measuring the whole distribution), PI and quantile coverage (measuring
calibration), and pointwise accuracy metrics (such as 𝑅2 and RMSE – Root Mean Square Error). We
found similarly strong performance of the ensemble models for reliably forecasting the first onset of DIR
reaching thresholds of 50 (or 150) per 100,000 (Figure 4 a) and more generally for forecast classification
of months with DIR above/below these thresholds (Figure 4 b). The individual models handle different
types of uncertainty in different ways (e.g. uncertainty in data generating processes, random error terms,
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Table 2: Results for forecasting log(Cases + 1) in the testing period of 2018 to 2021. We summarise proper scores, predictive performance,
calibration, and outbreak detection capabilities of forecasting models. Models are arranged by mean weighted interval score (WIS), from best (lowest)
to worst (highest). Further summary statistics for WIS are presented in Table SI 14, and implied similar model rankings. Bias measures the bias of
each models’ predictive quantiles, PI coverage measures the coverage of the 95% prediction intervals (PIs), 𝑅2 denotes the proportion of variation in
log(Cases + 1) explained by the models’ posterior median estimates, and RMSE is the corresponding root mean square error (RMSE) for log(Cases
+ 1) by using the posterior median. For detection of outbreak onset in each province in each year, Sensitivity, Specificity, and AUC represent the
True Positive rate, True Negative rate, and Area Under the Curve in terms of forecasting skill for correctly classifying the first possible outbreak of
DIR ≥ 50 per 100,000. These metrics are visualised in Figure 5 a for model comparison purposes. Table SI 9 is the analogous table which depicts
outbreak detection for DIR first surpassing a threshold of 150 per 100,000, while Table SI 12 presents the models scored on a DIR level. Details of
the model abbreviations are provided in Table 1 (where similar model rankings were obtained). All ensemble models are highlighted with an asterisk.

Model WIS Bias PI Coverage 𝑅2 RMSE Sensitivity Specificity AUC
1 Median * 0.34 0.03 95.2% 0.74 0.81 81.8% 94.3% 0.88
2 Median-NoBase * 0.35 0.02 94.8% 0.73 0.82 81.8% 95.7% 0.89
3 Median-NoBayes * 0.35 0.06 94.8% 0.74 0.82 81.8% 87.2% 0.85
4 EW-Mean * 0.35 0.17 87.8% 0.75 0.79 72.7% 95.9% 0.84
5 Median-NoCov * 0.36 0.04 95.2% 0.73 0.83 81.8% 91.0% 0.86
6 Ew-Mean-NoBayes * 0.36 0.21 87.5% 0.74 0.81 63.6% 97.3% 0.80
7 EW-Mean-NoCov * 0.36 0.14 91.2% 0.74 0.81 81.8% 86.5% 0.84
8 Trained * 0.36 0.07 92.4% 0.72 0.84 81.8% 95.4% 0.89
9 EW-Mean-NoBase * 0.36 0.16 87.1% 0.74 0.80 81.8% 94.7% 0.88
10 SARIMA 0.36 0.03 93.5% 0.73 0.82 63.6% 96.1% 0.80
11 Prov-Trained * 0.37 0.05 91.1% 0.72 0.85 72.7% 89.9% 0.81
12 Baseline 0.38 0.04 97.3% 0.74 0.83 90.9% 45.0% 0.68
13 TCN 0.39 0.11 91.2% 0.70 0.87 72.7% 96.6% 0.85
14 TimeGPT 0.41 0.08 88.1% 0.69 0.91 90.9% 91.7% 0.91
15 TimeGPT-NoCov 0.42 0.12 85.6% 0.67 0.92 72.7% 91.5% 0.82
16 Bayes-Climate 0.52 -0.20 87.6% 0.58 1.09 54.5% 90.1% 0.72

