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Abstract 

Cancer development is influenced by genetic factors and modifiable exposures. GWAS has identified 

genetic variants and developed of prediction models through Polygenic Risk Scores (PRS), but PRS 

alone has limitations for estimating cancer risk. 

This study assesses a novel PRS constellation approach that integrates Polygenic Risk Scores (PRS) from 

both lifestyle and genetic traits to enhance prediction models for colorectal, breast, and prostate can-

cers. The approach was developed using the UK Biobank dataset and validated in the independent 

GenRisk cohort. 

The model, incorporating sex and age, achieved AUCs of 0.74 for CRC, 0.65 for BC, and 0.75 for PC 

in the UK Biobank. Including tumor-related PRSs improved PC prediction but had limited impact 

on CRC and BC. Age and sex inclusion boosted CRC and PC model accuracy. However, GenRisk 

validation showed reduced AUCs and limited utility of lifestyle PRSs, with CRC and BC models 

achieving 0.62 and PC 0.56. 

Integrating lifestyle-related characteristics into PRS does not significantly enhance cancer-specific 

PRS prediction. However, PRSs for these traits show independent predictive power, highlighting 

the importance of considering lifestyle in cancer risk and the need for precision medicine to im-

prove early detection. 

Keywords: colorectal cancer, breast cancer, prostate cancer, lifestyle, polygenic risk score, PRS   
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Inroduction 

Cancer continues to exert a profound impact on global health, standing as one of the leading causes 

of morbidity and mortality worldwide. In 2020 alone, the disease wrought staggering numbers, with 

an estimated 19.3 million new cases and claiming nearly 10 million lives. Colorectal, breast, and 

prostate cancers are the most frequent among the European population, accounting for a total of 

41.1% of all cases, representing a total of 5.6 million cases(1). Therefore, studying these types of cancer 

is crucial for developing effective prevention and treatment strategies, as well as for conducting cancer 

risk assessment to guide targeted screening efforts, which play a crucial role in early detection and 

prevention.  

When considering screening options for colorectal cancer (CRC), such as colonoscopies and fecal 

immunochemical testing (FIT), it is important to weigh both cost-effectiveness and accuracy. While 

more economical FIT has its merits, the more expensive and invasive colonoscopy offers higher 

precision in detecting CRC. Similarly, in the case of breast cancer (BC) screening, mammography is the 

primary tool, but it is known to have a significant false-negative rate, particularly in women aged 40-

49. For prostate cancer (PC), prostate-specific antigen (PSA) tests face challenges such as false 

negatives and concerns about overdiagnosis. These common cancers would benefit from improved 

screening strategies that consider both genetic and lifestyle factors, allowing for a more personalized 

and comprehensive approach to cancer risk management and prevention. 

Cancer development is a multifactorial complex process influenced by various factors, including 

heritable genetic factors and modifiable exposures (e.g., environment, unhealthy dietary habits, stress, 

smoking, sedentary lifestyle, as well as social factors such as age, sex and ancestry)(2). Over the past 

few decades, genome-wide association studies (GWAS) have made remarkable progress in identifying 

numerous genetic risk variants associated with different types of cancer, as well as the development 

of prediction models through the calculation of Polygenic Risk Scores (PRS)(3–5). While these findings 

have expanded the knowledge of the genetic factors contributing to cancer susceptibility, it is essential 

to recognize and examine the limitations of relying solely on PRS from GWAS for estimating cancer 

risk.  

Multiple studies have consistently shown that unhealthy lifestyles are the main contributors to the 

high burden of CRC, BC and PC(6–8). However, the impact of any factor alone is limited, and a 

comprehensive approach is required.  

In this study, we present a novel methodology for assessing the contribution of various factors to can-

cer risk. Our approach involves integrating PRS specific to the cancers under investigation (CRC, BC, 
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and PC) with genetically predicted lifestyle variables, thereby constructing a comprehensive PRS con-

stellation model. The primary objective is to enhance the accuracy and personalization of risk assess-

ment for each disease, by employing PRS constellations in the context of these cancers, as well as to 

explore the potential benefits and limitations of its use. Our findings shed light on the potential appli-

cations of PRS in the context of these cancers and highlight the need for further research in this area. 
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Methods 

The study followed a four-step process. First, GWAS studies were reviewed for CRC, BC, and PC, as well 

as single nucleotide polymorphisms (SNPs) linked to lifestyle variables considered risk factors for each 

cancer. Second, polygenic risk scores (PRS) with these SNPs were computed in the UK Biobank data, 

generating a genetic prediction for each cancer type and lifestyle variable considered. Third, Bayesian 

networks were fitted to model the risk of each cancer with all the PRSs, that we call PRS constellation. 

These network models allowed exploring the association of genetically predicted variables with cancer 

risk and among them, as well as the improvement of predictive accuracy. Finally, the model's robust-

ness was validated using an independent dataset (GenRisk, https://cancer.genrisk.org ). 

Study populations 

The UK Biobank (UKB - https://www.ukbiobank.ac.uk/) is a large, ongoing cohort study with genetic, 

clinical, and lifestyle data from 502,463 UK participants (2006-2010). The study design and methods 

have been previously described(9). For this study, we selected incident CRC, BC (only in woman), and 

PC cases.  Cases and controls were defined as “white British” individuals of European ancestry. Preva-

lent cases, BC in men, and participants with poor genotyping data or study discontinuation were ex-

cluded. A random selection of 10 control subjects free of cancer was performed for each cancer out-

come. The study comprised 5288 CRC cases, 7765 BC cases, and 8733 PC cases, and 52880, 77650, and 

87330 controls respectively for each type of cancer. This research was conducted using the UK Biobank 

Resource (UKBv3) under Application 69033. 

GenRisk is a sub-project of the MCC-Spain, a multicentre case-control study conducted between 2008 

and 2013 in 12 provinces of Spain(10). The study included among other, cases of CRC, BC, PC, and share 

a common control population. For this study we selected a total of 6,387 subjects with genotype data, 

comprising 1,431 cases with CRC, 1,179 with BC, 913 with PC and 2,864 controls(11). 

Risk factors and Polygenic Risk Score (PRS) selection 

Selection of risk factors for CRC, BC and PC was based on bibliography(6–8). A total of 63 traits of 

interest were considered for exploration, that were divided into 10 categories: alcohol consumption, 

smoking consumption, anthropometric body measurements, physical activity, dietary habits, 

supplement medicaments intake, medical history, cardiac function, women's/men health, and 

biomarkers.   

The PRS for CRC, BC, PC, and for each risk factor variable were developed using lists of SNPs derived 

from pre-existing PRSs proposed in other studies. These PRSs were obtained from the PGS catalog 
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database(12) (https://www.pgscatalog.org/) and PubMed publications(13,14). The selection was 

based on the most recent studies and with the highest percentage of participants with European 

ancestry. SNPs on the sex chromosomes were excluded from PRS. Supplementary Table 1 provides a 

comprehensive overview of the variables used to calculate the PRSs.  The UKB was the unique source 

for the risk factor PRS, and contributed to all the cancer-specific PRSs. 

Genotype data and imputation  

The UKB and GenRisk data followed different procedures in terms of genotyping and imputation. UKB 

v3 imputed genotype data from 488,000 participants were obtained from their website, the genotyp-

ing and imputation protocol has been described elsewhere(9). Briefly, samples were genotyped using 

two arrays the UK BiLEVE Axiom Array (~50000 participants) and UK Biobank Axiom Array (~450000 

participants) by Affymetrix. As a result, of the combination of the two arrays, 805426 markers were 

obtained in the + stand and in GRCh37 coordinates. Genotyped data was imputed using the Haplotype 

Reference Consortium (HRC) and UK10K reference panels, ~96 million variants were obtained which 

are stored in BGEN v1.2 format (.bgen, .sample, .bgi). SNPs associated with the risk variables were 

extracted using the bgnix (https://enkre.net/cgi-bin/code/bgen/doc/trunk/doc/wiki/bgenix.md) pro-

gram, and transformed into PLINK2 format (pgen, .pvar, .psam). 

The GenRisk study was genotyped using two platforms. Infinium Oncoarray-500k was used for CRC 

cases an controls that were included in the CORECT(15) project and PC cases and controls included in 

the PRACTICAL(16), both part of the GAME-ON project(17), and Illumina Global Screening Array-24 

v3.0 for the remaining cases and controls. A description of the sample types associated with each pro-

ject is available in Supplementary Table 2. Quality control (QC) measures included sample removal 

based on call rate, sex concordance, heterozygosity, and duplicate handling. SNPs were filtered based 

on chromosomal location, allele validity, multi-locus nature, minor allele frequency, and call rate. In-

dividual imputations were performed using the HRC panel for each of the subsets and subsequently 

merged selecting SNPs with good imputation quality (r2>0.4) in all platforms. The extraction of SNPs 

associated with risk variables and data manipulation were accomplished using bcftools 

(https://samtools.github.io/bcftools/bcftools.html)(18), and PLINK2(19).  