parameter estimates etc.), yet individually do not account for all possible sources of uncertainty and
so, the coverage of their 95% PIs is less than the claimed coverage (95%). In contrast, relative to other
ensembles and individual models, ensembles that were based on the median of individual models’
quantiles produced statistically valid PIs and overall consistently strong forecasting ability (Figure 4).
This was captured by consistently sharp and well-calibrated (albeit relatively conservative) PIs (Figure
SI 41, low bias, and better WIS values (e.g. pairwise comparisons of WIS values in Figure SI 37, Table
2). These trends were generally observed across provinces (Figure 5 e) and over time (Figure 4 c), and for
different magnitudes of epidemics (Figure SI 39 and Table SI 15). The superiority of the forecasts from
ensemble models, particularly median-based ensembles, was also observed when we ranked models
on their forecasts of DIRs. Indeed, across assessments on logarithmic and DIR scale, median-based
ensembles consistently dominated the model rankings based on score ratios, outbreak detection, and
pointwise accuracy metrics (Tables 2, SI 9, SI 12, SI 13, Figures 4c, Figure 5 a and SI 37).

While these assessments of WIS values (and related statistical measures) provide aggregated measures
of the whole predictive distribution, we also evaluate the utility of the models’ forecasts for public health
authorities. For instance, the epidemiologically naive forecasting model’s predictive distributions could
be relatively close in distribution to the observed cases (as the true distributions do not regularly change
drastically in short periods), yet this model fails to offer any valuable information about oncoming
outbreaks (as it forecasts the past observed cases). So, looking at detecting the first onset of DIR
reaching thresholds of 50 (or 150) per 100,000 (Figures 4 b, 5 a and 5 c), the median-based ensemble
models produced AUC values of between 0.85 and 0.89, which are i) far superior to the naive baseline
forecasting model (AUC: 0.68) and ii) more generally, superior to individual forecasting models. For
example, if authorities used the median-based ensemble of all individual models, 81.8% of first onsets
(of reaching DIR of 50 per 100,000), would have been correctly detected one month ahead of time with
a corresponding false alarm rate of 5.7%. We found similarly strong performance of ensemble models
for more generally classifying whether DIR in a province in any given month would be at or above
the thresholds of 50 (or 150) per 100,000. Here, nearly all forecasting models demonstrated strong
classification skill (e.g. AUC of between 0.79 for DIR ≥ 50 per 100,000, see Figure 5b and Table SI 10),
likely in part due to the easier nature of predicting the next month being at or above a threshold given
that we know the most recently observed high DIR level.
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Figure 4: Performance of median ensemble forecasting model: This ensemble forecasting models’ probabilistic forecasts were generated by
taking the median of all six ensemble forecasting models’ prediction at the 23 quantile levels (see Materials and methods). (a): Visualisations of
forecasting ability for classifying whether the coming month will experience a DIR of ≥ 50 per 100,000. AUC denotes the area under the receiver
operating characteristic (ROC) curve, and higher values indicate greater classification skill. (b): Analogous visualisation for classifying whether
the coming month will be the first month of the year in a province with DIR of ≥ 50 per 100,000. (c): Relative Weighted Interval Score (WIS for
log(Cases + 1)) is shown for all forecasting models in centred, rolling windows of three months, with the median model’s values highlighted. Relative
WIS is an individual forecasting models’ WIS divided by the baseline forecasting’s WIS, where values below one indicate greater forecasting skill
relative to the baseline forecaster. The corresponding summary statistics for Log(Cases + 1) over time are visualised in Figure SI 39. (d): For each
province (sorted in descending order by latitude from north to south), we visualise the median model’s predictions (for log(cases + 1)) where green
points denote the posterior median and orange points denote the observed values. The green shaded intervals denote the 95% prediction intervals
(PIs). 95.2% of all observations lay within these 95% PIs. The posterior median explained 74% of the variation in log(cases + 1) i.e. 𝑅2 = 0.74.
Y-axes are province-dependent due to the varying sizes of the dengue epidemics observed.
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In terms of further relative comparisons, the forecasts of ensemble models which included climatic
covariates outperformed the analogous models without covariates (denoted NoCov in e.g. Table 2),
while trained ensembles were outperformed by simple median-based ensembles (see Discussion). This
was shown by values for the mean scoring rule (WIS across both logarithmic and DIR scales), pointwise
accuracy (𝑅2), and outbreak detection capabilities (Figure 5 a). Ensemble models also outperformed
almost all individual forecasting models in terms of metrics such as 95% PI coverage and accuracy
of the entire distribution (WIS). These model rankings were similar across both DIR and logarithmic
scales (Tables 2, SI 9.