Construction and Assessment of PRS 

The risk SNPs extracted from the imputed data from the UKB and GenRisk studies were subjected to 

rigorous QC measures prior to PRS calculation. The QC process encompassed the following steps: 1) 

Exclusion of multi-allelic, duplicated, and ambiguous SNPs with effective allele frequencies (EAF) 
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ranging between 0.4 and 0.6. 2) Exclusion of variants with low imputation information (r2 < 0.4). 3) 

Exclusion of SNPs exhibiting a minor allele frequency (MAF) below the threshold of 0.005. 4) Exclusion 

of SNPs with high linkage disequilibrium (LD), using a correlation threshold (R2) of 0.3. When multiple 

SNPs were in LD, one was randomly selected and those with R2>0.3 were excluded, and 5) The Hardy-

Weinberg Equilibrium (HWE) filter was applied to exclude variants exhibiting deviations from 

equilibrium, showing a statistical significance (p<1xE-6) in the HWE test. 

Weighted PRSs were calculated using PLINK2 --score command, which calculates the lineal risk scores 

for each individual (j in the formula below) as a weighted sum of the i trait associated SNPs divided by 

the number of non-missing alleles, following the protocol defined for Collister et al. 2022(20), and 

using the following formula: 

 

Where: 

• N - The total number of SNPs. 

• 𝛽𝑖  - The SNPs weight  

• 𝑑𝑜𝑠𝑎𝑔𝑒𝒊𝒋 - The allelic dosage for the effect allele in SNP i for individual j. 

• 𝑃 - The ploidy of the individuals (P = 2 in humans). 

• 𝑀𝑗 - The number of non-missing variants observed for individual j. 

The PRS calculation used weights obtained from the SNPs effect sizes in the GWAS study that defined 

the PRS (Supplementary Table 1). 

Statistical analysis    

All statistical analysis were performed using R software (version 4.2.0) and PLINK software (version 

2.0). For simple comparisons between cases and controls, the chi-square test and Mann-Whitney U 

test were used. Pearson correlation was used to assess the association among quantitative variables.  

PRS Constellation prediction model building.  A Bayesian network (BN) was constructed based on PRS 

calculated for each cancer type. The networks included as candidate nodes all the PRSs and were 

directed to predict the actual case/control status for each cancer. The structure learning of the BN was 

performed using the Hill-Climbing (hc) algorithm, which is a score-based learning approach. The hc() 

function from the bnlearn package in R was employed for this purpose. The learning process was 

guided by the Akaike Information Criterion (AIC) score, which was used to evaluate the goodness of fit 

of different network structures. The UKB was utilized for the structure learning process, enabling the 

𝑃𝑅𝑆𝑗 =
∑ 𝛽𝑖
𝑁
𝑖=1 ∗ 𝑑𝑜𝑠𝑎𝑔𝑒𝒊𝒋

𝑃 ∗𝑀𝑗
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identification of the optimal BN structure. To perform this procedure, the UKB data was initially 

partitioned into two distinct subsets: a train subset and a test subset. Subsequently, 10 train/test 

datasets were generated from the train subset utilizing a resampling technique. Each of these 10 

datasets was employed for constructing a BN. From the models generated, the PRS associated with 

variables deemed significant in 8 out of 10 models were identified. These selected variables were 

utilized in the formulation of the ultimate PRS constellation model. The BN graphical structure was 

constructed to directed acyclic graph (DAG) using the viewer() function from bnviewer package. The 

ggvenn package in R were used to create a Venn diagram of pleiotropic associations between cancer-

related SNPs and trait-associated SNPs. 

The predictive discrimination of the models was assessed with the area under the curve (AUC) of the 

receiver operating characteristic (ROC) curve in the UKB test subset and in the completely independent 

GenRisk study. The DeLong test was used to compare the AUCs. The pROC package in R were used to 

create the calibration curve and the ROC graph. Optimal cutoffs to maximize sensitivity and specificity 

in the UKB dataset were calculated and applied to the GenRisk study to calculate accuracy.  
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Results 

General characteristics of study population 

The baseline characteristics of the UKB participants in the PRS constellation model development, span-

ning CRC, BC, and PC cancers are summarized in Table 1. The CRC set (5288 cases, 52880 controls) had 

a median age of 62 for cases and 56 for controls, with CRC cases showing associations with higher 

tobacco and red meat consumption, lower vegetables, and fruit intake, and elevated diabetes and 

hypertension rates. The BC set (7765 cases, 77650 controls) showed that cases, compared to controls, 

tend to be older, smokers, and consume more red meat. The PC cohort (8733 cases, 87330 controls) 

comprised only men, with cases that had higher consumption of tobacco, more frequent diabetes, 

hypertension, and high cholesterol levels. 
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Control (%) Case (%) Control (%) Case (%) Control (%) Case (%)

Total 52880 5288 77650 7765 87330 8733

Sex Female 52 43.6 100 100

Male 48 56.4 100 100

Age (years) ≤45 15.2 3.3 14.2 9.9 16.4 1

(45, 55] 32.5 17.5 32.3 26.6 32.4 13.6

(55,65] 40.9 51.4 42.2 49.1 39.9 57.9

>65 11.4 27.8 11.3 14.4 11.4 27.5

Median 56 62 56 59 56 62

Smoking Non 56.2 46.1 60.4 56.5 51.8 47.2

Former 33.6 43.9 31.1 34.5 36.3 43.6

Current 10.2 9.94 8.5 9 11.9 9.2

Alcohol Non 2.8 2.9 4 4.2 1.6 1.6

Former 3.1 4.1 3.2 3.6 3 2.8

Current 94.1 93 92.8 92.2 95.4 95.6

BMI <25 kg/m2 3.1 4.1 3.2 3.6 3 2.8

[25,30) kg/m2 94.1 93 92.8 92.2 95.4 95.6

≥30 kg/m2 2.8 2.9 4 4.2 1.6 1.6

Vegetables intake <=4 portions/day 98 98.3 97.9 98.2 98 98.3

(>4 ,<6) portions/day 1.3 1.1 1.4 1.2 1.3 1.1

>= 6 portions /day 0.7 0.5 0.7 0.6 0.7 0.6

Red meat intake <1 time/week 11.64 10.4 13 12.2 10.2 9

≥1 time/week and <1 time/day 88.14 89.4 86.78 87.5 89.2 90.8

 ≥1 time/day 0.22 0.2 0.22 0.3 0.3 0.2

Diabetes Yes 3.8 7.6 2.5 3.6 5.1 6

Hypertension Yes 8.3 11.3 7.6 9.3 8.9 12

HDL_Cholesterol (mmol/L) Median 1.4 1.4 1.6 1.6 1.2 1.3

LDL_Cholesterol (mmol/L) Median 3.6 3.5 3.6 3.6 3.5 3.4

PCBCCRC

Table 1. Characteristics of the UK Biobank study participants. CRC: Colorectal cancer; BC: Breast cancer; PC: Prostate cancer; BMI: Body Mass Index; Red 

meat intake includes Beef, Poultry and Lamb/mutton; Diabetes: diabetes diagnoses by doctor.  
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Construction of PRS constellation model  

A total of 63 weighted PRSs were created and evaluated for each cancer type and risk factor. 

Supplementary Figure 1 shows risk score distributions for CRC, BC, and PC, comparing cases and 

controls. The predictive power for the PRS evaluation of each trait is shown in Supplementary Table 3, 

demonstrating significant differences between case and control scores for all variables.  

These PRSs were integrated into Bayesian network models, directed to predict the actual case status 

for each cancer type. The Bayesian network model was pruned from a fully connected model to identify 

variables influencing the target cancer and assigned coefficients to quantify their association strength. 

Age, and sex in the CRC model, were fixed in all models to ensure adjustment. 

The constellation model for CRC was developed using a combination of 51 PRS, sex, and age variables, 

and the final model included 9 PRSs influencing CRC risk (Figure 1A). The mathematical formula was: 

CRC risk score = (0.0289 * Sex) + (0.0067 * Age at recruitment) + (0.0344 * PRS_CRC) – (0.0033 

* PRS_Never_smoker) + (0.0047 * PRS_Standing_height) + (0.0042 * PRS_WHR) – (0.0036 * 

PRS_Aspirin) + (0.003  * PRS_Diabetes) + (0.006  * PRS_essential_Hypertension) + (0.004  * 

PRS_LDL_Cholesterol) + (0.004  * PRS_Pulse_rate_AR) – (0.0036 * PRS_Red_blood_cell_count). 

Figure 1B represents this PRS constellation model in a visualization of the relationships and 

dependencies among the variables, highlighting those influential in cases of CRC.  