4. Discussion

We have introduced a new interdisciplinary framework which allows a researcher to comprehensively
quantify the dynamics and drivers of past epidemics, and to robustly estimate the likely future short-term
epidemic trajectories.

4.1. Wavelet analysis and climate-based modelling

Using wavelet methods allows us to identify epidemic dynamics and drivers that vary in different
temporal resolutions, times of the year, and/or in different geographies. Our analysis revealed strong
similarities in both the seasonality and epidemic curves across the provinces. Such similarities were
pronounced during epidemic years with major outbreaks. So, from a spatial perspective, it is unsurpris-
ing that northerly provinces, which experienced higher DIRs, possessed more synchronous and more
coherent (annual and multiannual) dengue incidence cycles. Also, the strongest wavelet coherence and
cross-wavelet power between climatic conditions and dengue cycles occurred in more westerly, and more
northerly provinces (all of which were coastal provinces). Consistent with wavelet analyses in Southeast
Asia9, such significant peaks in wavelet coherence and cross-wavelet power were estimated during years
with larger epidemics, and were widespread, which is indicative of an amplifying role (greater simi-
larity in epidemic dynamics) played by climatic forcing in large epidemic years. The spatially shifting
impact of the El Niño Coastal Index during such years (from west to east and north to south) may reflect
initial climatic risks imposed on coastal provinces when an El Niño (or La Niña) event initially occurs,
dengue incidence climbs, and subsequent climatic conditions and human mobility induce transition of
outbreaks further inland and further south. From a public health policy perspective, the roles played by
both climatic forcing and spatially shifting influences represent information that should be combined
with seasonal climate forecasts (such as GloSea574 which has been employed for dengue forecasting
in Vietnam51) to enhance early warning detection. For the causes of epidemic synchrony, we identified
large outbreak years, greater pairwise products of populations and shorter pairwise distances as hav-
ing enhancing effects on synchrony between provinces. This may reflect greater mobility and greater
connectivity driving enhanced epidemic synchrony. Spatially, shorter pairwise distances had more sig-
nificant effects on both synchrony and coherence in more northerly provinces, which may be indicative
of greater connectivity (although this may be confounded by similarity in other environmental condi-
tions). The more uncertain estimated effects of climatic conditions on synchrony may be due to our
limited spatial focus (only fourteen provinces) and/or potential confounding in our models of synchrony.

The estimated consistent elevated risk for anomalous precipitation deficits and accumulations is
aligned with the well-documented impacts of water shortages and heavy rainfall13,75,76. Drought-
induced precipitation shortages, particularly in areas with poor water supply, can induce greater risk
of dengue incidence due to changes to water storage practices (including more containers around the
home), creation of potential egg-laying sites (for the female Ae. aegypti who prefer artificial water storage
containers), greater survival capacity of Ae. aegypti eggs in dry conditions, and/or more concentrated
breeding in the few remaining suitable habitats77,78,79. Similar elevated drought-induced risk has been
inferred in both Vietnam and Brazil13,38. Meanwhile, the effects of heavy rainfall are mainly due to large-
scale accumulation of stagnant water, which yields creation of abundant breeding sites, and increases
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Figure 5: Relative performance of forecasting models in the testing period of 2018 to 2021. We compare performance of our 16 ensemble
frameworks (see Table 1 for abbreviations) in terms of their predictive performance for forecasting log(Cases + 1). (a) Model rankings by different
metrics, where relative root mean squared error (RMSE) and relative Weighted Interval Score (WIS) are defined relative to the baseline model.
Lower values indicate greater predictive performance for these relative metrics, but higher AUC values indicate greater forecasting skill for correctly
classifying the first months with DIR ≥ 50 per 100,000 one month ahead of time. (b): WIS is decomposed into overprediciton, overprediction, and
dispersion for each of the forecasting models. (c): Receiver operating characteristic (ROC) curves by forecasting model for correctly classifying
months with DIR ≥ 50 per 100,000 one month ahead of time. (d): Analogous ROC plot to (c) for detection of first month with DIR ≥ 50 per
100,000 one month ahead of time. (e): Relative WIS is shown for all forecasting models per province where provinces are sorted in descending order
by latitude from north to south. Relative WIS is an individual forecastin models’ WIS divided by the baseline forecaster’s WIS for that province.
X-axes are province-dependent due to the varying sizes of the dengue epidemics observed.