The BC PRS constellation model (Figures 1C and 1D) obtained using a combination of 54 PRS and age 

variable included 9 PRSs: BC risk score = (0.0023 * Age at recruitment) + (0.0391 * PRS_BC) + 

(0.0029 * PRS_Waist_circumference) + (0.0059 * PRS_Standing_height) + (0.0036 * 

PRS_essential_Hypertension) + (0.0026 * PRS_Uterine_fibroids) - (0.0016 * PRS_Age_menarche) 

+ (0.0022 * PRS_Age_menopause) – (0.0044 * PRS_SHBG) + (0.006  * PRS_Testosterone).  

The PC PRS constellation model (Figures 1E and 1F) was derived by incorporating a combination of 50 

PRS variables along with the age variable, and included 10 PRSs: PC risk score = (0.0078 * Age at 

recruitment) + (0.0275 * PRS_PC) + (0.0022 * PRS_Alcohol_consumed) + (0.0039 * 

PRS_Standing_height) + (0.0025 * PRS_WHR) – (0.0018 * PRS_Bread_intake) - (0,0028 * 

PRS_Coffee_intake) + (0.0056 * PRS_essential_hypertension) + (0.0134 * 

PRS_hyperplasia_prostate) + (0.0025 * PRS_Vitamin_D_BM) + (0.0023 * PRS_Platelet_count_BM).  
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Figure 1. PRS Constellation Models for CRC, BC, and PC Risk Prediction. The figure displays the PRS 

constellation models and its coefficients for A,B) CRC, C,D) BC, and E,F) PC risk prediction. A, C, and D) 

Coefficients associated with each PRS variable in the Bayesian prediction models, sorted by their influ-
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ence. Colours represent the group to which each variable belongs. B, D, and F) The models were con-

structed using the bnviewer package in R, which enables the visualization of Bayesian networks. The 

nodes in the figure represent a specific factor that contributes to the overall risk prediction. The arrows 

connecting the nodes depict the relationships and dependencies among the variables. The direction of 

the arrows indicates the direction of influence or causal relationships between the variables.  

Evaluation of cancer PRS constellation model using AUC analysis in the UKB test dataset  

The three generated models underwent 10-fold cross-validation to assess their prediction power. ROC 

curves, illustrating sensitivity and specificity, were used alongside the AUC to evaluate the models' 

discriminatory ability in predicting CRC, BC, and PC cancers. CRC model achieved an AUC of 0.74 (95%CI 

0.72-0.76), with 60% sensitivity, 74% specificity, and 73% overall accuracy for a cutoff or 0.13. The BC 

model had an AUC of 0.65 (95%CI 0.63-0.67), yielding moderate sensitivity (56%), specificity (65%), and 

64% overall accuracy for the 0.10 cutoff. The PC model obtained an AUC of 0.75 (95%CI 0.74-0.76), 

with 72% sensitivity, 66% specificity, and 66% overall accuracy for the 0.12 cutoff (Table 2, 

Supplementary Table 4 and Supplementary Figure 2). 

 

Table 2. Predictive performance metrics of prediction models for CRC, BC, and PC in the UKB and GenRisk studies 

Impact on the accuracy of risk prediction when combining tumour related PRS traits with specific 

cancer PRS 

While individual PRSs for traits demonstrated limited impact on overall risk (Supplementary Figure 3), 

a comprehensive evaluation was conducted to assess their combined influence. This evaluation 