to vector populations. The risk of disease incidence was estimated to peak after a one-month lag for
the two-month average of monthly precipitation, whilst we estimated diminished risk for the heaviest
precipitation (above a two-month average of 200m). Diminished risk has been uncovered in Asian
nations including Singapore, Malaysia, Sri Lanka, and Thailand80,81. Our final climatic variable (the
El Niño Coastal Index) was estimated to have a complex risk profile. Whilst the estimated diminished
risk for extreme indicator values at short time lags make intuitive sense (due to time taken for onshore
climatic conditions of provinces to eventually change), protection (from risk) for greater absolute values
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at longer time lags seem counter-intuitive. The latter issue may due to the limited size of our data
and/or using our predictive model to disentangle real-world climatic inferences (which may be subject
to potential confounding). The issue of potential confounding (between variables) is applicable to each
climatic variable, whilst external, unobserved confounders may also have affected our conclusions and
thus, we indirectly estimated such unobserved confounding effects (via unstructured spatial effects and
yearly random effects).

There are several limitations to both our retrospective and forecasting analyses. These include
concerns about the quality, volume, and type of data available, ranging from a lack of information
on reporting rates to a lack of serotype data (See Supplementary Material 8 for further discussion).
Consistent with the WHO’s cited lack of data on circulating serotypes82, we advocate for future
collation of age-structured dengue cases and viral sequencing data, alongside future seroprevalence
surveys across at-risk areas, all of which would provide insights about immunology and virology issues
(such as multitypic immunity, genomic diversity, and repeat infections) across space and time.

4.2. Forecasting analysis

Moving from past to future dynamics, in a four-year testing window, we demonstrate the utility of a
diverse, probabilistic ensemble framework for forecasting of monthly dengue incidence up to one month
ahead of time.

The reliable forecasts from ensemble frameworks demonstrate the benefits of combining the strengths
of multiple models from different disciplines. Each of these models (and their predictive distributions)
are wrong in different ways, and yet each model can handle different aspects of forecasting dengue
cases. The foundational time series model (TimeGPT) included in the current work leverages strengths
from a transformer architecture, conformal inference, and training on over 100 billion data time points.
The TCN model uses representation learning and dilated causal layers in its deep neural network
architectures. In doing so, these DL models can explicitly account for temporal structure in the data,
handle non-linearities, and detect temporal traits (from seasonality to heteroscedasticity). However, the
fact that these DL models do not always outperform simple yet flexible and robust SARIMA models is
interesting and perhaps unsurprising. Dengue epidemics are somewhat predictable in terms of longer-
term trajectories with highly seasonal patterns (e.g. dengue cycles based on climatic conditions) and in
terms of very short-term trajectories with highly autoregressive patterns (e.g. we expect the next month’s
DIR to somewhat similar to the current month’s DIR). So, unlike some previous studies which either
benchmark against models only within the DL field or do not allow the SARIMA model structure to be
updated as new information becomes available, our rigorous benchmarking reveals similar performance
of these statistical time series models with advanced DL methods. The similarity in performance is
inferred by rigorous evaluation as we find comparable (or superior) values for PI coverage, bias, WIS,
𝑅2, and outbreak detection metrics. Similar results have been observed for forecasting of COVID-19
cases and deaths [83] and in other unrelated forecasting tasks with strong, seasonal patterns (such as
retail demand and wholesale food prices)84,85. Of course, this observation comes with the caveat that
future work should assess how this predictive performance varies at longer forecast horizons, which are
of great importance to public health authorities.