PRS model Included Included AUC 95% CI p.value* AUC 95% CI p.value*

All 0.74 0.72 - 0.76 6.2E-113 0.65 0.63 - 0.67 8.24E-39

CRC 0.74 0.72 - 0.76 1.2E-08 0.65  0.63 - 0.67 1.13E-38

Traits 0.70 0.69 - 0.72 5.2E-11 0.61 0.59 - 0.64 8.01E-23

All 0.63 0.61 - 0.65 2.3E-36 0.62  0.59 - 0.64 9.05E-24

CRC 0.63 0.61 - 0.65 1.1E-35 0.62  0.60 - 0.64 4.83E-25

Traits 0.54 0.51 - 0.56 3.9E-04 0.50  0.48 - 0.53 0.37

All 0.65 0.63 - 0.66 4.0E-63 0.56 0.54 - 0.58 1.6E-07

BC 0.65 0.63 - 0.67 2.4E-60 0.56 0.54 - 0.58 2.41E-07

Traits 0.57 0.55 - 0.59 1.6E-15 0.55 0.53 - 0.58 0.99

All 0.64 0.62 - 0.65 3.1E-52 0.62 0.60 - 0.64 5.33E-25

BC 0.63 0.61 - 0.65 8.4E-50 0.62 0.60 - 0.64 5.21E-26

Traits 0.54 0.52 - 0.56 1.7E-06 0.51  0.49 - 0.54 0.11

All 0.75 0.74 - 0.76 3.7E-197 0.50 0.47 - 0.53 0.53

PC 0.74 0.73 - 0.76 8.1E-187 0.50 0.46 - 0.53 0.45

Traits 0.73 0.72 - 0.75 4.9E-170 0.54 0.50 - 0.57 0.98

All 0.60 0.59 - 0.62 7.2E-35 0.56 0.53 - 0.59 3.17E-04

PC 0.59 0.57 - 0.6 4.6E-25 0.58 0.55 - 0.62 7.88E-07

Traits 0.54 0.52 - 0.55 8.5E-06 0.53 0.49 - 0.56 0.93

PC

age

not included

CRC 

sex & age

not included

GenRiskUKB

BC 

age

not included
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compared models incorporating all PRSs (All-model), cancer-specific PRSs (Cancer-model), and trait-

specific PRSs (Traits-model), both with and without the inclusion of sex and age. The findings revealed 

that the combined PRS traits did not significantly enhance the CRC or BC models when including or not 

age and sex. Nevertheless, a significant improvement was observed in the PC model when trait PRSs 

were combined with the cancer-specific PRS (Figure 2 and Table 2).  

Remarkably, the traits-model demonstrated predictive capacity for all cancers, albeit to a lesser extent 

than the models incorporating cancer-specific PRSs. On the other hand, it should be noted that 

including age and sex variables in the model notably enhanced the AUC, especially in the CRC models, 

and age in the PC model (Figure 2 and Table 2). 

Additionally, potential pleiotropic effects between cancer-related SNPs and trait-associated SNPs were 

analysed, indicating minimal overlap. Shared SNPs constituted a small fraction of the total SNP count 

(Supplementary Figure 4-6). 

 

Figure 2: Comparative analysis of predictive power among models: PRS by Cancer (Cancer-model), PRS for case-

related traits (Traits-model), and complete models (All-model). Evaluation includes ROC curves and AUC values 

for prediction models of A) Colorectal Cancer (CRC), B) Breast Cancer (BC), and C) Prostate Cancer (PC), including 

age and sex. Panels D-F represent ROC curves and AUC values for prediction models of D) CRC, E) BC, and F) PC, 

not including age and sex. 
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Validation of PRS Constellation Models in the GenRisk study 

The GenRisk study was utilized for the validation of the three risk prediction models, encompassing 

the comprehensive models (All-model), as well as an evaluation of the predictive potential of the 

specific PRS of each cancer (Cancer-model) and the PRSs associated with individual characteristics 

(Trait-model), both including and excluding age and sex. 

In the external validation cohort of the CRC model including sex and age, we observed robust predictive 

accuracy for CRC, yielding an AUC value of 0.65 (95% CI 0.63-0.67) (Table 2). The model demonstrated 

a sensitivity of 70%, specificity of 50%, and an overall accuracy of 56%.. Additionally, it has been found 

that both the CRC-specific PRS (case-model) and the PRS associated with CRC-related variables (traits-

model), in isolation, exhibited notable predictive capabilities for CRC, as evidenced by AUC values of 

0.65 (95% CI 0.63-0.67) and 0.61 (95% CI 0.59-0.64), respectively. Thus, as observed in the UKB cohort, 

adding PRS traits to the CRC case-model did not improve its performance (Figure 3A, Table 2). In fact, 

the traits-model lacked predictive power when the variables age and sex were not included.  

The external validation of the BC All-model, including age, showed an AUC of 0.56 (95% CI 0.54-0.58) 

(Table 2), with a sensitivity of 52%, specificity of 54%, and overall accuracy of 53%. Similarly, the BC 

case-model, including age, demonstrated predictive capability with an AUC of 0.56 (95% CI 0.54-0.58) 

but the traits-model, even including age, did not exhibit significant predictive power, with an AUC of 

0.55 (95% CI 0.53 - 0.58) (Figure 3B, Table 2). On the other hand, when age is excluded from the models, 

the AUC of both the all-model and the BC-model surprisingly improved to 0.62 (95% CI 0.60-0.64), 

while the trait-model still lacked predictive power, with an AUC of 0.51 (95% CI 0.49-0.54) (Figure 3E, 

Table 2).  

The PC model did not replicate in the GenRisk study, showing no significant findings. The AUC was 0.50 

(95% CI 0.47-0.53)(Table 2), with a sensitivity of 81%, specificity of 27%, and an overall accuracy of 43% 

(Figure 3C). Similarly, the PC case-model, including age, showed limited predictive capability with an 

AUC of 0.50 (95% CI 0.46-0.53). Meanwhile, the traits-model, including age, also did not demonstrate 

significant predictive power, with an AUC of 0.54 (95% CI 0.50 - 0.57) (Figure 3B, Table 2). Conversely, 

when age was excluded from the models, the AUC of both the all-model and the BC-model surprisingly 

improved significantly to 0.56 (95% CI 0.53 - 0.59) and 0.58 (95% CI 0.55-0.62), respectively. 

Meanwhile, the trait-model still lacks predictive power, with an AUC of 0.53 (95% CI 0.49-0.56) (Figure 

3E, Table 2). 
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Figure 3. Discrimination ability of the PRS constellation models in the external validation cohort GenRisk. ROC 

curves of PRS constellations models: PRS by case (Case-model), PRS for case-related traits (Traits-model), and 

complete models (All-model). Evaluation includes ROC curves and AUC values for prediction models of A) 

Colorectal Cancer (CRC), B) Breast Cancer (BC), and C) Prostate Cancer (PC), including age and sex. Panels D-F) 

represent ROC curves and AUC values for prediction models of D) CRC, E) BC, and F) PC, not including age and 

sex. 

Considering BC and PC results, where excluding age improved the model slightly, we found that this 

was due to the GenRisk study design, that had a common pool of controls for all the cases, selected in 

an overall frequency matched design. As expected, the median ages in the UK cohort were always 

greater for cases than controls. However, in the GenRisk study, BC and PC cases were younger than 

controls, which made the age model parameter trained in the UKB reduce the predictive accuracy in 

the validation (Table 1. Supplementary Table 5).  
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Discussion 

Cancer development results from intricate interactions between genetic factors and modifiable 

exposures like lifestyle, diet, stress, as well as social factors such as age, sex and ancestry. An effective 

prevention strategy necessitates a comprehensive approach that recognizes the full spectrum of 

genetic and environmental influences on cancer risk. Current individual PRS often fall short in capturing 

this complexity, emphasizing the need for a thorough perspective to guide more effective prevention 

and intervention strategies. 

To overcome these limitations, our study adopts a novel approach to cancer prediction, termed PRS 

constellation, that uses a Bayesian network model to define which PRS from diverse lifestyle and 

environmental factors, should be integrated and offer a more precise tool for assessing cancer risk in 

the context of precision prevention. This approach aimed to introduce a different method for 

integrating lifestyle and health-related data, especially in situations where this data may be 

inaccessible or when only genetic information is available, offering a distinct approach to conventional 

methods. Furthermore, this methodology holds promise for identifying new traits targets for 

prevention and diagnosis, as well as for developing personalized plans that incorporate genetic and 

lifestyle data. 

The results from the model combining cancer PRS with risk factor PRS did not show an enhancement 

in predictive capability compared to the specific cancer PRS in cases of CRC and BC. While a minor 

enhancement was observed in PC cases, this was not been confirmed in the GenRisk study. The PC PRS 

revealed a limited predictive capacity in the GenRisk study, underscoring the disparities between the 

two populations. This suggests that further refinement is needed in defining a PRS for PC within the 

Spanish population. To our knowledge, no article in the literature has utilized a similar methodology 

for combining PRS of risk factors with PRS of cancer. 

Despite these negative results, it is evident that the PRS of the selected traits collectively exhibit 

autonomous predictive power in the UKB, though this may be related to fact that the PRSs were 

developed in the UKB, and these factors indeed contribute to risk prediction. The validation in the 

GenRisk study failed, probably because the predictive power of the PRSs regarding the real exposures 

is low and this diluted effect reduced power. Furthermore, it is important to highlight the significant 

impact of including age and sex in the models. Specifically, the inclusion of age and sex in the colorectal 

cancer (CRC) model and age in the prostate cancer (PC) model resulted in an increase in the area under 

the curve (AUC) from 0.63 to 0.74 and from 0.60 to 0.75, respectively, in the UK Biobank (UKB) cohort. 

However, this trend was only observed for the CRC model in the GenRisk study, where the inclusion of 

age and sex only slightly improved the AUC from 0.62 to 0.65, but the AUC decreased for the BC and 
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PC models, probably due to the frequency matched study design in the GenRisk study that lead to a 

wrong age distribution compared to that of the general population. For this reason, regarding 

assessment of the models predictive accuracy in the GenRisk study, probably the models that do not 

include age or sex are more appropriate. 