Importantly, however, the DL models do always improve our ensemble’s forecasts when included
alongside other individual models. The trend is reflective of a more general observation of the outper-
formance of ensemble models, relative to individual models (similar to previous forecasting studies for
COVID-19, influenza, and dengue52,55,86). Intuitively, similar to our retrospective analysis, it is unrea-
sonable to expect a single model (which has natural strengths and weaknesses) to capture all aspects
of current or future epidemic dynamics. Such learned patterns may vary substantially across space
and/or evolve over time. These variations may be why our DL forecasting models (TCN and TimeGPT)
with climatic covariates and statistical time series model (SARIMA) forecasted more reliably than
our semi-mechanistic Bayesian climate-based model which estimates parametric (climate-to-incidence)
relationships for all provinces and all time points jointly. These trends are similar to previous poorer
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predictive performance of models with mechanistic structure (and stronger performance of ensembles)
in the dengue forecasting challenge [52]. Here, we deduce that a single model alone is likely insufficient
for answering all of our research questions, yet we can answer different research questions robustly by
using and potentially unifying several models. Our aim here is not to simply include every modelling
approach in a single framework, but rather to identify which models are appropriate for different tasks
(e.g. probabilistically explaining past epidemic drivers vs predicting future trajectories).

Of course, our forecasting results are not an upper bound on what is possible, as i) we have retained a
preference for realism in our independent testing window, ii) our pipeline can readily incorporate many
more forecasting models, and ii) future work could investigate further feature selection, optimal training
windows for individual models and for weighting of models, as well as model weights per individual
quantile. Such future works may help to improve the performance of the ensemble in provinces which
experience rare, sporadic dengue cases (e.g. Ayabaca). Our focus here has instead been to showcase that
we can, for any dengue epidemic, blend, rather than overemphasising, the benefits of forecasting from
single modelling domains.

Our work also highlights the importance of not focusing on a single, potentially misleading perfor-
mance metric. We must consider what information the forecasting metric provides for public health
authorities. While used for forecast evaluation in many dengue studies to date (e.g.59,60), pointwise met-
rics obscure the natural uncertainty when we try to predict the unknown future of a dengue epidemic.
We could, for example, obtain a high 𝑅2 by just predicting the most recent value, while providing little
useful information for public health authorities. Of course, similar to other recent forecasting studies
(e.g.50,51,54,55), we therefore propose proper scoring rules. These measures of distributional accuracy
(WIS) account for many deficiencies of pointwise metrics by simultaneously evaluating calibration and
sharpness. This is why we focus on this metric, yet not exclusively, as i) we could again obtain reasonably
good WIS values by simply forecasting the past value(s) (as drastic predictive distributional shifts may
be rare in short time horizons) without conveying much information, and ii) we aim for our outputs to be
easily interpreted and used by public health authorities. This is an important contribution of our work,
as we complement proper scoring rules (which measure the whole distribution) with both relative WIS
values (to reflect forecasting skill above the baseline) and measures of how well our forecasting models
can detect specific aspects of epidemics, such as season onset. The WIS (and/or relative WIS) may be a
statistically principled measure for our evaluations, yet when communicating our outputs, such a metric
may matter so little to so many. Metrics must be both interpretable and public-health-oriented, and so our
outbreak threshold metrics refocus evaluation strongly on parts of predictive distributions that are vital
for decision-making. These new outbreak thresholds are simple yet generalisable across geographies of
different sizes and across different spatial resolutions (e.g. coarser or finer resolution analyses).

In terms of further public health implications, it is interesting that we can still often obtain reliable
probabilistic forecasts without climatic covariates. This may be again related to our limited one-month
forecast horizon as given that we know the current level of the epidemic, the next month’s cases may
not require the climatic information to make reliable one-step-ahead forecasts. On the other hand, when
making seasonal forecasts (and inferring epidemic drivers as in our retrospective analyses), climatic
covariates are likely crucial. Another benefit of our approach is the computationally cheap nature of
our forecasting pipeline. Working with just 23 predictive quantiles per observation to summarise the
predictive distribution saves a modeller from processing potentially thousands of predictive samples.
Finally, ensembles with untrained weighting outperform those which use trained weighting, likely in
part due to weight uncertainty and/or the restricted spatial and temporal focus of our study.

4.3. Conclusions

The key advance of our research is to introduce a new framework and a new way of thinking about how
we can robustly analyse dengue epidemic dynamics across space and over time. Our work introduces
several state-of-the-art methods across different disciplines, yet their usage alone is not our objective. We
complement these methods with traditional, reliable modelling techniques to produce a computationally
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cheap and generalisable interdisciplinary pipeline that emphasises public health utility throughout. The
outputs of our retrospective and forecasting techniques are designed to be interpretable, robust, and
comprehensive, and can be used to inform long-term public health planning and real-time decision-
making for dengue epidemics.
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