Notably, some of the selected variables by the Bayesian network approach have not been previously 

identified as risk factors for the cancers studied, suggesting that our approach may uncover novel 

predictors. These findings highlight the potential for PRS to contribute to cancer risk assessment and 

warrant further investigation and validation. The final CRC PRS model incorporated 9 PRS traits, along 

with sex and age variables. Most selected variables and their direction of associations are consistent 

with previously described CRC risk factors in multiple studies, reassuring the model's building strategy. 

Elevated risk of CRC has been associated with cigarette smoking, increased adult height a higher waist-

hip ratio (WHR), positive correlations with diabetes, hypertension, pulse rate, and elevated LDL 

cholesterol levels have also been identified as contributing factors(21,22). A low red blood cell count 

(anemia) is recognized as an early indicator of CRC(23),  may also have a causal role, suggesting further 

exploration through Mendelian randomization studies. Aspirin and other non-steroidal anti-

inflammatory drugs have been shown associated with a reduced risk of CRC(24). The protective effect 

may also be linked to aspirin's documented role in preventing cardiovascular diseases, reducing blood 

pressure, and lowering pulse rates, all of which contribute to a reduced risk of colorectal cancer. These 

variables highlight common links between cardiovascular diseases and CRC, possibly mediated by 

chronic inflammation, metabolic dysregulation, and shared genetic predispositions. Addressing these 

risk factors through lifestyle changes and medical interventions could reduce both cardiovascular 

disease and CRC incidence, underscoring their importance in prevention and treatment strategies. 

In the BC PRS constellation model, the integration of CRC PRS, along with 8 additional PRS variables 

and age, allowed for the establishment of bibliographic connections with this disease. Elevated waist 

circumference, height, and hypertension have been documented as factors associated with an 

increased risk of BC. Additionally, factors tied to women's health, including uterine fibroids, age at 

menopause, and postmenopausal testosterone levels, exhibit positive correlations with BC risk. 

Conversely, age at menarche and sex hormone-binding globulin (SHBG) levels were inversely related 

to BC risk, as supported by relevant literature(22,25–27). 

For PC, the PRS constellation model integrated 10 PRS variables (1 PRS specific to PC + 9 PRS associated 

with various traits), along with age. Factors such as elevated alcohol intake, increased WHR, 

hypertension, prostate hyperplasia, and a higher platelet cell count were positively associated with an 

increased risk of PC. Interestingly, although there is no evidence of a direct association between height 

and PC risk, its connection with higher PC mortality has been reported. On the other hand, the model 
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retained coffee intake and whole grain consumption PRSs that were negatively associated with PC risk. 

High coffee intake has been previously associated with a lower risk of PC, while whole grain 

consumption has been linked to a lower risk of total and site-specific cancers, there is currently no 

evidence of its relationship with PC. Lastly, despite our results, circulating vitamin D levels have 

documented to be associated with better progression and prognosis of PC(22,28–32).   

These findings align with current international public health guidelines highlighting that a reduced 

adherence to lifestyle recommendations is linked to an elevated overall cancer risk(22,33).  

Additionally, the results align with earlier research exploring interactions between cumulative genetic 

susceptibility and various variables, in the CRC(34) ,BC(35), and PC(36).  

This study is subject to certain limitations, particularly the PRSs used to predict traits were developed 

in the UK Biobank, and UK Biobank samples contributed to the GWAS meta-analyses that defined the 

cancer specific PRSs. This may result in an overestimation of the models’ predictive accuracy. We 

tested this in the independent GenRisk study, suggesting challenges in translating PRS models across 

diverse populations, mainly for PC. To enhance the model, calculating the PRS in another Spanish 

cohort and subsequently validating it with GenRisk could provide more robust and generalizable 

results. The already mentioned issue with the age and sex matched design in GenRisk is also a relevant 

limitation, and ideally the PRS predictive accuracy should be tested in studies with cohort design to 

properly include age and sex effects. 

In conclusion, the introduction of the PRS constellation model had a significant value in the UKB cohort 

but did not significantly enhance the predictive capabilities of cancer-specific PRS and this could not 

be validated in the GenRisk study. While our approach did not improve overall predictive power, it 

underscores the relevance of lifestyle-related factors and the necessity of incorporating these 

elements into cancer prevention strategies. Our study also reveals the model's limitations, indicating 

the need for additional biomarkers and a more refined selection of training and validation populations 

to enhance efficacy. These findings emphasize the ongoing need for comprehensive approaches in 

advancing precision medicine and optimizing early cancer detection.  
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